
Optimal Coding for Streaming Authentication

and Interactive Communication

Matthew Franklin∗ Ran Gelles† Rafail Ostrovsky‡ Leonard J. Schulman§

August 8, 2012

Abstract

Error correction and message authentication are well studied in the literature, and various
efficient solutions have been suggested and analyzed. This is however not the case for data streams
in which the message is very long, possibly infinite, and not known in advance to the sender. Trivial
solutions for error-correcting and authenticating data streams either suffer from a long delay at the
receiver’s end or cannot perform well when the communication channel is noisy.

In this work we suggest a constant rate error-correction scheme and an efficient authentication
scheme for data streams over a noisy channel (one-way communication, no feedback) in the shared-
randomness model. Our first scheme does not assume a shared randomness and shows how to
recover (non-efficiently) a (1− 2c)-fraction prefix of the stream sent so far, assuming the noise level
is at most c < 1/2.

To be able to overcome the c = 1/2 barrier we relax the model and assume the parties pre-share
a secret key. Under this assumption we show that for any given noise rate c < 1, there exists a
scheme that correctly decodes a (1−c)-fraction of the stream sent so far with high probability, and
moreover, the scheme is efficient. We prove that the decoded string is identical to the one sent
with overwhelming probability, even when considering an adversarial noise model. Furthermore, if
the noise rate exceeds c, the scheme aborts with high probability. We also show that no constant-
rate authentication scheme recovers more than a (1− c)-fraction of the stream sent so far with
non-negligible probability, thus the relation between the noise rate and recoverable fraction of the
stream is tight, and our scheme is optimal.

Our techniques also apply to the task of interactive communication (two-way communication)
over a noisy channel. In a recent paper, Braverman and Rao [STOC 2011] show that any function
of two inputs has a constant rate interactive protocol for two users that withstands a noise rate
up to 1/4. By assuming that the parties share a secret random string, we are able to extend this
result and construct an interactive protocol that withstands a noise rate up to 1/2, and succeeds
with overwhelming probability. We also show that no constant rate protocol exists for noise rates
above 1/2 for functions that require two-way communication. This is contrasted with our first
result in which computing the “function” requires only one-way communication and the noise rate
can go up to 1.

∗CS Department, UC Davis, franklin@cs.ucdavis.edu
†CS Department, UCLA, gelles@cs.ucla.edu
‡UCLA Department of Computer Science and Department Mathematics, 3732D Boelter Hall, Los Angeles CA 90095-

1596, U.S. Email: rafail@cs.ucla.edu. Supported in part by NSF grants 0830803, 09165174, 1065276, 1118126 and
1136174, US-Israel BSF grant 2008411, OKAWA Foundation Research Award, IBM Faculty Research Award, Xerox
Faculty Research Award, B. John Garrick Foundation Award, Teradata Research Award, and Lockheed-Martin Cor-
poration Research Award. This material is based upon work supported by the Defense Advanced Research Projects
Agency through the U.S. Office of Naval Research under Contract N00014-11-1-0392. The views expressed are those of
the author and do not reflect the official policy or position of the Department of Defense or the U.S. Government.
§E&AS Division, Caltech. Email: schulman@caltech.edu. Supported in part by the NSF.

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Report No. 104 (2012)

1 Introduction

The tasks of error-correction and of authentication are well studied in the literature. In both cases,
a sender (Alice) wishes to send a message over a one-way, noisy channel to a receiver (Bob). To do
so, Alice produces a longer, redundant message and sends it over the channel. The added redundancy
helps Bob in recovering the original message if possible, or aborting otherwise. The overhead of this
process is the amount of redundancy added to each message; in this work we consider only constant-
rate scheme, that is, allowing the longer message to be at most constant-times longer than the original
message.

Interestingly, in all known authentication schemes (and in many of the error-correction codes) there
are two important assumptions: (1) the message to be communicated has a given length n and (2) the
message is fully known to the sender in advance. These two assumptions don’t hold anymore when
the information to be transmitted is in the form of a data stream, which is a long, possibly infinite,
sequence of symbols x1, x2, . . . over some alphabet Σ, where each xi arrives at the sender’s end at
time i and is unknown beforehand.

In this paper, we investigate the question of transmitting data streams over an adversarially noisy
channel. Within this framework we consider two related questions, namely, error-correction and
authentication of data streams. Loosely speaking, in error-correction schemes, the receiver decodes
the correct message as long as the noise level is below some threshold (but may decode any other
message if the noise exceeds that threshold). In authentication schemes, the receiver verifies that the
decoded messages is indeed the one sent to him, and aborts if a different message was decoded. To see
the relation between those two tasks note that if the corruption level of an adversary is guaranteed to
be lower than the threshold, an error-correction scheme can also serve as an authentication scheme.
However, while no constant-rate error-correction scheme can withstand a noise level higher than 1/2,
this is not the case for authentication schemes that are capable of indicating a change in the message
even when the adversary has a full control of the channel. On the other hand, it is generally assumed
that for performing authentication, the parties pre-share a secret key.

Standard error-correction and authentication methods do not apply for the model of data streams.
The straightforward method is to cut the stream into chunks and perform error-correction and au-
thentication separately on each chunk. The problem now is that while the adversary is limited to some
global noise rate, there is no restriction on the noise level of any local part of the stream. Specifically,
the adversary can corrupt a single chunk in its entirety (while not exceeding the global amount of
allowed noise), and cause Bob to decode this chunk in a wrong way. Even if this event is noticed by
Bob since the chunk fails the authentication, the information carried within this chunk is lost unless
Bob requests a retransmission of that chunk, i.e., unless the communication is interactive. The same
problem exists (with high probability) when the noise is random rather than adversarial, given that
the stream is long enough or infinite.

A possible mitigation to the above is to increase the chunks’ size. This, however, has an undesirable
side effect—Bob needs to wait until receiving a complete chunk in order to decode and authenticate it.
This means that the information received in the very recent bits is inaccessible to Bob until the chunk
is completely received. Our goal is thus, to construct a constant-rate scheme that can withstand a
constant fraction of errors (globally) and still guarantee the correct decoding and authenticity of the
information received so far. To the best of our knowledge, no such solution is known.

1.1 Our Results

In this work we construct optimal encoding schemes for both interactive and non-interactive (stream-
ing) communication, and show a dramatic difference between these two cases in the following sense.
For each case, we show an upper bound on the noise rates that allow a successful constant-rate com-

1

munication, and construct a protocol that achieves the bound. Surprisingly, the bound for one-way
communication is different from the interactive one.

Specifically, for one-way communication our results is an error correcting scheme for data-streams
that withstands a noise rate of up to 1/2 of the transmission. Informally, as long as the global noise
rate up to some time n does not exceed some parameter c < 1/2, a fraction of 1−2c of the stream sent
up to time n can be recovered (see formal definition in Appendix E). For constant-rate schemes, it is
clear that c < 1/2 is a hard limit and no scheme can succeed with higher noise level (for c ≥ 1/2 the
capacity of the channel in this case is 0). In order to achieve schemes that withstand higher noise rate
we must relax the model and give the users more resources. Indeed, with the use of shared randomness
(i.e., a shared secret key) we can break the c = 1/2 barrier. To emphasis the fact the the parties are
allowed to share a secret key, we refer schemes in this model as authentication schemes rather than
error-correcting schemes, based on the relation between these two tasks as mentioned above.

This leads to our first main result: we construct a constant-rate authentication scheme for data
streams sent over a noisy (possibly adversarial) channel. For any constant fraction of noise c less
than 1, our scheme succeeds in decoding a prefix of the stream of length at least (1 − c)-fraction of
the stream sent so far, with high probability. The decoded prefix is authenticated, meaning that there
is only negligible probability that the scheme outputs a different string than the one sent by Alice.
Furthermore, our scheme is efficient. More formally (see formal theorems in Section 4), we show that
for any noise rate 0 ≤ c < 1 and small constant ε > 0:

• There exists an efficient constant-rate scheme that, at time n, decodes a prefix of length at least
(1− c)n− εn of the stream sent so far.

• Any constant-rate protocol that decodes a prefix of length (1−c)n+εn succeeds with probability
at most 2−Ω(εn) in the worst case.

Our scheme is unconditionally secure and does not make any (cryptographic) assumptions, other
than pre-sharing a secret random string. The amount of randomness utilized by the scheme grows
with the message length, and can be unbounded if the data stream is infinite. However, if we only
consider a computationally bounded adversary, the required amount of randomness is relatively small
(polynomial in the security parameter). With the aid of a pseudo-random generator, the parties only
need to pre-share a small seed, from which they generate randomness at will. Moreover, such a solution
scales to the multiparty case by a simple public-key infrastructure construction. Each user generates
a pair of a public and a secret key, and any two users perform Diffie-Hellman key-exchange [DH76] to
obtain a secret shared authentication-key used as the pseudo-random generator’s seed.

We apply the same techniques used in our streaming-authentication scheme for the task of inter-
active communication to get our second main result. In the interactive communication scenario, two
parties perform an arbitrary interactive protocol over a noisy channel, while keeping the amount of
exchanged data only a constant factor more than an equivalent protocol for a noiseless channel (i.e.,
the encoding is constant-rate). This question was initially considered for both random and adversarial
noise by Schulman [Sch92, Sch93, Sch96] who showed a constant-rate encoding scheme that copes with
a noise rate of up to 1/240, and recently revisited by Braverman and Rao [BR11] who showed how to
deal with noise rates less than 1/4. In addition, Braverman and Rao show that 1/4 is the highest error
rate any protocol can withstand, as long as the protocol defines whose turn it is to speak at every
round regardless of the observed noise. The fascinating open question left by the work of Braverman
and Rao is whether other methods could extend the 1/4 bound.

