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Abstract

We consider the complexity of LS+ refutations of unsatisfiable instances of Constraint Satis-
faction Problems (CSPs) when the underlying predicate supports a pairwise independent distri-
bution on its satisfying assignments. This is the most general condition on the predicates under
which the corresponding MAX-CSP problem is known to be approximation resistant.

We show that for random instances of such CSPs on n variables, even after Ω(n) rounds
of the LS+ hierarchy, the integrality gap remains equal to the approximation ratio achieved by
a random assignment. In particular, this also shows that LS+ refutations for such instances
require rank Ω(n). We also show the stronger result that refutations for such instances in the
static LS+ proof system requires size exp(Ω(n)).

1 Introduction

We prove lower bounds for constraint satisfaction problems in the context of semidefinite program-
ming (SDP) hierarchies of Lovász and Schrijver (LS) [15]. The motivation for studying such lower
bounds arises from two settings.

First, in the context of 0-1 optimization problems, many of the natural problems are NP-complete
and so a natural strategy is to model the problem as an integer program (IP) with the desired
objective function. Next one relaxes the integer program to a linear program (LP) by allowing
fractional solutions, solves the LP optimally in polynomial time and rounds the fractional solution
to a 0-1 solution. Therefore, it is desirable that we obtain theoretical bounds on the quality of the
rounded solution with respect to the optimum and in most known cases [10] such a proof crucially
depends on the integrality gap of the LP [20, 10]. In this paper the lower bounds show that a large
integrality gap remains even when one uses certain (systematically) stronger and stronger LP and
SDP relaxations.

Second, in the context of proof complexity, one starts with some propositional formula with no
0-1 solution and hopes to show that proof systems of varying strength, from simple resolution to
extended Frege, have no short refutations for the formula (see the book [13] for a survey of this
area). The LP/SDP hierarchies we consider have been studied as proof systems (see [11] for a
survey). A refutation in the LS type proof systems typically consists of showing that a strong
enough relaxation of a convex program encoding the propositional formula contains no integer
points. The level in the hierarchy to which one needs to go to obtain this conclusion is called the
“rank” of the proof and the number of inequalities needed to deduce that the polytope has no
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integer points is called the “size” of the proof. The results in this paper may be interpreted as
lower bounds on the rank and size of refutations in various LS SDP hierarchies.

We now give some brief background on constraint satisfaction problems we study. A k-constraint
satisfaction problem (k-CSP(P)) with an underlying predicate P on {0, 1} variables is a formula
F : {0, 1}n → {0, 1} which is a conjunction of constraints of the form c := P (xi1 +bi1,c, ..., xik+bik,c),
where P : {0, 1}k → {0, 1} is the underlying predicate, xis are the variables, bi,cs are {0, 1} constants
and ‘+’ denotes addition modulo 2. Thus CNF-SAT is a constraint satisfaction problem where the
predicate is disjunction. The MAX-k-CSP(P) problem refers to the problem of finding a maximum
set of simultaneously satisfiable constraints given a k-CSP with predicate P . Clearly, CSPs are
very important in computer science as well as discrete optimization [20]. A k-CSP predicate P
is said to support a probability distribution µ : {0, 1}k → [0, 1] if µ is non-zero only on the set
P−1(1). Similarly we may define a distribution supported on a particular instance of the predicate
P i.e., a constraint. A probability distribution µc : {0, 1}k → [0, 1] supported on a constraint
c = P (xi1 + bi1 , ..., xik + bik) is balanced if ∀xi ∈ c, b ∈ {0, 1} µc(xi = b) = 1

2 and pairwise
independent if ∀xi, xj ∈ c, b, b′ ∈ {0, 1}2 µc(xi = b, xj = b′) = 1

4 . In this paper we investigate lower
bounds for LP and SDP relaxations of randomly generated CSPs for any given promise predicate
(defined below).

Definition 1.1 ([6],[3]) A promise predicate on k variables is a predicate P : {0, 1}k → {0, 1}
which supports a balanced pairwise independent distribution µ : {0, 1}k → [0, 1] on P−1(1).

