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Abstract

We consider the problem of testing a basic property of collections of distributions: having similar
means. Namely, the algorithm should accept collections of distributions in which all distributions have
means that do not differ by more than some given parameter, and should reject collections that are
relatively far from having this property. By ‘far’ we mean that it is necessary to modify the distributions
in a relatively significant manner (measured according to the `1 distance averaged over the distributions)
so as to obtain the property. We study this problem in two models. In the first model (the query model) the
algorithm may ask for samples from any distribution of its choice, and in the second model (the sampling
model) the distributions from which it gets samples are selected randomly. We provide upper and lower
bounds in both models. In particular, in the query model, the complexity of the problem is polynomial
in 1/ε (where ε is the given distance parameter). While in the sampling model, the complexity grows
roughly as m1−poly(ε), where m is the number of distributions.
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1 Introduction

We consider testing a basic property of collections of distributions: having similar means. Namely, given a
collection D = (D1, . . . , Dm) of distributions over {0, . . . , n}, and parameters γ and ε, we would like to
determine whether the means of all distributions reside in an interval of size γn (in which case they have
the property of γ-similar means), or whether the collection is ε-far from having this property. By “ε-far” we
mean that for every collection D∗ = (D∗1, . . . , D

∗
m) that has the property, 1

m

∑m
i=1 d(Di, D

∗
i ) > ε, where

d(·, ·) is some predetermined distance measure between distributions.
The problem of determining whether a collection of distributions consists of distributions that have sim-

ilar means arises in many contexts: Suppose one is given a collection of coins and would like to determine
whether they have the same (or very similar) bias. Alternatively, suppose one would like to compare mean
behavior of multiple groups in a scientific experiment. As we discuss in some more detail in Subsection 1.2,
related questions have been studied in the Statistics literature, resulting in particular in the commonly used
family of procedures ANOVA (Analysis of Variance), used for deciding whether a collection of normal dis-
tributions all have the same mean. As stated above, we consider distributions over a discrete domain but
other than that we do not make any assumptions regarding the distributions. Our formulation of the problem
falls within the framework of property testing [19, 9, 5], so that in particular it allows for a small fraction of
“outlier” distributions.

1.1 Our Contributions

We consider two models, proposed in previous work [15], that describe possible access patterns to multiple
distributions D1, . . . , Dm over the same domain {0, . . . , n}. In the query model the algorithm is allowed
to specify i ∈ {1, . . . ,m} and receives j that is distributed according to Di. We refer to each such request
for a sample from Di as a query. In the (uniform) sampling model, the algorithm receives pairs of the form
(i, j) where i is selected uniformly in {1, . . . ,m} and j is distributed according to Di.

The `1 distance between two probability distributions, d(D1, D2) =
∑n

j=0 |D1(j) − D2(j)|, is per-
haps the most standard measure of distance between distributions, as it measures the maximum difference
between the probability of any event (i.e., set S ⊆ {0, . . . , n}) occurring according to one distribution as
compared to the other distribution. In other words, if the distance is small, then the distributions are essen-
tially indistinguishable in terms of their behavior. Hence, we take it as our default distance measure when
testing properties of distributions. However, for specific properties one may consider other distance mea-
sures that are appropriate. In this study, since the property is related to the means of the distributions and
thus the numerical values of the domain elements are meaningful (as opposed to symmetric properties of
distributions), we also consider the Earth Mover’s Distance (EMD).1 We prove our upper and lower bounds
for the case where the underlying distance measure is the `1 distance and show by a simple observation
that all our results hold for the case which the underlying distance measure is EMD. Hence, unless stated
explicitly otherwise, in all that follows the underlying distance measure is the `1 distance.

RESULTS IN THE QUERY MODEL. We give an algorithm whose query complexity is Õ(1/ε2). which is
almost tight as there is a simple lower bound of Ω(1/ε2) (even for the {0, 1} case).

1Informally, if the distributions are interpreted as two different ways of piling up a certain amount of earth over the region D,
the EMD is the minimum cost of turning one pile into the other, where the cost is assumed to be amount of earth moved times the
distance by which it is moved. A formal definition appears in Section 5.
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Consider first a basic algorithm that works by obtaining very good estimates of the means of a sufficient
number of randomly selected distributions. If the collection is ε-far from having γ-similar means, then
(with high probability) after performing Θ̃(1/ε3) queries, the algorithm will obtain two distributions whose
estimated means are sufficiently far from each other. Thus, this algorithm essentially uses estimates of
means as estimates of the distance to having a certain mean.

We design and analyze an improved (almost optimal) algorithm that, roughly speaking, tries to directly
estimate the distance to having a certain mean. The more direct estimate is done by estimating means as well,
albeit these are means of “mutations” of the original distribution in which the weight of the distribution is
either shifted higher or lower. By obtaining such estimates we can apply a “bucketing” technique that allows
us to save a factor of Θ̃(1/ε) in the query complexity.

RESULTS IN THE SAMPLING MODEL. While in the query model the complexity of the problem of testing
similar means has no dependence on the number of distributions,m, this is no longer the case in the sampling
model. We prove that the number of samples required is lower bounded by (1−γ)m1−Õ((ε/γ)1/2). Thus, for
any fixed γ (bounded away from 0 and 1), the sample complexity approaches a linear dependence on m as ε
is decreased. On the positive side, we can show the following. First, by emulating the algorithm designed for
the query model, we get an algorithm in the sampling model whose sample complexity is Õ(1/ε2)m1−Ω̃(ε2).
If we restrict our attention to the case where the domain is {0, 1}, then we can get a better dependence on
ε in the exponent (at a cost of a higher dependence in the factor that depends only on ε). We also observe
that (for the {0, 1} case), if γ < ε/c for some sufficiently large constant c, then we can use an algorithm
from [14] whose sample complexity is poly(1/ε)

√
m (we note that it is not possible to go below

√
m even

for γ = 0).
In order to prove the abovementioned lower bound we construct a pair of collections of distributions,

one that has the property of γ-similar means, and one that is ε-far from having this property. We prove
that when taking (1 − γ)m1−Õ((ε/γ)1/2) samples, these two collections are indistinguishable. The heart of
the proof is the construction of two random variables that on one hand have the same first t moments (for
t = Õ((γ/ε)1/2)) and on the other hand differ in the maximal distance between pairs of elements in the
support. These random variables can then be transformed into collections of distributions that cannot be
distinguished (with the abovementioned number of samples) but differ in the distance between the maximal
and minimal means in the collection. The construction of the random variables is based on Chebyshev
polynomials [7], whose roots, and their derivatives at the roots, have useful properties that we exploit.

1.2 Related Work

The work that is most closely related to the work presented in this paper appears in [15]. The testing models
used here were introduced in [15], where the main focus was on the property of equivalence of a collection
of distributions. Namely, the goal is to distinguish between the case that all distributions in the collection
are the same (or possibly very similar), and the case in which the collection is far from having this property.
When the domain of the distributions is {0, 1}, then the problem of testing similar means for γ = 0 is the
same as testing whether the distributions are equivalent. Therefore, an algorithm with sampling complexity
poly(1/ε)

√
m that is given in [15] for testing equivalence in the sampling model, carries over directly to

our problem, when γ = 0 and the domain is {0, 1}). In fact, a tolerant version of this algorithm [14] implies
the same complexity for γ ≤ ε/c for a sufficiently large constant c. However, these results do not have any
implications for larger γ, and the problems are very different when the domain is larger.

Testing and approximating properties of single and pairs of distributions has been studied quite exten-
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sively in the past (see [10, 17, 4, 3, 1, 2, 12, 6, 18, 22, 21]).
Statistical techniques for determining whether sets of populations have the same mean are in wide use.

