
Linear-algebraic list decoding
for variants of Reed-Solomon codes ∗

VENKATESAN GURUSWAMI† CAROL WANG‡

Computer Science Department
Carnegie Mellon University

Pittsburgh, PA 15213

Abstract

Folded Reed-Solomon codes are an explicit family of codes that achieve the optimal trade-
off between rate and list error-correction capability: specifically, for any ε > 0, Guruswami and
Rudra presented an nO(1/ε) time algorithm to list decode appropriate folded RS codes of rateR
from a fraction 1−R− ε of errors. The algorithm is based on multivariate polynomial interpo-
lation and root-finding over extension fields. It was noted by Vadhan that interpolating a linear
polynomial suffices for a statement of the above form. Here we give a simple linear-algebra
based analysis of this variant that eliminates the need for the computationally expensive root-
finding step over extension fields (and indeed any mention of extension fields). The entire list
decoding algorithm is linear-algebraic, solving one linear system for the interpolation step, and
another linear system to find a small subspace of candidate solutions. Except for the step of
pruning this subspace, the algorithm can be implemented to run in quadratic time.

We also consider a closely related family of codes, called (order m) derivative codes and
defined over fields of large characteristic, which consist of the evaluations of f as well as its
first m − 1 formal derivatives at N distinct field elements. We show how our linear-algebraic
methods for folded Reed-Solomon codes can be used to show that derivative codes can also
achieve the above optimal trade-off.

The theoretical drawback of our analysis for folded RS codes and derivative codes is that
both the decoding complexity and proven worst-case list-size bound are nΩ(1/ε). By combining
the above idea with a pseudorandom subset of all polynomials as messages, we get a Monte Carlo
construction achieving a list size bound ofO(1/ε2) which is quite close to the existentialO(1/ε)
bound (however, the decoding complexity remains nΩ(1/ε)).

Our work highlights that constructing an explicit subspace-evasive subset that has small in-
tersection with low-dimensional subspaces — an interesting problem in pseudorandomness in
its own right — has applications to constructing explicit codes with better list-decoding guar-
antees.

∗Preliminary conference versions of the results in this paper appeared as [9] and [15]. This is a merged and revised
version of these papers.
†Supported in part by a Packard Fellowship and NSF grant CCF 0963975. Email: guruswami@cmu.edu
‡Research supported by an NSF graduate fellowship, NSF grants CCF 0963975 and CCF 0953155, and a grant from

the MSR-CMU Center for Computational Thinking. Email: wangc@cs.cmu.edu

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Report No. 73 (2012)

1 Introduction

1.1 Background and context

Reed-Solomon (RS) codes are an important family of error-correcting codes with many applica-
tions in theory and practice. An [n, k]q RS code over the field Fq with q elements encodes polyno-
mials f ∈ Fq[X] of degree at most k − 1 by its evaluations at n distinct elements from Fq. The
encodings of any two distinct polynomials differ on at least n−k+ 1 positions, which bestows the
RS code with an error-correction capability of (n − k)/2 worst-case errors. Classical algorithms,
the first one due to Peterson [22] over 50 years ago, are able to decode such a RS code from up
to (n − k)/2 errors (i.e., a fraction (1 − R)/2 of errors, where R = k/n is the rate of the code) in
polynomial time.

Decoding beyond the radius (1 − R)/2 is not possible if the decoder is required to always
identify the correct message unambiguously. However, allowing the decoder to output a small
list in the worst case enables decoding well beyond this bound. This notion is called list decoding,
and has been an actively researched topic in the last decade. It has found many applications in
complexity theory and pseudorandomness (see [25, 26, 28] for some surveys) beyond its direct
relevance to error-correction and communication.

For RS codes, Sudan [24] gave a list decoding algorithm to decode beyond the (1−R)/2 radius
for rates R < 1/3. For rates R → 0, the algorithm could correct a fraction of errors approaching
1, a remarkable feature that led to many complexity-theoretic applications. Guruswami and Su-
dan [14] improved the error-correction radius to 1−

√
R, matching the so-called “Johnson radius,”

which is the a priori lower bound on list-decoding radius of a code as a function of its distance
alone. This result improved upon the traditional (1−R)/2 bound for all rates. The 1−

√
R bound

remains the best error-correction radius achievable to date for list decoding RS codes.

A standard random coding argument, however, shows the existence of rate R codes C ⊆ Σn

list-decodable even up to radius 1−R − ε. Specifically, C has the combinatorial property that for
every y ∈ Σn, there are at most L = O(1/ε) codewords of C within Hamming distance (1−R−ε)n
from y. Here ε > 0 can be an arbitrarily small constant, and the alphabet size |Σ| is a large constant
depending on ε. The quantity L is referred to as the list-size. Note that 1−R is a clear information-
theoretic limit for error-correction, since at least roughly Rn received symbols must be correct to
have any hope of recovering the Rn message symbols.

A few years back, Guruswami and Rudra [13], building upon the work of Parvaresh and
Vardy [21], gave an explicit construction of codes of rate R which are list-decodable in polyno-
mial time up to radius 1 − R − ε, with a list-size of nO(1/ε). These codes were a “folded” version
of Reed-Solomon codes, defined below.

Definition 1 (m-folded Reed-Solomon code). Let γ ∈ Fq be a primitive element of Fq. Let n 6 q − 1
be a multiple of m, and let 1 6 k < n be the degree parameter.

The folded Reed-Solomon (FRS) code FRS
(m)
q [n, k] is a code over alphabet Fmq that encodes a poly-

2

nomial f ∈ Fq[X] of degree at most k − 1 as1

f(X) 7→

f(1)
f(γ)

...
f(γm−1)

 ,

f(γm)
f(γm+1)

...
f(γ2m−1)

 , . . . ,

f(γn−m)
f(γn−m+1)

...
f(γn−1)

 . (1)

The block length of FRS
(m)
q [n, k] is N = n/m, and its rate is R = k/n.

Observe that the FRS code has rate equal to the rate of the original, unfolded Reed-Solomon
code, which corresponds to the choice m = 1. The difference is that the FRS code is defined over a
larger alphabet, of size qm. Thus when we deal with symbol errors for the larger alphabet, a correct
codeword symbol over this large alphabet gives the correct value of the message polynomial f at
m correlated points. Somewhat remarkably, this feature can be exploited to correct a number of
errors approaching the information-theoretic limit of (1−R)N as the parameter m is chosen large
enough. Specifically, for any integer s, 1 6 s 6 m, a list decoding algorithm for the above FRS

codes for a fraction ≈ 1−
(

mR
m−s+1

)s/(s+1)
of errors is presented in [13], with decoding complexity

qO(s) and list-size qs. Given the close relation of the FRS codes to Reed-Solomon codes, the result
of [13] can also be viewed as a better algorithm for list decoding Reed-Solomon codes when the
errors occur in bursts, since the evaluation points of the RS encoding are usually ordered as powers
of γ for some primitive γ.

For suitably large constants s,m depending on ε, the above list decoding radius for FRS codes
exceeds 1 − R − ε. However, it turns out that the list-size bound then becomes nΩ(1/ε), which
has a rather poor dependence on the distance ε to the optimal trade-off. Improving the list-size
is therefore an important open question. Recall that existentially a list-size as small as O(1/ε) is
possible. The decoding algorithms in [21, 13] consist of two steps (see Section 2.1 for more details):
(i) multivariate polynomial interpolation (to find an algebraic equation that candidate message
polynomials f must satisfy), and (ii) solving this equation via root-finding over extension fields.
The interpolation step reduces to finding a nonzero solution to a homogeneous linear system, and
theoretically the second step is the computationally more expensive one.

Vadhan showed recently that a decoding radius of 1 − R − ε can be achieved by a simplified
interpolation step that only interpolates a degree 1 multivariate polynomial [27]. The second root-
finding step of the decoder remains unchanged. Further, there is no need to use multiplicities in the
interpolation as in the earlier algorithms [14, 21, 13].2 This offers a clean and simple exposition of
a list decoding algorithm for FRS codes (that can be viewed as a multidimensional version of the
Welch-Berlekamp decoder for RS codes) for a fraction≈ s

s+1

(
1− mR

m−s+1

)
of errors (see Section 2.2).

This is weaker than the decoding radius of ≈ 1 −
(

mR
m−s+1

)s/(s+1)
using multiplicities, but still

suffices to decode up to radius 1−R− ε for constant ε > 0.
1The actual code depends also on the choice of the primitive element γ. But the results hold for any choice of

primitive γ, so for notational convenience we suppress the dependence on γ and assume some canonical choice of γ is
fixed.