Such a class of predicates was defined by Austrin and Mossel in the context of studying approx-
imation resistant predicates [3]. If it is hard to approximate the MAX-k-CSP(P) problem better
than a random assignment i.e P−1(1)

2k
then P is said to be approximation resistant. Austrin and

Mossel [3] prove that under the Unique Games Conjecture any promise predicate is approximation
resistant. Benabbas et al [6] proved that any MAX-k-CSP(P) instance on promise predicates has
an integrality gap of P−1(1)

2k
for Ω(n) rounds of the mixed hierarchy i.e. Sherali-Adams (SA) with

one round of SDP. Although Schoenebeck [17] has shown a linear rank lower bound on the Lasserre
relaxation of sufficiently expanding CSPs with XOR clauses i.e. the predicate supports a (k − 1)-
wise independent distribution, so far no other integrality gaps for MAX-k-CSP(P) with promise
predicates were known for any other SDP based hierarchy i.e. other than the mixed hierarchy. In
this paper we prove the following statement.

Theorem 1.2 Let P be a promise predicate on k variables, δ > 0 and F be a random instance of
MAX-k-CSP(P) on n variables for sufficiently large n. Then with probability exp(−O(k422k/δ4))
over the choice of F , the LS+ hierarchy has an integrality gap of 2k

P−1(1)
(1 − δ) on F even after

Ωk,δ(n) rounds. Also, with the above probability, any LS+ refutation of F requires rank Ωk,δ(n).

Observe that a LP or SDP relaxation of a MAX-k-CSP(P) instance has no constraints except that
the variables lie in [0, 1] and so in order to achieve an integrality gap of 2k

P−1(1)
one usually has

to find a (fractional) solution that satisfies all the constraints in the objective function. In such
cases one can equivalently interpret the problem of proving integrality gaps for a MAX-k-CSP(P)
instance for many rounds in some LP or SDP hierarchy as the problem of showing that the proof
system corresponding to the LP or SDP hierarchy requires large rank.

There is also a connection between such rank bounds and traditional size bounds in proof com-
plexity since Pitassi and Segerlind [16] prove size vs rank trade-offs for refutations in LP and SDP
hierarchies (like LS+). Their results imply exponential tree-like size bounds for LS+ from linear
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rank lower bounds. Pitassi and Segerlind [16] also prove trade-offs between size and rank for SA
and Lasserre proof systems1, where size is defined as the number of monomials in the refutation.
Usually the number of monomials is a weaker measure of size for geometric proof systems since
even the SA refutation of the pigeon-hole principle has an exponential number of monomials but
only a polynomial number of lifted inequalities.

While promise predicates have not been studied specifically in the context of static-LS+
2 or even

in propositional proof complexity, there have been several distantly related lower bound results for
expanding instances of CSPs for example [5, 4, 2] and [12]. In all such previous lower bounds the
following meta-theorem was true

High enough expansion + Property X =⇒ Lower bound for Proof system Y,

where we can replace the pairs X and Y in the above with sensitivity and resolution [5], binomial
ideals and Polynomial Calculus [4], and immunity and Polynomial Calculus [2]. In this paper we
(roughly) show the following kind of meta-theorem:

High enough expansion + Promise predicates =⇒ Lower bound for Static-LS+,

where our measure of size is roughly the number of lifted inequalities and has been used previously
in Grigoriev et al. [11] and Itsykson and Kojevnikov [12]. We prove the following statement.

Theorem 1.3 Let P be a promise predicate on k variables and F be a random instance of MAX-
k-CSP(P) on n variables for sufficiently large n. Then with probability exp(−O(k422k)) over the
choice of F , any static-LS+ refutation of F requires size exp(Ωk(n)).

Note that Theorem 1.3 also implies the rank bounds in Theorem 1.2 since the size lower bound
from Theorem 1.3 also implies exponential tree-like size lower bounds for LS+ [12]. Furthermore
size lower bounds in static-LS+ are incomparable to the, as yet elusive, size lower bounds for LS+.

