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Abstract

We develop a framework for proving lower bounds on computational problems over distri-
butions, including optimization and unsupervised learning. Our framework is based on defining
a restricted class of algorithms, called statistical algorithms, that instead of accessing samples
from the input distribution can only obtain an estimate of the expectation of any given function
on a sample drawn randomly from the input distribution. Our definition captures many natural
algorithms used in theory and practice, e.g. moments-based methods, local search, MCMC and
simulated annealing. Our techniques are inspired by (and generalize) the statistical query model
in learning theory, which captures the complexity of PAC learning using essentially all known
learning methods [Kearns, 1998].

For specific well-known problems over distributions, we give lower bounds on the complexity
of any statistical algorithm. These include an exponential lower bounds for moment maximiza-
tion in Rn, and a nearly optimal lower bound for detecting planted clique distributions when
the planted clique has size O(n1/2−δ) for any constant δ > 0. Variants of the latter problem
have been assumed to be hard to prove hardness for other problems and for cryptographic
applications. Our lower bounds provide concrete evidence supporting these assumptions.
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1 Introduction

Our primary motivation is to establish computational lower bounds on a set of well-known search
and optimization problems defined over distributions that can be sampled. The traditional approach
to this is based on reductions to problems conjectured to be intractable. Here we present a new
approach: we show that a broad class of algorithms, which we refer to as statistical algorithms,
must have high asymptotic complexity, unconditionally.

Our definition encompasses many well-known algorithms, such as EM [Dempster et al., 1977],
local search, MCMC optimization [Tanner and Wong, 1987, Gelfand and Smith, 1990], simulated
annealing [Kirkpatrick et al., 1983, Černý, 1985], as well as first and second order methods for
linear/convex optimization, e.g. Dunagan and Vempala [2008]. We define this class of algorithms
and show they must have high complexity for problems such as detecting large planted cliques or
planted dense subgraphs, maximizing a polynomial over the unit sphere, maximum satisfiability,
etc. These results rule out many natural approaches to solving these problems in theory and
provide some practical guidance about when not to use popular and generic heuristics such as
EM or simulated annealing. Our work also serves to highlight the question: what nonstatistical
algorithms exist for search and optimization problems?

The inspiration for our model comes from the statistical query (SQ) model in learning theory
[Kearns, 1998], where any algorithm that is based only on statistical queries must have complexity
that grows with the statistical query dimension of the hypothesis class being learned [Blum et al.,
1994]. In particular, this rules out polynomial-time SQ algorithms for learning parities from the
uniform distribution on {−1, 1}n. Our definition generalizes SQ algorithms which are known to
capture almost all efficient algorithms for learning. Before we define our model precisely, we mention
two specific motivating problems.

Detecting Planted Cliques. In the standard planted clique problem, we are given a graph
G whose edges are generated by starting with a random graph Gn,1/2, then “planting” (adding
edges to make) a clique on k vertices. Jerrum [1992] introduced the planted clique problem as a
potentially easier variant of the classical problem of finding the largest clique in a random graph.
A random graph Gn,1/2 contains a clique of size 2 log n with high probability, and a simple greedy
algorithm can find one of size log n, and it appears hard to find one of size (1 + ε) log n for any
ε > 0. Planting a larger clique should make it easier to find one. The smallest k for which such
a clique can be detected in polynomial time is Ω(

√
n) [Alon et al., 1998, McSherry, 2001], using

an eigenvector-based algorithm. For k ≥ c
√
n log n, simply picking vertices of large degrees suffices

[Kucera, 1995]. One intriguing aspect of this problem is that for any k, there is a quasipolynomial
algorithm: guess 2 log n vertices from the clique and take all their common neighbors.

Some evidence toward the hardness of the problem was shown by Jerrum [1992] who proved
that a specific approach using a Markov chain cannot be efficient for small k. The problem has
been used to generate cryptographic primitives [Juels and Peinado, 2000], as well as demonstrate
the hardness of finding approximate Nash equilibria of certain games [Hazan and Krauthgamer,
2011, Minder and Vilenchik, 2009]. Bipartite versions of the planted clique problem have also been
extensively studied. Here a bipartite clique is planted in a random bipartite graph. A version of the
bipartite planted clique problem has been used as a hard problem for cryptographic applications
[Applebaum et al., 2010]. We now define the planted bipartite clique problem formally.

Problem 1 (planted bipartite k-clique). For 1 ≤ k ≤ n, let S ⊆ {1, 2, . . . , n} be a set of k vertex
indices and DS be a distribution over {0, 1}n such that when x ∼ DS, with probability 1 − (k/n)
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the entries of x are chosen uniformly and independently from {0, 1}, and with probability k/n the
k coordinates in S are set to 1 and the rest are chosen uniformly and independently from {0, 1}.
The planted bipartite k-clique problem is to find the unknown subset S given access to samples
from DS.

One can view the vectors x as adjacency vectors of a random bipartite graph with n vertices on
one side and a planted bipartite clique with an expected k/n fraction of vertices on either side. This
formulation captures the traditional bipartite planted clique problem when exactly n examples are
drawn from D. In addition to planted clique, our lower bounds will also apply to planted dense
subgraphs — here the probability of a coordinate in S being 1 is q > 1/2. Known algorithms for
these problems require cliques (or dense subgraphs) of size k = Ω(

√
n). Our main result for this

problem is a nearly matching lower bound for any statistical algorithm.
Moment Maximization. Our second example is an optimization problem defined as follows.

Problem 2 (moment maximization). Let D be a distribution over [−1, 1]n and let r ∈ Z+. The
moment maximization problem is to find a unit vector u∗ that maximizes the expected r’th
moment of the projection of D to u∗, i.e.,

u∗ = arg max
u∈Rn:‖u‖=1

E
x∼D

[(u · x)r].

The complexity of finding approximate optima is interesting as well. For r = 2, an optimal
vector simply corresponds to the principal component of the distribution D and can be found by
the singular value decomposition. For higher r, there are no efficient algorithms known, and the
problem is NP-hard for some distributions [Brubaker, 2009, Hillar and Lim, 2009]. It can be viewed
as finding the 2-norm of an r’th order tensor (the moment tensor of D). For r = 3, Frieze and
Kannan [2008] give a reduction from finding a planted clique in a random graph to this tensor norm
maximization problem; this was extended to general r in Brubaker and Vempala [2009]. Specifically,
they show that maximizing the r’th moment (or the 2-norm of an r’th order tensor) allows one to
recover planted cliques of size Ω̃(n1/r).

For moment maximization over a distribution that can be sampled, it is natural to consider
the following type of optimization algorithm: start with some unit vector u, then estimate the
gradient at u (via samples), and move along that direction staying on the sphere; repeat to reach
a local maximum. Unfortunately, over the unit sphere, the expected r’th moment function can
have (exponentially) many local maxima even for simple distributions. A more sophisticated ap-
proach [Kannan] for both problems is through Markov chains or simulated annealing; it attempts
to sample unit vectors from a distribution on the sphere which is heavier on vectors that induce a
higher moment, e.g., u is sampled with density proportional to ef(u) where f(u) is the expected r’th
moment along u. This could be implemented by a Markov chain with a Metropolis filter [Metropolis
et al., 1953, Hastings, 1970] ensuring a proportional steady state distribution. If the Markov chain
were to mix rapidly, that would give an efficient approximation algorithm because sampling from
the steady state likely gives a vector of high moment. At each step, all one needs is to be able to
estimate f(u), which can be done by sampling from the input distribution.

As we will see presently, these approaches fall under a class of algorithms we call statistical
algorithms, and they will all have provably high complexity and nearly matching upper bounds.
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2 Definitions and overview

We now describe our model, approach for proving lower bounds and some applications in detail.

2.1 Model

The statistical query learning model of Kearns [1998] is a restriction of the PAC model [Valiant,
1984]. It captures algorithms that rely on empirical estimates of statistical properties of random
examples of an unknown function instead of individual random examples (as in the PAC model
of learning). Here a statistical property refers to the expectation of any boolean function of an
example with respect to the unknown distribution of examples.

In the same spirit, for general search, decision and optimization problems over a distribution,
we define statistical algorithms as algorithms that do not see samples from the distribution but
instead have access to estimates of the expectation of any bounded function of a sample from the
distribution.

Definition 1 (statistical algorithms). Let D be the input distribution over the domain X. We say
that an algorithm is statistical if it does not have direct access to samples from D, but instead
makes calls to an oracle STATD, which takes as input any function h ∈ H : X → [−1, 1] and a
tolerance parameter τ > 0. STATD(h, τ) returns a value

v ∈ [h(D)− τ, h(D) + τ ].

The most natural realization of a STATD oracle is one that computes h on O(1/τ2) random
samples from D and returns their average. In fact, as we will show later, 1/τ2 roughly corresponds
to the sample complexity of a (usual) algorithm whereas the number of queries roughly corresponds
to the running time complexity.

The general algorithmic techniques mentioned earlier can all be expressed in this model in a
relatively straightforward way. We would also like to note that in the PAC learning model some
of the algorithms, such as the Perceptron algorithm, did not initially appear to fall in the SQ
framework but SQ analogues were later found for all known learning techniques except Gaussian
elimination (for examples see [Kearns, 1998] and [Blum et al., 1997]). We expect the situation to
be similar even in the broader context of search problems over distributions.