2However, the method of multiplicities is still crucial if one wants a soft-decision list decoder, which, at least for
Reed-Solomon codes, has been a very influential development [18], with many subsequent papers looking at practical
decoding architectures.

3

1.2 Contributions of this work

Our contributions are three-fold.

1.2.1 List decoding folded Reed-Solomon codes

Here, we note that above-mentioned Welch-Berlekamp style “degree 1” list decoder, not only
offers a simpler exposition, but also offers some promising advantages. Our starting point is the
simple observation that in this case the candidate solutions to the algebraic equation form an affine
subspace (of the full message space Fkq). This implies that the second step of the list decoding can
also be tackled by solving a linear system!

By inspecting the structure of this linear system, we give an elementary linear-algebraic proof
(Lemma 6) that the subspace of solutions has dimension at most s−1, a fact that was earlier proved
by root counting over extension fields in [13, 27]. This shows that the exponential dependence in
s of the list-size bound was inherently because of the dimension of the interpolation (and it was
not crucial that we had the identity f(γs−1X) = f(X)q

s−1
over some extension field3).

The linear-algebraic proof also gives a quadratic time algorithm to find a basis for the subspace
(instead of the cubic time of Gaussian elimination). This leads to a quadratic runtime for the list
decoder, except for the final step of pruning the subspace to actually find the close-by codewords
(formal statement in Theorem 7). This pruning step needs to check each element of the subspace
and thus unfortunately could still take qs time. However, initial experiments with random error
models indicate that the output dimension is likely to be small (often even 0, implying a unique
solution), and in these cases the actual bottleneck in the runtime is the interpolation step rather
than the second step.

1.2.2 Derivative codes

We also consider another natural variant of Reed-Solomon codes (over fields of large characteris-
tic), called derivative codes, defined formally in Section 3. These are a special case of the multivariate
multiplicity codes which were used in [20] to give locally decodable codes. We refer to our codes in-
stead as derivative codes in order to single out the important univariate case with a different name.
4

Informally, rather than bundling together evaluations of the message polynomial at consecu-
tive powers of γ, in an order-m derivative code, we bundle together the evaluations of f as well
as its first (m − 1) derivatives at each point. This might appear to cause a loss in rate (similar to
the Parvaresh-Vardy construction [21]), but it does not, as one can pick higher degree polynomials
while still maintaining the distance. (For two distinct degree ` polynomials, there can be at most
`/m points where they and their first (m− 1) derivatives agree.)

In Theorem 17 and Corollary 18, we show our main result that derivative codes also achieve

3This identity, however, seems to be the only known way to bound the list-size when higher degrees are used in the
interpolation, as in [13].

4The change in name also highlights the fact that we use formal derivatives rather than Hasse derivatives in the
encoding.

4

the optimal rate vs. list-decodability trade-off. Formally, for any ε > 0, for the choicem ≈ 1/ε2, we
can list decode order-m derivative codes of rate R from a 1−R− ε fraction of errors. The list-size
and running time behavior is similar to the linear-algebraic algorithm for folded RS codes, and
once again one can find, by just solving two linear systems, a low-dimensional affine space that
contains all the close-by codewords.

It is natural to try to find other codes which achieve the optimal trade-off between rate and
list decoding radius, and the derivative code construction is arguably just as natural as the folded
Reed-Solomon one. Interestingly, it falls in the framework of Parvaresh-Vardy codes, where the
correlated polynomials are formal derivatives. The special properties of derivatives ensures that
one need not suffer any loss in rate, and at the same time enable list decoding up to a much
larger radius than the bound for RS codes. Further, our algorithm for list decoding derivative
codes offers some advantages with respect to efficient (unique) decoding with side information
(see Section 3.2), and might have some benefits in practice as well.

1.2.3 Better list-size via subspace-evasive sets

Our third contribution is to exploit the subspace structure of the candidate solutions to improve
the list-size bound. The idea is to restrict the coefficient vectors of the message polynomial to
a large “subspace-evasive” subset that has small intersection with subspaces of low dimension.
Subspace-evasive sets seem like fundamental combinatorial objects interesting in their own right.
They are related to affine extractors, and also have applications to constructing bipartite Ramsey
graphs [23]. As one would expect, a random set has excellent subspace-evasiveness, but finding
matching explicit constructions is open. Our application to list decoding in this work provides
another motivation for the interesting problem of constructing subspace-evasive sets.

Using a pseudorandom construction of subspace-evasive subsets (in fact, algebraic varieties)
based on limited independence, we give a Monte Carlo construction (succeeding with high prob-
ability) of rate R codes list-decodable up to a fraction 1−R− ε of errors with a list-size of O(1/ε2)
(Theorem 24 gives the exact statement). Due to the pruning step, the worst-case runtime is how-
ever still nΩ(1/ε). Nevertheless, this is the first construction with a better than nΩ(1/ε) list-size for
decoding up to the information-theoretic limit of 1−R− ε fraction of errors.

We stress that only our code construction is randomized, and once it succeeds (which happens
with high probability), the list decoding properties hold for every received word, and the encoding
and list decoding procedures run in deterministic polynomial time.

1.3 Organization

We describe the list decoding algorithm for FRS codes and our linear-algebraic analysis of it in
Section 2, concluding the section with some related remarks about the linear algebra approach.
We describe derivative codes and their list-decoding in Section 3. We use subspace-evasive sets
to give our Monte Carlo construction of codes achieving list decoding capacity with improved
list-size in Section 4. Finally, we briefly discuss some follow-up work that this paper inspired in
Section 5.

5

2 List decoding folded Reed-Solomon codes

Suppose a codeword of the m-folded RS code (Definition 1) was transmitted and we received a
string in y ∈ (Fmq)N which we view as an m×N matrix over Fq (recall N = n/m):

y0 ym yn−m+1

y1 ym+1
...

y2 ym+2
...

. . .
ym−1 · · · yn−1

(2)

We would like to recover a list of all polynomials f ∈ Fq[X] of degree k − 1 whose folded
RS encoding (1) agrees with y in at least N − e columns, for some error bound e. Note that an
agreement means that all m values in that particular column match. The following theorem is
from [13].

Theorem 2. For the folded Reed-Solomon code FRS
(m)
q [n, k] of block length N = n/m and rate R = k/n,

the following holds for all integers s, 1 6 s 6 m. Given a received word y ∈ (Fmq)N , in
(
Oδ(q)

)O(s) time,
one can find a list of size at most qs that contains all message polynomials f ∈ Fq[X] of degree less than k
whose FRS encoding (1) differs from y in at most a fraction

1− (1 + δ)

(
mR

m− s+ 1

)s/(s+1)

of the N codeword positions.

Note that the fractional agreement required by this algorithm as a function of the rate R = k/n =
k/(Nm) is

(1 + δ)

(
mR

m− s+ 1

)s/(s+1)

. (3)

By picking δ ≈ ε, s ≈ 1/ε and m ≈ 1/ε2, the above quantity is at most R + ε, and the decoding
complexity and list size are ≈ qO(1/ε).

2.1 Overview of above decoding algorithm

We briefly recap the high level structure of this decoding algorithm. The quantity s is a parameter
of the algorithm. In the first step, the algorithm interpolates a nonzero multivariate polynomial
Q ∈ Fq[X,Y1, Y2, . . . , Ys] of low weighted degree (where the Yi’s have weight k−1 andX has weight
1) with the following guarantee:

For every i, 0 6 i < n with i mod m ∈ {0, 1, 2, . . . ,m−s}, Q(X,Y1, . . . , Ys) vanishes at
(γi, yi, yi+1, . . . , yi+s−1) ∈ Fs+1

q with high multiplicity (related to the other parameter δ
of the algorithm).

6

Such a polynomial Q can be found in polynomial time by solving a homogeneous linear system
over Fq. The degree and multiplicity parameters in the interpolation step are carefully picked
to ensure the following two properties: (i) a nonzero Q meeting the interpolation requirements
exists, and (ii) every f ∈ Fq[X] of degree at most (k − 1) whose FRS encoding agrees with y on at
leastN−e places (and which, therefore, must be output by the list decoder) satisfies the functional
equation

Q
(
X, f(X), f(γX), · · · , f(γs−1X)

)
= 0 .

In the second step of the decoder, all solutions f to the above equation are found. This is done
by observing that f(γX) = f(X)q (mod E(X)) where E(X) = (Xq−1 − γ), and therefore f
mod E(X) can be found by finding the roots of the univariate polynomial

T (Y) = Q(X,Y, Y q, . . . , Y qs−1
) mod E(X)

with coefficients from L = Fq[X]/(E(X)). The polynomial E(X) is irreducible over Fq and there-
fore L is an extension field. The parameter choices ensure that T 6= 0, and thus T cannot have more
than qs−1 roots, and these roots may all be found in polynomial time. Finally, this list is pruned to
only output those polynomials whose FRS encoding is in fact close to the received word y.