Our techniques: In order to show our lower bounds we need to exhibit candidate fractional
solutions which survive many rounds of the LS+ hierarchy.

Proofs of lower bounds in the LS+ hierarchy can often be viewed as strategies for a prover-adversary
game, where in the candidate fractional solution, the adversary “fixes” the value of a variable at
each step and the prover is required to provide a new fractional solution consistent with this fixing.
The solutions for the fixings of all the variables can be viewed as columns of a matrix (called the
protection matrix ) and LS+ lower bounds require proving that such matrices that arise in the
proof are positive semidefinite. Our main tool in this regard is to systematically decompose the
large n × n matrix into relatively smaller matrices and show that each such matrix is positive
semidefinite. Since our instance is derived from expanders, a common theme in proof complexity,
we use expansion correction to construct the systematic decomposition for multiple rounds of LS+

hierarchy. Expansion correction was first used in this context by Alekhnovich et al. [1]. Alekhnovich
et al. also proved the matrices were positive semidefinite by using a decomposition in to simpler
matrices, but in their case these simpler matrices were positive semidefinite simply by diagonal

1In passing, we note that Pitassi and Segerlind [16] seem to view these proof systems as dynamic proof systems
as opposed to static proof systems (cf. Grigoriev et al [11]).

2A static proof system gives the refutation in one-shot as opposed to a dynamic proof system which gradually
builds the refutation [11]. For example the Nullstellensatz maybe viewed as a static version of the Polynomial Calculus
and Sherali-Adams as a static version of the Lovász-Schrijver proof system (cf. [11, 19]).
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dominance. In this paper we crucially use properties of the “locally consistent distributions of
partial assignments to variables” as defined by Benabbas et al. [6] to show that our fractional
solutions satisfy semidefiniteness constraints. This is interesting because positive semidefiniteness
is a global property and previous papers used the local consistency property only to show fractional
solutions for LP hierarchies without many rounds of positive semidefiniteness constraints [6, 9].

Our size bound for static-LS+ proof systems also requires proving certain related matrices are
positive semidefinite and crucially uses the tools developed in the rank lower bound argument. We
think that a similar approach may be useful with (as yet elusive) more general lower bounds for
the stronger Lasserre hierarchy.

A brief walkthrough of the paper follows. In Section 2 we restate the basic definitions for hierarchies,
proof systems and their related parameters. Section 3 is divided into four subsections. In Section 3.1
we revisit the notion of expansion correction from [1] and [6]. In Section 3.2 we define our family
of measures, prove they are locally consistent and show some useful properties for these measures.
In Section 3.3 we prove the rank lower bound and integrality gap results for LS+ using the prover
adversary technique. We extend the lemmata from this section to prove the size lower bound for
static-LS+ in Section 3.4 Finally, in Section 4 we sketch how to generalize Theorems 1.2 and 1.3
to the case of almost all random instances of CSPs with promise predicates.

2 Basic Formalism

We briefly recap some of the necessary basic definitions. More details about basic convex optimiza-
tion concepts like cones, polytopes, linear and semidefinite programming are discussed in [7]. We
assume some familiarity with linear and semidefinite programming hierarchies especially lift and
project hierarchies. Details about these are discussed in the surveys [14, 10].

Lovász and Schrijver [15] introduced the LS+ lift and project hierarchy as a tool to generate
successively tighter relaxations of combinatorial optimization problems. Starting with the polytope
K ∈ Rn (say) of an initial linear relaxation for the problem, the hierarchy generates progressively
tighter relaxations. The definition of LS+ [15] uses the homogenized cone K̃ defined as K̃ :=
{(λ, λx1, . . . , λxn) | λ > 0, (x1, . . . , xn) ∈ K}. The polytope K corresponding to the homogenized
cone K̃ is simply obtained by intersecting it with the hyperplane x0 = 1.