The STAT oracle we defined can return any value within the given tolerance and therefore
can make adversarial choices. We also aim to prove lower bounds against algorithms that use a
potentially more benign, “honest” statistical oracle. The honest statical oracle gives the algorithm
the true value of a boolean query function on a randomly chosen sample. This model makes the
sample complexity explicit and is based on the Honest SQ model in learning by Yang [2001] (which
itself is based on an earlier model of Jackson [2003]).

Definition 2 (honest statistical algorithms). Let D be the input be a distribution over the domain
X. An honest statistical algorithm does not have direct access to samples from D, but instead
makes calls to an oracle HSTATD, which takes as input any function h ∈ H : X → {−1, 1}.
HSTATD(h) takes an independent random sample x from D and returns h(x).

Note that the HSTAT oracle draws a fresh sample upon each time it is called. Without re-
sampling each time, an honest statistical algorithm could easily recover the sample bit-by-bit,
making it equivalent to the usual access to random samples. The sample complexity of an
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honest statistical algorithm is defined to be the number of calls it makes to the HSTAT oracle.
Note that the HSTAT oracle can be used to simulate STAT (with high probability) by taking the
average of O(1/τ2) replies of HSTAT for the same function1 h. While it might seem that access
to HSTAT gives an algorithm more power than access to STAT we will show that HSTAT can
be simulated using STAT and also prove sample complexity lower bounds for honest statistical
algorithms directly.

We are now ready to formally define problems over distributions.

Definition 3 (search problems over distributions). For a domain X, let D be a set of distributions
over X, let F be a set of solutions and Z : D → 2F be a map from a distribution D ∈ D to a subset
of solutions Z(D) ⊆ F that are defined to be valid solutions for D. The search problem Z over D
and F is to find a valid solution f ∈ Z(D) given access to random samples from any D ∈ D.

We note that this definition captures decision problems by having F = {0, 1}. With slight abuse
of notation, for a solution f ∈ F we denote by Z−1(f) the set of distributions in D for which f is
a valid solution.

For some of the optimization problems we consider, it is natural to let the solution space F
contain real-valued functions over X and define the valid functions Z(D) = {f ∈ F | Ex∼D[f(x)] ≥
Ex∼D[f∗(x)]−ε}, where f∗

.
= maxf∈F Ex∼D[f(x)], i.e., the set of functions that are within additive

error ε of being optimal. We refer to finding such a valid function as ε-optimization.

2.2 Statistical Dimension of search problems

The main tool in our analysis is an information-theoretic bound on the complexity of statistical
algorithms based on the structure of a search problem over a distribution. Our definitions and
techniques draw heavily upon the statistical query (SQ) model in learning theory, wherein the
complexity of a large class of learning algorithms (most known learning algorithms) is characterized
via a single parameter called the SQ dimension. Roughly speaking, it corresponds to the number of
nearly uncorrelated labeling functions in the class [Blum et al., 1994, Kearns, 1998]. We introduce
a natural generalization of this idea to search problems over arbitrary sets of distributions and
prove a lower bound on the complexity of statistical algorithms based on the generalized notion. In
addition, instead of relying on a bound on pairwise correlations, our dimension relies on a bound
on average correlations in a large set of distributions. This weaker condition allows us to derive
the tight bounds on the complexity of statistical algorithms for the planted k-clique problem.

We now define our dimension formally. For two functions f, g : X → R and a distribution D
with probability density function D(x), the inner product of f and g over D is defined as

〈f, g〉D
.
= E

x∼D
[f(x)g(x)].

The norm of f over D is ‖f‖D =
√
〈f, f〉D. We remark that, by convention, the integral from the

inner product is taken only over the support of D, i.e. for x ∈ X such that D(x) 6= 0. We also note
that if i = j above, the quantity 〈DiD − 1, DiD − 1〉D is known as the χ2(Di, D) distance. For a set
D′ of m distributions over X and a reference distribution D over X we define

ρ(D′, D)
.
=

1

m2

∑
D1,D2∈D′

∣∣∣∣〈D1

D
− 1,

D2

D
− 1

〉
D

∣∣∣∣ .
1Unlike HSTAT, STAT allows non-boolean functions that can be handled by first converting a real-valued query

h to several boolean queries.
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We are now ready to define the concept of statistical dimension.

Definition 4. For γ̄ > 0, domain X and a search problem Z over a set of solutions F and
a class of distributions D over X, let d be the largest integer such that there exists a reference
distribution D over X such that for every f ∈ F there exists a set of m > 0 distributions Df =
{D1, . . . , Dm} ⊆ D \ Z−1(f) satisfying the following property: for any subset D′ ⊆ Df where
|D′| ≥ m/d, ρ(D′, D) < γ̄. We define the statistical dimension with average correlation γ̄ of Z
to be d and denote it by SDA(Z, γ̄).

The statistical dimension with average correlation γ̄ of a search problem gives a lower bound
on the complexity of any statistical algorithm for the problem that uses queries of tolerance

√
γ̄.

Theorem 1. Let X be a domain and Z be a search problem over a set of solutions F and a class
of distributions D over X. For γ̄ > 0 let d = SDA(Z, γ̄). Any statistical algorithm requires at least
d calls of tolerance τ =

√
γ̄ to the STAT oracle to solve Z.

It also gives a lower bound on the sample complexity of any honest statistical algorithm.

Theorem 2. Let X be a domain and Z be a search problem over a class of solutions F and a class
of distributions D over X. For γ̄ > 0 let d = SDA(Z, γ̄). Any honest statistical algorithm that
solves Z with probability greater than 13/14 requires at least

min

{
1

8γ̄
,
d

100

}
samples from HSTAT oracle.

The bound on the average correlation of large subsets upon which our notion is based can be
easily obtained from a bound on pairwise correlations. Pairwise correlations are easier to analyze
and therefore we now a define a special case of our statistical dimension based on pairwise cor-
relations. This version can also be easily related to the statistical query dimension from learning
theory (see Section 6). Hence, we define a second notion of statistical dimension, which is easier to
work with in some cases.

Definition 5 (statistical dimension). For γ, β > 0, domain X and a search problem Z over a set
of solutions F and a class of distributions D over X. Let m be the maximum integer such that
there exists a reference distribution D over X such that for every f ∈ F there exists a set of m
distributions Df = {D1, . . . , Dm} ⊆ D \ Z−1(f) satisfying the following property:∣∣∣∣〈Di

D
− 1,

Dj

D
− 1

〉
D

∣∣∣∣ ≤
{

β for i = j ∈ [m]

γ for i 6= j ∈ [m].

We define the statistical dimension with pairwise correlations (γ, β) of Z to be m and denote it
by SD(Z, γ, β).

A corresponding lower bound can be obtained as a corollary of Theorem 1.

Corollary 1. Let X be a domain and Z be a search problem over a set of solutions F and a class
of distributions D over X. For γ, β > 0 let m = SD(Z, γ, β). Any statistical algorithm requires at
least m(τ2 − γ)/(β − γ) calls of tolerance τ > 0 to the STAT oracle to solve Z.
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As we show in Section 3, this corollary follows by an appropriate choice of parameters. Fur-
thermore, we can obtain a similar corollary for honest statistical algorithms (see Section 3.2, Corol-
lary 4).

To conclude this section, we mention that in related work in the context of convex optimiza-
tion, Raginsky and Rakhlin [2011] consider sequential optimization from noisy information and
prove information-theoretic lower bounds.

2.3 Lower bounds

Our main lower bound is for the bipartite planted clique problem, for which we are able to show
the following lower bound.

Theorem 3. For any constant δ > 0 and any k ≤ n1/2−δ, at least nΩ(log logn) queries of tolerance
τ = Ω̃(k/n) are required to find a planted bipartite clique of size k by any statistical algorithm.

We note that this bound is close to tight. For every vertex in the clique, the probability that
the corresponding bit of a randomly chosen point is set to 1 is 1/2+k/(2n) whereas for every vertex
not in the clique this probability is 1/2. Therefore using n queries of tolerance k/(4n) it is easy to
detect the planted clique.

We also give a sample complexity lower bound. To place this bound in context, we note that
it is easy to detect whether a clique of size k has been planted using O(n2/k2) samples: compute
the average of

∑n
i=1 xi; this will be noticeably higher if a clique has been planted. Moreover the

clique subset itself can be found with this number of samples via the eigenvector approach. The
next theorem is a lower bound that applies to any statistical algorithm. In particular, it implies
that for cliques of size smaller than

√
n, one needs more than n samples for statistical algorithms

to work.

Theorem 4. For any constant δ > 0 and any k ≤ n1/2−δ, Ω̃(n2/k2) samples are required by any
honest statistical algorithm to find a planted clique of size k.

A closely related problem is the planted densest subgraph problem, where edges in the planted
subset appear with higher probability than in the remaining graph. This is a variant of the densest k-
subgraph problem, which itself is a natural generalization of k-clique that asks to recover the densest
k-vertex subgraph of a given n-vertex graph [Feige, 2002, Khot, 2004, Bhaskara et al., 2010, 2012].
The conjectured hardness of its average case variant, the planted densest subgraph problem, has
been used in public key encryption schemes [Applebaum et al., 2010] and in analyzing parameters
specific to financial markets [Arora et al., 2010]. Our lower bounds extend in a straightforward
manner to this problem.