2.2 A Welch-Berlekamp style interpolation

We will now describe a variant of the above scheme where the interpolation step will fit a non-
zero “linear” polynomial Q(X,Y1, Y2, . . . , Ys) (with degree 1 in the Yi’s). This can be viewed as a
higher-dimensional generalization of the Welch-Berlekamp algorithm [29, 6]. This elegant version
is due to Vadhan and is described in his monograph [27, Chap. 5] (and also used in the first
author’s lecture notes [8]). For completeness, and because it will be convenient to refer to it in the
second step, we give a self-contained presentation here.

The original motivation for this variant was that it had simpler parameter choices and an easier
exposition (even though the error-correction guarantee worsened, it still allowed approaching a
decoding radius of 1 − R in the limit). In particular, it has the advantage of not requiring the use
of multiplicities in the interpolation. (Essentially, the freedom to do s-variate interpolation for
a parameter s of our choosing allows us to work with simple interpolation while still gaining in
error-correction radius with increasing s. This phenomenon also occurred in one of the algorithms
in [12] for list decoding correlated algebraic-geometric codes.)

In this work, our contribution is to put the simple linear structure of the interpolated poly-
nomial to good use and exploit it to substitute the root-finding step with a more efficient step
of solving a linear system. Our algorithm also works for any γ of order at least k, rather than
requiring γ to be primitive as in the previous algorithm. See Section 2.4 for more details.

Given a received word as in (2) we will interpolate a nonzero polynomial

Q(X,Y1, Y2, . . . , Ys) = A0(X) +A1(X)Y1 +A2(X)Y2 + · · ·+As(X)Ys (4)

over Fq with the degree restrictions deg(Ai) 6 D for i = 1, 2, . . . , s and deg(A0) 6 D+k−1, where
the degree parameter D is chosen to be

D =

⌊
N · (m− s+ 1)− k + 1

s+ 1

⌋
. (5)

7

The number of monomials in a polynomial Q with these degree restrictions equals

(D + 1)s+D + k = (D + 1)(s+ 1) + k − 1 > N(m− s+ 1) (6)

for the above choice (5) of D. The interpolation requirements on Q ∈ Fq[X,Y1, . . . , Ys] are the
following:

Q(γim+j , yim+j , yim+j+1, · · · , yim+j+s−1) = 0 for i = 0, 1, . . . , N − 1, j = 0, 1, . . . ,m− s . (7)

(Recall that N = n/m.) We then have the following.

Lemma 3. Let

D =

⌊
N(m− s+ 1)− k + 1

s+ 1

⌋
. (8)

A nonzeroQ ∈ Fq[X,Y1, . . . , Ys] of the form (4) satisfying the interpolation conditions (7) with deg(A0) 6
D + k − 1 and deg(Aj) 6 D for 1 6 j 6 s exists and can be found by solving a homogeneous linear
system over Fq with at most n constraints and variables. Further, this interpolation can be performed in
O(n log2 n log log n) operations over Fq.

Proof. This holds since the number of interpolation conditions N · (m − s + 1) is less than the
number of degrees of freedom (monomials) in Q. Regarding the claimed runtime, even though
the best known algorithms for solving a general n × n linear system take time nω where ω is
the exponent of matrix multiplication (currently ≈ 2.37...), the above linear system has a special
structure (involving evaluations at powers of γ). This can be exploited to solve the system in
near-linear runtime as shown in [2] (see Proposition 5.11 in Chapter 5).

The following lemma shows that any such polynomial Q gives an algebraic condition that the
message polynomials f(X) we are interested in list decoding must satisfy.

Lemma 4. Let Q satisfy the conclusion of Lemma 3. If f ∈ F[X] is a polynomial of degree at most k − 1
whose FRS encoding (1) agrees with the received word y in at least t columns for t > D+k−1

m−s+1 , then

Q(X, f(X), f(γX), . . . , f(γs−1X)) = 0 . (9)

Proof. Define Λ(X) = Q(X, f(X), f(γX), . . . , f(γs−1X)). Due to the degree restrictions on Q, the
degree of Λ(X) is easily seen to be at most D+ k− 1. If the FRS encoding of f agrees with y in the
i’th column (for some i ∈ {0, 1, . . . , N − 1}), we have

f(γim) = yim, f(γim+1) = yim+1, . . . , f(γim+m−1) = yim+m−1 .

Together with the interpolation conditions (7), this implies Λ(γim+j) = 0 for j = 0, 1, . . . ,m− s. In
other words, Λ picks up at least m− s+ 1 distinct roots for each such column i. Thus Λ must have
at least t(m− s+ 1) roots in all. Since deg(Λ) 6 D+ k− 1, if t > (D+ k− 1)/(m− s+ 1), we must
have Λ = 0.

For the choice ofD in (5), the requirement on t in Lemma 4 is met if t·(m−s+1) > N ·(m−s+1)+s(k−1)
s+1 ,

and hence if the fractional agreement t/N satisfies

t

N
>

1

s+ 1
+

s

s+ 1

k

N(m− s+ 1)
=

1

s+ 1
+

s

s+ 1

mR

m− s+ 1
. (10)

8

In other words, the fractional agreement needed is 1
s+1 + s

s+1
mR

m−s+1 . (Recall that R = k/n is
the rate of the code.) Note that by the AM-GM inequality, this agreement is always higher than

the agreement fraction
(

mR
m−s+1

)s/(s+1)
needed in (3).5 Thus this variant corrects a smaller fraction

of errors. Nevertheless, with the choice s ≈ 1/ε and m ≈ 1/ε2, the fraction of errors corrected can
still exceed 1−R−ε. Further, as we see next, it offers some advantages when it comes to retrieving
the solutions f to (9).

2.3 Retrieving candidate polynomials f

By the preceding section, to complete the list decoding we need to find all polynomials f ∈ Fq[X]
of degree at most k − 1 that satisfy

A0(X) +A1(X)f(X) +A2(X)f(γX) + · · ·+As(X)f(γs−1X) = 0 . (11)

We note the following simple but very useful fact:

Observation 5. The above is a system of linear equations over Fq in the coefficients f0, f1, · · · , fk−1 of the
polynomial f(X) = f0 + f1X + · · · + fk−1X

k−1. Thus, the solutions (f0, f1, . . . , fk−1) of (11) form an
affine subspace of Fkq .

In particular, the above immediately gives an efficient algorithm to find a compact represen-
tation of all the solutions to (11) — simply solve the linear system! This simple observation is the
starting point driving this work.

We next prove that when γ is primitive, the space of solutions has dimension at most s − 1.
Note that we already knew this by the earlier argument in Section 2.1 over the extension field
Fq[X]/(Xq−1 − γ). But it is instructive to give a direct proof of this working only over Fq. The
proof in fact works when the order of γ is at least k. Further, it exposes the simple structure of the
linear system which can be used to find a basis for the solutions in quadratic time.

Lemma 6. If the order of γ is at least k (in particular when γ is primitive), the affine space of solutions to
(11) has dimension d at most s− 1.

Further, one can compute usingO
(
sk2
)

field operations over Fq a lower-triangular matrixH ∈ Fk×kq of
rank at least k−s+1 and a vector z ∈ Fkq , such that the coefficient (column) vectors f = (f0, f1, . . . , fk−1)T

of solutions to (11) are contained in the affine space Hf = z.

Proof. First, by factoring out a common powers of X that divide all of A0(X), A1(X), . . . , As(X),
we can assume that at least one Ai∗(X) for some i∗ ∈ {0, 1, . . . , s} is not divisible by X , and has
nonzero constant term. Further, if A1(X), . . . , As(X) are all divisible by X , then so is A0(X), so
we can take i∗ > 0.

Let us denote Ai(X) =
∑D+k−1

`=0 ai,`X
` for 0 6 i 6 s. (We know that the degree of Ai(X) for

i > 1 is at most D, so ai,` = 0 when i > 1 and ` > D, but for notational ease let us introduce these

5Recall that for Reed-Solomon codes (m = 1) this was also exactly the case: the classical algorithms unique decoded
the codeword when the agreement fraction was at least 1+R

2
, and the list decoding algorithm in [14] list decoded from

agreement fraction
√
R.