In this work we improve the bound obtained by [BR11] by allowing the parties to pre-share a
secret key. Specifically, we show how to convert any interactive protocol (for noiseless channel) into a
constant-rate protocol that withstands any adversarial noise level smaller than 1/2, given pre-shared
randomness. We also show that for higher noise rates, no constant-rate protocol exists for tasks

2

which are interactive (that is, depend on the inputs of both the parties). Similarly to previous results
for interactive communication with adversarial noise [Sch96, BR11, GMS11], our decoding scheme
is inefficient. Very recently, Brakerski and Kalai [BK12] show how to augment previous results of
interactive communication protocols and achieve efficient schemes that withstand also adversarial
noise. Note that the bounds (on adversarial noise) obtained by [BK12] are improved by our work as
well, since we improve the bounds of the underlying schemes used by [BK12].

1.2 Our Methods

The Blueberry code. The main ingredient of our construction is an error-detection code we name
the Blueberry code1. The Blueberry code uses the shared randomness in order to detect corruptions
made by the channel, and marks them as erasures. One can think about this code as a weak mes-
sage authentication code (MAC) that authenticates each symbol separately with constant probability
(see [Gol04] for a formal definition of MAC). To this end, each symbol of the the input alphabet Σ is
randomly and independently mapped to a larger alphabet Γ (the channel alphabet). This means that
only a small subset of the channel alphabet is meaningful and the other symbols serve as “booby-traps”.
Since each symbol is encoded independently, any corruption is caught with constant probability |Σ|−1

|Γ|−1
and marked with a special sign ⊥ to denote it was deleted by the channel. Most of the corruptions
made by an adversary become erasures and only a small fraction (arbitrarily small, according to the
choice of |Γ|) turns into errors.

...

0

1

...

0

1

...

0

1

...

0

1

...

0

1

...

0

1

time

Σ = {0, 1}

Γ = {0, . . . , N}

Figure 1: A demonstration of the Blueberry code: at any given time each symbol in Σ is randomly mapped to a symbol
of Γ. Symbols of Γ with no incoming arrow are “booby-traps”, which serve to detect corruptions.

The main insight that leads to our results is the different ways error correcting codes deal with
errors and erasures. We observe that, in terms of Hamming distance, the impact of a single error
is twice as harmful as a single erasure. Indeed, assume that the Hamming distance of two strings,
x and y, is m. Then if x was communicated but y is decoded it means that at least m/2 errors have
occurred, or alternatively, at least m erasures. More generally, assuming we decode by minimizing the
Hamming distance, then our decoding fails if the number of errors e and the number of erasures d
satisfy 2e+ d ≥ m.

Combining Blueberry codes and tree codes. The second ingredient of our work is encoding
via tree codes [Sch96], an online encoding that has a “self-healing” property: when decoding a stream

1The name of the Blueberry code is inspired by the children’s book “The case of the hungry stranger” [Bon63] in
which a blueberry pie is gone missing, and the thief (who turns out to be the dog) is identified by his big blue grin.

3

at time n, the tree will decode correctly up to a particular time t such that the stream suffix between
times t and n is the longest suffix in which the error rate is high. This means, for instance, that even if
all the transmissions until some time t′ were corrupted (and thus the decoding failed at those times),
if the noise rate up to time n > t′ is low enough, not only can we decode between t′ and n, we may
also be able to decode the entire stream up to time n.

Combining tree codes encoding with the Blueberry code immediately gives a streaming authenti-
cation method: the Blueberry code prevents the adversary from corrupting too many transmissions
without being noticed (causing the abortion of the protocol), and given that the protocol did not
abort, the noise level is low enough for the tree code to correctly decode a prefix of the stream whose
length is determined by the average noise level up to that time.

Efficient Constructions. The only caveat of the above construction is that tree code decoding is
not necessarily efficient and may be exponential in the length of the received transmission in the worst
case. To get an efficient authentication scheme we construct a specific randomized online coding, which
repeatedly sends random segments of the history. That way, even if some part of the transmission was
changed by the channel, the same information will keep being retransmitted at random future times,
and eventually (with high probability) received at the other side intact.

Roughly speaking, at any time n, we split the stream into words of logarithmic length in n. We
encode each word using a tree code: each possible word corresponds to a node in the tree, and its
encoding is the labels of the edges along the corresponding path (see formal definition below). At
each time, we randomly select one of the n/ log n trees and send the label of the next edge along the
path. For most of the trees, the expected number of labels transmitted is Θ(log n), and decoding of
a specific word succeeds except with polynomially small probability. Since each tree code is used to
encode a word of length O(log n), the decoding can be performed efficiently by exhaustive search.

In order to improve the authenticity of the received message, each word also contains a random
hash of all the previous words, where the hash is of logarithmic length. The scheme aborts if any
of the decoded hashes does not agree with the decoded stream. The event that the scheme does not
abort and outputs an incorrect prefix of the stream received so far occurs with probability at most
exponentially small in n.

1.3 Other Related work

The works of Even, Goldreich and Micali [EGM90] and Gennaro and Rohatgi [GR97] consider au-
thentication of data streams, however the focus of these schemes is not only to authenticate the
message but also to prevent the sender from denying having signed the information. These con-
structions rely on cryptographic primitives such as one-time signatures. Another related line of re-
search [PCTS00, MS01, GM01] pursues authentication of streams over lossy channels, usually in the
multicast setting.

Error correction codes for computationally bounded noise models were first addressed by Lip-
ton [Lip94], who constructs error-correction codes given pre-shared randomness and later considered
by Micali, Peikert, Sudan and Wilson [MPSW05] who only assume sharing a short public-key, and
recently by the surprising result of Guruswami and Smith [GS10] who assume no shared setup between
the users. Locally Decodable codes with constant rate in the public-key model were introduced by
Hemenway and Ostrovsky [HO08] and later improved by Hemenway, Ostrovsky, Strauss and Woot-
ters [HOSW11]. Langberg [Lan04] considers error-correction codes for adversarial channels assuming
a shared randomness. The focus of [Lan04] is showing tight bounds on the length of the shared
randomness and (existentially) constructing codes with rates that nearly reach the Shannon bounds.

4

2 Preliminaries, Model and Definitions

We denote the set {1, 2, . . . , n} by [n], and for a finite set Σ we denote by Σ≤n the set ∪nk=1Σk. The
Hamming distance ∆(x, y) of two strings x, y ∈ Σn is the number of indices i for which xi 6= yi, and
the Hamming weight of a string is its Hamming distance from the all-zero string. Throughout the
paper, log() denotes the binary logarithm (base 2) and ln() denotes the natural logarithm (base e).

Shared Randomness Model. We assume the following model known as the shared-randomness
model. The legitimate users have access to a random string R of unbounded length, which is unknown
to the adversary. Protocols in this model are thus probabilistic, and are required to succeed with high
probability over the choice of R. We assume that all the randomness comes from R and that for a
fixed R the protocols are deterministic.

Tree-Codes. A d-ary tree-code [Sch96] over alphabet Σ is a rooted d-regular tree of arbitrary
depth N whose edges are labeled with elements of Σ. For any string x ∈ [d]≤N , a d-ary tree-code T
implies an encoding of x, TCencT (x) = w1w2..w|x| with wi ∈ Σ, defined by concatenating the labels
along the path defined by x, i.e., the path that begins at the root and whose ith node is the xith child
of the (i−1)st node. We usually omit the subscript T when the tree is clear from the context. Note that
tree code encoding is online: to communicate TCenc(xσ) when TCenc(x) was already communicated,
we only need to send one symbol of Σ. Hence, if |Σ| = O(1) the encoding scheme has a constant rate.

For any two paths (strings) x, y ∈ [d]≤N of the same length n, let ` be the longest common prefix of
both x and y. Denote anc(x, y) = n− |`| the distance to the least common ancestor of paths x and y.
A tree code has distance α if for any k ∈ [N] and any distinct x, y ∈ [d]k, the Hamming distance of
TCenc(x) and TCenc(y) is at least α · anc(x, y).

For a string w ∈ Σn, decoding using the tree code T means returning the string x ∈ [d]n whose
encoding minimizes the Hamming distance to the received word, namely,

TCdecT (w) = argmin
x∈[d]n

∆(TCencT (x), w).

A theorem by Schulman [Sch96] proves that for any d and α < 1 there exists a d-ary tree code of
unbounded depth and distance α over alphabet of size dO(1/(1−α)). However, no efficient construction
of such a tree is yet known. For a given depth N , Peczarski [Pec06] gives a randomized construction
for a tree code with α = 1/2 that succeeds with probability at least 1− ε, and requires alphabet of size

at least dO(
√

log ε−1). Braverman [Bra12] gives a sub-exponential (in N) construction of a tree-code,
and the work of Gelles, Moitra and Sahai [GMS11] provides an efficient construction of a randomized
relaxation of a tree-code of depth N , namely a potent tree code which is powerful enough as a substitute
for a tree code in most applications.

Communication Model. Our communication model consists of a channel ch : Σ → Σ subject
to corruptions made by an adversary (or by the channel itself). The noise model is such that any
symbol σ sent through the channel can turn into another symbol σ̃ ∈ Σ. It is not allowed to insert
or delete symbols. For all of our applications we assume that one symbol σi ∈ Σ is sent at any time
slot i.2 We say that the adversarial corruption rate is c if for n transmissions at most cn symbols were
corrupted.

2The channel time slots need not correspond with the times in which stream symbols are received. I.e, it is possible
that between the arrival of stream elements xi and xi+1, several channel-symbols are transmitted.

5

3 The Blueberry Code

Definition 3.1. For i ≥ 1 let Bi : [L+ 1]→ [L+ 1] be a random and independent permutation. The
Blueberry code maps a string x of arbitrary length n to B(x) = B1(x1)B2(x2) · · ·Bn(xn). We denote
such a code as B : [L+ 1]∗ → [L+ 1]∗.

We use the Blueberry code in the shared-randomness model where the legitimate parties share the
random permutations Bi, unknown to the adversary (these kind of codes, determined by a random
string unknown to the channel are referred to as private codes by [Lan04]). Although Bi is a permu-
tation on [L + 1], we actually use it to encode strings over a smaller alphabet [S + 1] with S < L;
that is, we focus on the mapping B : [S + 1]∗ → [L + 1]∗. The adversary does not know the specific
permutations Bi, and has probability of at most S/L to change a transmission into a symbol whose
pre-image is in [S + 1].