Paired difference tests, and in particular the Student’s and Welch’s t-tests, are commonly used to study
whether the mean of two normally distributed populations are equal [16, 20, 24]. The family of procedures
ANOVA (Analysis of Variance), applies when there are more than two normally distributed populations
(see [13, Chapter 12]), where the difficulty is that the pairwise comparison of all the populations increases the
chance of incorrectly failing collections of populations that do in fact all have the same mean. In all of these
procedures, the problem solved is more stringent than in our property testing setting, but the assumptions
made in all settings are quite strong, e.g., assuming the normality of the distributions and assuming that all
distributions have the same variance, and thus the sample complexity bounds are incomparable to those in
our setting.

1.3 Extensions and Further Research

A natural question that arises is what is the exact complexity of testing γ-similar means in the sampling
model. One sub-question is the dependence on ε in the exponent of m. Perhaps a more intriguing question
is the dependence on γ. Namely, our lower bound (which also holds for the domain {0, 1}) are meaningful
only when γ is (sufficiently) larger than ε. As noted previously, when γ ≤ ε/c (for some constant c), the
testing problem can be solved for the domain {0, 1} using a number of samples that grows as

√
m. The

question is whether for the domain {0, 1}, and possibly more generally, we can give an algorithm whose
complexity is a function of ε/γ rather than ε (so that, in particular, the complexity decreases as γ decreases).

We also note that our results (in particular in the query model) easily extend to a generalization of the
similar-means problem, where we ask whether the distributions can be clustered into at most k clusters, such
that within each clusters all distributions have means that differ by at most γn.

2 Preliminaries

Let D = (D1, . . . , Dm) be a collection of m distributions, where Di : {0, . . . , n} → [0, 1] and∑n
j=1Di(j) = 1 for every 1 ≤ i ≤ m. For a vector v = (v1, . . . , vn) ∈ Rn, let ‖v‖1 =

∑n
i=1 |vi|

denote the `1 norm of the vector v.
Following [15], for a property P of collections of distributions and 0 ≤ ε ≤ 1, we say that D is ε-far

from (having) P if 1
m

∑m
i=1 ‖Di−D∗i ‖1 > ε for every collection D∗ = (D∗1, . . . , D

∗
m) that has the property

P (note that ‖Di −D∗i ‖1 is twice the the statistical distance between the two distributions).
Given a distance parameter ε, a testing algorithm for a property P should distinguish between the case

that D has the property P and the case that it is ε-far from P . We consider two models within which this
task is performed.

1. The Query Model. In this model the testing algorithm may indicate an index 1 ≤ i ≤ m of its
choice and it gets a sample j distributed according to Di. We refer to each such request as a query.

2. The Sampling Model. In this model the algorithm cannot select (query) distributions of its choice.
Rather, it may obtain a pair (i, j) where i is selected uniformly (we refer to this as the uniform
sampling model) and j is distributed according to Di.
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For a distribution D over the domain {0, . . . , n}, let µ(D)
def
= 1

n

∑n
j=1 i · D(j). For a collection D =

(D1, . . . , Dm) of distributions over {0, . . . , n} let µj = µ(Dj). For a parameter 0 ≤ γ ≤ 1, we say that D
has γ-similar means if |µj − µj′ | ≤ γn for every j 6= j′.

3 Results for the Query Model

In this section we provide an algorithm for testing γ-similar means in the query model, and give an almost
matching simple lower bound.

For a distribution D over {0, . . . , n}, we shall use the notation µ(D)
def
=
∑n

i=1 i ·D(i) for the mean of

D. for a value 0 ≤ z ≤ n let d1(D, z)
def
= minD′:µ(D′)=z {‖D −D′‖1} denote the minimum `1 distance

between D and a distribution that has mean z.

3.1 A Basic Algorithm

Consider first a basic algorithm that works by randomly selecting Θ(1/ε) distributions, and estimating each
of their means to within O(εn) additive error. This can be done by querying each selected distribution so as
to obtain Õ(1/ε2) samples from each. The resulting query complexity is Õ(1/ε3). The correctness of this
algorithm is based on Lemma 1 (stated below), which gives an upper bound on the “cost”, in terms of the
`1-distance, for modifying the mean of a distribution by εn. Note that in general this cost is not necessarily
linear in ε. For example, consider the case in which εn is an integer and D has all its weight on n(1− ε), so
that µ(D) = n(1− ε). Suppose we want to increase D’s mean by εn. The only distribution whose mean is
n is the distribution whose weight is all on n, and the `1 distance between D and this distribution is 1. On
the other hand, if we wanted to decrease the mean of D by εn, then this can easily be done with a cost linear
in ε, by moving ε/(1− ε) weight from n(1− ε) to 0.

Lemma 1 Let D be a distribution over {0, . . . , n}, let µ = µ(D), and let ε ≤ 1/16. If µ ≥ n/2, then for
every µ′ ∈ [µ − εn, µ] there exists D′ such that µ(D′) = µ′ and ‖D − D′‖1 ≤ 4ε. If µ ≤ n/2, then for
every µ′ ∈ [µ, µ+ εn] there exists D′ such that µ(D′) = µ′ and ‖D −D′‖1 ≤ 4ε.

Proof: Let X ∼ D. In the case that µ ≥ n/2 we have that Pr[X ≥ n/4] ≥ 1/4 ≥ 4ε. Therefore, we
can decrease the mean of D by at most εn by moving at most 4ε weight from its support on points in the
interval [n/4, n], to 0. In the case that µ ≤ n/2, we have that Pr[X ≤ 3n/4] > 1/3 ≥ 4ε. Therefore,
we can increase the mean of D by at most εn by moving at most 4ε weight from its support on the interval
[0, 3n/4], to n.

Lemma 2 can be shown to follow from Lemma 1.

Lemma 2 Let D be a collection of distributions. If D is ε-far from having γ-similar means, then there
exists an interval [x, y] ⊆ [n] where y − x ≥ γn + εn/8 such that

∑
i:µ(Di)>y

d1(Di, y) > (ε/4)m and∑
i:µ(Di)<x

d1(Di, x) > (ε/4)m. In particular, there are more than (ε/4)m distributions whose mean is at
most x and more than (ε/4)m distributions whose mean is at least y.

Proof: Let D be a collection which is ε-far from having γ-similar means. By defintion, for every interval
[x, y] such that y − x ≤ γn we have that

∑
i:µ(Di)<x

d1(Di, x) +
∑

i:µ(Di)>y
d1(Di, y) > εm. We claim
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that for every interval [x, y] such that y − x > γ + ε/8, we have that∑
i:µ(Di)<x

d1(Di, x) +
∑

i:µ(Di)>y

d1(Di, y) > (ε/2)m . (1)

This is true because otherwise, we could modify the distributions so that their means belong to an interval
[x′, y′] ⊆ [x, y] of size γn at a total cost upper bounded by εm. In particular, we would first increase the
means of all those distributions Di such that µ(Di) < x to x, and decrease the means of all Di such that
µ(Di) > y to y, at a total cost of (ε/2)m. We then increase/decrease the means further by at most (ε/8)n
each using Lemma 1.

Let x′ be the maximum value such that
∑

i:µ(Di)<x′
d1(Di, x

′) ≤ (ε/4)m, and let y = x+γn+(ε/2)n.
By the claim we have just established,

∑
i:µ(Di)>y

d1(Di, y) > (ε/4)m. By the definition of x′, if we
consider any x > x′, in particular x = x′ + (3ε/8)n, then

∑
i:µ(Di)<x

d1(Di, x) > (ε/4)m.

The correctness of the basic algorithm follows from Lemma 2: If D is ε-far from having γ-similar
means, then by selecting Θ(1/ε) distributions and estimating the means of each to within O(εn), with high
constant probability the algorithm finds evidence for a pair of distributions with means outside both sides of
the interval defined in Lemma 2. On the other hand, if D has γ-similar means, then the probability of such
an event is small.

