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Abstract

A theorem of Håstad shows that for every constraint satisfaction problem (CSP) over a fixed
size domain, instances where each variable appears in at most O(1) constraints admit a non-
trivial approximation algorithm, in the sense that one can beat (by an additive constant) the
approximation ratio achieved by the naive algorithm that simply picks a random assignment.
We consider the analogous question for ordering CSPs, where the goal is to find a linear order-
ing of the variables to maximize the number of satisfied constraints, each of which stipulates
some restriction on the local order of the involved variables. It was shown recently that with-
out the bounded occurrence restriction, for every ordering CSP it is Unique Games-hard to beat
the naive random ordering algorithm.

In this work, we prove that the CSP with monotone ordering constraints xi1 < xi2 < · · · <
xik of arbitrary arity k can be approximated beyond the random ordering threshold 1/k! on
bounded occurrence instances. We prove a similar result for all ordering CSPs, with arbitrary
payoff functions, whose constraints have arity at most 3. Our method is based on working with
a carefully defined Boolean CSP that serves as a proxy for the ordering CSP. One of the main
technical ingredients is to establish that certain Fourier coefficients of this proxy constraint have
substantial mass. These are then used to guarantee a good ordering via an algorithm that finds
a good Boolean assignment to the variables of a low-degree bounded occurrence multilinear
polynomial. Our algorithm for the latter task is similar to Håstad’s earlier method but is based
on a greedy choice that achieves a better performance guarantee.

1 Introduction

Constraint satisfaction. Constraint satisfaction problems (CSPs) are an important class of opti-
mization problems. A CSP is specified by a finite set Π of relations, each of arity k, over a domain
{0, 1, . . . , D − 1}, where k,D are some fixed constants. An instance of such a CSP consists of a set
of variables V and a collection of constraints (possibly with weights) each of which is a relation
from Π applied to some k-tuple of variables from V . The goal is to find an assignment σ : V → D
that maximizes the total weight of satisfied constraints. For example in the Max Cut problem,
k = D = 2 and Π consists of the single relation CUT(a, b) = 1(a 6= b). More generally, one can also
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allow real-valued payoff functions f : {0, 1, . . . , D − 1}k → R+ in Π (instead of just {0, 1}-valued
functions), with the goal being to find an assignment maximizing the total payoff.

Most Max CSP problems are NP-hard, and there is by now a rich body of work on approxi-
mation algorithms and hardness of approximation results for CSPs. Algorithmically, semidefinite
programming (SDP) has been the principal tool to obtain good approximation ratios. In fact, SDP
is universal for CSPs in the sense that under the Unique Games conjecture a certain canonical SDP
achieves the optimal approximation ratio [Rag08]. However, many CSPs, including Max 3SAT,
Max 3LIN, Max NAE-4-SAT, etc., are approximation resistant, meaning that for any ε > 0, even
when given a (1− ε)-satisfiable instance, it is hard to find an assignment that satisfies more than a
fraction r + ε of the constraints, where r, the random assignment threshold, is the expected fraction
of constraints satisfied by a random assignment [Hås01, AM09]. In other words, it is hard to im-
prove upon the naive algorithm that simply picks a random assignment without even looking at
the structure of the instance.

Let us call a CSP that is not approximation resistant as non-trivially approximable. Inspite of a
rich body of powerful algorithmic and hardness results, we are quite far from a complete clas-
sification of all CSPs into approximation resistant or non-trivially approximable. Several partial
results are known; for example, the classification is known for Boolean predicates of arity 3. It is
known that every binary CSP (i.e., whose constraints have arity 2), regardless of domains size (as
long as it is fixed), is non-trivially approximable via a SDP-based algorithm [GW95, EG04, Hås08].
In a different vein, Håstad [Hås00] showed that for every Boolean CSP, when restricted to sparse
instances where each variable participates in a bounded numberB of constraints, one can beat the
random assignment threshold (by an amount that is at least Ω(1/B)). Trevisan showed that for
Max 3SAT beating the random assignment threshold by more than O(1/

√
B) is NP-hard, so some

degradation of the performance ratio with the bound B is necessary [Tre01].

Ordering CSPs. With this context, we now turn to ordering CSPs, which are the focus of this
paper. The simplest ordering CSP is the well-known Maximum Acyclic Subgraph (MAS) problem,
where we are given a directed graph and the goal is to order the vertices V = {x1, . . . , xn} of the
graph so that a maximum number of edges go forward in the ordering. This can be viewed as
a “CSP” with variables V and constraints xi < xj for each directed edge (xi, xj) in the graph;
the difference from usual CSPs is that the variables are to be ordered, i.e., assigned values from
{1, 2, . . . , n}, instead of being assigned values from a fixed domain (of size independent of n).

An ordering CSP of arity k is specified of a constraint Π : Sk → {0, 1} where Sk is the set
of permutations of {1, 2, . . . , k}. An instance of such a CSP consists of a set of variables V and a
collection of constraints which are (ordered) k-tuples. The constraint tuple e = (xi1 , xi2 , · · · , xik)
is satisfied by an ordering of V if the local ordering of the variables xi1 , xi2 , · · · , xik , viewed as
an element of Sk, belongs to the subset Π. The goal is to find an ordering that maximizes the
number of satisfied constraint tuples. An example of an arity 3 ordering CSP is the Betweenness
problem with constraints of the form xi2 occurs between xi1 and xi3 (this corresponds to the subset
Π = {123, 321} of S3). More generally, one can allow more than one kind of ordering constraint, or
even a payoff function ωe : Sk → R+ for each constraint tuple e. The goal in this case is to find an
ordering O that maximizes

∑
e ωe(O|e) where O|e is the relative ordering of vertices in e induced

by O.