9

coefficients.) For j = 0, 1, 2, . . . , k − 1, define the polynomial

Bj(X) = a1,j + a2,jX + a3,jX
2 + · · ·+ as,jX

s−1 . (12)

We know that ai∗,0 6= 0, and therefore B0 6= 0.

By Condition (11), for each r = 0, 1, 2, . . . , the coefficient of Xr in the polynomial

Λ(X) = A0(X) +A1(X)f(X) +A2(X)f(γX) + · · ·+As(X)f(γs−1X)

equals 0.

The constant term of Λ(X) equals a0,0 + a1,0f0 + a2,0f0 + · · · + as,0f0 = a0,0 + B(1)f0. Thus if
B(1) 6= 0, then f0 is uniquely determined as −a0,0/B(1). If B(1) = 0, then a0,0 = 0 or else there
will be no solutions to (11) and in that case f0 can take an arbitrary value in Fq.

The coefficient of Xr of Λ(X), for 0 6 r < k, equals

a0,r + fr · (a1,0 + a2,0γ
r + · · ·+ as,0γ

(s−1)r) + fr−1 · (a1,1 + a2,1γ
r−1 + · · ·+ as,1γ

(s−1)(r−1))+ (13)

· · ·+ f1 · (a1,r−1 + a2,r−1γ + · · ·+ as,r−1γ
s−1) + f0 · (a1,r + · · ·+ as,r)

= B0(γr)fr +
(∑r

j=1
Bj(γ

r−j)fr−j

)
+ a0,r (14)

recalling the definition (12) of the polynomials Bj . The linear form (14) must thus equal 0. The
key point is that if B0(γr) 6= 0, then this implies that fr is an affine combination of f0, f1, . . . , fr−1

and in particular is uniquely determined given values of f0, f1, . . . , fr−1.

Thus the dimension of the space of solutions is at most the number of r, 0 6 r < k, for which
B0(γr) = 0. Since γ has order at least k, the powers γr for 0 6 r < k are all distinct. Also we know
that B0 is a nonzero polynomial of degree at most s − 1. Thus B0(γr) = 0 for at most s − 1 values
of r.

We have thus proved that the solution space has dimension at most s− 1. To justify the claim
about the decoding complexity and structure of solution space, note that the linear system satisfied
by f = (f0, f1, . . . , fk−1)T is Hf = z where z = (−a0,0,−a0,1, . . . ,−a0,k−1)T and the (r, j)’th entry
of H equals Br−j(γj) for j 6 r and 0 otherwise. The computation of H amounts to evaluating the
polynomials Bj , 0 6 j < k, each of which has degree less than s, at the points {1, γ, . . . , γk−1}.
This can be accomplished in O(sk2) operations over Fq.

Combining Lemmas 3 and 6 and the decoding bound (10), we can conclude the following.

Theorem 7. For the folded Reed-Solomon code FRS
(m)
q [n, k] of block length N = n/m and rate R = k/n,

the following holds for all integers s, 1 6 s 6 m. Given a received word y ∈ (Fmq)N , using O(n2 + sk2)
operations over Fq, one can find a subspace of dimension at most s−1 that contains all message polynomials
f ∈ Fq[X] of degree less than k whose FRS encoding (1) differs from y in at most a fraction

s

s+ 1

(
1− mR

m− s+ 1

)
of the N codeword positions.

10

Note: When s = m = 1, the above just reduces to a unique decoding algorithm up to a fraction
(1−R)/2 of errors.

Choosing s ≈ 1/ε and m ≈ 1/ε2 suffices to ensure decoding from a 1−R− ε fraction of errors.
Note that the decoding guarantee of Theorem 7 improves with s and as m increases relative to s.
However, as s increases, so does our worst-case list size guarantee of qs−1. For fixed parameters k
and n, as m increases, the absolute number of errors which can be corrected decreases.

Comment on list size and runtime. To get the actual list of close-by codewords, one can prune the
solution subspace, which unfortunately may take qs > ns time in the worst-case. This quantity is
about nO(1/ε) for the parameter choice s ≈ 1/ε which achieves a list decoding radius of 1−R− ε.
Theoretically, we are not able to improve the worst-case list size bound of ≈ n1/ε in this regime.
This motivates our results in Section 4 where we show that using a carefully chosen subset of all
possible degree at most k − 1 polynomials as messages, one can ensure that the list-size is much
smaller while losing only a tiny amount in the rate.

Except for final step of pruning the subspace of candidate solutions, the decoding takes only
quadratic time (and is perhaps even practical, as it just involves solving two structured linear
systems). If some side information about the true message f is available that disambiguates the
true message in the list [7], that might also be useful to speed up the pruning.

2.4 Some remarks

We now make some salient remarks about the above linear-algebra based method for list decoding
folded Reed-Solomon codes..

Tightness of qs−1 bound. For folded Reed-Solomon codes, the upper bound of qs−1 on the number
of solutions f to the Equation (11) cannot be improved in general. Indeed, let A0 = 0, and Ai for
1 6 i 6 s be the coefficient of Y i−1 in the polynomial (Y − 1)(Y − γ) · · · (Y − γs−2). Then for
0 6 ` 6 s− 2, we have

A1 ·X` +A2 · (γX)` + · · ·+As · (γs−1X)` = X` ·
(
A1 +A2 · γ` +A3 · (γ`)2 + · · ·+As · (γ`)s−1

)
= 0 .

By linearity, every polynomial f ∈ Fq[X] of degree at most s− 2 satisfies (11).

We should add that this does not lead to any non-trivial list-size lower bound for decoding, as
we do not know if such bad polynomials can occur as the output of the interpolation step, and
moreover the pruning step could potentially reduce the size of the list further.

Requirement on γ. The argument in Lemma 6 only required that the order of γ is at least k, and
not that γ is primitive. In particular, Theorem 7 holds as long as the order of γ is at least k. The
polynomial Xq−1 − γ is irreducible if and only if γ is primitive, and therefore the approach based
on extension fields discussed in Section 2.1 requires γ to be primitive. Usually in constructions of
Reed-Solomon codes, one takes the block length n ≈ q and therefore the dimension k is linear in
q (for constant rate codes). So this weakened requirement on γ does not buy much flexibility in
this case. However, in settings where one uses RS codes of small (say sub-constant) rate (which is
often useful in complexity-theoretic applications of list decoding), the new argument applies to a
broader set of choices of evaluation points for the RS codes.

11

Hensel lifting. An alternate approach (to root-finding over extension fields) for finding the low-
degree solutions f to the equation Q

(
X, f(X), f(γX), . . . , f(γs−1X)

)
= 0 is based on Hensel-

lifting. Here the idea is to solve for f mod Xi for i = 1, 2, ... in turn. For example, the con-
stant term f0 of f(X) must satisfy Q(0, f0, f0, . . . , f0) = 0. If Q(0, Y, Y, . . . , Y) is a nonzero poly-
nomial, then this will restrict the number of choices for f0. For each such choice f0, solving
Q(X, f(X), . . . , f(γs−1X)) mod X2 = 0 gives a polynomial equation for f1, and so on. This
approach is discussed in [1] and [2, Chap. 5]. It is mentioned that this algorithm is very fast
experimentally and almost never explores too many candidate solutions. A similar approach was
also considered in [17] for folded versions of algebraic-geometric codes. However, theoretically
it has not been possible to derive any polynomial guarantees on the size of the list returned by
this approach or its running time (the obvious issue is that in each step there may be more than
one candidate value of fi, leading to an exponential product bound on the runtime). Polynomial
bounds in special cases (eg. when s = 2) are presented in [2], and obtaining such theoretical
bounds is posed as an interesting challenge for future work. Our Lemma 6 provides an analysis
of the Hensel-lifting approach when the interpolated polynomial is linear in the Yi’s.

Multiplicities, soft decoding, and list recovery. For the linear interpolation of the form (4), using
multiplicities in the interpolation stage, as in [14], only hurts the performance. This is because
the degree of the Yi’s cannot be increased to meet the needs of the larger number of interpolation
conditions. Thus in order to get a good decoder that can handle soft information on reliabilities
of various symbols [14, 18], one has to resort to the method behind the original algorithm of Gu-
ruswami and Rudra [13]. A weaker form of soft decoding is the problem of list recovery, where
for each position i of the code the input is a set Si of up to ` possible values, and the goal is to
find all codewords whose i’th symbol belongs to Si for at least t values of i. Interpolation based
decoding methods extend in a straightforward way to this setting. For instance, for the method of
Section 2.2, we can interpolate a polynomial through at most N · ` · (m − s + 1) s-tuples, at most
` · (m − s + 1) corresponding to the symbols in Si for each of N codeword positions i. This gives
an algorithm that works for agreement fraction τ = t/N satisfying

τ >
`

s+ 1
+

s

s+ 1

mR

m− s+ 1
.