3.2 An Improved Algorithm

We can modify the basic algorithm so as to obtain a lower complexity (which we later show is almost
optimal). The intuition underlying the modification (similar to that applied for example in [11]) is roughly
the following. Consider the following two (extreme) cases where the collection is ε-far from having γ-
similar means. In the first case, there is an interval [x, y] of size γn+ 2εn, such that half of the distributions
have mean x and half of the distributions have mean y. If we select just a constant number of distributions,
and for each we estimate its mean to within εn/2, then we shall have sufficient evidence for rejection. In the
second case, all but 2εm of the distributions have a mean that resides in an interval of size γn, say, [0, γn]
and the remaining 2εm distributions have a mean of n. In this case we need to sample Θ(1/ε) distributions
so as to “hit” one of the high-mean distributions, but then it suffices to take a constant size sample so as to
detect that it has a high mean.

If the distributions were over {0, 1}, then by generalizing the above discussion we can get a certain
trade-off between the number of selected distributions and the required quality of the estimate of their
means. When dealing with general domains, estimating the means might not suffice. As noted previously,
a distribution might have a mean that is very close to a certain value, while the distribution is very far, in
terms of the `1 distance, from any distribution that has this mean. Therefore, rather than estimating means
as a “proxy” for estimating the `1 distance to having a certain mean, we estimate the latter directly.

To make the above notion of estimation more precise, we introduce some notations. For 0 ≤ β ≤ 1 and
D such that d1(D,n) ≥ β (where d1(·, ·) is as defined at the beginning of this section), let µ>β (D) equal
µ > µ(D) such that d1(D,µ) = β and for D such that d1(D, 0) ≥ β, let µ<β (D) equal µ < µ(D) such that

d1(D,µ) = β. If d1(D,n) < β, then µ>β (D)
def
= n and if d1(D, 0) < β, then µ<β (D)

def
= 0. Observe that

if the domain is {0, 1}, then µ>β (D) = min{µ(D) + β, 1} and µ<β (D) = max{µ(D) − β, 0} (while if the
domain is larger, then µ>β (D)− µ(D) and µ(D)− µ<β (D) might be much smaller than βn).
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We first describe a procedure that given sampling access to a distribution D and a parameter β, outputs
a pair of estimates such that with high probability one is between µ(D) and µ>β (D) and the other is between
µ<β (D) and µ(D). In particular, if the domain is {0, 1}, then one estimate is between µ(D) and µ(D) + β
and the other is between µ(D)−β and µ(D). The number of samples that the procedure takes is quadratic in
1/β. Note that if the domain is {0, 1} (or any constant size domain), then the procedure can simply estimate
the mean of D to within β. However, for a general domain, the procedure is different. We later show how
to apply this procedure so as to obtain a testing algorithm with query complexity Õ(1/ε2).

The idea behind the procedure is the following. Consider a distribution D. For any value 0 ≤ a ≤ n we
have that ∑

i>a

i ·D(i) +
∑
i≤a

a ·D(i) ≥ µ(D) . (2)

On the other hand, by the definition of µ>β (D), if a is such that PrD[i ≤ a] ≤ β, then∑
i>a

i ·D(i) +
∑
i≤a

n ·D(i) ≤ µ>β (D) . (3)

Let a indeed be a value that satisfies PrD[i ≤ a] ≤ β, let a′ = a+ (n− a)/2 = (a+ n)/2 and let

µa(D)
def
=
∑
i>a

i ·D(i) + a′ · PrD[i ≤ a] . (4)

Then on one hand
µa(D) ≥ µ(D) + ((n− a)/2) · PrD[i ≤ a] (5)

and on the other hand
µa(D) ≤ µ>β (D)− ((n− a)/2) · PrD[i ≤ a] . (6)

If PrD[i ≤ a] ≥ β/c for some constant c, then by estimating µa(D) to within an additive error of (n −
a)β/4c, we get a value x between µ(D) and µ>β (D). Since µa(D) is the mean of a distribution (we describe
this distribution formally in the proof of Lemma 3) whose support is in the interval [a, n], this can be done by
taking a sample of size Θ(1/β2). A technical issue that arises is that it is possible that no such value a exists
because PrD[i = a] is relatively large. But then we can slightly modify the definition of µa(D) and still
obtain the desired estimate. A similar argument can give us µ<β (D) ≤ y ≤ µ(D) (with high probability).

Lemma 3 The procedure GetBounds(D,β, δ) returns x and y such that with probability at least 1−δ (over
its internal coin flips), µ(D) ≤ x ≤ µ>β (D) and µ<β (D) ≤ y ≤ µ(D).

Proof: We prove the claim for x, and an analogous (symmetric) analysis holds for y. Let a′′ be as defined
in Step 4 of Procedure GetBounds, and let

Da,a′′(i)
def
=


D(i) if i > a, i 6= a′, i 6= a′′

D(i) + PrD[i < a] if i = a′

D(i) +D(a) if i = a′′

0 o.w.

(7)

By the definition of the distribution Da,a′′ we have that

µ(Da,a′′) =
∑
i>a

i ·D(i) + a′ · PrD[i < a] + a′′ · PrD[i = a] . (8)
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Procedure GetBounds(D,β, δ)

1. Take a sample of size s1 = Θ(log(1/δ)/β) from D and let i1 ≤ · · · ≤ is1 be the selected points
(ordered from small to large).

2. Set a = i(β/4)s1 , b = i(1−β/4)s1 , a′ = (a+ n)/2 and b′ = b/2.

3. Take a sample of size s2 = Θ(log(1/δ)/β2) from D. Let α̂(a) be the fraction of sampled points
i = a and let α̂(b) be the fraction of sampled points i = b.

4. If α̂(a) ≤ β/4, then let a′′ = a′, else let a′′ = β
4α̂(a) · a

′ + (1− β
4α̂(a)) · a. Similarly, if α̂(b) ≤ β/4

then let b′′ = b′, else let b′′ = β
4α̂(b) · b

′ + (1− β
4α̂(b)) · b.

5. Take a sample of size s3 = Θ(log(1/δ)/β2) from D, and denote the sampled points by i1, . . . , is3 .
Let x = 1

s3

(∑
ij>a

ij +
∑

ij<a
a′ +

∑
ij=a a

′′
)

and y = 1
s3

(∑
ij<b

ij +
∑

ij>b
b′ +

∑
ij=b b

′′
)

.

6. Return (x, y).

Observe that in Step 5, the procedure takes s3 independent samples from Da,a′′ and that E[x] = µ(Da,a′′).
By a multiplicative Chernoff bound, with probability at least 1 − δ/4 (for a sufficiently large constant

in the Θ notation for s1) we have that PrD[i < a] ≤ β/3 and PrD[i ≤ a] ≥ β/8. Next, by an additive
Chernoff bound, with probability at least 1− δ/4 (for a sufficiently large constant in the Θ notation for s2)
we have that PrD[i = a] − β/4 ≤ α̂(a) ≤ PrD[i = a] + β/4. From this point on assume that the above
inequalities indeed hold. If α̂(a) ≤ β/4 (so that PrD[i ≤ a] ≤ β/3 + β/4 + β/4 < β), then (as explained
in the discussion preceding the algorithm), on one hand,

µ(Da,a′′) ≥ µ(D) +
n− a

2
· PrD[i ≤ a] ≥ µ(D) + (n− a) · (β/16) , (9)

and on the other hand

µ(Da,a′′) < µ>(D)− n− a
2
· PrD[i ≤ a] ≤ µ>(D)− (n− a) · (β/16) . (10)

If α̂(a) > β/4 (so that PrD[i < a] + min{1, β/4α̂(a)} · PrD[i = a] ≤ β/3 + β/2 < β), then

µ(Da,a′′) ≥ µ(D) +
n− a

2
·
(

PrD[i < a] +
β

4α̂(a)
· PrD[i = a]

)
≥ µ(D) +

n− a
2
· β

32
(11)

and similarly µ(Da,a′′) < µ>β (D)− (n−a) · (β/32). By the definition of x and an additive Chernoff bound,
with probability at least 1 − δ/4 (for a sufficiently large constant in the Θ notation for s3), we have that
|x− µ(Da,a′′)| ≤ (n− a) · (β/32) implying that µ(D) ≤ x ≤ µ>β (D).