For the problem to decide whether all the constraints of an ordering CSP can be satisfied or not
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(i.e. the decision version), [GM06] showed a dichotomy theorem for 3-ary ordering CSPs. [BK10]
proved a more generalised dichotomy theorem for a broader class of problems (the temporal CSPs)
of all arities.

Now we turn to the optimization problem – to maximize the number of satisfied ordering
constraints. Despite much algorithmic progress on CSPs, even for MAS there was no efficient
algorithm known to beat the factor 1/2 achieved by picking a random ordering. This was ex-
plained by the recent work [GMR08] which showed that such an algorithm does not exist under
the Unique Games conjecture, or in other words, MAS is approximation resistant. This hardness
result was generalized to all ordering CSPs of arity 3 [CGM09], and later to higher arities, showing
that every ordering CSP is approximation resistant (under the UGC) [GHM+11]!1

In light of this pervasive hardness of approximating ordering CSPs, in this work we ask the
natural question raised by Håstad’s algorithm for bounded occurrence CSPs [Hås00], namely
whether bounded occurrence instances of ordering CSPs admit a non-trivial approximation. For
the case of MAS, Berger and Shor [BS97] gave an efficient algorithm that given any directed graph
of total degree D, finds an ordering in which at least a fraction (1/2 + Ω(1/

√
D)) of the edges go

forward. This shows that bounded occurrence MAS is non-trivially approximable. The algorithm
is quite simple, though its analysis is subtle. The approach is to order the vertices randomly, and
process vertices in this order. When a vertex is processed, if it has more incoming edges than
outgoing edges (in the graph at that stage), all outgoing edges are removed, and otherwise all its
incoming edges are removed. The graph remaining after all the vertices are processed is returned
as the acyclic subgraph.

Evidently, this algorithm is tailored to the MAS problem, and heavily exploits its underlying
graph-theoretic structure. It therefore does not seem amenable for extensions to give non-trivial
approximations to other ordering CSPs.

Our results. In this work, we prove that important special cases of ordering CSPs do admit non-
trivial approximation on bounded occurrence instances. In particular, we prove this for the fol-
lowing classes of ordering CSPs:

1. The monotone ordering k-CSP for arbitrary k with constraints of the form xi1 < xi2 < · · · <
xik (i.e., the CSP defined by the constraint subset {123 . . . k} ⊆ Sk consisting of the identity
permutation). This can be viewed as the arity k generalization of the MAS problem. (Note
that we allow multiple constraint tuples on the same set of k variables, just as one would
allow 2-cycles in a MAS instance given by a directed graph.)

2. All ordering CSPs of arity 3, even allowing for arbitrary payoff functions as constraints.

Our proofs show that these ordering CSPs admit an ordering into “4 slots” that beats the random
ordering threshold. We remark that CSP instances which are satisfiable for orderings into n slots
but do not admit good “c slot” solutions for any fixed constant c are the basis of the Unique Games
hardness results for ordering CSPs [GMR08, GHM+11]. Our results show that for arity 3 CSPs and
monotone ordering k-ary CSPs such gap instances cannot be bounded occurrence.

1This does not rule out non-trivial approximations for satisfiable instances. Of course for satisfiable instances of MAS,
which correspond to DAGs, topological sorting satisfies all the constraints. For Betweenness, a factor 1/2 approxima-
tion for satisfiable instances is known [CS98, Mak09].
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Our methods. As mentioned above, the combinatorial approach of the Berger-Shor algorithm
for MAS on degree-bounded graphs seems to have no obvious analog for more complicated or-
dering constraints. We prove our results by applying (after some adaptations) Håstad’s algo-
rithm [Hås00] to certain “proxy” Boolean CSPs that correspond to solutions to the ordering CSP
that map the variables into a domain of size 4. The idea is to only consider orderings where the
range is a small constant (like [4]) instead of [n]. This idea was also used in recent hardness results
on ordering [GMR08, CGM09, GHM+11]. But the fact that one can afford to restrict the range even
for algorithm design (in the case of some CSPs) is a surprise.

For the case of monotone ordering constraints (of arbitrary arity k), we prove that for this
proxy payoff function on the Boolean hypercube, a specific portion of the Fourier spectrum car-
ries non-negligible mass. This is the technical core of our argument. Once we establish this, the
task becomes finding a Boolean assignment to the variables of a bounded-occurrence low-degree
multilinear polynomial (namely the sum of the Fourier representations of all the constraints) that
evaluates to a real number that is non-negligibly larger than the constant term (which is the ran-
dom assignment threshold). We present a greedy algorithm for this latter task which is similar to
Håstad’s algorithm [Hås00], but yields somewhat better quantitative bounds.

Our result on general ordering 3-CSPs faces an additional complication since it can happen
that the concerned part of Fourier spectrum is in fact zero for certain kinds of constraints. We
identify all the cases when this troublesome phenomenon occurs, proving that in such cases the
pay-off function can be expressed as a linear combination of arity 2 pay-off functions (accordingly,
we call these cases as “binary representable” pay-off functions). If the binary representable por-
tion of the pay-offs is bounded away from 1, then the remaining pay-offs (which we call “truly
3-ary”) contribute a substantial amount to the Fourier spectrum. Fortunately, the binary repre-
sentable portion of pay-offs can be handled by our argument for monotone ordering constraints
(specialized to arity two). So in the case when they comprise most of the constraints, we prove that
their contribution to the Fourier spectrum is significant and cannot be canceled by the contribution
from the truly 3-ary pay-offs.