Definition 2.1 ([15]) Given a convex cone K̃ in Rn+1 define the cone M(K̃1) (the lifted LS+

cone) as the cone consisting of all (n+ 1)× (n+ 1) matrices Y in R satisfying the conditions:

1. Y is symmetric and positive semidefinite.

2. ∀i, Yii = Yi0.

3. Yi ∈ K̃, Y0 − Yi ∈ K̃ ∀1 ≤ i ≤ n.

Here Yi denotes the ith column of the matrix Y . Let N+(K̃) denote the projection Y e0 of M(K̃).
Define N+(K̃) (or simply N+(K) = N+(K̃) ∩ (x0 = 1)) as the cone (polytope) obtained after a
single LS+ lift and project step.

In proof complexity one typically starts with a formula which is a negation of some tautology and
encodes the formula as a system of inequalities in [0, 1]n [11]. The LS+ rank of an unsatisfiable
(in {0, 1}n) set of inequalities given by the cone K̃ is the minimum value of r such that N r

+(K̃) is
empty. An equivalent characterization of the LS+ hierarchy as a proof system is given below.
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Definition 2.2 ([11]) Given a set K of linear inequalities on the variables {x1, ..., xn} and the
∀i, x2

i − xi = 0, we have the following inference rules for LS+:

1. p≥0
p·q≥0 where deg(pq) ≤ 2 and q ∈ {xi, 1− xi : i ∈ [n]}.

2. p≥0 q≥0
αp+βq≥0 for α, β ∈ R+.

3. l2 ≥ 0 for deg(l) ≤ 1

A valid refutation must obtain the contradiction −1 ≥ 0.

An application of rule 1 increases the degree of the inequality p ≥ 0 by 1 (which is called the
lift step) and thus one must reduce the degree before applying rule 1 again, by taking positive
linear combinations as in rule 2 (which is called the projection step). In this case the LS+ rank
simply refers to the maximum number of applications of inference rule 1 in any path leading to a
contradiction i.e., the root in the proof DAG. Grigoriev et al [11] also defined and studied size lower
bounds for the static-LS+ proof system which is at least as strong as the proof system corresponding
to the mixed hierarchy studied in Benabbas et al [6].

Definition 2.3 ([11]) The axioms consist of the inequalities ∀i xi ≥ 0, ∀i 1−xi ≥ 0, ∀i x2
i−xi ≥ 0

and a given set of linear inequalities K. A valid static-LS+ refutation consists of positive linear
combination of the terms ϕI,J = sI,J · Πi∈IxiΠj∈J(1− xj) where I and J are multisets of variable
indices and sI,J is an axiom or the square of some linear form. A refutation is obtained by deriving∑

l

ωl · ϕIl,Jl = − 1 (2.1)

where each ωl ∈ R+.

The size of a static-LS+ refutation (as in equation 2.1) is defined as the number of summands
i.e. the number of distinct ϕs in the static-LS+ refutation. The multilinear or boolean degree of
a polynomial in R[x1, .., xn] is defined as the degree after multilinearizing the polynomial i.e. the
polynomial is viewed to be in the Smolensky ring Sn(R) := R[x1, .., xn]/{x2

i − xi : i ∈ [n]}. The
degree of a static-LS+ refutation (as in equation 2.1) is the maximum among the multilinear degree
of its summands. Throughout this paper we will use degree to stand for multilinear degree (which
only makes the lower bounds stronger). This means that we can assume Il and Jl in equation 2.1
are just sets and not multisets. This also means that we will essentially work in the ring Sn(R) and
so we will ignore degree of the summands with sI,J = x2

i − xi for any i ∈ [n] in equation 2.1 since
their multilinear degree is always 0.

3 Rank Lower Bounds and Integrality Gaps

In order to show our lower bounds we use the same family of instances used in Benabbas et al. [6].
Before describing the proofs we first recap some of the already known results and provide some
useful extensions of our own.
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3.1 Expansion Correction

In this subsection we mainly recap some of the concepts from Alekhnovich et al. [1] and Benabbas
et al. [6] which will prove useful later.