Theorem 1 Algorithm 1 tests γ-similar means in the query model. The algorithm’s query complexity is
O(log2(1/ε)/ε2).

Proof: Let Eg denote the event that all pairs (xqj , y
q
j ) returned by the procedure GetBounds are as specified

in Lemma 3. Since each call to GetBounds in iteration q is done with δ = 1/(6r`(q)), by Lemma 3 the
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Algorithm 1: testing γ-similar means

1. For q = 1 to r, where r = dlog(8/ε)e do:

• Select `(q) = Θ (2q log(1/ε)) distributions from the collection, and denote them by
Dq

1, . . . , D
q
`(q).

• For each Dq
j selected let (xqj , y

q
j ) = GetBounds

(
Dq
j , (ε/8)2q−1, 1

(6r`(q))

)
2. Let x̂ = maxq,j{xqj} and ŷ = minq,j{yqj}. If ŷ − x̂ > γn, then REJECT, otherwise, ACCEPT.

probability that Eg holds is at least 5/6. If D has γ-similar means, then, conditioned on Eg, the algorithm
accepts.

We now turn to the case thatD is ε-far from having γ-similar means. Let [x, y] be an interval as described
in Lemma 2. We partition the distributions Di such that µ(Di) < x into buckets BL

q , for 1 ≤ q ≤ r, where

BL
q = {i : (ε/8)2q−1 < d1(Di, x) ≤ (ε/8)2q} , (12)

and similarly we partition the distributions Di such that µ(Di) > y into buckets BR
q , where

BR
q = {i : (ε/8)2q−1 < d1(Di, y) ≤ (ε/8)2q} . (13)

Since
∑

i:µ(Di)<x
d1(Di, x) > (ε/4)m and

∑
i:µ(Di)<x,d1(Di,x)≤ε/8 d1(Di, x) ≤ (ε/8)m we have that there

exists an index qL such that

|BL
qL | >

(
(ε/4)m

)
/
(

(ε/8)2q
L

log(8/ε)
)

= Ω
(

2−q
L
m/ log(1/ε)

)
, (14)

and similarly there exists an index qR such that |BR
qR
| = Ω

(
2−q

R
m/ log(1/ε)

)
. But in such a case, with

high constant probability, the algorithm will select a distribution Di such that i ∈ BL
qL

in iteration qL, and a
distribution Dj such that j ∈ BR

qR
in iteration qR, and conditioned on the event Eg, will reject, as required.

Let s(q) denote the number of queries performed in iteration q by the procedure GetBounds for each distri-
bution it is called on. The query complexity of the algorithm is

r∑
q=1

`(q) · s(q) = O

 r∑
q=1

2q log(1/ε) · log(1/ε)

22qε2

 = O(log2(1/ε)/ε2) (15)

and the theorem follows.

3.3 A Lower Bound

We next establish a lower bound (almost matching our upper bound) for testing γ-similar means in the query
model by reducing the testing problem to the problem of distinguishing two coins.

Fact 4 Distinguishing an unbiased coin from a coin with bias ε with constant success probability requires
Ω(1/ε2) samples.

8



Corollary 2 Testing γ-similar means in the query model requires Ω(1/ε2) samples.

Proof: Let D1(0) = D1(n) = 1
2 , D2(0) = 1

2 − ε, D2(n) = 1
2 + ε and D3(0) = 1

2 + γ, D3(n) = 1
2 − γ. By

their definition, the collection (pair) (D1, D3) has γ-similar means, while the pair (D2, D3) is at least ε/2-
far from having γ-similar means. Distinguishing between the case that we are given an unbiased coin and
the case that we are given a coin with bias ε reduces to testing whether the collection of two distributions,
(D,D3) has γ-similar means (when D = D1, which is emulated when the coin is unbiased) or is ε/2-far
from γ-similar means (when D = D2, which is emulated when the coin is biased).
For the sake of completeness we include the proof of Fact 4 next.

Proof of Fact 4: We shall use the KL-divergence between distributions. Namely, for two distributions p1

and p2 over a domain X , DKL(p1‖p2)
def
=
∑

x∈X p1(x) · ln p1(x)
p2(x) .

DKL

(
Bin

(
n,

1

2
+ ε

)
‖Bin

(
n,

1

2

))
=

∑
0≤k≤n

(
n

k

)(
1

2
+ ε

)k (1

2
− ε
)n−k

· ln (1 + 2ε)k (1− 2ε)n−k

=
n

2
((1 + 2ε) ln(1 + 2ε) + (1− 2ε) ln(1− 2ε))

≤ n

2
· 4ε ln(1 + 2ε)

≤ n

2
· 4ε · 2ε

= 4nε2 .

The `1 distance is related to the KL-divergence by ‖p1 − p2‖1 ≤ 2
√

2DKL (p1‖p2) and thus the fact is
established.

4 Results for the Sampling Model

As opposed to the query model, where the algorithms had no dependence on the number of distributions, m,
we show that in the sampling model there is a strong dependence on m. We start by giving a lower bound
for the sampling complexity of this problem, and continue with several upper bounds.

4.1 A Lower Bound

In this section we prove the following theorem.

Theorem 3 For every n ≥ 1, testing γ-similar means in the uniform sampling model requires (1 − γ) ·
m1−Õ((ε/γ)1/2) samples.

In particular, when γ is a constant we get a lower bound of m1−Õ(ε1/2). We also note that we may assume
without loss of generality that 1− γ = Ω(ε), or else the algorithm can accept automatically.

In order to prove Theorem 3 we construct a pair of collections of distributions, one that has the property
of γ-similar means, the YES instance, and one that is ε-far from having this property, the NO instance. We
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prove that when takingm1−Õ((ε/γ)1/2) samples, these pair of collections are indistinguishable and thus prove
a lower bound on the sample complexity of the problem. The main part of this proof is the construction of
two random variables that on one hand have the same first t moments (where t will be defined later) and
on the other hand differ in the maximal distance between pairs of elements in the support, which we call
the diameter of the random variable. These random variables can then be transformed into collections of
distributions that cannot be distinguished (with the abovementioned number of samples) but differ in the
distance between the maximal and minimal means in the collection. The random variable that is at the core
of the construction of the YES instance, i.e. a collection of distributions where γ is the maximal distance
between means of pairs of distributions in the collection, has diameter of γ . While the random variable
which corresponds to the NO instance has a diameter which is greater than γ. The next lemma is central to
the proof of Theorem 3. In the lemma and what follows we shall use the notation [k]

def
= {1, . . . , k}.

Lemma 5 Given sequences {di}ti=1 and {αi}ti=1 that satisfy 0 ≤ |di|, αi ≤ 1 for every i ∈ [t] and∑t
i=1 αi = 1, we define a random variable X = X ({di}, {αi}) over [0, 1] as follows: Pr [X = di] = αi.