1.1 Outline for the rest of the paper

In Section 2, we formally define the ordering CSPs with bounded occurrence, and the proxy prob-
lems (the t-ordering version). We also introduce the notation and analytic tools we will need in
the remainder of the paper. In Section 3, we present an algorithm which is a variant of Håstad’s
algorithm in [Hås00], and is used to solve the proxy problems. In Section 4 and Section 5, we
prove the two main theorems (Theorems 1 and 2) of the paper.

2 Preliminaries

2.1 Ordering CSPs, bounded occurrence ordering CSPs

An ordering over vertex set V is an injective mapping O : V → Z+. An instance of k-ary monotone
ordering problem G = (V,E, ω) consists of vertex set V , set E of k-tuples of distinct vertices, and
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weight function ω : E → R+. The weight satisfied by ordering O is

ValO(G)
def
=

∑
e=(vi1 ,vi2 ,··· ,vik )∈E

ω(e) · 1O(vi1 )<O(vi2 )<···<O(vik ).

We also denote the value of the optimal solution by

Val(G)
def
= max

injective O:V→Z
{ValO(G)}.

We can extend the definition of the monotone ordering problem to ordering CSPs I = (V,E,Ω)
with general pay-off functions, where V and E are similarly defined. For each k-tuple e =
(v1, v2, · · · , vk) ∈ E, a general pay-off function ωe ∈ Ω, mapping from all k! possible orderings
among O(v1),O(v2), · · · ,O(vk) to R>0, is introduced. That is, for an ordering O, its pay-off ωe(O)
for constraint tuple e only depends on O|e, the relative ordering on vertices of e induced by O.

The overall pay-off achieved by an ordering O is defined as ValO(I)
def
=
∑

e∈E ωe(O). The optimal
pay-off for the instance is then given by

Val(I)
def
= max

injective O:V→Z
{ValO(I)} .

An ordering CSP problem I = (V,E,Ω) (or a monotone ordering problem G = (V,E, ω)) is
called B-occurrence bounded if each vertex v ∈ V occurs in at most B tuples in E.

2.2 The t-ordering version of ordering CSPs

We start this section with several definitions. Two orderings O and O′ are essentially the same
if ∀u, v ∈ V,O(u) < O(v) ⇔ O′(u) < O′(v), otherwise we call them essentially different. For a
positive integer m, denote [m] = {1, 2, . . . ,m}. For integer t > 0, a t-ordering on V is a mapping
Ot : V → [t], not necessarily injective. An ordering O is consistent with a t-ordering Ot, denoted
by O ∼ Ot, when ∀u, v ∈ V,Ot(u) < Ot(v)⇒ O(u) < O(v).

The monotone ordering problemG can be naturally extended to its t-ordering version, which is
a regular CSP problem over domain [t] defined as follows. For each constraint e = (v1, v2, · · · , vk) ∈
E, we introduce a pay-off function

πe(Ot)
def
= E
O∼Ot

[1O(v1)<O(v2)<···<O(vk)],

where the expectation is uniformly taken over all the essentially different orderings O that are
consistent with Ot. (In this paper, when O becomes a random variable for total ordering with-
out further explanation, it is always uniformly taken over all essentially different orderings (that
satisfy certain criteria).) Note that although πe receives an n-dimensional vector as parameter in
the equation above, its value depends only on the k values to v1, v2, · · · , vk. Then the k-ary CSP
problem (t-ordering version of G) is to find the t-ordering Ot to maximize the objective function

ValOt
t (G)

def
=
∑
e∈E

ω(e) · πe(Ot).
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We denote the value of the optimal solution by

Valt(G)
def
= max
Ot∈[t]n

{ValOt
t (G)}.

We can also extend the ordering CSP problem I with general pay-off functions to its t-ordering
version. For each constraint e ∈ E, the pay-off function in the t-ordering version is defined

as πe(Ot)
def
= EO∼Ot [ωe(O)]. The pay-off achieved by a particular t-ordering Ot is given by

ValOt
t (I)

def
=
∑

e∈E πe(Ot), and the value of the optimal t-ordering solution is Valt(I)
def
= maxOt∈[t]n{ValOt

t (I)}.
Our approach to getting a good solution for (occurrence bounded) ordering CSPs is based on

the following fact.

Fact 1. For all positive integers t, Val(I) > Valt(I).

Note that for t = 1, Val1(I) equals the expected pay-off of a random ordering. Since the
monotone ordering problem is a special case of ordering CSP with general pay-off functions, Fact
1 is also true for the monotone ordering problem. By fact 1, it is enough to find a good solution
for t-ordering version of I (or G) to show that Val(I) (or Val(G)) is large.

2.3 Fourier transform of Boolean functions

For every f : {−1, 1}d → R, we write the Fourier expansion of f as

f(x) =
∑
S⊆[d]

f̂(S)χS(x),

where f̂(S) is the Fourier coefficient of f on S, and χS(x) =
∏
i∈S xi.

The Fourier coefficients can be computed by the inverse Fourier transform, i.e., for every S ⊆ [d],

f̂(S) = E
x∈{−1,1}d

[f(x)χS(x)].

3 Finding good assignments for bounded occurrence polynomials

Let f be a polynomial in n variables x1, x2, . . . , xn containing only multilinear terms of degree at
most k with coefficients f̂(S). In other words, let f(x) =

∑
S⊆[n],|S|6k f̂(S)χS(x). We say that f is

D-occurrence bounded if for each coordinate i ∈ [n], we have |{S 3 i : f̂(S) 6= 0}| 6 D. We also
define

|f | def
=

∑
∅6=S⊆[n]

|f̂(S)|.