Definition 3.1 Given a k-CSP formula F we define its constraint graph G as the bipartite graph
(bigraph) G = (L,R,E) formed by variables on the right side and constraints on the left side. An
edge in E connects variable xi to constraint ci if xi ∈ ci.

Let N(X) denote the set of neighbors of vertex set X in the constraint bigraph and let ∂X := {v ∈
G : |N(v) ∩X| = 1} denote the boundary of X.

Definition 3.2 We say a constraint bigraph G is (r, e) expanding if for any set X vertices corre-
sponding to constraints with |X| ≤ r, |N(X)| ≥ e · |X|. Similarly, we call the graph (r, e) boundary
expanding if for any set X of vertices corresponding to constraints with |X| ≤ r, |∂X| ≥ e · |X|.

Given a promise predicate P , we use the same model for generating a random instance of k-CSP(P)
as [6]. A constraint c is generated randomly by uniformly selecting a set of k variables from the set
of n variables. Each selected variable xi ∈ c is then XOR-ed with bi,c which are 0 or 1 with equal
probability. The constraint graph of a random k-CSP(P) is an expander and the random formula
is unsatisfiable as formally witnessed by the following theorem. The satisfiability of the formula
is measured by the quantity OPT (F ) which the maximum number of constrains satisfied by any
assignment to the variables of the formula.

Theorem 3.3 ([6]) Given ε, δ > 0 and a predicate P then there exist γ = O(2k/δ2), η = Ω( 1
γ10/ε )

and N0 ∈ N such that with probability at least exp(−O(k4γ2)) a random instance F of k-CSP(P)
with number of variables n ≥ N0 and m = γn constraints is:

1. Very unsatisfiable: OPT (F ) ≤ P−1(1)
2k

(1 + δ)m

2. A good expander: For any set of constraints C with |C| ≤ ηn, we have |N(C)| ≥ (k−1−ε)|C|.

3. Has large girth: The constraint graph has girth at least 5 i.e. no two constraints share more
than one variable.

Following Alekhnovich et al. [1], Benabbas et al [6] define the closure operation on expanders which
allows one to preserve expansion and boundary expansion in the presence of deletion of vertices
(and edges). Given a constraint graph G and a set of variables X, let C(X) := {c ∈ G : N(c) ⊆ X}
denote the constraints supported on the variables in X. Let G − X denote the constraint graph
obtained by removing all the variables in X and all the constraints in C(X) from G.

Definition 3.4 ([6]) The Closure or Advice set Cl(X) of a set of variables X in the (r1, e1)
expanding constraint bigraph G is a superset of X obtained by Algorithm Closure, when started
with the set X.

Note that Cl(X) is unique upto some arbitrary ordering of the constraints and variables and we say
that a set of variables is closed if it is a closure of some set of variables X. Unlike [6], which uses
the operation with an arbitrary ordering, we will have to choose the ordering somewhat carefully.
We also note that definition 3.4 is very similar to (but slightly stronger than) that in Benabbas et
al [6] with boundary expansion replaced by expansion.
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Algorithm Closure

The input is an (r1, e1) expanding bipartite graph G = (L,R,E), some e2 ∈ (0, e1), and some
S ⊆ R, |S| < (e1 − e2)r1, with some arbitrary order S = {x1, . . . , xt}. The output is the closure of
S i.e. Cl(S).

Initially set Cl(S)← ∅ and ξ ← r1
For j = 1, . . . , |S| do

Mj ← ∅
Cl(S)← Cl(S) ∪ {xj}
If G− Cl(S) is not (ξ, e2) expanding then

Enumerate in increasing lexicographic orderMj ⊂ L to find a maximalMj inG−Cl(S)
such that |Mj | ≤ ξ and |N(Mj)| ≤ e2|Mj | in G− Cl(S)

Cl(S)← Cl(S) ∪N(Mj)
ξ ← ξ − |Mj |

Return Cl(S)

Lemma 3.5 If a constraint bigraph H is (r, k− 1− ε) expanding then it is (r, k− 2− 2ε) boundary
expanding.