We next turn to other applications of statistical dimension to some natural optimization prob-
lems over distributions. In particular, we show that any statistical algorithm for the moment
maximization problem defined above, as well as distributional variants of MAX-XOR-SAT and
k-CLIQUE must have high complexity.

Theorem 5. For the rth moment maximization problem let F be the set of functions indexed by
all possible unit vectors u ∈ Rn, defined over the domain {−1, 1}n with fu(x) = (u · x)r. Let D be
the set of all distributions over {−1, 1}n. Then for r odd and δ > 0, at least τ2(

(
n
r

)
− 1) queries of

tolerance τ are required to
(

r!
2(r+1)r/2

− δ
)

-optimize over F and D for any statistical algorithm.
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In words, any statistical algorithm that maximizes the r’th moment (for odd r) to within roughly
(r/e)r/2 must have complexity that grows as

(
n
r

)
.

The MAX-XOR-SAT problem over a distribution is defined as follows.

Problem 3 (MAX-XOR-SAT). Let D be a distribution over XOR clauses of arbitrary length, in n
variables. The MAX-XOR-SAT problem is to find an assignment x that maximizes the number
of satisfied clauses under the given distribution.

In the worst case, it is known that MAX-XOR-SAT is NP-hard to approximate to within 1/2−ε
for any constant ε [H̊astad, 2001]. In practice, local search algorithms such as WalkSat [Selman
et al., 1995] are commonly applied as heuristics for maximum satisfiability problems. We show that
the distribution version of MAX-XOR-SAT is unconditionally hard for algorithms that locally seek
to improve an assignment by flipping variables as to satisfy more clauses, giving some theoretical
justification for the observations of Selman et al. [1995]. Moreover, our proof even applies to the case
when there exists an assignment that satisfies all the clauses generated by the target distribution.

Theorem 6. For the MAX-XOR-SAT problem, let F be the set of functions indexed by all possible
assignments in n variables and whose domain is the set of all clauses. (The value that such a func-
tion takes when evaluated on a clause is the truth value of the clause under the given assignment.)
Let D be the set of all distributions over clauses, then for δ > 0, at least τ2(2n − 1) queries of
tolerance τ are required to

(
1
2 − δ

)
-optimize over F and D for any statistical algorithm.

Next, we consider the distribution version of the k-clique problem.

Problem 4 (distributional k-clique). Let D be a distribution over graphs G. The k-clique problem
is to find a subset S of size k that maximizes the probability that S is a clique in G.

Detecting whether a graph has a clique of size k is NP-Hard [Karp, 1972], fixed-parameter
intractable (hard for W[1] [Downey and Fellows, 1999]) and no algorithm faster than O(n.792k) is
known [Nešetřil, 1985], even for a large constant k. While our lower bound does not give insight
into the computational hardness of k-clique on worst-case inputs, it says that the k-clique problem
over a distribution on graphs has high complexity for any statistical algorithm.

Theorem 7. For the distributional k-clique problem, let F be the indicator functions indexed by
subsets S of k vertices and whose domain is the set of all graphs on n vertices, that indicate whether
S is a k-clique in the input graph. Let D be the set of distributions over graphs on n vertices. Then

for δ > 0, at least τ2(
(
n
k

)
− 1) queries of tolerance τ are required to

(
2−(k2) − δ

)
-optimize over F

and D for any statistical algorithm.

3 Lower bounds from Statistical Dimension

Here we prove the general lower bounds. In later sections, we will compute the parameters in these
bounds for specific problems of interest.

3.1 Lower bounds for Statistical Algorithms

We begin with the proof of Theorem 1.
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Proof of Theorem 1. Let A be a statistical algorithm that uses q queries of tolerance τ =
√
γ̄ to

to solve Z over a class solutions F and class of distribution D, such that SDA(Z, γ̄) = m. Let D
be the reference distribution for which the value d is achieved. We simulate A by answering any
query h : X → [−1, 1] of A with value ED[h(x)]. Let h1, h2, . . . , hq be the queries asked by A in
this simulation and let f be the output of A.

By definition of SDA, there exists a set of m distributions Df = {D1, . . . , Dm} for which f is
not a valid solution and such that for every D′ ⊆ Df , either ρ(D′, D) < γ̄ or |D′| ≤ m/d.

In the rest of the proof for conciseness we drop the subscript D from inner products and norms.
To lower bound q, we use a generalization of an elegant argument of Szörényi [2009]. For every

k ≤ q let Ak be the set of distributions Di such that |ED[hk(x)] − EDi [hk(x)]| > τ . To prove the
desired bound we first prove that following two claims:

1.
∑

k≤q |Ak| ≥ m;

2. for every k, |Ak| ≤ m/d.

Combining these two immediately implies the desired bound q ≥ d.
To prove the first claim we assume, for the sake of contradiction, that there exists Di 6∈ ∪k≤qAk.

Then for every k ≤ q, |ED[hk(x)]−EDi [hk(x)]| ≤ τ . This implies that the replies of our simulation

ED[hk(x)] are within τ of EDi [hk(x)]. By the definition of A, this implies that f is a valid solution
for Z on Di, contradicting the condition that Di ∈ D \ Z−1(f).

To prove the second claim, suppose that |Ak| > m/d

E
Di

[hk(x)]−E
D

[hk(x)] = E
D

[
Di

D
hk(x)

]
−E

D
[hk(x)] =

〈
hk,

Di

D
− 1

〉
.

Let D̂i(x) = Di(x)
D(x) − 1, (where the convention is that D̂i(x) = 0 if D(x) = 0). We will next show

upper and lower bounds on the following quantity〈
hk,

∑
i∈Ak

D̂i · sign〈hk, D̂i〉

〉
.

By Cauchy-Schwartz we have that〈
hk,

∑
i∈Ak

D̂i · sign〈hk, D̂i〉

〉2

≤ ‖hk‖2 ·

∥∥∥∥∥∥
∑
i∈Ak

D̂i · sign〈hk, D̂i〉

∥∥∥∥∥∥
2

(1)

≤ ‖hk‖2 ·

 ∑
i,j∈Ak

∣∣∣〈D̂i, D̂j〉
∣∣∣


≤ ‖hk‖2 · ρ(Ak, D) · |Ak|2.
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As before, we also have that〈
hk,

∑
i∈Ak

D̂i · sign〈hk, D̂i〉

〉2

=

∑
i∈Ak

〈hk, D̂i〉 · sign〈hk, D̂i〉

2

=

∑
i∈Ak

(sign〈hk, D̂i〉) · 〈hk, D̂i〉

2

≥ τ2|Ak|2 = γ̄|Ak|2. (2)

By combining these two inequalities we obtain that ‖hk‖2 · ρ(Ak, D) ≥ τ2, which for ‖hk‖2 ≤ 1
implies that ρ(Ak, D) ≥ γ̄ which contradicts the definition of SDA.

We now give the simple proof of the pairwise correlation version of statistical dimension-based
lower bound (Corollary 1).

Proof of Corollary 1. Take d = m(τ2 − γ)/(β − γ); we will prove that SDA(Z, τ2) ≥ d and apply
Theorem 1. Consider a set of distributions D′ ⊂ D where |D′| ≥ m/d = (β − γ)/(τ2 − γ):

ρ(D′, D) =
1

|S|2
∑

D1,D2∈D′

∣∣∣∣〈D1

D
− 1,

D2

D
− 1

〉
D

∣∣∣∣
≤ 1

|D′|2
(
|S|β + (|D′|2 − |D′|)γ

)
≤ γ +

β − γ
|D′|

≤ τ2

We can also use the same way to bound the average correlation to obtain a direct bound on
SDA using a bound on SD.

Corollary 2. Let X be a domain and Z be a search problem over a set of solutions F and a class
of distributions D over X. For γ, β > 0 let m = SD(Z, γ, β). Then SDA(Z, 2γ) ≥ mγ

β−γ .

The next corollary shows a setting of the parameters that is useful for our applications in Section
5.

Corollary 3. Let X be a domain and Z be a search problem over a set of solutions F and a class

of distributions D over X. If for m > 0, SD(Z, γ = m−2/3

2 , β = 1) ≥ m then at least m1/3/2 calls

of tolerance m−1/3 to the STAT oracle are required to solve Z.

3.2 Lower bounds for Honest Statistical Algorithms

Next we address lower bounds for the HSTAT Oracle. The quantity 1/τ2 can be thought of as
representing the sample complexity of a statistical algorithm up to logarithmic factors. On one
hand, q queries can be estimated to tolerance τ using O(log q/τ2) samples (with any constant prob-
ability of success). On the other hand, Ω(1/τ2) samples are necessary to estimate the expectation
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of a “not-too-biased” query (with expectation bounded away from 1 and -1 by a constant) with
constant probability of success. Strongly “biased” queries (such as a function which is identical to
1 on every sample) can be estimated with fewer samples to tolerance τ but our lower bound on
the required tolerance can also be proportionately strengthened for such queries. We prove these
points formally in our sample complexity lower bound for honest statistical algorithms. In this
section it will be more convenient for us to assume that query functions used by the honest oracle
are {0, 1} instead of {−1, 1}. This does not change the model in any way since we can replace the
value −1 with 0 in the query function and then replace 0 with −1 in the response. We will need
the following two lemmas before proving Theorem 2.