Then, the following proposition shows us how to find a good assignment for f .

Proposition 1. Given aD-occurrence bounded polynomial f of degree at most k, it is possible, in poly(n, 2k)
time, to find x ∈ {−1, 1}n such that

f(x) > f̂(∅) + |f |/(2kD).

6



Proof. We use the following algorithm to construct x.

Algorithm. As long as |f | > 0, the algorithm finds a non-empty set T that maximizes |f̂(T )|, and
let γ = f̂(T ). We want to make sure we get |γ| for credit while not losing too much other terms in
|f |.

Note that for all ∅ 6= U ( T , we have Ez∈{−1,1}T :χT (z)=sgn(f̂(T ))[χU (z)] = 0 , and therefore

E
z∈{−1,1}T :χT (z)=sgn(f̂(T ))

[ ∑
U⊆T

f̂(U)χU (z)
]

= f̂(∅) + |f̂(T )| = f̂(∅) + |γ|.

We can enumerate all the z ∈ {−1, 1}T such that χT (z|T ) = sgn(f̂(T )) to find a particular z∗,
with

∑
U⊆T f̂(U)χU (z∗) > f̂(∅) + |γ| . We fix x|T = z∗. For the rest of the coordinates, let g :

{−1, 1}[n]\T → R be defined as,

g(y)
def
= f(y, z∗),∀y ∈ {−1, 1}[n]\T .

We note that g is also a D-occurrence bounded polynomial f of degree at most k, and by fixing
all the variables in T , we have

ĝ(∅) =
∑
U⊆T

f̂(U)χU (z∗) > f̂(∅) + |γ|.

On the other hand, observing that |T | 6 k and |γ| is an upper bound of all |f̂(S)| with S 6= ∅, we
have

|g| =
∑

∅6=S⊆[n]\T

|ĝ(S)| =
∑

∅6=S⊆[n]\T

∣∣∣ ∑
U⊆T

f̂(S ∪ U)χU (z∗)
∣∣∣

>
∑

∅6=S⊆[n]\T

|f̂(S)| −
∑

∅6=S⊆[n]\T

∑
∅6=U⊆T

|f̂(S ∪ U)|

> |f | − 2
∑

S:S∩T 6=∅

|f̂(S)|

> |f | − 2
∑
i∈T

∑
S3i
|f̂(S)| > |f | − 2|T |D|γ| > |f | − 2kD|γ|.

Then we can use the two inequalities above to establish ĝ(∅) + |g|/(2kD) > f̂(∅) + |f |/(2kD) .

By recursively applying this algorithm on g, we can eventually fix all the coordinates in x, and
get a constant function whose value is at least f̂(∅) + |f |/(2kD).

Remark 1. The algorithm is similar to Håstad’s algorithm in [Hås00] but we make a greedy choice
of the term χT (x) to satisfy (the one with the largest coefficient |f̂(T )|) at each stage. Our analysis
of the loss in |g| is more direct and leads to a better quantitative bound, avoiding the loss of a
“scale” factor (which divides all non-zero coefficients of the polynomial) in the advantage over
f̂(∅).

Remark 2. In the performance guarantee of the algorithm, f̂(∅) corresponds to the value of ran-
dom assignments in the later sections, while |f |/(2kD) corresponds the advantage we get over
random assignments. Because of the 1/D factor, our algorithm gives weaker gaurantee than
Berger-Shor gives, but our algorithm extends to permutation CSPs of larger arities.
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4 Bounded occurrence monotone ordering problem

Our main result in this section is the following.

Theorem 1. For any constant k > 1, given aB-occurrence bounded k-ary monotone ordering problemG =
(V,E, ω), there is a poly-time randomized algorithm to find a solution satisfying at least Val(G)(1/k! +
Ωk(1/B)) weight (in expectation).

To prove the above theorem, we will show the following lemma.

Lemma 1. For any constant k > 1, given a B-occurrence bounded k-ary monotone ordering problem
G = (V,E, ω) with total weight W . Then it is possible, in polynomial time, to find a 4-ordering solution
O4 with Val(G)(1/k! + Ωk(1/B)) weight.

Note that given Lemma 1, the randomized algorithm that samples orderingO ∼ O4 fulfills the
task promised in the theorem.

Lemma 1 also implies the following.

Corollary 1. For any B-occurrence bounded k-ary monotone ordering problem G, we have Val4(G) >
Val(G)(1/k! + Ωk(1/B)).

Proof of Lemma 1. We begin the proof with the analysis of the pay-off function πe : [4]{v1,v2,··· ,vk} →
R for some e = (v1, v2, · · · , vk) ∈ E. We can also view πe as a real-valued function defined on
Boolean cube {−1, 1}2k, so that

πe(x1,x2, · · · , x2k)

= πe

(
(1− x1) +

(1− x2)

2
+ 1, · · · , (1− x2k−1) +

(1− x2k)

2
+ 1
)
.

If we let Γ(e) be the set of all k! permutations of e, then∑
e′∈Γ(e)

E
O4∈[4]k

[πe′(O4)]

=
∑

e′=(vi1 ,vi2 ,···vik )∈Γ(e)

E
O4∈[4]k

[
E
O∼O4

[1O(vi1 )<O(vi2 )<···<O(vik
)]
]

= E
O4∈[4]k

[
E
O∼O4

[ ∑
e′=(vi1 ,vi2 ,···vik )∈Γ(e)

1O(vi1 )<O(vi2 )<···<O(vik )

]]
= 1.