Definition 3.2. Assume that at some time i, yi = Bi(xi) is transmitted and ỹi 6= yi is received.
If B−1

i (ỹ) /∈ [S + 1], we mark the transmission as an erasure (specifically, the decoding algorithm
outputs ⊥); otherwise, this event is called an error.

Corollary 3.3. Let x ∈ [S + 1]n and assume B(x) is communicated over a noisy channel. Every
symbol altered by the channel will cause either an error with probability S/L, or an erasure with
probability 1− S/L.

Assuming S � L, most of the corruptions done by the channel will be marked as erasures, and
only a small fraction will percolate through the Blueberry code and cause an error.

Lemma 3.4. Assume a Blueberry code B : [S+1]∗ → [L+1]∗ is used to transmit a string x ∈ [S+1]n

over a noisy channel. For any constant 0 ≤ c ≤ 1, if the channel’s corruption rate is at most c, then
with probability 1− 2−Ω(n) at least a c(1− 2SL)-fraction of the corruptions are marked as erasures.

Proof. Denote by zi the random variable which is 1 if the ith corrupted-transmission is marked as an
erasure and 0 otherwise. These are independent Bernoullis with probability 1− S

L . Let Z =
∑

i zi and
note that E[Z] = cn(1− S

L). By Chernoff-Hoeffding inequality,

Pr
R

[
1

n

∑
i

zi < c
(
1− 2SL

)]
< e−2n(cS/L)2 .

Corollary 3.5. If out of n received transmissions, cn were marked as erasures by a Blueberry code
B : [S+1]∗ → [L+1]∗, then except with probability 2−Ω(n) over the shared randomness, the adversarial
corruption rate is at most c/(1− 2SL).

We will use the Blueberry code concatenated with another (outer) code that is less sensitive to
erasures than to errors. From the outer code’s point of view, this effectively increases the channel’s
“capacity” from 1−2c to 1−c(1+S/L). The construction of the code B from independent Bi’s allows
us to encode and decode each xi independently, which is crucial for on-line applications in which the
message x to be sent is not fully known in advance.

4 Perpetual Authentication

Sending a datastream over a noisy channel is not a simple task, especially when the noise model is
adversarial. Our goal is to design an encoding and decoding schemes such that the encoding has a

6

constant rate and the decoding recovers the encoded transmitted stream, or else aborts. Furthermore,
we wish an “authentication” guarantee, that is, if the decoding scheme did not abort, it decodes the
correct data with high probability (note that the probability that the scheme aborts potentially differs
from the probability that the decoding scheme outputs incorrect data). The amount of recoverable
data depends on the noise and the goal is to output (and authenticate) the longest possible prefix of
the stream, given a constant corruption rate.

Definition 4.1. A (c(n), γ(n), κ(n))-Streaming Authentication Scheme with constant rate r is an en-
coding e : {0, 1}∗ × {0, 1}∗ → {0, 1}r that encodes a stream x1, x2, . . . into a stream y1 = e(x1, R),
y2 = e(x1x2, R), . . ., yi = e(x1 · · ·xi, R), and a decoding d : {0, 1}∗ × {0, 1}∗ → {0, 1}∗ ∪ {⊥}
such that for any n, and for any adversary Adv(x1 · · ·xn, y1 · · · yn) = y′1 · · · y′n, it holds that either
d(y′1 · · · y′n, R) = x′1x

′
2 · · ·x′n or d(y′1 · · · y′n, R) = ⊥, and if at most c(n) transmissions were corrupted,

1. the scheme aborts with probability at most κ(n), PrR[d(y′1 · · · y′n, R) = ⊥] < κ(n).

2. if not aborted, the probability to decode an incorrect γ(n)-prefix of the stream is at most κ(n),
PrR[d(y′1 · · · y′n, R) 6= ⊥ ∧ x′1 · · ·x′γ(n) 6= x1 · · ·xγ(n)] < κ(n).

Eve is given both the raw stream and the channel transmissions, however she does not know the
shared random string R (used as the secret authentication key). It is desired that as long as Eve
corruptions only a small fraction of the transmissions, Bob will be able to correctly decode a prefix of
the stream, or otherwise be aware of the adversarial intervention and abort.

We show the following dichotomy: If the adversarial corruption rate is some constant c, then there
exists a streaming authentication stream that decodes a prefix of at most (1−c)-fraction of the stream
received so far. In addition, there does not exist a streaming authentication scheme that is capable of
decoding a longer prefix with non-negligible probability.

Theorem 4.2. In the shared-randomness model, for every constants c, ε such that 0 ≤ c < 1 and 0 <
ε ≤ (1− c)/2 there exists a constant-rate (cn, (1−c)n− εn, 2−Ω(n))-Streaming Authentication Scheme.
Moreover, there exists an efficient constant rate (cn, (1−c)n− εn, 2−Ω(logn))-Streaming Authentication
Scheme.

For any constant cth > c, in both these schemes, if the adversarial corruption rate exceeds cth, the
scheme aborts with overwhelming probability over the shared randomness.

Theorem 4.3. Assume that a bitstream x1, x2, . . . is communicated using some encoding protocol with
constant rate, and assume that at time n the receiver side decodes the bitstring x′1, . . . , x

′
n. If the rate

of adversarial corruptions is 0 ≤ c ≤ 1, then for any constant ε > 0,

Pr[x′1 · · ·x′(1−c)n+εn = x1 · · ·x(1−c)n+εn] ≤ 2−εΩ(n)

where the probability is over the coin tosses of the decoding algorithm (thus, over R).

We now prove Theorem 4.3 and then construct the protocols guaranteed by Theorem 4.2

Proof. Consider an adversary that, starting at time (1− c)n, corrupts all the transmissions. It is easy
to verify that the corruption rate is c. Clearly, from time (1 − c)n and on, the effective capacity of
the channel is 0. This means that the decoder has no use of transmissions of times ≥ (1 − c)n and
he decodes only using transmissions received up to time (1 − c)n. However, due to the streaming
nature of the model, transmissions at times < (1 − c)n depend only on x1, . . . , x(1−c)n (the suffix of
the stream is yet unknown to the sender). The receiver has no information about any bit xi with
i > (1− c)n and his best strategy is to guess them. The probability to correctly guess all these bits is
at most 2−bεnc.

7

In order to construct a streaming authentication scheme, we use two concatenated layers of online
codes. The inner code is a Blueberry B : [S + 1]∗ → [L+ 1]∗ code, and the outer code A is an online
code that allows a prefix decoding in the presence of errors and erasures. The entire process can be
described by

(x1, . . .)
A−→ (y1, . . .)

B−→ (z1, . . .)
channel−→ (z̃1, . . .)

B−1

−→ (ỹ1, . . .)
A−1

−→ (x̃1, . . .)

We begin with a simple and elegant construction which, although not efficient, demonstrate the
power of the Blueberry code.

Proposition 4.4. Let c, ε be constants 0 ≤ c < 1, 0 < ε ≤ (1− c) and let A = TCenc() be an encoding
using a binary tree code and B a Blueberry code with constant parameters determined by c, ε. The
concatenation of A and B is a (cn, (1−c)n− εn, 2−Ω(n))-streaming authentication scheme.

Proof. Assume that in order to encode the bitstream x1, x2, . . ., we use a binary tree code over alpha-
bet [S+ 1] with distance α to be determined later, concatenated with a Blueberry-code B : [S+ 1]∗ →
[L + 1]∗. We show that if at time n we decode a string x̃1 · · · x̃n whose prefix x̃1 · · · x̃(1−c−ε)n differs
from x1 · · ·x(1−c−ε)n, then the corruption rate was larger than c.

For a specific time n, consider a string x̃ ∈ {0, 1}n, such that anc(x, x̃) ≥ (c+ ε)n. Due to the tree
distance property, the Hamming distance between TCenc(x̃) and TCenc(x) is at least α(c+ε)n. Assume
Eve causes d erasures and e errors, a maximal-likelihood decoding will correctly decode x1, . . . , xn as
long as bα(c+ ε)nc > 2e+ d.

If Eve’s corruption rate is limited to c, Lemma 3.4 implies that with overwhelming probability
at most 2cnS/L of these corruptions become errors and the rest are marked as erasures. Setting
α > c

c+ε(1 + 2S
L) we guarantee that α(c + ε)n > 2 · 2cnS/L + cn(1 − 2S/L),3 thus Bob decodes with

overwhelming probability a string x̃ such that anc(x, x̃) < (c+ ε)n, as claimed.
Note that the actual fraction of adversarial corruptions can be estimated out of the number of

erasures marked by the Blueberry code. We abort the decoding if at a specific time n the number of
erasures exceeds cn. Lemma 3.4 guarantees that if the adversary corrupts more than a c/(1 − 2S

L)-
fraction of the transmissions, she will cause at least cn erasures, except with negligible probability.
Choosing L such that (1− 2S

L) ≥ c
cth

completes the proof for the non-efficient case of Theorem 4.2.

Using a similar argument we can construct a scheme that uses only the tree-code and doesn’t use
the Blueberry code. This yields a constant-rate error-correcting scheme for streams, see Appendix E
for details.

We note that although in the above proof we require ε to be constant, for the case of c = 0 we can
let ε be smaller. For instance, if we let ε = κ/n for a security parameter κ, the scheme is comparable to
the (non-streaming) authentication scheme with the same security parameter. This gives the perpetual
authentication: at any given time, the user is assured that except with probability 2−Ω(κ), all but the
last κ received bits are the bits sent by Alice. This implies that any prefix of length n is authenticated
with communication O(n+ κ).

The case where c > 0 has a meaning of communicating over a noisy channel (regardless of the
adversary). The users do not abort the authentication scheme although they know the message was
changed by the channel. Instead, the scheme features both error-correction and authentication abilities
and the parties succeed to recover (a prefix of) the original message with high probability.

3Note it is required to have α < 1, thus the choice of (the constant) L should depend on ε and c, specifically, L > 2S c
ε
.

Also note that S depends on α, however L is independent of both. For a fixed value of α (and S = dO(1/(1−α))) there is
always a way to choose a constant L which satisfies the required condition.