For every even integer t, there exist sequences {d+
i }ti=1, {α+

i }ti=1, {d−i }
t+1
i=1 and {α−i }

t+1
i=1 that obey the

aforementioned constraints and for which the following holds:

1. For the random variables X+ = X
(
{d+

i }, {α
+
i }
)

and X− = X
(
{d−i }, {α

−
i }
)

we have

E
[(
X+
)i]

= E
[(
X−
)i] ∀i ∈ [t] . (16)

2. The sequences are symmetric around zero. Namely, d−t/2+1 = 0, and for every 1 ≤ i ≤ t/2, we have

that d+
i = −d+

t+1−i and α+
i = α+

t+1−i as well as d−i = −d−t+2−i and α−i = α−t+2−i.

3. If we denote by d+
max (d+

min) the maximal (minimal) non-negative element in the support of X+ (so
that d+

max = d+
1 and d+

min = d+
t/2) and by α+

max (α+
min) the corresponding probability, and let d−max,

d−min, α−max, α−min be defined analogously, then

α−max(d−max − d+
max) = Θ̃

(
1

t2

)
, (17)

and
d+

max − d+
min = Θ(1) . (18)

We prove Lemma 5 in Subsection 4.1.1 and first show how Theorem 3 follows from it. Let {α+
i }ti=1,

{d+
i }ti=1, {α−i }

t+1
i=1 and {d−i }

t+1
i=1 be as defined in Lemma 5. Let {α̃+}ti=1 and {α̃−}t+1

i=1 satisfy:

1. α̃+
i m and α̃−i m are integers.

2.
∑t

i=1 α̃
+
i =

∑t+1
i=1 α̃

−
i = 1.

3. α̃+
i = α̃+

t−i+1 and α̃−i = α̃−t−i+1 (for 1 ≤ i ≤ t/2).

4. |α̃+
i − α

+
i | ≤ 1/m and |α̃−i − α

−
i | ≤ 1/m.

10



For a parameter δ, we define the collection of distributions D+
t (the YES instance) as follows. For every

1 ≤ i ≤ t/2 there are α̃+
i m distributions D ∈ D+

t of the following form:

D(j)
def
=


1
2 ·
(
1 + d+

i δ
)

if j = 0
1
2 ·
(
1− d+

i δ
)

if j = n
0 o.w.

(19)

and another α̃+
i m of the distributions D ∈ D+

t are of the following form:

D(j)
def
=


1
2 ·
(
1− d+

i δ
)

if j = 0
1
2 ·
(
1 + d+

i δ
)

if j = n
0 o.w.

(20)

The collection D−t is defined analogously based on {α̃−i }
t+1
i=1 and {d−i }

t+1
i=1, where for i = t/2 + 1 there are

α̃−t/2+1m distributions D ∈ D−t such that D(0) = D(n) = 1/2 (recall that d−t/2+1 = 0).

Lemma 6 For every even integer t ≤ m1/2, in order to distinguish between D+
t and D−t in the uniform

sampling model (with success probability at least 2/3), it is necessary to take Ω
(
m1−1/t(1− d+

maxδ)
)

samples.

The proof of Lemma 6 is given in Subsection 4.1.2.

Proof of Theorem 3: Define γ such that D+
t has the property of γ-similar means, i.e.

γ =
1

2
· (1 + d+

maxδ)−
1

2
· (1− d+

maxδ) = d+
maxδ . (21)

To change D−t into a γ-similar means instance, we have to either change the means of α−max fraction of the
distributions from 1

2 · (1 + d−max) · n to 1
2 · (1 + d+

max) · n or change the means of α−max distributions from
1
2 · (1− d

−
max) · n to 1

2 · (1− d
+
max) · n. Letting ε = α+

max · (d+
max − d−max)δ, we get that D− is at least ε-far

from γ-similar means. By Lemma 5 we have that

ε

γ
=
α+

max · (d+
max − d−max)

d+
max

= Θ̃

(
1

t2

)
. (22)

We note that for every ε/γ ≤ 1/ log2m we get that m1−Õ((ε/γ)1/2) = Ω(m). Hence we can assume without
loss of generality that ε/γ = Ω̃(m−1/2) and thus by setting 1/t = Θ̃(ε1/2/γ1/2), the theorem follows from
Lemma 6.

4.1.1 Proof of Lemma 5

The random variables described in Lemma 5 are constructed via a polynomial f : the support ofX+ (respec-
tively, X−) is the set of roots of f with a negative (respectively, positive) derivative. If f has an odd number
of roots then the sign of the derivative at the largest root is the same as the sign at the smallest root. If it is
positive, then the support of X− resides in an interval which contains the support of X+. To prove a lower
bound, X− needs to be far from similar means (more precisely, the collection of coins that corresponds to
X−) and indistinguishable from X+. To make X− far from having similar means, f should maximize the
size of X−’s interval (compared to X+’s interval) and the weight on the extreme roots.
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As suggested by Lemma 7 (stated below) X− and X+ have matching moments if the probability to take
the value xi, where xi is a root of f , is 1/|f ′(xi)|, up to normalization. In this case, a small derivative on the
extreme roots would result with X− which is far from having similar means. When the roots of f is taken
to be the value of the Sine function at equal distances, the derivative at the extreme roots, that is at −1 and
1, is small. As we see next, these roots are the roots of the Chebyshev polynomials.

The proof of Lemma 5 requires some preliminaries concerning Chebyshev polynomials, which we pro-
vide next. Let T` be the `-th Chebyshev polynomial of the first kind, which is defined by the recurrence
relation:

T0(x) = 1 (23)

T1(x) = x (24)

T`+1(x) = 2xT`(x)− T`−1(x) . (25)

Let U` be the `-th Chebyshev polynomial of the second kind, which is defined by the recurrence relation:

U0(x) = 1 (26)

U1(x) = 2x (27)

U`+1(x) = 2xU`(x)− U`−1(x) . (28)

Then we have that
dT`(x)

dx
= ` · U`−1 , (29)

and that

U`−1(cos(x)) =
sin(`x)

sinx
. (30)

T` has ` different simple roots:

xi = cos

(
π

2
· 2i− 1

`

)
i = 1, . . . , ` (31)

and the following equalities hold:

T`(1) = 1, and T`(−1) = (−1)` . (32)

We shall also use the next lemma concerning properties of (derivatives of) polynomials.

Lemma 7 ([21]) Let f(x) be a polynomial of degree ` whose roots {xi} are real and distinct. Letting f ′

denote the derivative of f , for every j ≤ `− 2 we have that
∑`

i=1
xji

f ′(xi)
= 0.

We are now ready to prove Lemma 5.

Proof of Lemma 5: Consider the following polynomial:

f(x)
def
= (x− 1)(x+ 1) · T`(x) , (33)

where T`(·) is the `-th Chebyshev polynomial of the first kind and ` = 2t − 1. The polynomial f(·) has
` + 2 roots, which, by decreasing order, are: 1, cos

(
π
2 ·

1
`

)
, cos

(
π
2 ·

3
`

)
, . . . ,−1. The derivative of f(·) is

f ′(x) = 2x · T`(x) + (x2 − 1) · T ′`(x) and thus

1

|f ′(1)|
=

1

2T`(1)
=

1

2
, (34)
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and
1

|f ′(−1)|
=

1

|2T`(−1)|
=

1

2
. (35)

While for xi which is a root of T` we have:

1

|f ′(xi)|
=

1∣∣(x2
i − 1) · T ′`(xi)

∣∣ . (36)

By Equations (29) and (30):

1∣∣T ′`(xi)∣∣ =

∣∣∣∣∣ sin
(
π
2 ·

2i−1
`

)
` · sin

(
π
2 · (2i− 1)

)∣∣∣∣∣ =
1

`
·
∣∣∣∣sin(π2 · 2i− 1

`

)∣∣∣∣ (37)

where we used the fact that
∣∣sin (π2 · (2i− 1)

)∣∣ = 1. Therefore by Equation (31) and the identity 1 −
cos2 x = sin2 x we obtain:

1

|f ′(xi)|
=

1

`
· 1∣∣sin (π2 · 2i−1

`

)∣∣ . (38)

Since g(x) = sinx/x is monotone decreasing for 0 < x ≤ π/2, from the fact that g(π/2) = 2/π we get
that sinx > (2/π)x for 0 < x ≤ π/2. Thus for i ≤ `/2,

1

|f ′(xi)|
≤ 1

`
· π

2
· 1(

π
2 ·

2i−1
`

) =
1

2i− 1
. (39)

Therefore, for {xi}, the roots of T`(·),

∑̀
i=1

1

|f ′(xi)|
≤ 2

∑
xi≥0

1

|f ′(xi)|
= O(log `) . (40)

We take {d−i }
t+1
i=1 to be those roots xj of f(·) for which f ′(xj) > 0 and set

α−i =
1∣∣f ′(d−i )

∣∣ · β− , (41)

where β− = 1/

(∑t+1
i=1

1

|f ′(d−i )|

)
is a normalization factor. Similarly we take {d+

i }ti=1 to be the roots with

the negative derivative. Then d−max = 1 and by Equation (40), α−max = Ω(1/ log `). On the other hand,
d+

max = cos
(
π
2 ·

1
`

)
. Due to the identity 1− cosx = sinx · tan(x/2), we get that:

lim
x→0

1− cosx

x2
= lim

x→0

sinx

x
· sin(x/2)

x
· 1

cos(x/2)
=

1

2
, (42)

and so d−max − d+
max = Θ(1/`2). Since ` is odd and the sign of the derivative alternates between roots we

get that d−min = cos
(
π
2

)
= 0 while d+

min = cos
(
π
2 ·

`−2
`

)
= sin

(
π
2 ·

2
`

)
. Thus d−min − d

+
min = Θ (1/`). By

Equations (38) and (40) we get α+
min = Θ̃(1/`). Therefore, Equations (17) and (18) hold. Equation (16)

follows from Lemma 7. Since the roots of the Chebyshev polynomials are symmetric around zero, we get
that the roots of f(·) are also symmetric. For an odd ` we get that zero is one of the roots and thus each one
of the sequences {d+

i }ti=1, {d−i }
t+1
i=1 is symmetric around zero, as desired.
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4.1.2 Proof of Lemma 6

We first recall the definition of the Poisson distribution, and introduce one more lemma (from [23]). For a
positive real number λ, the Poisson distribution poi(λ) takes the value x ∈ N (where N = {0, 1, 2, . . .})
with probability poi(x;λ) = e−λλx/x!. For the collection D = (D1, D2) define

~λD,k(a, b)
def
=
∑
i

poi(a; k ·D1(i))poi(b; k ·D2(i)) , (43)

which is the expected number of elements i for which we get a samples of the form (1, i) and b samples of
the form (2, i) if we take poi(k) samples from D in the uniform sampling model (see [14]).

Lemma 8 ([23]) Given a positive integer k and two distribution pairs p+
1 , p

+
2 , p

−
1 , p

−
2 all of whose frequen-

cies are at most 1
2000k , let ~λ+(a, b) =

∑
i poi(a; k · p+

1 (i))poi(b; k · p+
2 (i)) and ~λ−(a, b) =

∑
i poi(a; k ·

p−1 (i))poi(b; k · p−2 (i)) for a+ b > 0. If it is the case that

∑
a+b>0

∣∣∣~λ+(a, b)− ~λ−(a, b)
∣∣∣√

1 + max{~λ+(a, b), ~λ−(a, b)}
<

1

50
, (44)

then it is impossible to test any symmetric property that is true for (p+
1 , p

+
2 ) and false for (p−1 , p

−
2 ) in k

samples.

Proof of Lemma 6: Since for every D ∈ D+
t , the size of the support is 2, and due to the symmetry

between n and 0 in the construction, we can perceive samples (i, j) taken from D+
t as samples taken from

the collection (p+
0 , p

+
n ) of distributions over the domain [m], where p+

0 and p+
n are defined as follows

p+
0 (i)

def
= 2D+

i (0)/m (45)

p+
n (i)

def
= 2D+

i (n)/m . (46)

That is, instead of perceiving i as an index of a distribution in the collection and j as an element of the
domain {0, . . . , n} we perceive i as an element in the domain [m] and j as an index of a distribution in the
collection (p+

0 , p
+
n ) denoted P+. The collection (p−0 , p

−
n ), denoted P−, is defined similarly. In this settings

we can apply Lemma 8 to give a lower bound on the number of samples required to test γ-similar means. We
note that even though the γ-similar means property is not a symmetric property we can still use Lemma 8
because there is a symmetry between n and 0 in the construction. We next turn to calculating ~λP

+,k(a, b)
defined in Equation (43). We shall first assume that {α+

i m} (and {α−i m}) are integers (in other words,
α̃+
i = α+

i and α̃−i = α−i for all i), and later deal with the issue of rounding.

~λP
+,k(a, b) =

m∑
i=1

poi(a; k · p+
0 (i)) · poi(b; k · p+

n (i)) (47)

=
t∑
i=1

α+
i m ·

(
poi(a; k · (1 + d+

i δ)/m) · poi(b; k · (1− d+
i δ)/m)

)
(48)

+

t∑
i=1

α+
i m ·

(
poi(a; k · (1− d+

i δ)/m) · poi(b; k · (1 + d+
i δ)/m)

)
(49)

=
e−k/m

a!b!

(
k

m

)a+b t∑
i=1

α+
i m ·

((
1 + d+

i δ
)a (

1− d+
i δ
)b

+
(
1− d+

i δ
)a (

1 + d+
i δ
)b)

.(50)
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Similarly,

~λP
−,k(a, b) =

e−k/m

a!b!

(
k

m

)a+b t∑
i=1

α−i m ·
((

1 + d−i δ
)a (

1− d−i δ
)b

+
(
1− d−i δ

)a (
1 + d−i δ

)b)
. (51)

Therefore, there exist coefficients βj such that,

~λP
+,k(a, b) =

e−k/m

a!b!

(
k

m

)a+b

·
t∑
i=1

α+
i m ·

a+b∑
j=0

βj · (d+
i δ)

j (52)

=
e−k/m

a!b!

(
k

m

)a+b

·
a+b∑
j=0

mβjδ
j ·

t∑
i=1

α+
i (d+

i )j , (53)

and

~λP
−,k(a, b) =

e−k/m

a!b!

(
k

m

)a+b

·
a+b∑
j=0

mβjδ
j ·

t+1∑
i=1

α−i (d−i )j (54)

By Equation (16) we have that
∑t

i=1 α
+
i (d+

i )j =
∑t+1

i=1 α
−
i (d−i )j for every 0 ≤ j ≤ t. By Equations (53)

and (54) we get that for every a+ b ≤ t,
~λP

+,k(a, b) = ~λP
−,k(a, b), (55)

Set k = 1−δ
4 ·m

1−1/t and let λ(a, b) = max
{
~λP
−,k(a, b), ~λP

+,k(a, b)
}

. Then

∑
a+b>t

λ(a, b) ≤
∑
a+b>t

(
k

m

)a+b

·m =
∑
a+b>t

(
1− δ
4m1/t

)a+b

·m (56)

≤
∑
x>t

2x
(

1

4m1/t

)x
·m� 1 . (57)

In the above construction we assumed that {α+
i m} (and {α−i m}) are integers. If this is not the case, then

by Equations (50) and (51), calculating the sum in Equation (44) where we replace {α+
i }ti=1 and {α−i }ti=1

by {α̃+
i }ti=1 and {α̃−i }ti=1 respectively, can be off by at most

∑
a+b>0

e−k/m

a!b!