Comparing this bound with (10), we see that the first term is factor ` larger. The key point now
is that for any fixed `, by picking s ≈ `/ε and m ≈ `/ε2, we can list recover with agreement
fraction τ = R + ε. Crucially, the agreement fraction required does not degrade with increasing `
(though the alphabet size of the code does). A list recovery guarantee of this form is very useful
in list decoding concatenated codes, for example to construct binary codes list-decodable up to
the Zyablov radius, or codes list-decodable up to radius 1 − R − ε over alphabets of fixed size
independent of n; see [13, Sect. V].

3 Derivative codes

For a polynomial f ∈ Fq[X], we denote by f ′ its formal derivative, i.e. if f(X) = f0 + f1X + . . .+

f`X
`, then f ′(X) =

∑`
i=1 ifiX

i−1, where the coefficient i is 1 + · · ·+ 1︸ ︷︷ ︸
i times

. We denote by f (i) the i’th

formal derivative of f .

12

Definition 8 (m’th order derivative code). Let 0 6 m ∈ Z. Let a1, . . . , aN ∈ Fq be distinct, let
n = Nm, and let the parameters satisfy m 6 k < n 6 q. Further assume that char(Fq) > k.

The derivative code Der(m)
q [n, k] over the alphabet Fmq encodes a polynomial f ∈ Fq[X] of degree at

most k − 1 by

f 7→

f(a1)
f ′(a1)

...
f (m−1)(a1)

 ,

f(a2)
f ′(a2)

...
f (m−1)(a2)

 , . . . ,

f(aN)
f ′(aN)

...
f (m−1)(aN)

 . (15)

Remark 9. This code has block lengthN and rateR = k/n. The minimum distance isN−bk−1
m c ≈

(1−R)N .

Note that the case m = 1 is a Reed-Solomon code. These are also the univariate version of the
multiplicity codes of [20], where they were analyzed in the context of local decoding.

3.1 List decoding derivative codes

Suppose we have received the corrupted version of a codeword from the derivative code Der(m)
q [n, k]

as a string y ∈ (Fmq)N , which we will, as in the folded Reed-Solomon case, consider as an m ×N
matrix over Fq (recall N = n/m):

y11 y12 . . . y1N

y21 y22 . . . y2N
...

...
. . .

...
ym1 ym2 . . . ymN

 . (16)

The goal is to recover all polynomials f of degree at most k−1 whose derivative encoding (15)
agrees with y in at least t columns. This corresponds to decoding from N − t symbol errors for the
derivative code Der(m)

q [n, k]. When t > (N + k/m)/2, the polynomial f , if it exists, is unique, and
in this regime an efficient decoding algorithm was given in [20] by adapting the Welch-Berlekamp
algorithm for Reed-Solomon codes [29, 6].

We adapt the algebraic list-decoding method of Theorem 7 to the derivative code setting. As
in the folded Reed-Solomon setting, the algorithm is a higher-dimensional analog of the Welch-
Berlekamp algorithm consisting of two steps — (i) interpolation of an algebraic condition (that
must be obeyed by all candidate polynomials f), and (ii) retrieving the list of candidate solutions f
(from the algebraic condition found by the interpolation step). For the same settings of parameters
as in Section 2.2, we achieve the same decoding radius, but the runtime bound we show for the
interpolation and retrieval steps is a larger polynomial.

Recently, a different list decoding algorithm for derivative codes was given in [19]. Similar to
the relationship between the algorithms in Theorem 2 and Theorem 7, this algorithm uses multi-
plicities to achieve a higher decoding radius than our algorithm for a fixed setting of parameters,
at the cost of a more complicated algorithm and analysis.

13

3.1.1 Interpolation

LetW denote the Fq-linear subspace of Fq[X,Y1, . . . , Ym] consisting of polynomials that have total
degree at most 1 in the Yi’s, i.e,W contains polynomials of the formB0(X)+B1(X)Y1+B2(X)Y2+
· · ·+Bm(X)Ym for some polynomials Bi ∈ Fq[X].

Let ∆ be the Fq-linear map onW defined as follows: For p ∈ Fq[X], and 1 6 i 6 m,

∆(p)(X,Y1, . . . , Ym) = p′(X) (17)

and
∆(pYi)(X,Y1, . . . , Ym) = p′(X)Yi + p(X)Yi+1. (18)

where we take Ym+1 = 0 for definitiveness.

The following lemma shows why this map is useful to us.

Lemma 10. Suppose P (X,Y1, . . . , Ym) ∈ Fq[X,Y1, . . . , Ym] has degree at most 1 in Y1, . . . , Yi for some
i < m and degree 0 in Yi+1, . . . , Ym. Then

1. d
dxP

(
X, f(X), f ′(X), f (2)(X), . . . , f (m)(X)

)
= (∆P)

(
X, f(X), f ′(X), . . . , f (m)(X)

)
, and

2. ∆P has degree at most 1 in Y1, . . . , Yi+1 and degree 0 in Yi+2, . . . , Ym.

Proof. By linearity, for p(X) ∈ Fq[X], it suffices to check this for p(X) and p(X)Yj for j 6 i.

We have ∆p = p′, and ∆(pYj) = p′Yj + pYj+1, which both have degree at most 1 in Y1, . . . , Yi+1

and degree 0 in Yi+2, . . . , Ym. Moreover,

∆(pYj)
(
X, f(X), f ′(X), . . . , f (m)(X)

)
= p′f (j−1) + pf (j) =

d

dx
pf (j−1),

as desired.

Let s, 1 6 s 6 m, be an integer parameter in the decoding algorithm. The goal in the interpo-
lation step is to interpolate a nonzero polynomial Q ∈ Fq[X,Y1, Y2, . . . , Ym] of the form

A0(X) +A1(X)Y1 +A2(X)Y2 + · · ·+As(X)Ys (19)

satisfying the following conditions for each i, 1 6 i 6 N :

Q(ai, y1i, . . . , ysi) = 0 and (∆jQ)(ai, y1i, . . . , ymi) = 0 (j = 1, . . . ,m− s), (20)

where ∆j denotes the j-fold composition of the map ∆.

Observation 11. For each i, the conditions (20) are a collection of (m − s + 1) homogeneous linear
constraints on the coefficients of the polynomial Q.

Lemma 10 gives us the following.

Corollary 12. SupposeQ of the form (19) satisfies the conditions (20). If the received word (16) agrees with
the encoding of f at location i, that is, f (j)(ai) = yj+1,i for 0 6 j < m, then the univariate polynomial
Λ(X) := Q(X, f(X), . . . , f (s−1)(X)) satisfies Λ(ai) = 0 as well as Λ(k)(ai) = 0 for k = 1, . . . ,m − s,
where Λ(k)(X) is the k’th derivative of Λ.

14

We next argue, similarly to Lemma 3 in the folded Reed-Solomon case, that a nonzero interpo-
lation polynomial Q exists and can be found efficiently. In this case, we only claim cubic runtime
for solving the linear system (of course we can also state a runtime of O(nω) using faster matrix
multiplication).

Lemma 13. Let

D =

⌊
N(m− s+ 1)− k + 1

s+ 1

⌋
. (21)

Then a nonzero Q of the form (19) satisfying the interpolation conditions (20) with deg(A0) 6 D + k − 1
and deg(Aj) 6 D for 1 6 j 6 s exists and can be found in O

(
n3
)

field operations over Fq by solving a
homogeneous linear system over Fq with at most n constraints and variables.

Proof. Under the stated degree restrictions, the number of monomials in Q is

(D + 1)s+D + k = (D + 1)(s+ 1) + k − 1 > N(m− s+ 1). (22)

where the last inequality follows from the choice (21) of D. The number of homogeneous linear
equations imposed on the coefficients of Q in order to meet the interpolation conditions (20) is
N · (m − s + 1). As this is less than the number of monomials in Q, the existence of a nonzero Q
follows, and it can be found by solving a linear system over Fq with at most Nm = n constraints
and at most N · (m− s+ 1) + (s+ 1) < Nm = n variables.

Suppose we have a polynomial Q(X,Y1, . . . , Ys) satisfying the interpolation conditions (20).
The following lemma gives an identity satisfied by any f which has good agreement with the
received word.

Lemma 14. Let Q satisfy the conclusion of Lemma 13. If f ∈ F[X] is a polynomial of degree at most k− 1
whose derivative encoding (15) agrees with the received word y in at least t columns for t > D+k−1

m−s+1 , then

Q
(
X, f(X), f ′(X), . . . , f (s−1)(X)

)
= 0.