8

4.1 Efficient Streaming Authentication Protocol

We now complete the proof of Theorem 4.2 by defining an efficient randomized code Aeff for prefix-
decoding in the presence of errors and erasures. The protocol partitions the stream into words of
logarithmic size and encodes each using a tree code. At any time n, one of the O(n/ log n) words
is chosen at random and its next encoded symbol is transmitted. The fact that the current time n
changes throughout the encoding process means that the length of each word increases with time,
however, since each word is encoded by a tree-code (rather than, say, a block code) this causes no
problem—tree code’s encoding is performed “online” and does not require to know the length of the
word in advance. Decoding can be performed efficiently by exhaustive search since each word is of
logarithmic length in the current time n.

Proposition 4.5. For any set of infinite strings {x1,x2, . . .} there exist efficient constant-rate encod-
ing and decoding schemes such that, for any constants 0 ≤ c < 1, 0 < ε ≤ (1 − c)/2 and a constant
c1 > 0, the following holds for any sufficiently large time n except with polynomially small probability
in n. If the corruption rate is at most c then the scheme correctly decodes a prefix of size c1 log n of
each one of the strings xk with k ∈ {d εn/4

log εn/4e, . . . , d
(1−c−ε)n

log(1−c−ε)ne}. Moreover, up to time n the encoding

scheme assumes knowledge of only strings xk with k ≤ n/ log n.

Let 0 ≤ c < 1 and 0 < ε < (1− c)/2 be fixed parameters of the protocol. Let c0, c1 be some constants which depend

on c and ε. Let T be a tree code over alphabet [S + 1] with distance α to be set later.

Aeff Encoding: For every k > 0 set countk = 0.
At any time n > 1, repeat the following process for j = 1, 2, . . . , c0:

(a) randomly choose k ∈ {1, . . . , bn/ log nc}.
(b) set countk = countk + 1.
(c) transmit yn,j ∈ [S + 1], the next symbol of the encoding of xk using T , that is, the last symbol of

TCenc(xk
1 · · ·xk

countk
) = TCenc(xk

1 · · ·xk
countk−1) ◦ yn,j .

Aeff Decoding: For every (i, j) ∈ N × [c0] we denote by ID(i, j) the identifier k of the string xk used at
iteration (i, j). For each time n, mark all the transmissions yi,j with i < εn/4 as erasures, and decode xk

for d εn/4
log εn/4e ≤ k ≤ d

(1−c−ε)n
log(1−c−ε)ne:

let Yk = {(i, j) | ID(i, j) = k}. Decode the received string indexed by Yk. That is, set

x̂k = TCdec(y|Yk
),

where y|Yk
is the string given by concatenating all yi,j with (i, j) ∈ Yk, where yi,j comes before yi′,j′ if i < i′

or (i = i′)∧(j < j′). Consider a prefix of length c1 log n of x̂k and ignore the rest. Set xi = Majorityk,r{x̂k
r}

for all the k, r such that xk
r is xi, with d εn/4

log εn/4e ≤ k ≤ d
(1−c−ε)n

log(1−c−ε)ne and r < c1 log n.

Protocol 1: An efficient protocol for communicating a logarithmic prefix of {x1,x2, . . . , }.

In Appendix A.1 we show that Protocol 1 concatenated with a Blueberry code B : [S + 1]∗ →
[L+ 1]∗ satisfies the requirements of Proposition 4.5. We show that with high probability, Θ(log n)

symbols of TCenc(xk) are transmitted by time n for every k in the rangeKn , {d εn/4
log εn/4e, . . . , d

(1−c−ε)n
log(1−c−ε)ne}.

Moreover, at least a constant fraction of these transmissions were not corrupted by the adversary.
Therefore, we can use Proposition 4.4 to decode a prefix of length O(log n) of each of the codewords
in Kn, with high probability.

The remaining hurdle is to split the stream x1, x2, . . . into words {x1,x2, . . .}. In Appendix A.2 we
show how to construct the set {x1,x2, . . .} such that for any time n, the entire prefix x1, . . . , x(1−c−ε)n

9

appears in a c1 log n-prefix of strings {xk} with k ∈ Kn. This gives an efficient (cn, (1− c)n −
εn, 2−Ω(logn))-authentication scheme and completes the proof of Theorem 4.2.

4.2 Extensions

There are several possible extensions to the above results, which we briefly describe here.

Efficient streaming authentication scheme with exponentially small error. It is possible
to improve the efficient scheme of Theorem 4.2 so that it aborts with polynomially small probability,
however, given that it did not abort, the probability that the decoded prefix is incorrect is exponentially
small. More accurately, the ‘trust’ Bob has in the decoded string increases with the amount of received
transmissions. Thus, except for the last fraction of the stream, the decoded stream is equal to the one
sent by Alice with overwhelming probability.

Theorem 4.6. For any 0 ≤ c < 1, 0 < ε ≤ 1
2(1−c) there exists an efficient (cn, (1−c)n−εn, 2−Ω(logn))-

streaming authentication protocol that, for any time n in which the decoding procedure did not abort,
for any 1 ≤ ` ≤ (1− c− ε)n it holds that

Pr[x′` 6= x`] < 2−Ω(n).

See proof in Appendix B.

Decoding a prefix longer than (1− c)n. Although in the worst case our scheme decodes a prefix
of length at most (1 − c)n, in many situations the (successfully decoded) prefix can be longer. The
worst case, as demonstrated by Theorem 4.3, happens when the adversary blocks the suffix of the
transmitted stream. On the other hand, if the adversary blocks the prefix of the transmissions, then
the scheme of Proposition 4.4 correctly decodes the entire stream! In fact, the protocol succeeds to
decode the entire prefix for any time n that satisfies the following γ-suffix condition, if the tree distance
satisfies α > γ.

Definition 4.7. For any constant 0 ≤ γ < 1, we say that time n satisfies the γ-suffix condition if any
suffix xt . . . xn has at most γ(n− t) corrupted transmissions.

Definition 4.8. Let c < 1 and γ ∈ (c, 1) be given. For any time n let Nγ(n) be the latest index that
satisfies the γ-suffix condition. When n is clear from the context, we denote Nγ(n) simply as Nγ.

The following Lemma guarantees that, for any γ ∈ (c, 1) it holds that (1− c/γ)n ≤ Nγ(n) ≤ n.

Lemma 4.9. For every corruption rate c and constant 1 < ξ < 1/c there exist a time t > (1 − 1
ξ)n

that satisfies the cξ-suffix condition.

See proof in Appendix D.
For a corruption rate c and any ε > 0, and for any time n, if the decoding algorithm did not decode

up to time n it means that n did not satisfy the suffix condition for γ = c/(c+ ε) (see formal proof in
Appendix D), but then, by Lemma 4.9, there must exists a time Nγ > (1− c− ε)n that satisfies the
γ-suffix condition, and at that time the protocol correctly decoded the entire stream (up to time Nγ).
Bob does not know the value of Nγ but he can estimate it by checking the amount of erasures marked
by the Blueberry code.

Proposition 4.10. Bob can efficiently compute a (lower-bound) estimation N ′γ for Nγ, such that
N ′γ > (1− c− ε) and

Pr[N ′γ > Nγ] < 2−Ω(N ′γ−Nγ).

See appendix D for proof and discussion.

10

Reducing the amount of shared randomness. Our schemes rely on the fact that the parties
share a secret random string whose length increases with the size of the information to be communi-
cated. This assumption is sometimes not satisfied in practical applications, especially when considering
a multiparty setting in which any two parties run a separate instance of the scheme.

We can mitigate the need for a long shared randomness if the adversary is assumed to be poly-
nomial, assuming standard cryptographic assumptions (specifically, hardness of DDH). To this end,
each user generates a pair (sk, pk) of a secret and a public key, broadcasts the public key pk and
keeps sk secret. When two users initiate an authentication scheme instance, they first perform a
Diffie-Hellman [DH76] key exchange and obtain an authentication key. They both use the authen-
tication key as a seed to a pseudo-random-generator that generates a long random string for the
authentication scheme. Under the DDH assumption, a polynomially-bounded adversary does not
have any non-negligible information about the authentication key nor the generated randomness, and
the authentication scheme remains secure. See Appendix C for more details and a proof sketch.

5 Interactive Computation

In this section we extend our discussion to the 2-way communication model of interactive communica-
tion. We show that for adversarial change rate 1/2 or higher, no constant-rate protocol can compute
functions that require interaction between the parties, while with the usage of the Blueberry code we
show how to construct a protocol for any function assuming adversarial corruption rate below 1/2.
We begin by defining the the interactive communication model.

The Interactive-Communication Model. Assume that Alice and Bob wish to compute some
function f : X × Y → Z, where Alice holds x ∈ X and Bob holds y ∈ Y in the shared-randomness
model. The computation is performed interactively: at each round, both parties communicate a
message which depends on their input and previous transmissions. At the end of the computation
Alice outputs zA ∈ Z and Bob outputs zB ∈ Z, and we say that f was correctly computed if
zA = zB = f(x, y). Without loss of generality we assume the output is a single bit, |Z| = 2.

We show the following separation theorem,

Theorem 5.1. For any function f which depends on both x and y, the following holds. If the adver-
sarial corruption rate is 1

2 or higher then no constant rate interactive protocol correctly computes f
with probability higher than the probability to guess f(x, y) given only the input x (or only the input y).

Theorem 5.2. For any constants ε > 0 and for any function f and inputs x, y, there exists an
interactive protocol with constant overhead such that if the adversarial corruption rate is at most
c = 1

2 − ε, the protocol outputs f(x, y) with overwhelming probability over the shared random string R.

The proofs follow methods from [BR11] extended to handle channel erasures.

Proof. (Theorem 5.1) Assume that the protocol takes T rounds. Furthermore, recall that in our
model it is assumed that at each round both parties send exactly one message.4 Hence and without
loss of generality, Alice is the sender of at most T/2 of the transmissions. Eve corrupts all the

4The proof also holds for protocols for which there exists a function Next(i) which defines, for each round i, which of
the parties sends a message, and is independent of the messages sent by now (these kind of protocols are called oblivious
in [BR11]). In that case there exists one party that communicates at most T/2 messages at rounds known to Eve in
advance.