Proof: For a set of constraints of size s ≤ r, let b be the number of boundary variables. Since the
total number of variable occurrences is k · s and each of the non-boundary variables occur at least
twice, we have by expansion b+ (k · s− b)/2 ≥ (k − 1− ε) · s which gives b ≥ (k − 2− 2ε) · s.

In this paper we will need to perform alternate closure and variable restriction on the constraint
bigraph i.e. (((G − Cl(i1)) − Cl(i2)).. − Cl(ir)), which we abbreviate as G −

⋃
i∈I Cl(i) for an

ordered set I. The following lemmata are essentially restatements of Theorem 3.1 a,b from [6] with
boundary expansion replaced by expansion.

Lemma 3.6 ([6]) If G is (r1, e1) expanding then G − Cl(X) is (r2, e2) expanding, where X is a
set of variables with |X| ≤ (e1 − e2)r1, r2 ≥ r1 − |X|

e1−e2 and |Cl(X)| ≤ k+2e1−e2
e1−e2 |X|.

Throughout this paper we will set e1 = k − 1 − ε and e2 will be set very close to e1 in Algorithm
Closure. So we will typically use the following kind of instantiation of the previous lemma.

Lemma 3.7 ([6]) Suppose G is a (s, k − 1− ε) expander and R =
⋃
i∈IR Cl(i) for an ordered set

of variables IR with |IR| ≤ r, then G−R is a (s′, k − 1− 2ε) expander for s′ ≥ s− Ω( rε).

The proofs of the previous two lemmas are given in the appendix. We end this subsection with an
important remark about the definition of closure.

Remark 3.8 Algorithm Closure is an online algorithm. Given a set Xk = {x1, . . . , xk} where the
elements are in increasing order, for each j < k, it first computes the closure of Xj = {x1, . . . , xj}
without looking at Xk \Xj. It then extends this to the closure of Xk.

3.2 Locally Consistent Measures

One can visualize successive rounds of LS+ as contracting the initial polytope until we reach the
empty polytope since our CSP has no 0-1 solution. Therefore it is reasonable to expect that points
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which survive many rounds of LS+ will be highly symmetric in some way with respect to our initial
constraints. In order to capture this symmetry Benabbas et al. [6] define a family of measures mS for
small subsets S of variables in the constraint bigraph by “symmetrizing” the pairwise independent
measure µ supported on P−1(1), where P is underlying predicate for the CSP under consideration.

Let X be a set of variables. Given an assignment β ∈ {0, 1}X , let µc(β) denote the value of µc
after restricting β to the support of constraint c and summing over all possible values for variables
in the support which are not assigned by β. In particular µc(β) = 1 if X does not contain any
variables in the support of the constraint c. On the other hand if β is an assignment that violates
the constraint c, then µc(β) = 0. Also for S ⊆ X let β|S denote the restriction of β to the variables
in S. We now define the family of “local distributions” that we will use.

Definition 3.9 ([6]) For a constraint c := P (xi1+b1, ..., xik+bk) where bj ∈ {0, 1}, let µc(xi1 , . . . , xik)
be the pairwise independent distribution

µc(xi1 , . . . , xik) := µ(xi1 + b1, ..., xik + bk)

supported on the satisfying assignments of c. For a subset of variables S let α ∈ {0, 1}S be an
assignment to S. Define the measure mS supported on the satisfying assignments of constraints in
C(Cl(S)) as

mS(α) :=
1
ZS
·

 ∑
β∈{0,1}Cl(S),β|S=α

∏
c∈C(Cl(S))

µc(β)

 where ZS =
∑

β∈{0,1}Cl(S)

∏
c∈C(Cl(S))

µc(β)

Note that the definition of the measure mS depends on Cl(S), which in turn depends on the
ordering the variables according to which the closure is computed. The measures above can
formally be defined for all sets S (as long as ZS > 0), but our notion of consistency will only apply
to measures mS from this family where the size of S is bounded by some parameter t.