Proof. Let Λ(X) = Q(X, f(X), . . . , f (s−1)(X)). By Corollary 12, an agreement in column i means
that Λ(X) satisfies Λ(ai) = 0 and that the kth derivative Λ(k)(ai) is also zero for k = 1, . . . ,m − s.
In particular, t column agreements yield at least t · (m− s+ 1) roots (counting multiplicities) for Λ.

The degree of Λ is at most D + k − 1, as f and each of its derivatives has degree at most k − 1.
Then as Λ is univariate of degree at most D + k − 1, Λ has at most D + k − 1 roots if it is nonzero.
Thus if t > (D + k − 1)/(m− s+ 1), it must be that Λ(X) = 0.

3.1.2 Retrieving candidate polynomials

With our chosen value of D from (21), the preceding section implies that any f which agrees with
y on at least

N

s+ 1
+

s

s+ 1

k

m− s+ 1
(23)

15

columns satisfies Q
(
X, f(X), f ′(X), . . . , f (s−1)(X)

)
= 0. So in the second step, our goal is to find

all polynomials f of degree at most k − 1 such that

A0(X) +A1(X)f(X) +A2(X)f ′(X) + . . .+As(X)f (s−1)(X) = 0. (24)

Let Ai(X) =
∑deg(Ai)

j=0 ai,jX
j for each i. Note that the above constraint (24) gives a linear system

over F in the coefficients of f = f0 + f1X + · · · + fk−1X
k−1. In particular, the set of solutions

(f0, f1, . . . , fk−1) is an affine space, and we can find it by solving the linear system. Our goal now
is to bound the dimension of the space of solutions by exposing its special structure and also use
this to efficiently find an explicit basis for the space.

Lemma 15. It suffices to give an algorithm in the case that the constant term as0 of As is nonzero.

Proof. If As(X) 6≡ 0, since deg(As) 6 D < Nm 6 q, then there is some α ∈ Fq such that As(α) 6= 0,
so we can consider a “translate” of this problem by α; that is, As(X + α) has nonzero constant
term, so we can solve the system with the translated polynomialQ(X+α, Y1, . . . , Ym) and recover
candidate messages by translating each solution g(X) to f(X) = g(X − α).

If As(X) = 0, we simply reduce the problem to a smaller one with s rather than s+ 1 interpo-
lation variables. Note that this must terminate since Q is nonzero and so at least one Ai for i > 1
is nonzero.

We can now show the following analog of Lemma 6:

Lemma 16. If as,0 6= 0, the solution space to (24) has dimension at most s − 1. Furthermore, a basis for
this subspace can be found in O(sk2) operations over Fq.

Proof. For each power Xi, the coefficient of Xi in A0(X) +A1(X)f(X) + · · ·+As(X)f (s−1)(X) is

a0,i +
(
a1,0fi + a1,1fi−1 + · · ·+ a1,if0

)
+
(
a2,0(i+ 1)fi+1 + a2,1ifi + · · ·+ a2,if1

)
+ · · ·+

(
as,0(i+ s− 1)(i+ s− 2) · · · (i+ 1)fi+s−1 + · · ·+ as,i(s− 1)!fs−1

)
=a0,i +

s∑
j=1

i∑
`=0

(`+ j − 1)!

`!
aj,i−`f`+j−1 . (25)

If (f0, . . . , fk−1) is a solution to (24), then this coefficient is zero for every i.

Our expression for the coefficient ofXi for each i depends only on fj for j < i+s. Furthermore,
the coefficient of fi+s−1 in this expression is as,0 · (i+ s− 1)(i+ s− 2) · · · (i+ 1), which is nonzero
when i+ s 6 k since char(Fq) > k. Thus, if we fix f0, f1, . . . , fs−2, the rest of the message symbols
fs−1, . . . , fk−1 are uniquely determined. In particular, the dimension of the solution space is at
most s − 1. Also, by (25), each fl, l > s − 1, is specified as a linear combination of fi for i < l,
and implies that we can compute a basis of the solution space (f0, . . . , fk−1) using O(sk2) field
operations.

Combining Lemmas 14 and 16, and recalling the bound (23) on the number of agreements for
successful decoding, we have our result on list decoding derivative codes.

16

Theorem 17. For the derivative code Der(m)
q [n, k] (where char(Fq) > k) of block length N = n/m and

rate R = k/n, the following holds for all integers s, 1 6 s 6 m. Given a received word y ∈ Fm×Nq , in
O
(
n3 +sk2) operations over Fq, one can find a basis for a subspace of dimension at most s−1 that contains

all message polynomials f ∈ Fq[X] of degree less than k whose derivative encoding (15)differs from y in at
most a fraction

s

s+ 1

(
N − k

(m− s+ 1)

)
of the N codeword positions.

Now by setting s ≈ 1/ε and m ≈ 1/ε2, and recalling that the rate of Der(m)
q [n, k] is k/n =

k/(Nm), we can conclude the following.

Corollary 18. For all R ∈ (0, 1) and all ε > 0, for a suitable choice of parameters, there are derivative
codes Der(m)

q [n, k] of rate at least R which can be list decoded from a fraction 1 − R − ε of errors with a
list-size of qO(1/ε).

3.2 Some remarks

Tightness of qs−1 bound. As in the folded Reed-Solomon case, the bound of Lemma 16 is tight
for arbitrary linear systems. Indeed, if

Q(X,Y1, . . . , Ys) =

s−1∑
i=0

(−1)i

i!
XiYi+1,

then any polynomial f(X) of degree less than s with zero constant term satisfies the identity
Q(X, f(X), . . . , f (s−1)(X)) = 0. This is because any monomial f(X) = Xj for 0 < j 6 s − 1
is a solution, and our solution space is linear. Again as in the FRS case, we do not know if such a
bad polynomial can occur as the output of the interpolation step when decoding a noisy codeword
of the derivative code.

Decoding derivative codes with side information. The decoding described in the previous sec-
tion consists of trying all choices for the coefficients f0, . . . , fs−2 and using each to uniquely deter-
mine a candidate for f . Note however that for each i, the fi is essentially the ith derivative of f
evaluated at 0, and can be recovered as f (i)(0)/i!. Thus if the decoder somehow knew the correct
values of f and its first s−1 derivatives at 0, f could be recovered uniquely (as long as As(0) 6= 0).

Now, suppose the encoder could send a small amount of information along a noiseless side
channel in addition to sending the (much longer) codeword on the original channel. In such a
case, the encoder could choose α ∈ Fq uniformly at random and transmit f(α), f ′(α), . . . , f (s−1)(α)
on the noiseless channel. The decoding then fails only if Ai(α) = 0 for i which is the largest index
such that Ai(X) 6= 0. As the Ai(X) have bounded degree, by increasing the field size q, f can be
uniquely recovered with probability arbitrarily close to 1. More precisely, we have the following
claim.

17

Theorem 19. Given a uniformly random α ∈ Fq and the values f(α), f ′(α), . . . , f (s−1)(α) of the message
polynomial f , the derivative code Der(m)

q [n, k] can be uniquely decoded from up to

s

s+ 1

(
N − k

m− s+ 1

)
errors with probability at least 1− n/(sq) over the choice of α.

Proof. As in the proof of Lemma 15, as long as As(α) 6= 0, we may translate the problem by α and
use the values f(α), f ′(α), . . . , f (s−1)(α) to uniquely determine the shifted coefficients g0, . . . , gs−1.

As As 6= 0, and As is univariate of degree at most D, As has at most D roots, and so the
probability that As(α) 6= 0 is at least 1−D/q > 1− n

sq , where the last inequality follows from our
choice of D 6 n/s in (21).

Remark 20. In the context of communicating with side information, there is a generic, black-box
solution combining list-decodable codes with hashing to guarantee unique recovery of the correct
message with high probability [7]. In such a scheme, the side information consists of a random
hash function h and its value h(f) on the message f . The advantage of the solution in Theorem 19
is that there is no need to compute the full list (which is the computationally expensive step, since
the list size bound depends exponentially on s) and then prune it to the unique solution. Rather,
we can uniquely identify the first (s − 1) coefficients of the polynomial f(X + α) in the linear
system (24), after applying the shift X 7→ X + α, as f(α), f ′(α), . . . , f (s−2)(α). Then, as argued in
the proof of Lemma 16, the remaining coefficients are determined as linear combinations of these
s− 1 coefficients. So the whole algorithm can be implemented in cubic time.