On the other hand, the proof does not hold for the most general model, in which the protocol adaptively determines
who is next to speak, possibly according to the noise observed so far (so that the party that suffers from higher noise
rate wil get more transmission slots, etc.)

11

transmissions originated by Alice (causing at least an erasure in each one of these transmissions).
Effectively, the unidirectional channel from Alice to Bob has a zero capacity, and it cannot be that
the Bob correctly computes f(x, y) with probability higher than guessing f(x, y) given only y.

It is interesting to note that if f only depends on one of its inputs, then only 1-way communication
is required and c = 1

2 is no longer a limit, as discussed in Section 4.

We now construct a protocol that correctly computes any f(x, y) with overwhelming probability as
long as the adversarial corruption rate is 1

2−ε for ε > 0. To this end, we concatenate an online protocol
for computing f(x, y) over an adversarial noisy channel [Sch96, BR11, GMS11] with a Blueberry code.

Let us recall how to construct a constant-rate protocol for computing f(x, y) over a noisy channel
out of an interactive protocol π for the same task that assumes a noiseless channel [BR11]. We assume
that π consists of T rounds in which Alice and Bob send a single bit according to their input and
previous transmissions. Without loss on generality, we assume that Alice sends her bits at odd rounds
while Bob transmits at even rounds. We can view the computation of π as a root-leaf walk along a
binary tree in which odd levels correspond to Alice’s messages and even levels to Bob’s, see Figure 2.

root

0 1

0

0 1

1

0

0 1

0

0 1

1

1
Alice

Bob

Alice

Figure 2: A π-tree showing the path P (bold edges) taken by Alice and Bob for computing f(x, y). Dashed edges
represents the hypothetical reply of Alice and Bob given that a different path P ′ was taken (when such replies are
defined).

In order to obtain a protocol that withstands (a low rate of) channel noise, Alice and Bob simulate
the construction of path P along the π-tree. The users transmit edges of P one by one, where each user
transmits the next edge that extends the partial path transmitted so far.5 This process is repeated for
N = dT/(1−α)e times, for some constant α < 1 to be set later. In [BR11] it is shown that unless the
noise rate exceeds 1/4, after N rounds both parties will decode the entire path P with overwhelming
probability. We refer the reader to [BR11] for a full description of the protocol and correctness proof.
We now extend the analysis for the case of channel with noise and erasures.

To simplify the explanation, assume that each transmission is over the alphabet Σ = {0, . . . , N}×
{0, 1}≤2. Intuitively, the transmission (e, s) ∈ Σ means “extend the path P by taking at most two steps
defined by s starting at the child of the edge I have transmitted at transmission number e”. Although
this alphabet is not of constant size, it is easy to obtain a constant size alphabet by encoding each
(e, s) into a delimited binary string (see Section 6 in [BR11]). Each symbol (e, s) is communicated
to the other side via a |Σ|-ary tree code with distance α and alphabet Γ, that is at time n Alice
sends an ∈ Γ, the last symbol of TCenc((e, s)1, . . . , (e, s)n) = a1a2 · · · an, and Bob receives ãn ∈
Γ ∪ {⊥}, possibly with added noise or an erasure mark (similarly, Bob sends bn ∈ Γ, and Alice

5 The users transmit ⊥ when they do not know how to extend P based on current information.

12

receives b̃n). Let TCdec(ãn, . . . , ãn) denote the string Bob decodes at time n (similarly, Alice decodes
TCdec(b̃1, . . . , b̃n)). For every i > 0, we denote with m(i) the largest number such that the first m(i)
symbols of TCdec(ã1, . . . , ãi) equal to a1, . . . , am(i) and the first m(i) symbols of TCdec(b̃1, . . . , b̃i) equal
to b1, . . . , bm(i).

Define N (i, j) to be the “effective” number of adversarial corruptions in interval [i, j]: the number
of erasures plus twice the number of errors in the [i, j] interval of the simulation (for both users).

Definition 5.3. Let Na(i, j) = |{k | i ≤ k ≤ j, ãk = ⊥}| + 2|{k | i ≤ k ≤ j, ãk /∈ {ak,⊥}}|, and
similarly define Nb(i, j). The effective number of corruptions in interval [i, j] is N (i, j) = Na(i, j) +
Nb(i, j).

We begin by showing that if m(i) < i then many corruptions must have happened in the interval
[m(i) + 1, i].

Lemma 5.4. N (m(i) + 1, i) ≥ α(i−m(i)).

Proof. Assume that at time i Bob decodes the string a′1, . . . , a
′
i. By the definition ofm(i), a′1, . . . , a

′
m(i) =

a1, . . . , am(i), and assume without loss of generality that a′m(i)+1 6= am(i)+1. Note that the Hamming

distance between TCenc(a1, . . . , ai) and TCenc(a′1, . . . , a
′
i) must be at least α(i−m(i)). It is immediate

then that for Bob to make such a decoding error, Na ≥ α(i−m(i)).

Lemma 5.5 ([BR11]). Let t(i) be the earliest time such that both users announced the first i edges
of P within their transmissions. For i ≥ 0, k ≥ 1, if t(k) > i+ 1, then t(k − 1) > m(i).

Proof. The proof is taken from [BR11]: Without loss of generality, assume that the kth edge of P
describes Alice’s move. Suppose t(k − 1) ≤ m(i) and t(k) > i+ 1. Then it must be the case that the
first k−1 edges of P have already been announced within the first m(i) transmissions of both parties,
yet the kth edge has not. By the protocol definition, Alice will announce this edge at round i+ 1, in
contradiction to our assumption that t(k) > i+ 1.

Next we show that if at some time i the length of the proposed P is not long enough (less then k),
then many transmissions must have been corrupted.

Lemma 5.6. For i ≥ −1, k ≥ 0, if t(k) > i+ 1, then N (1, i) ≥ α(i− k + 1).

Proof. We prove by induction. The claim vacuously holds for k = 0 and trivially holds for i ≤ 0 since
N (1, i) is non-negative. Otherwise, we have

N (1, i) = N (1,m(i)) +N (m(i) + 1, i).

The second term, by Lemma 5.4 gives N (m(i) + 1, i) ≥ α(i −m(i)). For the first term, Lemma 5.5
suggests that t(k−1) > m(i) and we can use the inductive hypothesis with i′ = m(i)−1 and k′ = k−1
to get

N (1,m(i)) ≥ N (1, i′) ≥ α(i′ − k′ + 1) = α(m(i)− k + 1).

The above Lemmas allow us to complete the proof of Theorem 5.2 by showing that if the simulation
of P failed, there must have been “too many” corruptions.

Proof. (Theorem 5.2) Assume an unsuccessful run of the simulation protocol. That is, the simulation
of the path P has failed, m(N) < t(T). The number of adversarial corruptions throughout the protocol

13

is given by N (1, N) = N (1,m(N)) +N (m(N) + 1, N) which by Lemma 5.6 and Lemma 5.4 is lower
bounded by

N (1, N) ≥ α(m(N)− T + 1) + α(N −m(N)) ≥ α(N − T) ≥ α(N − (1− α)N) = α2N .

Yet, assume the adversary is restricted to corrupt at most c = 1/2 − ε fraction of the 2N = 2d T
1−αe

transmissions, then Lemma 3.4 guarantees that with overwhelming probability there will be at least
2cN(1− 2S/L) erasures, assuming a Blueberry code B : [S + 1]∗ → [L+ 1]∗ (here, S + 1 = |Γ|). This
implies that with overwhelming probability N (1, N) ≤ 2cN(1 + 2S/L). For any 0 < ε ≤ 1/2 we can
choose constants α < 1 and L > S such that α2 > (1− 2ε)(1 + 2S/L) and conclude that the protocol
succeeds with overwhelming probability over the shared randomness.

References

[BK12] Zvika Brakerski and Yael Tauman Kalai. Efficient interactive coding against adversarial
noise. Electronic Colloquium on Computational Complexity (ECCC), 2012. TR12-043.

[Bon63] C. Bonsall. The case of the hungry stranger. HarperCollins, 1963.

[BR11] Mark Braverman and Anup Rao. Towards coding for maximum errors in interactive com-
munication. In Proceedings of the 43rd annual ACM symposium on Theory of computing,
STOC ’11, pages 159–166, New York, NY, USA, 2011. ACM.

[Bra12] Mark Braverman. Towards deterministic tree code constructions. In Proceedings of the
3rd Innovations in Theoretical Computer Science Conference, pages 161–167. ACM, 2012.

[DH76] W. Diffie and M. Hellman. New directions in cryptography. Information Theory, IEEE
Transactions on, 22(6):644 – 654, nov 1976.

[EGM90] Shimon Even, Oded Goldreich, and Silvio Micali. On-line/off-line digital signatures. In
Gilles Brassard, editor, Advances in Cryptology — CRYPTO ’89 Proceedings, volume 435
of Lecture Notes in Computer Science, pages 263–275. Springer Berlin / Heidelberg, 1990.

[GM01] P. Golle and N. Modadugu. Authenticating streamed data in the presence of random
packet loss. In ISOC Network and Distributed System Security Symposium, NDSS’01,
2001.

[GMS11] Ran Gelles, Ankur Moitra, and Amit Sahai. Efficient and explicit coding for interactive
communication. In Foundations of Computer Science (FOCS), 2011 IEEE 52nd Annual
Symposium on, pages 768–777, oct. 2011.

[Gol04] Oded Goldreich. Foundations of cryptography. Vol II: Basic applications. Cambridge
University Press, New York, 2004.

[GR97] Rosario Gennaro and Pankaj Rohatgi. How to sign digital streams. In Burton Kaliski, ed-
itor, Advances in Cryptology — CRYPTO ’97, volume 1294 of Lecture Notes in Computer
Science, pages 180–197. Springer Berlin / Heidelberg, 1997.

[GS10] Venkatesan Guruswami and Adam Smith. Codes for computationally simple channels:
Explicit constructions with optimal rate. Foundations of Computer Science, IEEE Annual
Symposium on, 0:723–732, 2010.