Since EO4∈[4]k [πe′(O4)] is the same for all e′ ∈ Γ(e), we know that EO4∈[4]k [πe(O4)] = 1/k! . Hence
we have the following fact.

Fact 2. π̂e(∅) = E
x∈{−1,1}2k

[πe(x)] = E
O4∈[4]k

[πe(O4)] =
1

k!
.

By Fact 2, if we apply the algorithm in Proposition 1, to the objective function f(x) =
∑

e∈E ω(e)πe(x)
of the 4-ordering version, we are guaranteed to have a solution that is no worse than the random
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threshold (1/k!). Then, we only need to identify some non-negligible weights on the rest of the
Fourier spectrum of f .

Let Sodd = {2i − 1|i ∈ [k]}, and S+
odd = Sodd ∪ {2k}. We make the following claim which we

will prove in Appendix A.

Claim 1. π̂e(S+
odd) =

−21−k + 22−2k

k!
.

The above claim makes sure there is indeed non-negligible mass on non-empty-set Fourier
coefficients for each constraint. Then we prove that, when summing up these constraints, either
of the following two cases happens.

• Some weights shown in Claim 1 are not canceled by others, and finally appears in the non-
empty-set Fourier coefficients for the final objective function f .

• Some weights are canceled by others, but in this case, the guarantee by f̂(∅) itself beats 1/k!
in terms of approximation ratio.

We define
‖̂πe‖̂ =

∑
S⊆[2k]:∀i∈[k],S∩{2i−1,2i}6=∅

|π̂e(S)| .

Now Claim 1 implies ‖̂πe‖̂ = Ωk(1) for all k > 2. Let Γ ⊆ E be a set of constraints sharing the
same Γ(e), and let us define, by abusing notation slightly

ω(Γ) =
∑
e∈Γ

ω(e), ωmax(Γ) = max
e∈Γ
{ω(e)}, and πΓ(x) =

∑
e∈Γ

ω(e)πe(x) .

We treat πΓ : {−1, 1}2k → R as a real-valued function defined on a Boolean cube.

The idea of defining ‖̂πe‖̂ and Γ is as follows. The Fourier mass identified in Claim 1 could be
canceled within Γ, but once the mass goes into ‖̂πΓ‖̂, it cannot be canceled by ‖̂πΓ′ ‖̂ for a different
Γ′, and will finally go into |f |. Then the following lemma shows that either ‖̂πΓ‖̂, or π̂Γ(∅) alone,
beats ωmax(Γ)/k!, where ωmax(Γ) is an upperbound on the optimal solution’s performance on the
constraints in Γ.

Lemma 2. For all α, 0 < α < 1, we have π̂Γ(∅) + α‖̂πΓ‖̂ > ωmax(Γ)
( 1

k!
+ α · Ωk(1)

)
.

Proof. First, by Fact 2, we know that π̂Γ(∅) =
∑
e∈Γ

π̂e(∅) = ω(Γ) · 1

k!
. Let e∗ ∈ Γ be the constraint
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with the most weight. If ω(e∗) = ωmax(Γ) > 2/3 · ω(Γ), we have

π̂Γ(∅) + α‖̂πΓ‖̂ = π̂Γ(∅) + α‖̂
∑
e∈Γ

ω(e)πe‖̂

> π̂Γ(∅) + α
(
‖̂ω(e∗)πe∗ ‖̂ −

∑
e∈Γ\{e∗}

‖̂ω(e)πe‖̂
)

= ω(Γ) · 1

k!
+ α

(
ω(e∗)−

∑
e∈Γ\{e∗}

ω(e)
)
‖̂πe∗ ‖̂

> ωmax(Γ)
( 1

k!
+
α

2
‖̂πe∗ ‖̂

)
= ωmax(Γ)

( 1

k!
+ α · Ωk(1)

)
.

where the last step follows from Claim 1. On the other hand, when ω(e∗) = ωmax(Γ) < 2/3 · ω(Γ),

π̂Γ(∅) + α‖̂πΓ‖̂ > π̂Γ(∅) = ω(Γ) · 1

k!

> ωmax(Γ)
( 1

k!
+

1

2
· 1

k!

)
= ωmax(Γ)

( 1

k!
+ Ωk(1)

)
. 2

Given a k-ary monotone ordering problem G = (V,E, ω), we partition E = Γ1 ∪ Γ2 ∪ · · · ∪ Γm
into m disjoint groups, so that constraints ej in each group Γi share a distinct Γ(e) value. Then we
write the objective function of its 4-ordering version as

f(x) =
∑
e∈E

ω(e)πe(x) =
m∑
i=1

∑
e∈Γi

πe(x) =
m∑
i=1

πΓi(x),

where f : {−1, 1}2n → R is defined on Boolean cube. For each 1 6 i 6 m, let {vi1 , vi2 , · · · , vik} be
the k vertices participating in Γi, then we note that for each S ∈ {2it−1, 2it : t ∈ [k]} that intersects
with {2it − 1, 2it} for each t ∈ k, we have f̂(S) = π̂Γi(S), since all other constraints will have 0 as
its Fourier coefficient over S. Then, for α ∈ (0, 1), we have

f̂(∅) + α · |f | >
m∑
i=1

(
π̂Γi(∅) + α · ‖̂πΓi ‖̂

)
>

m∑
i=1

ωmax(Γi)
( 1

k!
+ α · Ωk(1)

)
, (1)

where the last inequality is because of Lemma 2.