Definition 3.10 A family of measures (distributions) {mS} is t-locally consistent if

∀T ⊆ S ⊆ [n], |S| ≤ t, ∀α ∈ {0, 1}T , mS(α) = mT (α),

where mS(α) =
∑

β∈{0,1}S ,β|T=αmS(β).

The existence of a t-locally consistent measure family implies the existence of feasible Sherali-Adams
solutions from the measures [6, 9]. In the case of promise predicates, Benabbas et al [6] show that
the measures mS are well defined i.e., have ZS > 0 (Lemma 3.2) and are t-locally consistent for
|S| ≤ t = Ωk,ε,δ(n).

Lemma 3.11 (Claim 4.2 from Benabbas et al [6]) Let F be a random instance of MAX-k-
CSP(P) as in Theorem 3.3 chosen for given ε, δ > 0. Let S1 ⊆ S2 ⊆ [n] be sets of variables with
|S2| ≤ ηεn/4k. Then mS1 and mS2 are equal on S1.

In this paper we will need to work with conditional probabilities of the form mS(·|X = α) so for
clarity we define them below.

Definition 3.12 Let X,S be disjoint sets of variables. Let α ∈ {0, 1}X and β ∈ {0, 1}S. We then
define

mS(S = β|X = α) :=
mX∪S(S = β,X = α)

mX∪S(X = α)
.
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Note that we are effectively conditioning each µc involved in defining mX∪S(·) on the variables that
it shares with X. Such a conditional measure is well defined for all α such that mX∪S(X = α) > 0.

For the remainder of this subsection let X denote a closed set of variables X :=
⋃
i∈IX Cl(i) for

some ordered set of variables IX . As mentioned before we set e1 = k− 1− ε and e2 close to e1 (say
k− 1− 2ε) in Algorithm Closure. We now show that if the the family of measures{mS} is t-locally
consistent, then {mS(·|X = α)} is also t′-locally consistent for t′ = t− |X|.

Lemma 3.13 (Local Consistency of Conditional Measures) Let X be a subset of variable
and let α ∈ {0, 1}X be such that µc(α) > 0 for all c ∈ G. Let {mS} be a t-locally consistent family
for t ≥ |X|. Then the family of measures {mS(·|X = α)} defined for sets S such that S∩X = ∅ and
S with |S ∪X| ≤ t is (t− |X|)-locally consistent. More formally, for any T ⊆ S, and |S ∪X| ≤ t

∀β ∈ {0, 1}T mS(T = β|x = α) = mT (T = β|X = α) .

Proof: By local consistency of the (unconditioned) measures mS , we have that mT∪X(X = α) =
mS∪X(X = α). Also, both these are positive by the assumption on α. Thus, we have for any
β ∈ {0, 1}T

mS(T = β|X = α) =
mS∪X(T = β)
mS∪X(X = α)

=
mT∪X(T = β)
mT∪X(X = α)

= mT (T = β|X = α)

where the second equality used the consistency of the (unconditioned) family {mS}.

In this paper we will have to deal with expanding constraint graphs which arise out of expanding
k-CSP instances due to conditioning i.e., graphs of the form G−X, where X is a set of variables
whose values have been fixed (conditioned on).

Definition 3.14 Given a set X of variables, we say that a constraint c is uncompromised in G−X
if it has k neighbors in G−X. Otherwise we say that it is compromised.

The matrices Y that we construct in the proof of our rank lower bound for the LS+ hierarchy
will be of the form Yij = Emij(·|X=α)

[
1{i}1{j}

]
where the set X and the assignment α will change

with the number of rounds of the LS+ hierarchy. Here 1{i}(β) is is the indicator function which
is 1 if and only if the variable xi is set to 1 in the 0-1 assignment β. The following lemma will be
extremely useful as it lets us explicitly calculate (most of) the entries of such matrices.

Lemma 3.15 (Explicit Evaluation of Conditional Expectations) Let G−X be (r, k−1−ε)
expanding for r > 2 and ε < 0.1. Let α ∈ {0, 1}X be an assignment to X with µc(α) > 0 for all
constraints c and Let the family mS(·|X = α) be defined as before. Then:

• for any variable i /∈ X, we have Emi(·|X=α)

[
1{i}

]
= 0.5.