(
k
m

)a+b∑t
i=1m(|α+

i − α̃
+
i |+ |α

−
i − α̃

−
i |) · 2a+b

(~λP−,k(a, b))1/2

≤
∑
a+b>0

(
e−k/m

a!b!

(
k

m

)a+b
)1/2

·
∑t

i=1m(|α+
i − α̃

+
i |+ |α

−
i − α̃

−
i |) · 2a+b(∑t

i=1mα̃
+
i · (1− d

+
maxδ)a+b

)1/2 (58)

≤ t

m1/2

∑
a+b>0

(
e−k/m

a!b!

(
k

m
· 4

1− δ

)a+b
)1/2

(59)

≤ t

m1/2

∑
a+b>0

(
1

m1/t

)(a+b)/2

� 1 , (60)

where the last inequality holds for every t ≤ m1/2. By Lemma 8, D+
t and D−t are indistinguishable when

k ≤ cm1−1/t(1− d+
maxδ) (for some constnat c ≤ 1).
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4.2 An Upper Bound

The lower bound stated in Theorem 3 does not leave much room for an algorithm in the sampling
model with sample complexity that is sublinear in m. In particular note that for a constant γ, if ε =
o(1/ log2m log logm), then we get a linear dependence on m. However, for ε that is not too small, we
may still ask whether we can get an upper bound that is sublinear in m. We start by observing that given
samples as provided in the sampling model it is possible to emulate any algorithm that works in the query
model. This observation immediately provides a test for γ-similar means in the sampling model that has
m1−Ω̃(ε2) sample complexity (conditioned on ε > c log logm/ logm for some sufficiently large constant c.)
The following is a well known fact, and we provide a proof for completeness.

Lemma 9 We say that we have a t-way collision on element i if we sampled i exactly t times. Let um
be the uniform distribution over [m] and let t be a non-negative integer such that t ≤ logm

log logm , if we take
s = Θ(tm1−1/t) samples from um we will have t-way collisions on Ω(1) elements with high constant
probability.

The proof of Lemma 9 applies the Efron-Stein inequality, which we state next:

Theorem 4 (Efron-Stein inequality [8]) Let χ be some set, and let g : χs → R be a measurable function of
s variables. Define the random variable Z = g(X1, . . . , Xs) where X1, . . . , Xs are arbitrary independent
random variables taking values in χ. Let X ′1, . . . , X

′
s form an independent copy of X1, . . . , Xs and write

Z ′i = g(X1, . . . , X
′
i, . . . , Xs). Then

V [Z] ≤ 1

2

s∑
i=1

E
[(
Z − Z ′i

)2]
. (61)

Proof of Lemma 9: Define the indicator variable Ii ∈ {0, 1} to take the value 1 if and only if we have a
t-way collision on i and the random variable Z =

∑m
i=1 Ii, namely, Z is the number of t-collisions. Then,

E [Z] =
m∑
i=1

E [Ii] (62)

=
m∑
i=1

Pr [Bin(s, 1/m) = t] (63)

= m · Pr [Bin(s, 1/m) = t] (64)

= m ·
(
s

t

)(
1

m

)t(
1− 1

m

)s−t
(65)

By the inequality
(
s
t

)
≥
(
s
t

)t and the fact that
(
1− 1

m

)s−t ≥ 1
4 we obtain

Pr [Bin(s, 1/m) = t] ≥ 1

4
·
( s

t ·m

)t
. (66)

Therefore for s = 64tm1−1/t,

E [Z] ≥ m · 1

4
·
(

64

m1/t

)t
= Ω(1) (67)
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Applying the Efron-Stein inequality (Theorem 4) we get that:

V [Z] ≤
s∑
i=1

E
[(
Z − Z ′i

)2] (68)

=
s∑
i=1

∑
a,b∈[m]

E
[
(Z − Z ′i)

2 |Xi = a,X ′i = b
]

m2
(69)

Conditioned on Xi = a and X ′i = b we have that (Z − Z ′i)
2 = 1 if the number of occurrences of a in

X1, . . . , Xs is t and the number of occurrences of b in X1, . . . , X
′
i, . . . , Xs is not t, or alternatively, if the

number of occurrences of a inX1, . . . , Xs is not t and the number of occurrences of b inX1, . . . , X
′
i, . . . , Xs

is t. Otherwise, (Z − Z ′i)
2 = 0. So we have that for a 6= b,

E
[(
Z − Z ′i

)2 |Xi = a,X ′i = b
]
≤ 2Pr [Bin(s− 1, 1/m) = t− 1]

and for a = b clearly
E
[(
Z − Z ′i

)2 |Xi = a,X ′i = b
]

= 0 .

Therefore, form Equation (69) we get that V [Z] ≤ 2s · Pr [Bin(s− 1, 1/m) = t− 1]. By Chebyshev’s
inequality,

Pr [|Z − E[Z]| ≥ E[Z]/2] ≤ 8s · Pr [Bin(s− 1, 1/m) = t− 1]

(m · Pr [Bin(s, 1/m) = t])2
(70)

=
8t

m · Pr [Bin(s, 1/m) = t]
(71)

≤ 32t

64t
� 1 (72)

Thus by Equation (66) we have that σ (Z) = o(E[Z]). Therefore the lemma follows from

Corollary 5 The sampling complexity of testing γ-similar means in the uniform sampling model is upper
bounded by m1−Ω̃(ε2) · Õ(1/ε2).

Proof: Recall that Algorithm 1 which works in the query model performs r = log(4/ε) iterations and in
each iteration, q, selects `(q) = Θ (2q log(1/ε)) distributions. From each selected distribution it then takes
s(q) = Θ

(
log(1/ε)

22qε2

)
samples. By applying Lemma 9 for t = s(q) we get that by taking s(q)m1−1/s(q)

samples we get s(q)-way collisions on Ω(1) distributions. If for each iteration q, we repeat this process
`(q) log(`(q)2) times then by union bound over r iterations, with high constant probability we would have
enough samples to emulate Algorithm 1. Thus the sample complexity we get is bounded by

r∑
q=1

`(q) log(`(q)2) · s(q)m1−1/s(q) = m1−Ω̃(ε2) · Õ(1/ε2) , (73)

as desired.
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4.3 An Improved Upper Bound for the Domain {0, 1} and Large m

When the domain of the distributions is {0, 1} and m is sufficiently larger than 1/ε, we can get an improved
upper bound by applying an algorithm that does not work by reducing to the query model. This algorithm
does not require that the sample contain Õ(1/ε2)-way collisions but rather can make do with Õ(1/ε)-way
collisions (though it asks for many more of them). It uses such collisions in which either all samples are 1
or all samples are 0. These relatively extreme events give sufficient indications as to whether the collection
has γ-similar means or is ε-far from having the property.

Algorithm 2: Testing γ-similar means

1. Take s = r ln r ·m1−1/` samples where ` = Θ(ln(1/ε)/ε) and r = Θ((16/ε)`+1).

2. For each distribution Di, divide the samples obtained from Di into blocks of ` samples and ignore
blocks with less than ` samples.

3. Let t be the number of blocks, let t0 be the number of blocks where all the samples are 0 and let t1 be
the number of blocks where all the samples are 1.

4. If there exist x, y ∈ {0, ε/16, 2ε/16, . . . , 1} such that y − x ≤ γ + ε/8 and
(

2t1
3t

)1/`
< y and(

2t0
3t

)1/`
< 1− x, then ACCEPT, otherwise REJECT.

Theorem 6 Algorithm 2 tests γ-similar means in the sampling model. The algorithm’s sample complexity
is r ln r ·m1−1/` where ` = c1 ln(1/ε)/ε and r = c2(16/ε)`+1 where c1 and c2 are absolute constants.