For each Γi(1 6 i 6 m), a total ordering O will satisfy at most ωmax(Γi) weight of constraints.
This give an upper bound of the optimal solution

Val(G) 6
m∑
i=1

ωmax(Γi). (2)

Fix a coordinate i ∈ [2k], each constraint πe contributes at most 2k−1 non-zero Fourier coeffi-
cients containing i. SinceG = (V,E, ω) isB-occurrence bounded, there are at mostB2k−1 non-zero
Fourier coefficients of f containing i, therefore f is B2k−1-occurrence bounded.

Applying Proposition 1 to f , the polynomial time algorithm gets a vector x ∈ {−1, 1}2n, which
corresponds to a 4-ordering O4 (recall that every two consecutive bits in x encode a value in [4]),
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such that

ValO4
4 (G) = f(x) > f̂(∅) +

1

k2kB
|f |

>
m∑
i=1

ωmax(Γi)
( 1

k!
+ Ωk(1/B)

)
> Val(G)

( 1

k!
+ Ωk(1/B)

)
,

where the last two inequalities use (1) and (2) separately.

5 Bounded occurrence 3-ary ordering CSP with general pay-off func-
tions

For a ordering CSP problem I = (V,E,Ω) with general pay-off functions, we define

Rand(I)
def
= E

injective O:V→Z
[ValO(I)],

as the performance of random ordering. Then we prove our main result for 3-ary ordering CSPs:

Theorem 2. Given a B-occurrence bounded 3-ary ordering CSP problem I = (V,E,Ω) with general pay-
off functions, there is a poly-time randomized algorithm, to find a solution satisfying at least Rand(I) +
(Val(I)− Rand(I)) · Ω(1/B) weight (in expectation).

To prove Theorem 2, it is enough to prove the following lemma.

Lemma 3. Given aB-occurrence bounded 3-ary ordering CSP problem I = (V,E,Ω) with general pay-off
functions, it is possible, in polynomial time, to find a 4-ordering solution O4 with Rand(I) + (Val(I) −
Rand(I)) · Ω(1/B) weight.

We call a set E of constraints simple set if there are no two constraints e1, e2 ∈ E with Γ(e1) =
Γ(e2). We can assume in the proof that E is simple, or we can combine the two constraints sharing
the same Γ(·) into a new constraint (the new pay-off function is just an addition of two old pay-off
functions, perhaps with some permutations), and this does not increase the occurrence bound B.

Ideal proof sketch of Lemma 3. Similarly as we did with monotone ordering problems, our ideal
goal is to first show that for each constraint e ∈ E, the 4-ordering pay-off function πe ensures that
‖̂πe‖̂ is proportional to the maximum possible value of ωe, specifically to argue that there exists
some constant c > 0, such that ‖̂πe‖̂ > c(maxO{ωe(O)} − EO[ωe(O)]). Then, because this part of
the Fourier spectrum cannot be canceled with coefficients of other constraints, they will appear in
the objective function f(x) =

∑
e∈E πe(x). This will give a good lower bound on |f |, as follows:

|f | >
∑
e∈E
‖̂πe‖̂ >

∑
e∈E

c
(
max
O
{ωe(O)} −E

O
[ωe(O)]

)
= c

(∑
e∈E

max
O
{ωe(O)} −E

O
[
∑
e

ωe(O)]
)
> c(Val(I)− Rand(I)) .

At this point, we can use Proposition 1 to get a non-trivial gain over random solution.
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But unfortunately, sometimes ‖̂πe‖̂ can be 0 even when there is a large gap between maxO{ωe(O)}
and EO[ωe(O)].

Fact 3. Let e = (vi, vj , vk), the following pay-off functions are such kind of examples (for the statement
above).

• ωe(O) = 1O(vi)<O(vj), and ωe(O) = 1O(vi)>O(vj);

• ωe(O) = 1O(vj)<O(vk), and ωe(O) = 1O(vk)>O(vj);

• ωe(O) = 1O(vk)<O(vi), and ωe(O) = 1O(vi)>O(vk);

• ωe(O) = 1O(vi)<O(vj)<O(vk) + 1O(vj)<O(vk)<O(vi) + 1O(vk)<O(vi)<O(vj), and

ωe(O) = 1O(vk)<O(vj)<O(vi) + 1O(vi)<O(vk)<O(vj) + 1O(vj)<O(vi)<O(vk) .

It is easy to see that first three pairs of pay-off functions have ‖̂πe‖̂ = 0 since they only depend
on two out of three coordinates. For the last pair, note we can rewrite them as summation of pay-
off functions that depend on no more than two coordinates : ωe(O) = 1O(vi)<O(vj) +1O(vj)<O(vk) +
1O(vk)<O(vi) − 1 and ωe(O) = 1O(vk)<O(vj) + 1O(vj)<O(vi) + 1O(vi)<O(vk) − 1, respectively. We call
the pay-off functions shown in Fact 3 as binary representable pay-off functions.

Proof of Lemma 3. In view of the above, we claim the following crucial lemma which shows that the
above binary-representable pay-offs are the only obstacles to our plan. The proof of the lemma is
deferred to Appendix B.

Lemma 4. There exists a constant c > 0, such that for every 3-ary pay-off function ωe on some triple
e = (vi, vj , vk) the following holds. If for every binary representable pay-off function ω, there exists some
ordering O of vi, vj , vk such that ω(O) > 0 and ωe(O) = 0 (i.e., ωe does not “contain” any binary
representable pay-off functions), then

‖̂πe‖̂ > c ·max
O
{ωe(O)} .