14

[HO08] Brett Hemenway and Rafail Ostrovsky. Public-key locally-decodable codes. In David
Wagner, editor, Advances in Cryptology – CRYPTO 2008, volume 5157 of Lecture Notes
in Computer Science, pages 126–143. Springer Berlin / Heidelberg, 2008.

[HOSW11] Brett Hemenway, Rafail Ostrovsky, Martin Strauss, and Mary Wootters. Public key lo-
cally decodable codes with short keys. In Leslie Goldberg, Klaus Jansen, R. Ravi, and
José Rolim, editors, Approximation, Randomization, and Combinatorial Optimization.
Algorithms and Techniques, volume 6845 of Lecture Notes in Computer Science, pages
605–615. Springer Berlin / Heidelberg, 2011.

[Lan04] Michael Langberg. Private codes or succinct random codes that are (almost) perfect. In
Proceedings of the 45th Annual IEEE Symposium on Foundations of Computer Science,
FOCS ’04, pages 325–334, Washington, DC, USA, 2004. IEEE Computer Society.

[Lip94] Richard Lipton. A new approach to information theory. In Patrice Enjalbert, Ernst Mayr,
and Klaus Wagner, editors, STACS 94, volume 775 of Lecture Notes in Computer Science,
pages 699–708. Springer Berlin / Heidelberg, 1994.

[MPSW05] Silvio Micali, Chris Peikert, Madhu Sudan, and David Wilson. Optimal error correction
against computationally bounded noise. In Joe Kilian, editor, Theory of Cryptography, vol-
ume 3378 of Lecture Notes in Computer Science, pages 1–16. Springer Berlin / Heidelberg,
2005.

[MS01] S. Miner and J. Staddon. Graph-based authentication of digital streams. In Security and
Privacy, 2001, IEEE Symposium on, pages 232 –246, 2001.

[PCTS00] A. Perrig, R. Canetti, J.D. Tygar, and Dawn Song. Efficient authentication and signing of
multicast streams over lossy channels. In Security and Privacy, 2000, IEEE Symposium
on, pages 56 –73, 2000.

[Pec06] Marcin Peczarski. An improvement of the tree code construction. Information Processing
Letters, 99(3):92–95, 2006.

[Sch92] Leonard J. Schulman. Communication on noisy channels: a coding theorem for computa-
tion. Foundations of Computer Science, Annual IEEE Symposium on, 0:724–733, 1992.

[Sch93] Leonard J. Schulman. Deterministic coding for interactive communication. In STOC ’93:
Proceedings of the twenty-fifth annual ACM symposium on Theory of computing, pages
747–756, New York, NY, USA, 1993. ACM.

[Sch96] Leonard J. Schulman. Coding for interactive communication. IEEE Transactions on
Information Theory, 42(6):1745–1756, 1996.

15

APPENDIX

A Construction of an Efficient Authentication Scheme

A.1 Proof of Proposition 4.5

In this appendix we show that the concatenation of Protocol 1 with a Blueberry code [S+1]∗ → [L+1]∗

satisfies the conditions of Proposition 4.5. We begin by showing that for any time n, if we look at k’s
which are not too close to the start or to the end, that is, k’s in Kn = {d εn/4

log εn/4e, . . . , d
(1−c−ε)n

log(1−c−ε)ne},
then every string xk is selected by the encoding scheme Θ(log n) times in expectation. In addition, a
constant fraction of a specific tree’s transmissions is received intact, while the the expected number of
error is a smaller fraction, controlled by the choice of the constant L. Therefore, a logarithmic prefix
of the string xk can be decoded with high probability.

Lemma A.1. Let c, ε be given. For a given time n and for every k ∈ Kn,

1. the expected number of transmissions (i, j) with ID(i, j) = k is Θ(c0 log n).

2. if the corruption rate is at most c, then the expected number of transmissions with ID(i, j) = k
not corrupted by the adversary is Θ(c0 log n) and the expected number of errors is Θ(c0 log n/L).

Proof. Fix a k ∈ Kn, and recall that Yk = {(i, j) | ID(i, j) = k}. It is easy to verify that

Pr
(
(i, j) ∈ Yk

)
=

0 i/ log i < k
1⌊
i

log i

⌋ i/ log i ≥ k ,

where the probability is over the shared randomnessR. Assume that the channel’s (Eve’s) noise pattern
is P = p1, . . . , pcn, with pi ∈ [n] × [c0]. First let us bound the number of erroneous transmissions of
symbols from Yk. For a specific instance of the scheme, let

ERRk =
∣∣{(i, j) ∈ Yk | ỹi,j is an error

}∣∣ .
We are interested in the (adversarial) corruption pattern that maximizes the expected number of these
errors,

max
P

E [ERRk] .

Since the decoding process ignores the first εn/4 transmissions, and since the expected number of
errors is a S

L -fraction of the corrupted transmissions in Yk, this equals to

max
p

E
[
S
L

∣∣{(i, j)
∣∣ ID(i, j) = k, i > εn/4 and ỹi,j 6= yi,j

}∣∣] ,

where the expectation is over the shared randomness R. Note that Pr((i, j) ∈ Yk) is monotonically
decreasing for i ≥ t(k), and zero otherwise. The pattern P that maximizes Eve’s probability to hit
transmissions in Yk is P◦ , {t(k), t(k) + 1, . . . , t(k) + cn}. However, the decoding algorithm ignores
the first εn/4 indices and Eve has no use in attacking them. Therefore, if P◦ ∩ [εn/4] 6= ∅, Eve’s best
strategy is to shift her attack to the window P = {bεn/4c, bεn/4c+ 1, . . . , d(ε/4 + c)ne}.

max
P

E [ERRk] = max
P

S

L

∑
(i,j)∈P

Pr
(
(i, j) ∈ Yk

)
≤ c0S

L

cn+t(k)∑
i=t(k)

1
i

log i − 1
≤ c0S

L

cn+t(k)∑
i=t(k)

log i

i− log i

<
c0S log n

L

n∑
i=εn/4

1

i− log i
<
c0S log n

L

n∑
i=εn/4

1

c′′i
=
c0S log n

c′′L
(Hn −Hεn/4)

16

where the first inequality on the second line applies to both cases of empty and non-empty P◦∩ [εn/4],
and c′′ is some constant c′′ < 1 such that c′′i ≤ i− log i for i ≥ εn/4, for a sufficiently large n. Hn is the
nth Harmonic number, and it holds that 0 < Hn− ln(n) < 1. We get maxP E [ERRk] = O(c0 log n/L).

On the other hand, we can lower bound the amount of uncorrupt transmissions in Yk. In a similar
way to the above we define INTACTk =

∣∣{(i, j) ∈ Yk
∣∣ ỹi,j = yi,j

}∣∣ , and wish to lower bound the
quantity minP E [INTACTk]. It is easy to verify that Eve’s strategy from above is optimal for this case
as well, thus

min
P

E [INTACTk] ≥min
P

∑
(i,j)/∈P
i>εn/4

Pr
(
(i, j) ∈ Yk

)
≥

n∑
i=(c+ε/4)n+t(k)

c0 log i

i

≥c0

(
(1− c− ε/4)n− t(k)

) log((c+ ε/4)n+ t(k))

n
,

which is Ω(c0 log n) for t(k) ≤ (1− c− ε)n, hence the claim holds for k ≤ (1− c− ε)n/ log(1− c− ε)n.
Finally, define TOTALk = |Yk| to be the total amount of transmissions with ID(i, j) = k (erasures,

errors, and intact). The expected amount of this quantity is at least

E[TOTALk] ≤ c0

n∑
i=εn/4

log i

i− log i
≤ c0

n∑
εn/4

log i

c′′i
≤ c0 log n

c′′
(Hn −Hεn/4) = O(c0 log n)

with some small constant c′′ < 1 for a sufficiently large n. The sum begins from εn/4 since xk is
declared only at time t(k) ≥ εn/4, if k ≥ εn/4 log(εn/4). Since the number of intact transmissions is
Ω(c0 log n), the total amount of transmission is lower-bounded by the same quantity, thus E[TOTALk] =
Θ(c0 log n).

Lemma A.2. Let c, ε be given. If, for time n, at most cn of the transmissions were corrupted,
then there exist constants c0, L and a constant distance α such that for every constant c1 > 0, the
first c1 log n elements of any xk with k ∈ {d εn/4

log εn/4e, . . . , d
(1−c−ε)n

log(1−c−ε)ne} are correctly decoded with
polynomial computational effort, except with polynomially small probability over the shared randomness

Proof. At time n, assume maxk∈Kn E[TOTALk] < CT log n and mink∈Kn E[INTACTk] > CI log n, and
define β = CI/CT . Note that β is independent of n and c1. Denote by BAD1 the event that there
were too many erasures and errors for the kth codeword, i.e. INTACTk/TOTALk < β/2, and by BAD2

the event that there were not enough transmissions for the kth codeword, TOTALk <
2c1
β log n.

By an appropriate choice of c0 = O(c, ε, c1, 1/β), we can bound the probability of any bad event
to be polynomially small. For large enough c0 we can assure that E[TOTALk] >

4c1
β log n, and thus by

Chernoff, Pr[BAD2] ≤ 2−Ω(logn). Furthermore, a union bound gives

Pr[BAD1] < Pr[TOTALk >
√

2CT log n] + Pr[INTACTk <
1√
2
CI log n],

and by Chernoff inequality,

Pr[BAD1] ≤ 2−Ω(E[TOTALk]) + 2−Ω(E[INTACTk]) = 2−Ω(logn).

Conditioned on the fact that BAD1 and BAD2 did not occur, we know that n∗ > 2c1
β log n symbols

of TCenc(xk) were transmitted, and the adversary has corrupted at most c∗ < (1 − β/2) fraction of
these transmissions. Proposition 4.4 suggests that for an appropriate choice of constant L, we are able
to decode a prefix of length at least ≈ (1 − c∗)n∗ = c1 log n except with probability exp(−Ω(n∗)) =
exp(−Ω(log n)). A union bound over all the possible k ∈ Kn completes the proof.

As for the efficiency, since each codeword is of length O(log n), decoding via exhaustive search can
be performed with polynomial computational effort. Hence, it is easy to verify that both the encoding
and decoding can be done efficiently.