Lemma 1. For a query h : X → {0, 1} and τ =
√
γ̄, let A(h, τ) be the set of distributions Di in

Df such that |ED[h(x)]−EDi [h(x)]| > τ
√

ED[h(x)],

|A(h, τ)| ≤ m/d,

where D, γ̄, Df , m and d are as defined in Theorem 1 and its proof.

Proof. In the proof of Theorem 1 we obtain that |Ak| ≤ m/d whenever ‖hk‖2 · ρ(Ak, D) ≥ τ2. For
τ =
√
γ̄, we can also obtain the same conclusion under the condition ‖hk‖2 · ρ(Ak, D) ≥ τ2 · ‖hk‖2.

In other words, we can obtain that |Ak| ≤ m/d also when Ak is defined as the set of distributions
Di such that |ED[hk(x)] − EDi [hk(x)]| > τ · ‖hk‖. We now observe that for a {0, 1} function hk,
||hk||2 = ED[hk(x)]. This implies that, in the notation of our lemma, |A(h, τ)| ≤ m/d.

Lemma 2. Let X ∼ B(1, p). Then, for any p′ ∈ (0, 1),

E
X

(
Pr[B(1, p) generated X]

Pr[B(1, p′) generated X]

)
= 1 +

(p− p′)2

p′(1− p′)
.

Proof. If X = 1, the ratio is p/p′ and when X = 0, then it is (1− p)/(1− p′). Thus, the expected
ratio is

r =
p2

p′
+

(1− p)2

1− p′
= 1 +

(p− p′)2

p′(1− p′)
.

We are now ready for the proof of the main lower bound.

Proof of Theorem 2. Our generative model for HSTAT’s interaction with an algorithm is as follows:
HSTAT picks as the target D with probability 1/2 and with probability 1/2 picks a Di uniformly
at random. Denote this random variable D̃. Upon a query of hj , HSTAT draws a sample xj from
D̃, and responds with hj(xj). After q rounds, the algorithm outputs its best guess of D̃. Because
D̃ is drawn randomly, it makes sense to talk about the algorithm’s success probability with respect
to the randomness of D̃ and xj .

An equivalent model is as follows: there is some joint distribution over D̃ and the possible
responses of the HSTAT oracle. HSTAT will not choose D̃ first, but will answer queries according
to their marginal distributions: when the algorithm presents query h1, HSTAT returns an answer
chosen according the marginal distribution of h1(x1) (obtained by integrating out the D̃ variable).
Subsequently, when the algorithm asks query hj , HSTAT responds according to the marginal dis-
tribution of hj(xj) conditioned on the previous responses h1(x1), . . . , hj−1(xj−1). After the qth
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query HSTAT will pick D̃ from the marginal conditioned on h1(x1), . . . , hq(xq) and the algorithm
will output a guess conditioned on h1(x1), . . . , hq(xq). It is clear that this is equivalent to the first
model, but it captures the sources of randomness and available information much better. We call
this the joint model, and will use it to prove our honest statistical algorithm lower bound.

Denote the result of the first j queries as ωj = (h1(x1), . . . , hj(xj)), and let B denote an
algorithm which outputs a guess based on ωq: to maximise the probability that B’s output and
HSTAT’s are the same:

max
B

Pr[B(ωq) = D̃|ωq]

s.t.
∑
Di

Pr[B(ωq) = Di|ωq] = 1.

We can rewrite the objective function as follows – B is adapted to ωq and is independent of D̃.

Pr[B(ωq) = D̃|ωq] =
∑
Di

Pr[B(ωq) = Di|ωq] Pr[D̃ = Di|ωq].

The optimal B is deterministic and picks the Di with greatest conditional probability. By con-
struction, B has this quantity as its success probability. Since the algorithm can do no better than
picking maximum conditional probabilities as its output, we will assume that it in fact does so.
Clearly, making the algorithm more powerful still preserves any lower bounds.

We will analyze the conditional probability of D and show that this quantity never exceeds 7/8.
The conditional probabilities can be rewritten by Bayes rule:

Pr[Di|h1(x1), . . . , hq(xq)] =
Pr[h1(x1), . . . , hq(xq)|Di] Pr[Di]

Pr[h1(x1), . . . , hq(xq)]

Since the queries are adaptive, we define a random variable Hj for the choice of the jth query. We
can then expand the conditional probability term.

Pr[h1(x1), . . . , hq(xq)|Di] =

q∏
j=1

Pr[Hj = hj |Di, ωj−1, H1, . . . ,Hj−1] Pr[hj(xj)|Di, ωj−1, H1, . . . ,Hj ]

The Hj random variables and Pr[h1(x1), . . . , hq(xQ)] are the same for each Di, so we suppress these
as a constant c. The hj(xj) are conditionally independent when Di is fixed. In this case, each hj
is a Bernoulli random variable with bias pij .

Pr[hj(xj)|Di] = (pij)
hj(xj)(1− pij)1−hj(xj)

Therefore, the conditional probability is given by:

Pr[Di|h1(x1), . . . , hq(xq)] = cPr[Di]

q∏
j=1

(pij)
hj(xj)(1− pij)1−hj(xj)

Let τ =
√
γ̄. Using Lemma 1, we can bound the size of A(hj , τ) which consists of Di’s whose

pij are substantially different from that of D (which we shall denote by pj). The number of Di’s in
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the union of A(hj , τ) is at most qm/d. Thus, with q ≤ d/100, there are at least 99m/100 such Di’s
remaining.

For the remaining Di’s, we know that |pij − pj | ≤ τ
√

ED[hj ] = τ
√
pj . We can always assume

that pj ≤ 1/2, since any query h such that ED[h] > 1/2 can be replaced with query 1 − h and
the response then flipped by the algorithm. This implies that |pij − pj | ≤ τ

√
pj ≤ τ

√
2pj(1− pj).

For every query j, we can now bound in expectation the increase in conditional probability using
Lemma 2. The ratios change by at most

1 +
(pij − pj)2

pj(1− pj)
≤ 1 +

2τ2pj(1− pj)
pj(1− pj)

= 1 + 2γ̄

in any round (in expectation). After q queries, the expected ratio is at most:

(1 + 2γ̄)q ≤ 1.5

for q < 1/8γ̄. We can obtain concentration by using Markov’s inequality. Hence, q ≥ 1/8γ̄. In
particular, in relative terms, the conditional probability of D increases by a factor of at most 1.5.
In particular, if we compare the conditional probability of D with the total conditional probability
across all the other Di, we obtain a comparison between Pr[D|h1(x1), . . . , hq(xq)] ≤ 3/4c and∑

Di /∈A Pr[Di|h1(x1), . . . , hq(xq)] ≥ 99/200c which yields that the conditional probability of D is
strictly less than 7/8. Let A denote the algorithm’s output, we have the following bounds

Pr[A = D ∧ D̃ 6= D] + Pr[A 6= D ∧ D̃ 6= D] = 1/2

Pr[A = D ∧ D̃ = D] ≤ 1/2

Pr[A = D ∧ D̃ = D]− 7 Pr[A = D ∧ D̃ 6= D] ≤ 0.

By taking a linear combination of these constraints in the ratio (1, 6/7, 1/7), we obtain the bound:

Pr[A = D ∧ D̃ = D] + Pr[A 6= D ∧ D̃ 6= D] ≤ 13

14

and that the success probability of the algorithm is bounded by 13/14.
Thus,

q ≥ min

(
1

8γ̄
,
d

100

)

We conclude this section with an application of Corollary 2 to obtain a version of Theorem 2
for the simpler (pairwise) version of statistical dimension.

Corollary 4. Let X be a domain and Z be a search problem over a set of solutions F and a class
of distributions D over X. For γ, β > 0 let m = SD(Z, γ, β). Any deterministic honest statistical
algorithm requires at least

min

(
1

16γ
,

1

60

√
m

β

)
samples from HSTAT oracle to solve Z.

Proof. We have

max
γ0≥γ

(
min

{
1

16γ0
,

1

100

mγ0

β − γ0

})
Solving for γ0 and substituting, we get our bound.
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3.3 Reductions between STAT and HSTAT

We now show that access to the honest statistical oracle is essentially equivalent to access to STAT.
It has been observed in the context of learning [Yang, 2001] that, given a boolean query function h
one can obtain an estimate of ED[h] using t = O(log(1/δ)/τ2) honest samples which with probability
at least 1 − δ will be within τ of ED[h]. We also allow real-valued query functions in our model
but any such query function can be replaced by dlog (1/τ)e + 2 boolean queries each or tolerance
τ/2. A query i computes bit i of 1 + h(x) ∈ [0, 2] so only dlog (1/τ)e+ 2 bits are necessary to get
the value of h(x) within τ/2. Combining these two observations gives us the following theorem.

Theorem 8. Let Z be a search problem and let A be a statistical algorithm that solved Z using q
queries of tolerance τ . For any δ > 0, there exists an honest statistical algorithm A′ that uses at
most O(q log (q/(δτ))/τ2) samples and solves Z with probability at least 1− δ.

We also show a reduction in the other direction, namely that the STAT oracle can be used to
simulate the HSTAT oracle.

Theorem 9. Let Z be a search problem and let A be an honest statistical algorithm that solved
Z with probability at least δ using q samples from HSTAT. For any δ′ there exists a statistical
algorithm A′ that uses at most q queries of tolerance 2 · δ′/q and solves Z with probability at least
δ(1− δ′).