Using Lemma 4, it is not hard to see that we can rewrite the set E of constraints (together with
their pay-off functions) as E3 ∪ E2 together with a constant b ∈ R, such that∑

e∈E
ωe =

∑
e3∈E3

ωe3 +
∑
e2∈E2

ωe2 + b ,

where E3 is a simple set of 3-ary pay-off functions none of which contain binary representable
pay-off functions, and E2 is a simple set of (weighted) monotone 2-ordering constraints.

The constraints in E2 can be handled by virtue of Claim 1, since they just correspond to mono-
tone k-ordering constraints for k = 2.

Corollary 2 (of Claim 1). For every e2 ∈ E2, ‖̂πe2 ‖̂ > 1/2 ·maxO{ωe2(O)} .

We emphasize that pay-off functions are always non-negative, and therefore
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Fact 4. Rand(I) = E
O

[∑
e∈E

ωe(O)
]

= E
O

[ ∑
e3∈E3

ωe3(O) +
∑
e2∈E2

ωe2(O) + b
]
> b .

Remember our 4-ary objective function f : [4]n → R is

f(O4) = E
O∼O4

[∑
e∈E

ωe(O)
]

=
∑
e3∈E3

πe3(O4) +
∑
e2∈E2

πe2(O4) + b,

by a similar argument as Fact 2, we know that, viewing f as a function defined on Boolean cube,
we have

Fact 5. f̂(∅) = E
x

[f(x)] = E
O

[∑
e∈E

ωe(O)
]

= Rand(I) .

Since f is a O(B)-occurrence bounded polynomial, in order to apply Proposition 1 to finish
this proof, we only need to prove that∣∣∣ ∑

e3∈E3

πe3 +
∑
e2∈E2

πe2

∣∣∣ > ( ∑
e3∈E3

max
O
{ωe3(O)}+

∑
e2∈E2

max
O
{ωe2(O)}

)
· Ω(1), (3)

as this would imply that

|f | =
∣∣∣ ∑
e3∈E3

πe3 +
∑
e2∈E2

πe2

∣∣∣ > (Val(I)− b) · Ω(1) > (Val(I)− Rand(I)) · Ω(1),

where the last step used Fact 4.

To prove (3), we first establish the following upper bound.

Fact 6. For each e3 ∈ E3, we have

|πe3 | 6
∑
S⊆[6]

|π̂e3(S)| 6
√

26
( ∑
S⊆[6]

π̂e3(S)2
)

= 8
√

E
x∈{−1,1}6

[πe3(x)2] 6 8 max
x∈{−1,1}6

{πe3(x)} 6 8 max
O
{ωe3(O)}.

We discuss the following two cases to establish (3).

When
∑

e3∈E3
maxO{ωe3(O)} > 1

32 ·
∑

e2∈E2
maxO{ωe2(O)}, by Lemma 4, we have∣∣∣ ∑

e3∈E3

πe3 +
∑
e2∈E2

πe2

∣∣∣ > ∑
e3∈E3

‖̂πe3 ‖̂ > c
∑
e3∈E3

max
O
{ωe3(O)}

>
c

33
·
( ∑
e3∈E3

max
O
{ωe3(O)}+

∑
e2∈E2

max
O
{ωe2(O)}

)
.
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On the other hand, when
∑

e3∈E3
maxO{ωe3(O)} < 1/32 ·

∑
e2∈E2

maxO{ωe2(O)}, by Corollary 2
and Fact 6, ∣∣∣ ∑

e3∈E3

πe3 +
∑
e2∈E2

πe2

∣∣∣ > ∑
e2∈E2

‖̂πe2 ‖̂ −
∑
e3∈E3

|πe3 |

>
1

2

∑
e2∈E2

max
O
{ωe2(O)} − 8

∑
e3∈E3

max
O
{ωe3(O)} >

(1

2
− 1

4

) ∑
e2∈E2

max
O
{ωe2(O)}

>
1

4
· 32

33
·
( ∑
e3∈E3

max
O
{ωe3(O)}+

∑
e2∈E2

max
O
{ωe2(O)}

)
. 2 (Lemma 3)

6 Concluding remarks

In this paper, we investigated the problem whether there are non-trivial approximation algorithms
for bounded occurrence ordering CSPs. By reducing the problem to a CSP over a fixed size do-
main, and applying a variant of Håstad’s algorithm [Hås00], we give a positive answer for mono-
tone ordering problems, and 3-ary ordering CSPs. The obvious open question left by our work
is whether we can extend the technique presented in this paper to ordering CSPs with arbitrary
arity. Given our approach, the following natural question arises in this vein: given maximum
occurrence B, and arity k, does there exist a constant t = t(B, k) so that it is enough to solve
the t-ordering version to get a non-trivial approximate solution for the original ordering CSP? At
first glance, one might believe that the answer to this question is “no”, as t being independent of n
seems too strong a restriction. But as Lemma 1 showed, even under a stronger restriction that t = 4
(which is independent of k as well), the answer is still “yes” for monotone ordering problems. In
view of this special case, we believe that there is a generalization of Lemma 1 and Lemma 3 to
general bounded occurrence ordering CSPs, and leave the resolution of this as an open problem.
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A Proof of Claim 1

In this section, we prove that for monotone k-ary constraint πe,

Claim 1 (restated). π̂e(S+
odd) =

−21−k + 22−2k

k!
.
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Proof. Since the coordinates of πe has the same order as they are shown in e, we can write the
value of πe explicitly as

πe(x) =


1

n1!n2!n3!n4!
when x = (1, 1)n1 ◦ (1,−1)n2 ◦ (−1, 1)n3 ◦ (−1,−1)n4

0 otherwise
.