17

A.2 Construction of {x1,x2, . . .}

For every k, define xk to be the string that contains the stream prefix xt(k) downto x1 concatenated

with as many zeros as needed, xk = xt(k)xt(k)−1 · · ·x2x1000 · · · , where t(k) is defined to be the minimal

time such that t(k)/ log t(k) > k. We say xk is declared at time t(k), meaning that only from this time
and on the algorithm may choose to send symbols of the encoding of xk. It is easy to verify that the
string xk is well defined at the time it is declared (the corresponding xi are known).

If some string xk is declared at time t(k) then xk+1 will be declared at time t(k + 1) ≈ t(k) +
log t(k) +O(log log t(k)). By setting c1 = 2 we are guaranteed that, for every εn/4 ≤ ` ≤ (1− c− ε)n,
x` appears in a correctly decoded c1 log n-prefix of some xk with k ∈ Kn.

Lemma A.3. If xk is the latest string declared at time i > 8, then xk+1 is declared at time sooner
than i+ 2 log i.

Proof. Let f(i) = i+2 log i
log(i+2 log i) −

i
log i . f is monotonically increasing, and f(8) > 1.

Corollary A.4. For any time n > 8, and any `, the bit x` is within the first 2 log n symbols
of xd`/ log `e. Hence, every x` with εn/4 ≤ ` ≤ (1− c− ε)n, appears in a 2 log n-prefix of (at least) one
of the strings {xk}k∈Kn.

Unfortunately, only part of the stream, namely xεn/4, . . . , x(1−c−ε)n, is decoded by the above choice

of xks. In order to communicate the prefix x1, . . . , xεn/4 we run another instance of the scheme
guaranteed by Proposition 4.5 for the following set of infinite strings {v1,v2, . . .}. (We explain how
to combine these two instances below). Define vk in the following way

vki =

x1 k = 1, ∀i
x1+(` mod dt(k)/2e+1) k > 1, i = 1 and vk−1

2 log t(k−1) = x`

x1+(` mod dt(k)/2e+1) k > 1, i > 1 and vki−1 = x`

It is easy to verify that at time n, the string vbn/ lognc is well defined and known to the encoder.

Lemma A.5. For every time n > 256/(1 − c − ε), any bit x` with 1 ≤ ` ≤ εn/4 appears in a
2 log n-prefix of (at least) one of the strings {vk}k∈Kn

Proof. Note that the concatenation of O(log n)-prefix of the vks gives a string of the form V ,
x1x2 . . . xdt(k1)/2ex1x2 . . . xdt(k2)/2ex1x2 . . ., and V is decoded by Protocol 1 with high probability.6 By
taking c1 = 2 and recalling that ε < (1−c)/2, (and thus, (1−c−ε)n/4 > εn/4) the length of V is lower
bounded by the amount of indices in prefixes of size 2 log 1

4(1− c− ε)n of {v(1−c−ε)n/4, . . . ,v(1−c−ε)n},

2 log
1

4
(1− c− ε)n

(
(1− c− ε)n

log(1− c− ε)n
−

1
4(1− c− ε)n

log 1
4(1− c− ε)n

)
≥ 3

2
(1− c− ε)n− 4

(1− c− ε)n
log(1− c− ε)n

≥ (1− c− ε)n

where the last inequality holds for n > 256
1−c−ε . Consider the latest place in V where x1 appears. If that

place is at least (1− c− ε)/4 indices from the end of V , it is clear that x1 . . . x(1−c−ε)/4 appears in the
(1− c− ε)/4-suffix of the decoded V . For the other case, let the bit that precedes this x1 be x`. By
the way we defined vk it follows that 3

8(1− c− ε) ≤ ` ≤ 1
2(1− c− ε) which means that x1 . . . x(1−c−ε)/4

must appear in a prefix of size 3/4 · (1− c− ε)n of V . Since (1− c− ε)/4 > εn/4, the claim holds.

6To be more accurate, V is a substring of the string decoded by the scheme.

18

One cannot run Protocol 1 twice, once for {x} and once for {v}. Indeed, Eve can block all the
transmissions of one of the instances, thus prevent the correct decoding of the stream with probability
one, while her corruption rate does not exceed c = 1/2. One possible solution is to set c1 = 4 and
interleave the transmitted data, that is, define the set {z1, z2, . . .} where zk = xk1vk1xk2vk2 . . ., etc.

Corollary A.6. Let c, ε be constants 0 ≤ c < 1, 0 < ε ≤ (1− c)/2, and let B be a Blueberry code with
constant parameters determined by c, ε. For the strings {z1, z2, . . .} defined above, the concatenation
of Aeff with B is an efficient (cn, (1−c)n− εn, 2−Ω(logn))-streaming authentication scheme.

B Efficient Authentication Scheme with Exponentially Small Error

In this section we show how to change the scheme given by Proposition 4.5 such that the error
probability is exponentially small. That is, for any time n the decoding scheme aborts with at most
polynomially small probability in n, but on the event that the scheme did not abort, the decoded
string matches the stream sent by Alice with overwhelming probability 1− 2−Ω(n).

To this end, we add a parallel transmissions of random hash values of the entire stream (up
to time n), where the hash length is logarithmic in n.7 More formally, define an additional set
of infinite strings {h1,h2, . . . }. We identify a string a = a1a2 · · · an with the n-dimensional vector
(a1, a2, . . . , an), and define hk in the following way. Randomly pick a matrix Rk ∈ {0, 1}log t(k)×t(k)

and a vector Vk ∈ {0, 1}log t(k) and set hk = Rk · (x1, x2, . . . , xt(k))
T + Vk, concatenated with as many

zeroes as needed. The strings {hk} are interleaved with the strings {xk} and {vk}, and c1 increases
as explained in Appendix A.2.

Proposition 4.5 guarantees that except with polynomially small probability in n all the hash values
{hk}k∈Kn are correctly decoded. The decoding at time n aborts if any of the hash values {hk}k∈Kn
mismatch the corresponding prefix x1 · · ·xt(k).

Proposition B.1. Given that Protocol 1 with hash testing did not abort, let x′ be the decoded stream,
then for every ` ≤ (1− c− ε)n,

Pr
R

[x′` 6= x`] < 2−Ω(max{(1−c−ε)n−` , logn}).

Proof. Eve is oblivious of Ri and Vi, thus for any two vectors x̃ ∈ {0, 1}t(i), h̃ ∈ {0, 1}log t(i) chosen by
Eve, PrRi [h̃ = Ri · x̃T + Vi] < 2− log t(i).

Clearly, the smaller ` is, the more hash values that are checked to be consistent with the decoded x′`.
For ` > εn/4 there are at least ((1 − c − ε)n − `)/2 log n independent hash values of stream prefixes
longer than `, where the smallest hash length is ≈ log(εn/4). Hence, the probability that x′` 6= x` yet
the decoding procedure did not abort is at most

2
−Ω
(

log(εn/4)
(1−c−ε)n−`

2 logn

)
= 2−Ω((1−c−ε)n−`)).

Clearly, for ` < εn/4 there are as many hash tests as for ` = εn/4, thus the probability to incorrectly
decode x` with ` < εn/4 is exponentially small in n as well. Finally, for the case where ((1−c−ε)n−`) <
log n we note that at least one hash value must be consistent, hd(1−c−ε)n/ log(1−c−ε)ne. The probability
to incorrectly decode x` and pass the hash check is at most 2−Ω(logn), which completes the proof.

7This method is somewhat equivalent to the classic authentication method of splitting a stream into chunks of size
logn and adding a MAC of logarithmic size after each chunk.

19

The proof of Theorem 4.6 is immediate form the above Proposition.

Proof. (Theorem 4.6) Let c, ε be fixed. Perform Protocol 1 with hash testing with parameters c, ε′ =
ε/2. By Proposition B.1, every decoded x′` with ` ≤ (1− c− ε)n satisfies

Pr[x′` 6= x`] < 2−Ω((1−c−ε′)n−`) ≤ 2−Ω(εn/2).

C Computationally Secure Perpetual Authentication

For this section we assume basic knowledge of cryptographic primitives and assumptions.

Multi-Party Shared-Key Setting: The m-party shared-key setting for (c(n), γ(n), κ(n))-Streaming
Authentication is as follows. There are m parties, and parties i and j have shared random string Ri,j ,
for all 1 ≤ i, j ≤ m. The adversary may corrupt any number of parties, and learn all of their shared
random strings. The adversary may invoke any sequence of streaming authentication sessions involving
parties of his choice (for sender and receiver), messages of his choice, and transmission lengths of his
choice. If the adversary has corrupted the sender, then he may violate the encoding procedure in
an arbitrary manner. The actions of the adversary may be adaptive (e.g., corrupt some additional
parties after invoking some streaming authentication sessions, etc.), and interleaved (e.g., corrupt some
additional parties before some streaming authentication sessions have finished).

Definition C.1. A (c(n), γ(n), κ(n))-Streaming Authentication Scheme is secure in the m-party shared-
key setting if the adversary cannot induce any decoding error (as described in Definition 4.1) for any
streaming authentication session for which he has not corrupted one of the parties, except with proba-
bility at most s · κ(n), where s is the total number of sessions initiated.

Claim C.2. The efficient scheme from the proof of Theorem 4.2 is secure in the m-party shared-key
setting if the Rij are independent (proof by union bound).

Multi-Party PKI Setting: Them-party PKI setting for (c(n), γ(n), κ(n))-Streaming Authentication
is as follows. There are public parameters params← ParamGen(1λ). There are m parties, and each
party i has generated a public key pair (ei, di) ← KeyGen(params). The adversary can see all of
the public keys, and can learn any private key by corrupting that party. Otherwise, the adversary
can perform any attack as described for the multi-party shared-key setting, with the following two
differences: (1) If party i is in a streaming authentication session with party j then he uses di and
ej to compute the shared random string, and (2) the adversary is limited to computation that can
be performed in probabilistic polynomial time in λ, n,m, s, where s is the total number of streaming
authentication sessions initiated.