Proof. A′ simulates A as follows. Let h1 : X → {−1, 1} be the first query of A and let p =

Ex∼D[h(x)]. By asking the query STATD(h1, τ), for τ = δ′/q we can get a value p′ ∈ [p− τ, p+ τ ].
We flip a ±1 coin with bias p′ (that is one that outputs 1 with probability (1 + p′)/2 and −1 with
probability (1− p′)/2. We return the outcome to A. One can think of the coin flip with bias p′ as
the coin flip with bias p and then a correction with probability |p′ − p|/2. Namely, if p′ > p then
−1 is output with probability (p′−p)/2 and otherwise 1 is output with probability (p−p′)/2. This
implies that our simulation can be seen as an honest simulation with a random correction step that
happens with probability at most |p− p′|/2 ≤ τ/2 = δ′/q.

We continue the simulation of the rest of A′ queries analogously. By the union bound, the
probability of a correction step happening during the simulation (and hence of our simulation
differing from the honest one) is at most δ′, independently of other random events. Therefore A′ is
successful with probability at least δ(1− δ′).

4 Planted Clique

We now prove the lower bound claimed in Theorem 3 on the problem of determining whether the
given distribution on vectors from {0, 1}n is just uniform or from a planted k-clique distribution as
defined above.

For a subset S ⊆ [n], let DS be the distribution with a planted clique on the subset S. Let
{S1, . . . , Sm} be the set of all

(
n
k

)
subsets of [n] of size k. For i ∈ [m] we use Di to denote DSi .

The reference distribution in our lower bounds will be the uniform distribution over {0, 1}n and let
D̂S denote DS/D− 1. In order to apply our lower bounds based statistical dimension with average
correlation we now prove that for the planted clique problem average correlations of large sets must
be small. We start with a lemma that bounds the correlation of two planted clique distributions
relative to the reference distribution D as a function of the overlap between the cliques.
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Lemma 3. For i, j ∈ [m], 〈
D̂i, D̂j

〉
D
≤ 2λk2

n2
,

where λ = |Si ∩ Sj |.

Proof. For the distribution Di, we consider the probability Di(x) of generating the vector x. Then,

Di(x) =

{
(n−kn ) 1

2n + ( kn) 1
2n−k

if ∀λ ∈ S, xλ = 1

(n−kn ) 1
2n otherwise.

Now we compute the vector D̂i = Di
D − 1:

Di

D
− 1 =

{
k2k

n −
k
n if ∀λ ∈ S, xλ = 1

− k
n otherwise.

We then bound
〈
D̂i, D̂j

〉
D〈

D̂i, D̂j

〉
D
≤ 2n−2k+λ

2n

(
k2k

n
− k

n

)2

+ 2

(
2n−k

2n

)(
k2k

n
− k

n

)(
−k
n

)
+

(
−k
n

)2

≤ 2λk2

n2

We now give a bound on the average correlation of any D̂S with a large number of distinct
clique distributions.

Lemma 4. For κ < 1/2 and k ≤ nκ, let {S1, . . . , Sm} be the set of all
(
n
k

)
subsets of [n] of size k

and {D1, . . . , Dm} be the corresponding distributions on {0, 1}n. Then for any integer ` ≤ k, set S
of size k and subset A ⊆ {S1, . . . , Sm} where |A| ≥ 4(m− 1)/n`(1−2κ),

1

|A|
∑
Si∈A
〈D̂S , D̂i〉 < 2`+2 k

2

n2
.

Proof. In this proof we first show that if the total number of sets in A is large then most of sets
in A have a small overlap with S. We then use the bound on the overlap of most sets to obtain a
bound on the average correlation of DS with distributions for sets in A.

Formally, we let α = k2

n2 and using Lemma 3 get the bound 〈D̂i, D̂j〉 ≤ 2|Si∩Sj |α. Summing over
Si ∈ A, ∑

Si∈A
〈D̂S , D̂i〉 ≤

∑
Si∈A

2|S∩Si|α.

For any set A ⊆ {S1, . . . , Sm} of size t this bound is maximized when the sets of A include S, then
all sets that intersect S in k − 1 indices, then all sets that intersect S in k − 2 indices and so on
until the size bound t is exhausted. We can therefore assume without loss of generality that A is
defined in precisely this way.
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Let
Tλ = {Si | |S ∩ Si| = λ}

denote the subset of all k-subsets that intersect with S in exactly λ indices. Let λ0 be the smallest
λ for which A ∩ Tλ is non-empty. We first observe that for any 1 ≤ j ≤ k − 1,

|Tj |
|Tj+1|

=

(
k
j

)(
n−k
k−j
)(

k
j+1

)(
n−k
k−j−1

) =
(j + 1)(n− 2k + j + 1)

(k − j − 1)(k − j)
≥ (j + 1)(n− 2k)

k(k + 1)
≥ (j + 1)n1−2κ

2
.

By applying this equation inductively we obtain,

|Tj | ≤
2j · |T0|

j! · n(1−2κ)j
<

2j · (m− 1)

j! · n(1−2κ)j

and ∑
k≥λ≥j

|Tλ| <
∑
k≥λ≥j

2λ · (m− 1)

λ! · n(1−2κ)λ
≤ 4(m− 1)

n(1−2κ)j
.

By definition of λ0, |A| ≤
∑

j≥λ0 |Tj | < 4(m−1)/n(1−2κ)λ0 . In particular, if |A| ≥ 4(m−1)/n`(1−2κ)

then n`(1−2κ)/4 < n(1−2κ)λ0/4 or λ0 < `. Now we can conclude that

∑
Si∈A
〈D̂S , D̂i〉 ≤

k∑
j=λ0

2j |Tj ∩A|α

≤

2λ0 |Tλ0 ∩A|+
k∑

j=λ0+1

2j |Tj |

α

≤
(

2λ0 |Tλ0 ∩A|+ 2 · 2λ0+1|Tλ0+1|
)
α

≤ 2λ0+2|A|α < 2`+2|A|α.

To derive the last inequality we need to note that for every j ≥ 0, 2j |Tj | > 2(2j+1|Tj+1|) we can
therefore telescope the sum.

Lemma 4 gives a simple way to bound the statistical dimension with average correlation of the
planted bipartite k-clique problem.

Theorem 10. For κ < 1/2 and k ≤ nκ let Z the planted bipartite k-clique problem. Then for any
` ≤ k, SDA(Z, 2`+2k2/n2) ≥ n`(1−2κ)/4.

Proof. Let {S1, . . . , Sm} be the set of all
(
n
k

)
subsets of [n] of size k and D = {D1, . . . , Dm} be

the corresponding distributions on {0, 1}n. For every solution S ∈ F , Z−1(S) = DS and let
DS = D \ {DS}. Note that |DS | = m− 1.

Let D′ be a set of distributions D′ ⊆ DS such that |D′| ≥ 4(m− 1)/n`(1−2κ). Then by Lemma
4, for every Si ∈ D′,

1

|D′|
∑
Sj∈D′

〈D̂i, D̂j〉 < 2`+2 k
2

n2
.

In particular, ρ(D′, D) < 2`+2 k2

n2 . By the definition of SDA, this means that SDA(Z, 2`+2k2/n2) ≥
n`(1−2κ)/4.
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Theorems 1 and 10 imply the following corollary, as well as Theorem 3.

Corollary 5. For any κ < 1/2, k ≤ nκ and any ` ≤ k at least n`(1−2κ)/4 queries of tolerance
τ = 2`/2+1 k

n are required to solve the planted bipartite k-clique problem. In particular, for any

constant κ and ` = log log n we obtain that nΩ(log logn) queries of tolerance τ = Ω̃(k/n) are required.

Theorems 2 and 10 also imply the sample complexity lower bound stated in Theorem 4.

4.1 Planted Densest Subgraph

We will now show the lower bound on detecting a planted densest subset, a generalization of the
planted clique problem.

Problem 5 (planted bipartite densest k-subgraph). For 1 ≤ k ≤ n, let S ⊆ {1, 2, . . . , n} be a set
of k vertex indices and DS be a distribution over {0, 1}n such that when x ∼ DS, with probability
1− (k/n) the entries of x are chosen uniformly and independently from {0, 1}, and with probability
k/n the k coordinates in S are each, independently, set to 1 with probability q > 1/2 and the rest
are chosen uniformly and independently from {0, 1}. The planted bipartite densest k-subgraph
problem is to find the unknown subset S given access to samples from DS.

We note that when p = 1 this is equivalent to the planted clique problem. For this problem, we
are able to prove the following bound.

Lemma 5. Let {S1, . . . , Sm} be the set of all
(
n
k

)
subsets of [n] of size k for k ≤ nκ for κ < 1/2

and ` ≤ k with associated planted densest subgraph distributions {D1, . . . , Dm}. Then for any set
S of size k and subset A ⊆ {S1, . . . , Sm} where |A| ≥ m/d,

1

|A|
∑
Si∈A
〈D̂S , D̂i〉 ≤ 8

((
2(q2(1− q)2)

) log(2m/d)
(1−2κ) log(n) − 1

)
k2

n2
.