Therefore

π̂e(S
+
odd) = E

x∈{−1,1}2k
[πe(x)χS+

odd
(x)]

=
1

4k

∑
n1+n2+n3+n4=k

(−1)n3+n4

n1!n2!n3!n4!
· (−1)1n4>0∨(n3=n4=0∧n2>0)

=
1

4k

(
−

∑
n1+n2+n3+n4=k,n4>0

(−1)n3+n4

n1!n2!n3!n4!

+
∑

n1+n2+n3=k,n3>0

(−1)n3

n1!n2!n3!
−

∑
n1+n2=k,n2>0

1

n1!n2!
+

1

k!

)
.

This is just the k-th coefficient of the polynomial

1

4k

(
− e2xe−x(e−x − 1) + e2x(e−x − 1)− ex(ex − 1) + ex

)
=
−2e2x + 4ex − 1

4k
.

Thus, for k > 0, we have π̂e(S+
odd) =

−21−k + 22−2k

k!
.

B Proof of Lemma 4

For reader’s convenience, we restate the lemma as follows.

Lemma 4 (restated). There exists a constant c > 0, such that for every 3-ary pay-off function ωe on some
triple e = (vi, vj , vk) the following holds. If for every binary representable pay-off function ω, there exists
some ordering O of vi, vj , vk such that ω(O) > 0 and ωe(O) = 0 (i.e., ωe does not “contain” any binary
representable pay-off functions), then

‖̂πe‖̂ > c ·max
O
{ωe(O)} .

Proof. W.l.o.g. suppose that the 3-ary constraint e = (v1, v2, v3), and its pay-off function

ωe(O) = a1 · 1O(v1)<O(v2)<O(v3) + a2 · 1O(v1)<O(v3)<O(v2) + a3 · 1O(v2)<O(v1)<O(v3)

+a4 · 1O(v2)<O(v3)<O(v1) + a5 · 1O(v3)<O(v1)<O(v2) + a6 · 1O(v3)<O(v2)<O(v1) .

We can check by definition that

π̂e({1, 2, 4, 6}) = 12/(26 · 3!) · (−a1 − a2 + 2a3 − a4 + 2a5 − a6),

π̂e({2, 3, 4, 6}) = 12/(26 · 3!) · (2a1 − a2 − a3 − a4 − a5 + 2a6),

π̂e({2, 4, 5, 6}) = 12/(26 · 3!) · (−a1 + 2a2 − a3 + 2a4 − a5 − a6).
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Let a = (a1, a2, a3, a4, a5, a6) ∈ (R>0)6, and u1 = 1/2
√

3 · (−1,−1, 2,−1, 2,−1),u2 = 1/2
√

3 ·
(2,−1,−1,−1,−1, 2),u3 = 1/2

√
3 · (−1, 2,−1, 2,−1,−1) be unit vectors. Let span(v) be the linear

space spanned by vector v. For any linear space D ⊆ R6, denote by D⊥ the orthogonal comple-
ment of D (in R6). Use dist(v, D) denote the Euclidean distance from vector v to space D. By the
above identities

‖̂πe‖̂ > |π̂e({1, 2, 4, 6})|+ |π̂e({2, 3, 4, 6})|+ |π̂e({2, 4, 5, 6})|
= 1/32 · (dist(a, span(u1)⊥) + dist(a, span(u2)⊥) + dist(a, span(u3)⊥)) . (4)

Since ωe does not include binary representable pay-off functions listed in Fact 3, we know that a
belongs to the set A defined by

A = {x = (x1, x2, x3, x4, x5, x6) ∈ (R>0)6 : x1x2x5 = x3x4x6 = 0,

x1x2x3 = x4x5x6 = 0, x1x3x4 = x2x5x6 = 0, x1x4x5 = x2x3x6 = 0}.

One can check that

A = {(x1, x2, 0, x4, 0, x6) : x1, x2, x4, x6 > 0}
∪{(x1, 0, x3, 0, x5, x6) : x1, x3, x5, x6 > 0}
∪{(0, x2, x3, x4, x5, 0) : x2, x3, x4, x5 > 0}. (5)

We now prove the following fact which will help us lower bound (4).

Lemma 5. Given a linear spaceK ⊆ Rd (we only use the case d = 6 in the proof of Lemma 4), and T ⊆ Rd,
a intersection of finite closed half-spaces (which pass the origin). If T ∩K = {0}, then there exists c0 > 0,
such that ∀x ∈ T, dist(x,K) > c0 · ‖x‖2.

Proof. By the property of T , we know that 1) T is closed, and 2) ∀x 6= 0, λ > 0,x ∈ T ⇔ λx ∈ T .
By the second property, we only need to prove ∀x ∈ T, ||x||2 = 1,dist(x,K) > c0 . Then by the
first property, f(x) = dist(x,K), being a continuous mapping defined on closed set T ∩ Sd−1, has
its image set I = {dist(x,K) : x ∈ T ∩ Sd−1} closed (where Sd−1 is the unit sphere in Rd). Since
K ∩ (T ∩ Sd−1) = ∅, we can set c0 = inf I > 0.

We can view each of the three components of A in (5) as intersection of closed half-spaces
(passing through the origin). Then we check that the i-th (i = 1, 2, 3) component only intersects
span(ui)

⊥ at 0. Therefore by Lemma 5 we conclude that there exists c > 0, such that for all a ∈ A,

‖̂πe‖̂ >
∑

i=1,2,3

dist(a, span(ui)
⊥) > c · ||a||2 > c ·max

i
|ai| = c ·max

O
{ωe(O)}.
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