Definition C.3. A (c(n), γ(n), κ(n))-Streaming Authentication Scheme is computationally secure in
the m-party PKI setting if the adversary cannot induce any decoding error (as described in Defini-
tion 4.1) for any streaming authentication session for which he has not corrupted one of the parties,
except with probability at most s · κ(n), where s is the total number of sessions initiated.

Theorem C.4. The efficient scheme from the proof of Theorem 4.2 is computationally secure in the
m-party PKI setting under the Decision Diffie Hellman (DDH) assumption if ParamGen(1λ)→ g, q
where g is a generator of prime order q > 2λ; KeyGen(g, q) → (ei, di) where di ← [1 . . . q − 1] and
ei = gdi; For their `th streaming authentication session, parties i and j use Rij = Gij`(g

xixj), where
{Gij`}i,j,` is a family of pseudorandom generators.

20

Proof. (sketch) LetA be a probabilistic polynomial-time adversary that can break the (c(n), γ(n), κ(n))-
Streaming Authentication Scheme. Without loss of generality, A corrupts all but two of the m parties
during its attack. We use A to construct a ppt adversary B for the DDH problem. Let (g, u, v, w)
be a DDH challenge tuple. That is, g is a generator of order q for suitably large prime q, u = gx for
x ← [1 . . . q − 1], v = gy for y ← [1 . . . q − 1], and w = gz (where z = xy mod q with probability 1/2,
and z ← [1 . . . q − 1] with probability 1/2). Given a DDH challenge tuple, adversary B proceeds as
follows:

1. Choose i∗, j∗ ← [1 . . .m] (distinguished parties that B hopes will be targeted for attack).

2. For every party k 6= i∗, j∗, generate its public key and private key in the usual way. That is, the
private key of party k is xk ← [1 . . . q − 1], and its public key is gxk .

3. For party i∗, its public key will be u (and its private key will be unknown). For party j∗, its
public key will be v (and its private key will be unknown).

4. If party i∗ and party j∗ start their `th streaming authentication session, then run the efficient
scheme from the proof of Theorem 4.2 using the output of Gi∗j∗`(w) as the shared random string.

5. If party i∗ and party j 6= i∗ start their `th streaming authentication session, then run the efficient
scheme from the proof of Theorem 4.2 using the output of Gi∗j`(u

xj) as the shared random string.

6. If party j∗ and party i 6= i∗ start their `th streaming authentication session, then run the efficient
scheme from the proof of Theorem 4.2 using the output of Gij∗`(v

xi) as the shared random string.

7. If party i 6= i∗ and party j 6= j∗ start a streaming authentication session, then run the efficient
scheme from the proof of Theorem 4.2 using the output of Gij`(g

xixj) as the shared random
string.

8. If adversary A corrupts party k 6= i∗, j∗, then give xk to the adversary.

9. If adversary A ever attempts to corrupt party i∗ or party j∗ then halt and flip a coin to determine
if (g, u, v, w) is a valid DDH tuple.

10. If adversary A succeeds in violating the decoding condition for any streaming authentication
session involving uncorrupted parties, then determine that (g, u, v, w) is a valid DDH tuple.

11. If adversary A fails to violate the decoding condition for any streaming authentication involving
uncorrupted parties, then determine that (g, u, v, w) is not a valid DDH tuple.

Let δ be the maximum success probability of any attack against the scheme in the multi-party
shared-key setting (with independent keys). Let ε > δ be the success probability of A against the
scheme in the multi-party PKI setting. Here are the cases (and probabilities) where adversary B
makes a correct determination of whether or not (g, u, v, w) is a valid DDH tuple:

Case 1: The adversary A never corrupts i∗ or j∗, and the DDH challenge tuple is invalid. If the attack
by A fails, then B makes the correct determination about (g, u, v, w). The probability of this case
occurring is at least (2/n(n− 1))(1/2)(1− δ) = (1− δ)/((n(n− 1)).

Case 2: The adversary A never corrupts i∗ or j∗, and the DDH challenge tuple is valid. If the attack
by A succeeds, then B makes the correct determination The probability of this case occurring is at
least (2/n(n− 1))(1/2)(ε) = ε/(n(n− 1)).

21

Case 3: The adversary A attempts to corrupt i∗ or j∗, and B halts and flips a coin. If this coin
flip matches the validity of the DDH challenge tuple then B makes the correct determination. The
probability of this case occurring is (1− (2/n(n− 1)))(1/2) = 1/2− (1/(n(n− 1)).

These cases are independent, so the total probability that B makes the correct determination is the
sum of their probabilities, which is at least 1/2 + (ε− δ)/(n(n− 1)). If ε is non-negligibly greater than
δ, then B distinguishes valid from invalid DDH challenge tuples with non-negligible advantage, which
is a contradiction. This completes the proof sketch.

D The Suffix Condition

Lemma D.1. Let c and ε be given and let γ = c/(c+ε), then for the protocol given in Proposition 4.4,
and for every noise level Bob’s guessed string x′1, .., x

′
Nγ

is identical to the transmitted stream x1, .., x
′
Nγ

Proof. Assume towards contradiction that Bob recovers the stream correctly only until time t <
Nγ . Thus it follows that the errors and erasures in the [t,Nγ] suffix (e and d respectively), satisfy
α(Nγ − t) < 2e + d. However, we know that Nγ satisfies the γ-suffix condition so e + d < γ(N − t).
Except with probability 2−Ω(N−t) it holds that 2e+d < (1 + 2SL) ·γ(N − t), thus except with the same
probability, α < (1 + 2SL) c

c+ε which is a contradiction to the way we choose α.

However Bob does not know Nγ . We now show how to estimate this value.

D.1 Proof of Proposition 4.10 and Discussion

Consider the following procedure for estimating Nγ .
Let c ∈ [0, 1) be given. For an input γ ∈ (c, 1), at time n, Bob tries to find the longest suffix that
satisfies the γ-suffix condition. To this end Bob performs the following.

1. Set i = n.

2. Check all the suffixes xt, . . . , xi, with t < i.

(a) If, in all such suffixes, the number of erasures is less than γ(i− t)(1− 2SL), output N ′γ = i.

(b) Otherwise set i← i− 1 and repeat. If i < (1− c/γ)n break and output N ′γ = b(1− c/γ)nc.

Proof. (Proposition 4.10). Assume that Bob outputs N ′γ > Nγ . Since Nγ is the latest index that
satisfies the γ-suffix condition, there must exist some time t such that [t,N ′γ] has more than γ(N ′− t)
corruption, yet the number of erasures in that interval is less than γ(N ′γ − t)(1 − 2SL). This happens
with probability exponentially small in N ′γ − t. If t < Nγ then N ′γ − t > N ′γ − Nγ which proves the
claim for this case.

For the case where t > Nγ , we note that the time t does not satisfies the γ-suffix condition,
therefore there must exists some time t1 < t, such that the number of corruptions in the interval [t1, t]
is more than γ(t − t1). If t1 > Nγ , then there must exists time t2 and interval [t2, t1] that doesn’t
satisfy the γ-suffix condition. We repeat this reasoning until we find the first interval [tj , tj−1] such
that tj < N . By considering the union of all these interval, it follows that the number of corruptions
in [tj , N

′
γ] is more than γ(N ′γ − tj) > γ(N ′γ − Nγ). However, Bob estimation process found at most

γ(N ′γ − Nγ)(1 − 2SL) erasures when it examined the suffix interval [tj , N
′
γ] (otherwise, it would have

failed the check in Step 2a). By Lemma 3.4/Corollary 3.5, this happens with probability exponentially
small in (N ′γ −Nγ).

22

Bob learns a lower-bound on Nγ and it is guaranteed that x′1, ..., x
′
N ′γ

is the same as x1, ..., xN ′γ ,

maybe except for the last bits of the stream, in case N ′γ exceeds Nγ .
Bob can repeat the same procedure and compute a value N ′′γ which usually upper-bounds Nγ , by

finding the latest time i whose every suffix [t, i] has less than γ(i−t)(1− 1
2
S
L). As above, the probability

of the bad event that N ′′γ < Nγ is exponentially small in (Nγ −N ′′γ).

D.2 Proof of Lemma 4.9

Proof. Look at a suffix yt+1, . . . , yn for which the number of corruptions is strictly larger than cξ(n−t).
If no such suffix exists then the lemma is true for y1, . . . , yn. Otherwise, discard yt+1, . . . , yn, and repeat
the process with y1, . . . , yt. At each iteration we remove more than cξ(n− t) corrupted transmissions
and shorten the string by n − t symbols. Assume that the process stops with some prefix of length
L < (1− 1

ξ)n, then we have removed at least cξ(n−L) > cξ(n− n+ n/ξ) > cn corruptions which is a

contradiction. Therefore, the entire process must stop with some prefix of length at least (1− 1
ξ)n.

E Error Correction of Datastreams

Theorem E.1. For any constants c < 1/2 and ε > 0 there exists a constant-rate error-correcting
scheme for data-stream x1, x2, ... such that at any given time n the following holds. If the noise rate
until time n is at most c, the receiver outputs a guess x′1, x

′
2, ..., x

′
n and

Pr[x1, x2, . . . , x(1−2c)n 6= x′1, x
′
2, . . . , x

′
(1−2c)n] < 2−Ω(n),

that is, the receiver with overwhelming probability correctly decodes a prefix of the stream of length at
least (1− 2c)n .

Proof. Assume Alice encodes each stream symbol using TCencT () using some tree code T whose
parameters we fix shortly.

For a specific time n, consider a string x̃ ∈ {0, 1}n, such that anc(x, x̃) ≥ (2c + ε)n. Due to the
tree distance property, the Hamming distance between TCenc(x̃) and TCenc(x) is at least α(2c+ ε)n.
Assume Eve causes e errors, a maximal-likelihood decoding will correctly decode x1, . . . , xn as long
as bα(2c + ε)nc > 2e. Since Eve’s corruption rate is limited to c, we know that e ≤ cn. By setting
α > 2c

2c+ε we guarantee that α(2c+ε)n > 2e, and Bob decodes a string x̃ such that anc(x, x̃) < (c+ε)n
with overwhelming probability.

23

ECCC ISSN 1433-8092

http://eccc.hpi-web.de