Note that we do not know how to apply the approach of Theorem 19 to the case of folded
Reed-Solomon codes. The key difference is that in the derivative code case, it is known that the
decoder will need the first s − 1 message coefficients. In the folded Reed-Solomon case, the re-
quired coefficients could depend on the interpolated polynomial Q, which would mean that the
correct values could not be sent ahead of time.

Remark 21. The decoder could use the columns of the received word y as a guess for the side
information f(ai), f

′(ai), . . . , f
(s−2)(ai) for i = 1, 2, . . . , N . Since f agrees with y on more than

t > RN positions, as long as As(ai) = 0 for less than t of the evaluation points ai, we will recover
every solution f this way. This would lead to a list size bound of at mostN−t < N . Unfortunately,
however, there seems to be no way to ensure that As does not vanish at most (or even all) of the
points ai used for encoding. But perhaps some additional ideas can be used to make the list size
polynomial in both q, s, or at least exp

(
O(s)

)
qc for some absolute constant c.

4 Improving list size via subspace-evasive subsets

Based on Theorems 7 and 17, in this section we pursue one possible approach to improve the
provable worst-case list size bound for list decoding up to a fraction 1−R− ε of errors. Instead of
allowing all polynomials f0 +f1X+ · · ·+fk−1X

k−1 of degree less than k as messages, the idea is to
restrict the coefficient vector (f0, f1, . . . , fk−1) to belong to some special subset V ⊆ Fkq , satisfying
the following two conflicting demands:

18

Largeness: The set V must be large, say |V| > q(1−ε)k, so that the rate is reduced by at most a
(1− ε) factor.

Low intersection with subspaces: For every subspace S ⊂ Fkq of dimension s, |S ∩ V| 6 L.
(Let us call this property of V as (s, L)-subspace-evasive for easy reference. The field Fq and
the ambient dimension k will be fixed in our discussion.)

Using such a set V will ensure that after pruning an affine subspace output by the algorithms of
Theorem 7 and 17, the number of codewords will be at most L. (Note that an affine subspace of
dimension s − 1 is contained in a subspace of dimension s.) Thus the list size will go down from
qs−1 to L.

Subspace-evasive subsets were used in [23] to construct bipartite Ramsey graphs, and in fact
we borrowed the term evasive from that work. In their work, the underlying field was F2 and the
subsets had to be evasive for dimension s ≈ k/2. Our interest is in a different (and hopefully
easier?) regime — we can work over large fields, and are interested in evasiveness with respect to
s-dimensional subspaces for constant s.

A random large subset of Fkq meets the low subspace intersection requirement very well, as
shown below. The argument is straightforward; a similar bound appears in [3] in the geometric
context of point-subspace incidences.

Lemma 22. Let k be a large enough positive integer, and let s < k/4 be a positive integer. For some
α with 0 < α < k/4, let W be a random subset of Fkq chosen by including each x ∈ Fkq in W with
probability q−s−α. Then with probability at least 1 − q−k, W satisfies both the following conditions: (i)
|W| > qk−s−α/2, and (ii)W is (s, 2sk/α)-subspace-evasive.

Proof. The first part follows by a standard Chernoff bound calculation: the expected value of
|W| equals qk−s−α, and thus the probability that it is less than half the expected value is at most
exp(−qk−s−α/8) 6 q−k.

For the second part, fix a subspace S ⊆ Fkq of dimension s, and a subset T ⊆ S of size t =

d2ks/αe. The probability that W ⊇ T equals q−(s+α)t. By a union bound over the at most qks

choices for the s-dimensional subspace S, and the at most qst choices of t-element subsets T of S,
we get that the probability thatW is not (s, t−1)-subspace-evasive is at most qks+st·q−(s+α)t 6 q−ks

since t > 2ks/α.

Picking α ≈ εk, the above guarantees the existence of subsets W of Fkq of size q(1−ε)k−s−1

which are
(
s,O(s/ε)

)
-subspace-evasive. Restricting the coefficient vector (f0, f1, . . . , fk−1) of the

message polynomial to belong to such a subset will guarantee a list-size upper bound of O(s/ε)
in Theorem 7 or Theorem 17. This list-size bound is independent of q, and for the choice s ≈ 1/ε
which enables list decoding a fraction 1 − R − ε of errors, it is O(1/ε2). This is quite close to the
bound of O(1/ε) achieved by random codes [10].

Unfortunately, an explicit construction of subspace-evasive subsets approaching the trade-off
guaranteed by the probabilistic construction of Lemma 22 is not known. This appears to be a
challenging and extremely interesting question. One natural choice for such a subset would be
some variety V ⊆ Fkq defined by a collection of polynomial equations, i.e., V = {a ∈ Fkq | g1(a) =
g2(a) = · · · = gl(a) = 0} for some polynomials g1, g2, . . . , gl ∈ Fq[Z1, Z2, . . . , Zk]. Indeed for s = 1

19

and s = k−1, varieties in Fkq (the modular moment surface and modular moment curve) with low
intersection with s-dimensional affine subspaces are known [3].

4.1 Pseudorandom construction of subspace-evasive subsets

The construction of Lemma 22 takes exponential time and produces a random unstructured set
that takes exponential space to store. In this section, we show that a subset with similar guaran-
tees can be constructed in probabilistic polynomial time, producing a polynomial size representa-
tion of the constructed subspace-evasive set. The idea is to note that the probabilistic argument to
argue about (s, t)-subspace-evasiveness only needed t-wise independence and not complete inde-
pendence of different elements of Fkq landing in the random subset W . We now describe such a
pseudorandom construction.

For some parameter ζ ∈ (0, 1/2), let k′ = (1− ζ)k. Let K be the extension field Fqk′ , and fix an
arbitrary basis B of K over Fq.

We will define a subspace-evasive embedding of Fk′q into Fkq as follows. Because we have fixed
the basis B, we can consider any v ∈ Fk′q as an element of K = Fqk′ . Let P ∈ K[X] be a polynomial
of degree at most t, and let Q(v) be the first ζk coordinates of P (v) with respect to the basis B.

Then we will map v ∈ Fk′q to
(
v,Q(v)

)
∈ Fkq . LetWζ,k(P) be the image of Fk′q under this map.

As the map is injective, |Wζ,k(P)| = qk
′

= q(1−ζ)k.

Lemma 23. Let k > 1 be an integer. Let ζ ∈ (0, 1/2), and let s be an integer satisfying 1 6 s 6 ζk/2. Let
t > d4s/ζe be a positive integer and P ∈ K[X] be a random polynomial of degree at most t.

DefineW = Wζ,k(P). Then with probability at least 1 − q−ks over the choice of P ,W is a (s, 4s/ζ)-
subspace-evasive subset of Fkq of size q(1−ζ)k.

Proof. We already argued that |W| = q(1−ζ)k. For each x ∈ Fkq , the probability that x is inW is the
probability that the last ζk coordinates are Q evaluated at the first (1− ζ)k coordinates. As P was
random, this is q−ζk.

Since the values of P at any t distinct points in K are independent, the events x ∈ W are t-wise
independent as long as no two share the same initial k′ coordinates.

Now fix a subspace S ⊆ Fkq of dimension s, and a subset T ⊆ S of size t. Let us compute
the probability that T ⊆ W . As W contains exactly one element for each setting of the initial k′

coordinates, we may assume no two elements in T share the same initial k′ coordinates. The t
events β ∈ W for various β ∈ T are independent due to the above t-wise independence property.
Thus the probability that T ⊆ W equals q−ζkt. The remaining calculation is as in Lemma 22 and
involves a union bound over the at most qks choices for the s-dimensional subspace S, and the at
most qst choices of t-element subsets T of S.

Note that the setW has a compact representation, and given P of degree t 6 O(s/ζ), the bijec-
tion from Fqk′ to W can be computed using poly(k, s, 1/ζ) Fq-operations, and membership in W
can be checked in the same time. This implies that we can efficiently encode any v ∈ Fk′q by com-
puting its representative in W and then applying either the folded Reed-Solomon or derivative
encoding. Combining this with Theorems 7 and 17, we can conclude the following final result.

20

Theorem 24. For any ζ, 0 < ζ < 1/2, there is a Monte Carlo construction of a subcode C of FRS
(m)
q [n, k]

or Der(m)
q [n, k] of rate(1 − ζ)R where R = k/n, consisting of encodings of polynomials whose coefficients

belong to a subspace-evasive subsetW ⊂ Fkq , such that

(i) there is a efficient encoder computing a bijection F(1−ζ)k
q → C using poly(n,m, 1/ζ) Fq-operations,

and

(ii) with high probability C can be list decoded from error fraction s
s+1

(
1− mR

m−s+1

)
for any 1 6 s 6 m

in qO(s) time with an output list size of at most O(s/ζ).