Proof. Our planted sets on n coordinates will be of size k, with pairwise overlap λ as before. The
difference is to consider the probability q (as opposed to 1) of edges appearing in the plant in the
calculation. We define

ξS(x, q)
.
= q|S∩x|(1− q)k−|S∩x|

and consider

DS(x) =
k

n

(
ξS(x, q)

2n−k

)
+
n− k
n

(
1

2n

)
.

Then the quantity
DS(x)

D
− 1 = 2k

k

n
(ξS(x, q))− k

n
.
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We need to compute〈
DS(x)

D
− 1,

DSi(x)

D
− 1

〉
D

=
1

2n

(
k

n

)2 ∑
x∈{0,1}n

(
2kξS(x, q)− 1

)(
2kξS(x, q)− 1

)
=

1

2n

(
k

n

)2 ∑
x∈{0,1}n

(
22kξS(x, q)ξSi(x, q)− 2 · 2kξS(x, q) + 1

)

=
1

2n

(
k

n

)2
2n+λ

∑
x∈{0,1}2k−λ

ξS(x, q)ξSi(x, q)

− 2 · 2k2n−k
∑

x∈{0,1}k
ξS(x, q) + 2n


=

1

2n

(
k

n

)2 (
2n+λ(q2 + (1− q)2)λ − 2n

)
=
k2

n2
2λ(q2 + (1− q)2)λ − k2

n2

The rest of the proof proceeds as in Lemma 4, except that with the same choice of λ0, we obtain

∑
Si∈A
〈D̂S , D̂i〉 ≤

k∑
j=λ0

α(2j(q2 + (1− q)2)j − 1)|Tj ∩A|

≤

|Tλ0 ∩A|(2λ0(q2 + (1− q)2)j − 1) +
k∑

j=λ0+1

2j |Tj |(q2 + (1− q)2)j −
k∑

j=λ0+1

|Tj |

α

≤

(
2λ0 |Tλ0 ∩A|((q2 + (1− q)2)j − 1)

+ 2 · 2λ0+1|Tλ0+1|(q2 + (1− q)2)λ0+1 −
k∑

j=λ0+1

|Tj |

α

≤ 8(2λ0(q2 + (1− q)2)λ0 − 1)|A|α.

Theorem 11. For κ < 1/2 and k ≤ nκ let Z the planted bipartite densest subgraph problem. Then
for any ` ≤ k, q > 1/2,

SDA

(
Z, 8

(
(2(q2(1− q)2)

) log(2m/d)
(1−2κ) log(n) − 1)

)
≥ n`(1−2κ)/4.

With appropriate choices of parameter settings, we get the following Corollary.

Corollary 6. For constants c, δ > 0, density q ≤ 1/2+1/nc, and k ≤ n1/2−δ, any honest statistical
algorithm requires Ω̃((n2+c)/k2) samples to find a planted densest subgraph of size k.
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5 Other applications of Statistical Dimension

In this section, we use Definition 5 together with the bound in Corollary 1 to get unconditional
lower bounds for a variety of optimization problems. A recurring concept in our constructions will
be a parity function, χ. We first explore some properties of parity functions.

Definition 6 (parity). For x ∈ {0, 1}n and c ∈ {0, 1}n, let χc : {0, 1}n → {−1, 1}.

χc(x)
.
= −(−1)c·x.

Namely, χc(x) = 1 if c · x is odd, and −1 otherwise.

Note: for convenience2, we will sometimes use x ∈ {±1}n, in which case we abuse notation
and define χc(x) = −

∏
i: ci=1 xi. This corresponds to the embedding of x from {0, 1} → {−1, 1} of

0→ 1, 1→ −1.

Further, we define distributions uniform over the examples classified positive by a parity.

Definition 7 (distributions Dc). Let x ∈ {±1}n and c ∈ {0, 1}n and let Sc = {x | χc(x) = 1}. We
define Dc to be the uniform distribution over Sc.

Lemma 6. For c ∈ {0, 1}n, c 6= 0̄ and the uniform distribution U over {−1, 1}n, the following
hold:

1) E
x∼Dc

[χc′(x)] =

{
1 if c = c′

0 otherwise.
2) E

x∼U
[χc(x)χc′(x)] =

{
1 if c = c′

0 otherwise.

Proof. To show Part 1) note that if c = c′ then Ex∈Sc [χc(x)] = 1. If c 6= c′ 6= 0̄ then it is easy
to see that |Sc ∩ Sc′ | = |Sc|/2 = |Sc′ |/2 and so Ex∈Sc [χc′(x)] =

∑
x∈Sc∩Sc′

1 +
∑

x∈Sc\Sc′
(−1) = 0.

Part 2) states the well-known fact that the parity functions are uncorrelated relative to the uniform
distribution.

These two facts will imply that when D = U (the uniform distribution) and the Di’s consist of
the Dc’s, we can set γ = 0 and β = 1, when considering the statistical dimension of the problems
presented in the following sections.

5.1 MAX-XOR-SAT

We first formalize the MAX-XOR-SAT problem introduced in Problem 3. Let D be a distribution
over XOR clauses c ∈ {0, 1}n. We interpret ci = 1 as variable i appearing in c and otherwise
not; for simplicity, no variables are negated in the clauses. The problem is to find an assignment
x ∈ {0, 1}n that maximizes the expected number of satisfied XOR clauses. We now give the
statistical dimension of this problem, from which Theorem 6 follows.

Theorem 12. For the MAX-XOR-SAT problem, let F = {χx}x∈{0,1}n, let D be the set of all

distributions over clauses c ∈ {0, 1}n, and for any δ > 0, let Z be the problem of (1
2 − δ)-optimizing

over F and D. Then SD(Z, 0, 1) ≥ 2n − 1.

2For the moment maximization problem, it is necessary for our argument that examples x be ∈ {−1, 1}n, whereas
for MAX-XOR-SAT, the argument is much cleaner when x is in {0, 1}n. It is, therefore, natural to use the same
notation for the corresponding parity problems.
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Proof. Maximizing the expected number of satisfied clauses is equivalent to maximizing the quantity

max
x∈{0,1}n

E
c∼D

[χx(c)].

This proof is a fairly direct application of Lemma 6 to the definition of statistical dimension.
For the conditions in Definition 5, for each each of the 2n possible assignments to x let Dx be

the uniform distribution over the clauses c ∈ {0, 1}n such that χc(x) = 1.
Because χc(x) is symmetric in x and c, the conditions in Definition 5, with β = 1 and γ = 0,

which follow from Lemma 6, are satisfied for the 2n distributions Dc, with D = U . Because
χc(x) = 1 when assignment x satisfies clause c and −1 otherwise, we need to scale the approximation
term by 1/2 when measuring the fraction of satisfied clauses

Corollary 7. Any statistical algorithm for a MAX-XOR-SAT instance asymptotically requires
2n/3 queries of tolerance 2−n/3 to find an assignment that approximates the maximum probability
of satisfying clause drawn from an unknown distribution to less than an additive term of 1/2.

5.2 k-Clique

We first formalize the distributional k-clique problem. Let D be a distribution over X = {0, 1}(
n
2),

corresponding to graphs G on n vertices. For G ∈ X, let

IS(G)
.
=

{
1 if S induces a clique in G

0 otherwise.

The k-clique problem is to find a subset S ⊆ V of size k that maximizes EG∼D[IS(G)].
We now give the statistical dimension of distributional k-clique, from which Theorem 7 follows.

Theorem 13. For the distributional k-clique problem, let F = {IS}|S|=k, let D be the set of

distributions over graphs on n vertices, and for any δ > 0, let Z be the problem of
(

2−(k2) − δ
)

-

optimizing over F and D. Then SD(Z, 0, 1) ≥
(
n
k

)
− 1.

Proof. We shall compute the statistical dimension of distributional k-clique with ε = 2−(k2)− δ (for
δ > 0), γ = 0, and β = 1 and show it is

(
n
k

)
.

For any subset of edges T ∈ V × V , and graph G ∈ X, we can define the function

parityT (G, k)
.
=

{
1 if |E(G) ∩ T | has the same parity as

(
k
2

)
−1 otherwise.

Note that parityT (G, k) = (−1)(|E(G)∩T | +(k2)).

As both T and G lie in {0, 1}(
n
2), note that parityT (G, k) is simply χT (G) or (its negation,

depending on k). Let T1, . . . , Td be all the
(
n
k

)
cliques on k vertices. We generate the distributions

D1, . . . , Dd so that Di is uniform on the graphs G such that |E(G) ∩ Ti| =
(
k
2

)
mod 2. The

distribution D is the uniform over all graphs G. By Lemma 6, these choices justify β = 1, γ = 0.
We notice that the set of vertices of the clique Ti maximizes EDi [IS(G)] while the set of edges

of the clique maximizes EDi [parityT (G, k)], namely we have that

V (Ti) = arg max
S∈V :|S|=k

( E
G∼Di

[IS(G)]) = V

(
arg max

T∈V×V
( E
G∼Di

[parityT (G, k)])

)
.
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By definition EG∼Di [parityT (G, k)] ≤ 1, with equality iff T = Ti.
For Si = V (Ti) we have that ISi(G) = 1 iff Ti is a clique in G. Since any setting of the edges not

in Ti appears equiprobably under Di and since there are 2(k2)−1 possible settings for edges between

vertices in V (Ti) occurring equiprobably in graphs fromDi, it follows that EG∼Di [ISi(G)] = 2−(k2)+1.
On the other hand, if Sj 6= V (Ti) then all subsets of edges among the vertices of Sj appear

equiprobably under Di. Hence, for j 6= i, EG∼Di [ISj ] = 2−(k2), as only 1 of every 2(k2) subgraphs on

k vertices forms a clique. This allows us to set ε = 2−(k2) − δ, for any δ > 0.
Because our distributions were generated by the k vertex subsets, we have shown the statistical

dimension to be
(
n
k

)
− 1.