Proof: Denote by p1 ≤ . . . ≤ pm the means in the collectionD in increasing order and let qi = 1−pm−i+1.
Thus q1 ≤ . . . ≤ qm. By the definitions of t1 and t0,

E

[
t1
t

]
=

1

m
·
m∑
i=1

(Di(1))` ≤ (pm)` , (74)

and similarly

E

[
t0
t

]
=

1

m
·
m∑
i=1

(Di(0))` ≤ (qm)` . (75)

By Chernoff’s bound, for every b ∈ {0, 1} if t ≥ c
(
E
[
tb
t

])−1, for some sufficiently large constant c, then
with high constant probability it holds that∣∣∣∣ tbt − E

[
tb
t

]∣∣∣∣ ≤ E
[
tb
t

]
2

. (76)

By Lemma 9, with high constant probability t = Ω((16/ε)`+1), so henceforth we assume that this is the
case.
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Suppose that D has γ-similar means, so that pm − p1 = pm − (1 − qm) ≤ γ. Let x, y ∈
{0, ε/16, 2ε/16, . . . , 1} be such that 0 < y − pm ≤ ε/16 and 0 < p1 − x ≤ ε/16. By Equation (74)
and Equation (75) we get

E

[
t1
t

]
≤ (pm)` ≤ (y)` and E

[
t0
t

]
≤ (1− p1)` ≤ (1− x)` . (77)

Since y, 1− x > ε/16 and t = Ω
(
(16/ε)`

)
, from Equation (76) we get that

t1
t
≤ (3/2)(y)` and

t0
t
≤ (3/2)(1− x)` (78)

Since y − x ≤ γ + ε/8 the algorithm accepts.
Suppose that D is ε-far from γ-similar means, and let x, y ∈ [0, 1] be such that y − x ≤ γ + ε/8. Let

y′ = min{y + ε/16, 1} and let x′ = max{0, x − ε/16}, thus y′ − x′ ≤ γ + ε/4. Since D is ε-far from
γ-similar means, at least (ε/2)m of the elements in {pi} are outside the interval [x′, y′]. Thus either at least
(ε/4)m of the elements in {pi} are bigger than y′ or at least (ε/4)m of the elements in {pi} are smaller than
x′. Since the blocks are distributed uniformly over the distributions we get that in the former case,

E

[
t1
t

]
≥ (ε/4) · (y′)` = (ε/4) · (y + ε/16)` > 3y` . (79)

The latter case implies that at least (ε/4)m of the elements in {qi} are bigger than 1− x′, thus

E

[
t0
t

]
≥ (ε/4) · (1− x′)` = (ε/4) · (1− x+ ε/16)` > 3(1− x)` . (80)

Since y′ ≥ ε/16 and t = Ω
(
(16/ε)`+1

)
, from Equation (76) and Equation (79) we get that

t1
t
> (3/2)y` . (81)

Similarly, since 1− x′ ≥ ε/16, we get from Equation (76) and Equation (80) we get that

t0
t
> (3/2)(1− x)` , (82)

thus the algorithm rejects.

4.4 An Improved (Tight) Upper bound for the {0, 1} case when γ ≤ ε/c

If γ ≤ ε/c for a sufficiently large constant c (a special case of interest is γ = 0), then we can significatly
improve the bound we obtained in the previous subsection (for the domain {0, 1}). The problem of test-
ing γ-similar means under these conditions reduces to a certain tolerant version of testing uniformity of a
distribution over domain [m], which was studied in [14] For this problem there is an algorithm that uses
Õ(
√
m · poly(1/ε)) samples (see [14, Theorem 12], based on [25]).

We note that in general, for every γ and ε such that γ + 2ε < 1 (and in particular, even for γ = 0 and
ε < 1/2), any algorithm must take a sample of size Ω(

√
m). This is true because there exists a constant

c < 1 such that less than c
√
m samples are insufficient to distinguish (with constant success probability)

between the following two collections of distributions. In the first, D+ = {D+
1 , . . . , D

+
m}, all distributions

are the same: D+
j (0) = D+

j (n) = 1/2, while in the second, D− = {D−1 , . . . , D−m}, we have D−j (0) = 1,
D−j (n) = 0 for half of the distributions and D−j (0) = 0, D−j (n) = 1 for the other half (the choice of which
distribution belongs to which half is done uniformly at random).
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5 Earth Mover’s Distance

Let D and D′ be probability distributions over {0, . . . , n}. The Earth Mover’s Distance between D and D′

with respect to the `1-distance is

EMD(D,D′)
def
= min

F


n∑
i=0

n∑
j=0

fi,j |i− j|

 , (83)

where the flow, F = (fi,j), is subject to the following constraints:

fi,j ≥ 0, 1 ≤ i ≤ m, 1 ≤ j ≤ n (84)
n∑
j=0

fi,j = D(i), 1 ≤ i ≤ m (85)

n∑
i=0

fi,j = D′(j), 1 ≤ j ≤ m (86)

n∑
i=0

n∑
j=0

fi,j = 1 . (87)

We define the normalized Earth Mover’s Distance to be E(D,D′)
def
= 1

nEMD(D,D′), where we normalize
by the the maximum distance, n. Given a distribution D and a value 0 ≤ z ≤ n the function dE returns the
”work”, normalized by n, required to move earth from D in order to obtain a distribution with mean equals
z. Formally dE(D, z)

def
= minD′:µ(D′)=z {E(D,D′)}. We claim that dE(D, z) = |µ(D)− z|/n. To see why

this true, assume without loss of generality that z > µ(D). LetDz denote a distribution such that µ(Dz) = z
and E(D,Dz) = dE(D, z). Let F ∗ = (f∗i,j) denote an optimal flow between D and Dz . Clearly, for every
i > j, f∗i,j = 0, therefore by Equations (85) and (86) we get that

∑n
i=0

∑n
j=0 f

∗
i,j |i− j| = z − µ(D). This

implies that EMD(D,Dz) = z − µ(D) and the claim follows. The fact that the minimum EMD distance
between a distribution D, and a distribution with mean µ(D) + δ, where the minimum is taken over all
distributions over {0, . . . , n} with mean µ(D) + δ, is exactly δ without regard to any property of D other
than its mean, makes EMD a very natural distance measure for the property of γ-similar means.

In particular, it is so natural that all the results in this paper continue to hold when we change the
underlying distance measure form `1 distance to the normalized EMD. The completeness of all the algo-
rithms is immediate for any distance measure. The soundness of the algorithms follows from the fact that
E(D,D′) ≤ ‖D − D′‖1. Moreover, Algorithm 1 can be simplified as follows. As stated in Lemma 3, the
procedure GetBounds returns x and y such that µ(D) ≤ x ≤ µ>β (D) and µ<β (D) ≤ y ≤ µ(D). Due to
the fact that dE(D, z) = |µ(D) − z|/n, when we define µ>β and µ<β with respect to dE(·, ·) instead of the
d1(·, ·), µ>β (D) is simply µ(D) + βn and µ<β (D) is µ(D) − βn. Therefore the procedure GetBounds for
EMD goes as follows:

• Take Θ(log(1/δ)/β2) samples from D

• Return (µ̂− βn/2, µ̂+ βn/2), where µ̂ is the average value of the samples taken from D

By Chernoff’s bounds, with high probability it holds that |µ̂ − µ(D)| < βn/2 and thus the return values
of GetBounds for EMD satisfy the requirements stated in Lemma 3. The rest of the proof of correctness of
Algorithm 1 holds for normalized EMD.
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Both lower bounds, stated in Theorem 3 and in Corollary 2, are proved via a construction of NO instance
collections of distributions with support {0, n}. Since for every D with support {0, n} and every 0 ≤ z ≤
n we have that d1(D, z) = dE(D, z) the above NO instance collections are also NO instances for the
normalized EMD. Therefore, the lower bounds are valid for the normalized EMD.
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