In particular, picking ζ = Θ(ε), s = Θ(1/ε) and m = Θ(1/ε2), for any desired R′ ∈ (0, 1), the
construction yields codes of rate R′ which can be list decoded from a fraction 1−R′ − ε of errors in qO(1/ε)

time, with at most O(1/ε2) codewords output in the list.

5 Subsequent work

We conclude the paper by mentioning two follow-up works improving upon certain results of this
paper. Besides these, the authors and Narayanan also used the linear-algebraic approach to list
decode subspace codes based on linearized polynomials [11].

Explicit constructions of subspace-evasive sets. Following this work, Dvir and Lovett [5] gave
an explicit construction of a set S ⊆ Fnq of size at least q(1−ε)n which is

(
s, (s/ε)s

)
-subspace-evasive.

Their construction uses so-called everywhere-finite varieties, and has the nice property that the in-
tersection of S with any s-dimensional subspace can be computed in time which is polynomial in
the size of the intersection. This avoids the qs time search in the pruning step of the decoding.

However, it is not known how to improve the (s/ε)s bound to match the existential O(s/ε)
bound of Lemma 23.

Folded algebraic-geometric codes. Guruswami and Xing [16] extended the linear-algebraic ap-
proach to list decode folded versions of certain algebraic-geometric codes. They made use of
certain automorphisms of the function field in combination with the power series expansion of
functions around a special place for the decoding. An extension of subspace-evasive sets called
hierarchical subspace-evasive sets was used to prune the subspace of candidate messages. Instanti-
ated with one of the optimal function field towers due to Garcia and Stichtenoth, this enabled list
decoding up to a fraction (1 − R − ε) of errors with a list size of O(1/ε) over an alphabet of size
(1/ε)O(1/ε2), almost matching the random coding bound in all aspects simultaneously.

One of the tricks used in [16] to bring down the list size to O(1/ε), which is based on taking
the intersection of two independent pseudorandom subspace-evasive sets, can also be applied to
our construction. This would improve the list size bound in Theorem 24 to O(1/ε) (instead of
O(1/ε2)), though the drawback of the large qO(1/ε) decoding complexity would remain.

21

Acknowledgments

The first author is grateful to Salil Vadhan for telling him about the degree 1 interpolation method
for list decoding folded RS codes. We thank Noga Alon, Swastik Kopparty, Po-Shen Loh, and
David Zuckerman for their input on the literature on subspace-evasive sets. We thank Ran Raz
for discussions about explicit constructions of subspace-evasive varieties. Thanks to Swastik Kop-
party for pointing us to [23], and to Po-Shen Loh for pointers to work on related concepts in
geometric settings [4]. Thanks to Atri Rudra and the anonymous referees for their careful reading
and several valuable comments on the write-up. In particular, a reviewer comment about the ear-
lier construction of pseudorandom subspace-evasive sets got us thinking towards obtaining the
current (simpler) construction in Section 4.1.

References

[1] P. Beelen and K. Brander. Decoding Folded Reed-Solomon codes using Hensel-lifting. In
Gröbner Bases, Coding, and Cryptography, pages 389–394. Springer-Verlag, 2009. 12

[2] K. Brander. Interpolation and list decoding of algebraic codes. PhD thesis, Technical University of
Denmark, 2010. 8, 12

[3] P. Braß and C. Knauer. On counting point-hyperplane incidences. Comput. Geom., 25(1-2):13–
20, 2003. 19, 20

[4] P. Brass, W. Moser, and J. Pach. Research Problems in Discrete Geometry. Springer, New York,
2005. 22

[5] Z. Dvir and S. Lovett. Subspace evasive sets. In Proceedings of the 44th ACM Symposium on
Theory of Computing, pages 351–358, 2012. 21

[6] P. Gemmell and M. Sudan. Highly resilient correctors for multivariate polynomials. Informa-
tion Processing Letters, 43(4):169–174, 1992. 7, 13

[7] V. Guruswami. List decoding with side information. In Proceedings of the 18th IEEE Conference
on Computational Complexity (CCC), pages 300–309, 2003. 11, 18

[8] V. Guruswami. List decoding Folded Reed-Solomon codes,
2010. Lecture notes, available at http://www.cs.cmu.edu/˜
venkatg/teaching/codingtheory/notes/notes11.pdf. 7

[9] V. Guruswami. Linear-algebraic list decoding of folded Reed-Solomon codes. In Proceedings
of the 26th IEEE Conference on Computational Complexity, pages 77–85, June 2011. 1

[10] V. Guruswami, J. Håstad, M. Sudan, and D. Zuckerman. Combinatorial bounds for list de-
coding. IEEE Transactions on Information Theory, 48(5):1021–1035, 2002. 19

[11] V. Guruswami, S. Narayanan, and C. Wang. List decoding subspace codes from insertions
and deletions. In Proceedings of Innovations in Theoretical Computer Science (ITCS 2012), pages
183–189, January 2012. 21

22

[12] V. Guruswami and A. Patthak. Correlated Algebraic-Geometric codes: Improved list decod-
ing over bounded alphabets. Mathematics of Computation, 77(261):447–473, 2008. 7

[13] V. Guruswami and A. Rudra. Explicit codes achieving list decoding capacity: Error-correction
with optimal redundancy. IEEE Transactions on Information Theory, 54(1):135–150, 2008. 2, 3,
4, 6, 12

[14] V. Guruswami and M. Sudan. Improved decoding of Reed-Solomon and Algebraic-geometric
codes. IEEE Transactions on Information Theory, 45(6):1757–1767, 1999. 2, 3, 9, 12

[15] V. Guruswami and C. Wang. Optimal rate list decoding via derivative codes. In Proceedings
of APPROX/RANDOM 2011, pages 593–604, August 2011. 1

[16] V. Guruswami and C. Xing. Folded codes from function field towers and improved optimal
rate list decoding. In Proceedings of the 44th ACM Symposium on Theory of Computing, pages
339–350, 2012. 21

[17] M. D. Huang and A. K. Narayanan. Folded algebraic geometric codes from Galois extensions.
ArXiv CoRR, http://arxiv.org/abs/0901.1162, 2009. 12

[18] R. Koetter and A. Vardy. Algebraic soft-decision decoding of Reed-Solomon codes. IEEE
Transactions on Information Theory, 49(11):2809–2825, August 2003. 3, 12

[19] S. Kopparty. List-decoding multiplicity codes. Electronic Colloquium on Computational Com-
plexity, TR12-044, 2012. 13

[20] S. Kopparty, S. Saraf, and S. Yekhanin. High-rate codes with sublinear-time decoding. Elec-
tronic Colloquium on Computational Complexity, TR10-148, 2010. 4, 13

[21] F. Parvaresh and A. Vardy. Correcting errors beyond the Guruswami-Sudan radius in poly-
nomial time. In Proceedings of the 46th Annual IEEE Symposium on Foundations of Computer
Science, pages 285–294, 2005. 2, 3, 4

[22] W. W. Peterson. Encoding and error-correction procedures for Bose-Chaudhuri codes. IEEE
Transactions on Information Theory, 6:459–470, 1960. 2

[23] P. Pudlák and V. Rödl. Pseudorandom sets and explicit constructions of Ramsey graphs.
In Complexity of Computations and Proofs. Quad. Mat., 13, Dept. Math., Seconda Univ. Napoli,
Caserta, pages 327–346, 2004. 5, 19, 22

[24] M. Sudan. Decoding of Reed-Solomon codes beyond the error-correction bound. Journal of
Complexity, 13(1):180–193, 1997. 2

[25] M. Sudan. List decoding: Algorithms and applications. SIGACT News, 31:16–27, 2000. 2

[26] L. Trevisan. Some applications of coding theory in computational complexity. Quaderni di
Matematica, 13:347–424, 2004. 2

[27] S. Vadhan. Pseudorandomness. Foundations and Trends in Theoretical Com-
puter Science (FnT-TCS). NOW publishers, 2010. To appear. Draft available at
http://people.seas.harvard.edu/˜ salil/pseudorandomness/. 3, 4, 7

23

[28] S. P. Vadhan. The unified theory of pseudorandomness. In Proceedings of the International
Congress of Mathematicians, 2010. 2

[29] L. R. Welch and E. R. Berlekamp. Error correction of algebraic block codes. US Patent Number
4,633,470, December 1986. 7, 13

24

ECCC ISSN 1433-8092

http://eccc.hpi-web.de