Corollary 8. Any statistical algorithm for a k-clique instance asymptotically requires
(
n
k

)1/3
queries

of tolerance
(
n
k

)−1/3
to find an assignment that approximates the maximum probability of satisfying

clause drawn from an unknown distribution to less than an additive term of 2−(k2).

5.3 Moment Maximization

We recall the moment maximization problem. Let D be a distribution over {−1, 1}n and let r ∈ Z+.
The moment maximization problem is to find a unit vector u that maximizes Ex∼D [(u · x)r].

Before going to the main proof, we need to prove a property of odd moments.

Lemma 7. Let r ∈ Z+ be odd and let c ∈ {0, 1}n. Let Dc be the distribution uniform over
x ∈ {−1, 1}n for which χc(x) = −1. Then, ∀u ∈ Rn,

E
x∼Dc

[(x · u)r] = r!
∏

i: ci=1

ui.

Proof. From Lemma 8 we have that

∀u ∈ Rn, E
x∼Dc

[(x · u)r] = r!
∏

i: ci=1

ui + E
x∈{±1}n

[(x · u)r]. (3)

the lemma follows now since when r is odd

E
x∈{±1}n

[(x · u)r] = E
x∈{±1}n

[((−x) · u)r] = 0.

Lemma 8. Under the conditions of Lemma 7,

∀u ∈ Rn, E
x∼Dc

[(x · u)r] = r!
∏

i: ui=1

ui + E
x∈{±1}n

[(x · u)r]. (4)

Proof. Notice that

E
x∈{±1}n

[(x · u)r] =
1

2
E

χc(x)=−1
(x · u)r +

1

2
E

χc(x)=1
(x · u)r
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and that

− E
x∈{±1}n

χc(x)(x · u)r =
1

2
E

χc(x)=−1
(x · u)r − 1

2
E

χc(x)=1
(x · u)r,

therefore

E
x∼Dc

[(x · u)r] = E
x∈{±1}n

[(x · u)r]− E
x∈{±1}n

χc(x)[(x · u)r].

Equation 4 follows now by Lemma 9 below.

Lemma 9. Let c be an r parity on the variables indexed by set I = {i1, . . . , ir}, c ∈ {0, 1}n. Let u
be an arbitrary vector in Rn. Then

1. Ex∈{±1}n = E[χc(x)(x · u)i] = 0 for i < r

2. Ex∈{±1}n = E[χc(x)(x · u)r] = −r!
∏
i∈I ui.

Proof. To prove Part 1, we have

E
[
χc(x)(x · c)i

]
= E

χc(x)
∑

t1+...tn=i

(
i

t1, . . . , tn

) ∏
i∈[r]

(uixi)
ti


=

∑
t1+...tn=i

(
i

t1, . . . , tn

)
E

χc(x)
∏
i∈[r]

(uixi)
ti

 .
Notice that if there is some variable j ∈ I such that tj = 0 then Ex[χc(x)

∏
i∈[r](uixi)

ti ] = 0, as the
term corresponding to x always cancels out with the term corresponding to the element obtained
by flipping the jth bit of x. Since i < r every term

∏
i∈[r](uixi)

ti must contain some tj = 0 with

j ∈ I, which concludes that E[χc(x)(x · c)i] = 0.
To prove Part 2 of the lemma, we will induct on n. For n = r,

E [χc(x)(x · u)r] = E

χc(x)
∑

t1+...tr=r

(
r

t1, . . . , tr

) ∏
i∈[r]

(uixi)
ti


=

∑
t1+...tr=r

(
r

t1, . . . , tr

)
E

χc(x)
∏
i∈[r]

(uixi)
ti

 .
As before, if some tj = 0 and j ∈ I = [r] then E[χc(x)

∏
i∈[r](uixi)

ti ] = 0, since for each x and x̃
obtained by flipping the jth bit of x it is the case that χc(x) = −χc(x̃). Therefore

E [χc(x)(x · u)r] = E

[
χc(x)

(
r

1, 1, . . . , 1

)∏
uixi

]
= −r!(

∏
ui) E

[∏
x2
i

]
= −r!(

∏
ui).

Assume now the identity holds for n. Let c ∈ {0, 1}n+1 and let j 6∈ I, and for x ∈ {0, 1}n+1

define x−j ∈ {0, 1}n to be x with the jth bit punctured.
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Then

E [χc(x)(x · u)r] = E [χc(x)(x−j · u−j + xjuj)
r]

= E

χc(x)
∑

0≤i≤r

(
r

i

)
(x−j · u−j)r−i(xjuj)i


= E [χc(x)(x−j · u−j)r] + E

χc(x)
∑

1≤i≤r

(
r

i

)
(x−j · u−j)r−i(xjuj)i


= −r!

∏
i∈I

ui +
∑

1≤i≤r

(
r

i

)
E
[
χc(x)(x−j · u−j)r−i(xjuj)i

]
. (5)

If i is even then

E
[
χc(x)(x−j · u−j)r−i(xjuj)i

]
= (uj)

i
E
[
χc(x)(x−j · u−j)r−i

]
= 0

by Part 1 of the lemma. If i is odd then

E
[
χc(x)(x−j · u−j)r−i(xjuj)i

]
= uij E

[
χc(x)(x−j · u−j)r−ixj

]
= uij

1

2

(
E

xj=1

[
χc(x)(x−j · u−j)r−i

]
− E
xj=−1

[
χc(x)(x−j · u−j)r−i

])
= 0,

since j 6∈ I and so χc(x) = χc(x̃), where x̃ is obtained from x by flipping the jth bit. We can now
conclude that Equation (5) = −r!

∏
i∈I ui.

Corollary 9. Let r ∈ Z+ be odd3 and let c ∈ {0, 1}n. Let Dc be the distribution uniform over
x ∈ {−1, 1}n for which χc(x) = −1. Then, Ex∼Dc [(x · u)r] is maximized when u = r−1/2c.

Proof. From Lemma 7, clearly whenever ci = 0, we have ui = 0. It follows from the AM-GM
inequality that the product is maximized when the remaining coordinates are equal.

Now we are ready to show the statistical dimension of moment maximization, from which
Theorem 5 follows.

Theorem 14. For the rth moment maximization problem let F = {(u · x)r}u∈Rn and let D be
a set of distributions over {−1, 1}n. Then for an odd r and δ > 0, let Z denote the problem of(

r!
2(r+1)r/2

− δ
)

-optimizing over F and D. Then SD(Z, 0, 1) ≥
(
n
r

)
− 1.

Proof. Let D1, . . . , Dd be distributions where Di is uniform over all examples x in {0, 1}n, where
such that χci(x) = 1; this again allows us to consider β = 1 and γ = 0.

Corollary 9 shows that under the distribution Di, the moment function

max
u∈R:‖u‖=1

E
x∼Di

[(u · x)r]

3This statement does not hold for r even.
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is maximized at u = r−1/2c. So, to maximize the moment, one equivalently needs to find the correct
target parity.

To compute the needed ε, for r odd, Lemma 7 tells us that the expected moment is simply
r!
∏
i:ci=1 ui, and for unit vectors, is maximized when ∀i : ci = 1, ui = r−1/2 (and ui = 0 for the

other coordinates). This yields a maximum moment of (r!)r−r/2 for any Di.
In comparison, if the measured moment is equal to (r!)(r + 1)−r/2, a simple consequence of

Lemma 7 is that to minimize
∑

i:ci=1 u
2
i , then for all i s.t. ci = 1, we have ui = (r+ 1)−1/2. Hence,

for all i s.t. ci = 0, ui cannot take value greater than 1− r((r + 1)−1/2)2 = (r + 1)−1/2, implying a
moment of at most (r!)(r + 1)−r/2 on Dc′ . This gives a bound of

ε ≥ (r!)r−r/2 − (r!)(r + 1)−r/2 ≥ r!

2(r + 1)r/2
.

The
(
n
r

)
parities generating the different distributions give the statistical dimension.

Corollary 10. For r odd, any statistical algorithm for the moment maximization problem asymp-

totically requires
(
n
r

)1/3
queries of tolerance

(
n
r

)−1/3
to approximate the r-th moment to less than

an additive term of r!
2(r+1)r/2

.

6 Relationship to Statistical Queries in learning

We will now use Corollary 1 to demonstrate that our work generalizes the notion of statistical
query dimension and the statistical query lower bounds from learning theory. In an instance of a
PAC learning problem, the learner has access to random examples of an unknown boolean function
f ′ : X ′ → {−1, 1} from a set of boolean functions C (whenever necessary, we use ′ to distinguish
variables from the identically named ones in the context of general search problems). A random
example is a pair including a point and its label (x′, c(x′)) such that x′ is drawn randomly from an
unknown distribution D′. For ε > 0, the goal of an ε-accurate learning algorithm is to find, with
high probability, a boolean hypothesis h′ for which Prx′∼D′ [h

′(x′) 6= f ′(x′)] ≤ ε.
A statistical query (SQ) learning algorithm [Kearns, 1998] has access to a statistical query oracle

for the unknown function f ′ and distribution D′ in place of random examples. A query to the SQ
oracle is a function φ : X ′ × {−1, 1} → [−1, 1] that depends on both the example x′ and its label
`. To such a query the oracle returns a value v which is within τ of ED′ [φ(x′, c(x′)], where τ is the
tolerance parameter. A SQ algorithm does not depend on the randomness of examples and hence
must always succeed.

Blum et al. [1994] defined the statistical query dimension or SQ-DIM of a set of functions C
and distribution D′ over X ′ as follows (we present a simplification and strengthening due to Yang
[2005]).

Definition 8 (Blum et al. [1994]). For a concept class C and distribution D′, SQ-DIM(C, D′) = d′

if d′ is the largest value for which there exist d′ functions c1, c2, . . . , cd′ ∈ C such that for every
i 6= j, |〈ci, cj〉D′ | ≤ 1/d′.

Blum et al. [1994] proved that if a class of functions is learnable using only a polynomial
number of statistical queries of inverse polynomial tolerance then its statistical query dimension is
polynomial. Yang [2005] strengthened their result and proved the following bound (see [Szörényi,
2009] for a simpler proof).
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Theorem 15 (Yang [2005]). Let C be a class of functions and D′ be a distribution over X ′ and
let d′ = SQ-DIM(C, D′). Then any SQ learning algorithm for C over D′ that makes q queries
of tolerance 1/d′1/3 and outputs an ε-accurate hypothesis for ε ≤ 1/2 − 1/(2d′1/3) satisfies that
q ≥ d′1/3/2− 1.

In this result the distribution D′ is fixed and known to the learner (such learning is referred
to as distribution-specific) and it can be used to lower bound the complexity of learning C even in
a weak sense. Specifically, when the learning algorithm is only required to output a hypothesis h′

such that Prx′∼D′ [h
′(x′) 6= c(x′)] ≤ 1/2 + γ′ for some inverse polynomial γ′ (or ε ≤ 1/2− γ′).

We now claim that we can cast this learning problem as an optimization problem, and by doing
so, we will obtain that our statistical dimension implies a lower bound on learning which is stronger
than that of Yang [2005].

Let L = (C, D′, ε) be an instance of a distribution-specific learning problem of a class of functions
C over distribution D′ to accuracy 1 − ε. We define the following 2ε-optimization problem ZL
over distributions. The domain is all the labeled points or X = X ′ × {−1, 1}. When the target
function equals c ∈ C the learning algorithm gets samples from the distribution Dc over X, where
Dc(x

′, c(x′)) = D′(x′) and Dc(x
′,−c(x′)) = 0. Therefore we define the set of distributions over

which we optimize to be DL = {Dc | c ∈ C}. Note that STAT oracle for Dc with tolerance τ is
equivalent to the statistical query oracle for c over D′ with tolerance τ . We can take the class
of functions FL over which a learning algorithm optimizes to be the set of all boolean functions
over X of the form f(x′, `) = f ′(x′) · ` for some boolean function f ′ over X ′ (an efficient learning
algorithm can only output circuits of polynomial size but this distinction is not important for our
information-theoretic bounds). We define ZL to be the problem of 2ε-optimizing over FL and DL.
Note that for f ∈ FL and Dc ∈ DL,

E
Dc

[f(x)] = E
D′

[f ′(x′) · c(x′)] = 1− 2 E
D′

[f ′(x′) 6= c(x′)]

and therefore learning to accuracy 1− ε is equivalent to 2ε-optimizing over FL and DL.
We claim that SQ-DIM(C, D′)-based lower bound given in Theorem 15 is effectively just a minor

learning-specific simplification of our statistical dimension lower bound for ZL (Cor. 1).

Theorem 16. Let C be a class of functions and D′ be a distribution over X ′ and let d′ =
SQ-DIM(C, D′). Denote by L = (C, D′, ε) the instance of learning C over D′ for ε = 1/2−1/(2d′1/3).
Then

SD(ZL, γ = 1/d′, β = 1) ≥
(
d′ − 1

1/d′2/3 − 1/d′

)
.

Proof. Let c1, c2, . . . , cd′ be the almost uncorrelated functions in C implied by the definition of
SQ-DIM(C, D′). We define the reference distribution D as the distribution for which for every
(x′, `) ∈ X, D(x′, `) = D′(x′)/2. We note that this ensures that D(x′, `) is non-vanishing only
when D′(x′) is non-vanishing and hence the function

(
Dc
D − 1

)
will be well-defined for all c ∈ C.

For every c ∈ C, we have

Dc(x
′, c(x′))

D(x′, c(x′))
− 1 = 2− 1 = 1 and

Dc(x
′,−c(x′))

D(x′,−c(x′))
− 1 = 0− 1 = −1.
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Therefore, Dc(x′,`)
D(x′,`) = ` · c(x′). This implies that for any ci, cj ∈ C,〈
Dci

D
− 1,

Dcj

D
− 1

〉
D

= E
D

[` · ci(x′) · ` · cj(x′)] = E
D′

[ci(x
′) · cj(x′)] = 〈ci, cj〉D′ .

Hence

1. for any c ∈ C,
∥∥∥Dc(x)
D(x) − 1

∥∥∥2

D
= 1;

2. for any i 6= j ≤ d′,
〈
Dci (x)

D(x) − 1,
Dcj (x)

D(x) − 1
〉
D
≤ 1/d′.

These properties imply that d′ functions in C give d′ distributions in DL whose distinguishing
functions are almost uncorrelated. This is essentially the condition required to obtain a lower
bound of d′ on SD(ZL, 1/d′, 1). The only issue is that we need to exclude distributions for which
any given f ∈ FL is 2ε-optimal. We claim that it is easy to bound the number of distribution
which are 2ε-optimal for a fixed f(x′, `) = f ′(x′) · ` and whose distinguishing functions are almost
uncorrelated. First, note that the condition of 2ε-optimality of f for Dc states that

E
Dc

[f(x)] ≥ 1− 2ε ≥ 1/d′1/3.

On the other hand, ED[f(x)] = 0 and therefore EDc [f(x)]−ED[f(x)] ≥ 1/d′1/3. This implies that
if we view f(x) as a query function then expectations of the query function relative to Dc and D
differ by at least τ = 1/d′1/3. In the proof of Corollary 1, we proved that this is possible for at most
(β − γ)/(τ2 − γ) distributions with pairwise correlations (γ, β). For our parameters this gives a
bound of 1

1/d′2/3−1/d′
distributions. Hence for m = d′− 1

1/d′2/3−1/d′
we obtain that for every f ∈ FL

there exist m distributions D1, . . . , Dm ⊆ {Dc1 , . . . , Dcd′} \ Z
−1
L (f) such that

1. for any i ≤ m,
∥∥∥Di(x)
D(x) − 1

∥∥∥
D

= 1;

2. for any i 6= j ≤ m,
〈
Di(x)
D(x) − 1,

Dj(x)
D(x) − 1

〉
D
≤ 1/d′.

Applying Corollary 1, we get the following lower bound, which is twice larger than the d′1/3/2−1
bound of Yang [2005].

Corollary 11. Let C be a class of functions and D′ be a distribution over X ′, let d′ = SQ-DIM(C, D′)
and let ε = 1/2− 1/(2d′1/3). Then any SQ learning algorithm requires at least d′1/3 − 2 queries of
tolerance 1/d′1/3 to ε-accurately learn C over D′.

6.1 Honest Statistical Queries

We now turn to the Honest SQ model [Jackson, 2003, Yang, 2001], which inspired our notion of
statistical sampling algorithms. In the Honest SQ model, the learner has access to an HSQ oracle
and can again evaluate queries which are a function of the data points and their labels. As in our
HSTAT oracle, the queries are evaluated on an “honest” sample drawn from the target distribution.
More precisely, the HSQ oracle accepts a function φ : X ′ × {−1, 1} → {−1, 1} and a sample size
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t > 0, draws x′1, . . . , x
′
t ∼ D′, and returns the value 1

t

∑t
i=1 φ(x′, c(x′)). The total sample count of

an algorithm is the sum of the sample sizes it passes to HSQ.
We note that using our one-sample-per-query-function oracle HSTAT one can simulate estima-

tion of queries from larger samples in the straightforward way while obtaining the same sample
complexity. Therefore HSQ is equivalent to our HSTAT oracle.

We first observe that our direct simulation in Theorem 9 implies that the Honest SQ learning
model is equivalent (up to polynomial factors) to the SQ learning model. We are not aware of
this observation having been made before (although Valiant [2009] implicitly uses it to show that
evolvable concept classes are also learnable in the SQ model).

We now show that using Corollary 4 we can derive sample complexity bounds on honest statis-
tical query algorithms for learning.

Corollary 12. Let C be a class of functions, D′ be a distribution over X ′, d′ = SQ-DIM(C, D′)
and ε = 1/2 − 1/(2d′1/3). Then the sample complexity of any Honest SQ algorithm for ε-accurate
learning of C over D′ is Ω̃(

√
d′).

This recovers the bound in Yang [2005] up to polynomial factors.
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