• for any i, j /∈ X which do not belong to the same compromised constraint in G−X, we have
Emij(·|X=α)

[
1{i}1{j}

]
= 0.25

Proof: We first prove that the graph remains expanding after removing the variables i and j.

Claim 3.16 If the constraint bigraph G−X is (r, k− 1− ε) expanding with ε ≤ 0.1, girth at least
5, and variables i and j do not belong to the same compromised constraint then G−X − {i, j} is
(r − 2, k − 2− ε′) boundary expanding for some ε′ < 0.9.
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Proof: Let S be a set of constraints in bigraph G−X − {i, j}. We can check for expansion by
considering the following cases based on the size of S:

1. If |S| = 1 then |∂S| = |N(S)| ≥ k − 2 since G − X is a k − 1 − ε expander and so even a
compromised constraint in G−X − {i, j} has at least k − 2− ε neighbors as long as i and j
both do not belong to that same compromised constraint.

2. If |S| = 2 then |∂S| ≥ 2(k− 1− ε)− 1− 2 = 2(k− 2− (1/2 + 2ε)) since two constraints in G
share at most one variable (since G has girth at least 5).

3. If |S| ≥ 3 then by Lemma 3.5

|∂S| ≥ (k − 2− 2ε))|S| − 2 = (k − 2− (2ε+
2
|S|

))|S|

and so for ε ≤ 1/10 we have 2ε+ 2
|S| ≤ 9/10.

The previous lemma allows us to decompose the expression for Emij(·|X=α)

[
1{i}1{j}

]
using the

following result from [6], the proof of which is by repeated application of the pigeon-hole principle.

Claim 3.17 ([6]) Let H be a constraint bigraph and S1 and S2 be sets of variables with S1 ⊆ S2,
S2 = Cl(S′2) for some S′2 and |C(S2)| ≤ r such that H and H − S1 are (r, k − 2 − ε′) boundary
expanding for some ε′ < 1. Let C(S2) \ C(S1) := {ci1 , ..., cis} be the set of constraints supported
on variable sets Ti1 , ..., Tis respectively. There exists an ordering of the constraints ci1 , ..., cis and
a partition of S2 \ S1 into F1, ..., Ft, Fs+1 such that for all j ≤ t, Fj ⊆ Tij , |Fj | ≥ k − 2 and
Fj ∩ (∪l>jTil) = ∅.

To summarize, given a sum
∑

γ∈{0,1}S2\S1

∏
c∈C(S2) µc(γ), Claim 3.17 will give an ordered partition

of S2 \ S1 into Fis such that in this ordering each successive constraint c ∈ C(S2) \ C(S1) has at
most 2 of its variables shared with the constraints following it in the ordering. This will allow us
to use pairwise independence and find a numerical value of such terms.

More precisely, observe that

E
mij(·|X=α)

[
1{i}1{j}

]
= mij(1{ij}|X = α) =

∑
β∈{0,1}Cl(X∪{i,j}),β|X=α,β|i,j=1,1

∏
c∈C(Cl(X∪{i,j})) µc(α · β)∑

β∈{0,1}Cl(X∪{i,j})
∏
c∈C(Cl(X∪{i,j})) µc(α · β)

.

(3.1)
Here α·β denotes the concatenation of the two assignments α and β. Note thatmX∪{i,j}(X = α) > 0
by local consistency of mCl(X∪i,j)(·) and the definition of α. Furthermore, X is closed, i, j do not
belong to the same compromised constraint, and k ≥ 3 imply that C(X) = C(X ∪ {i, j}).
Any terms of the form µc(α · β) for c ∈ C(X) = C(X ∪ {i, j}) then appear both in the numerator
and denominator. Also, since we are looking at c ∈ C(X), these terms depend only on α and can
be cancelled from the numerator and denominator. We are then left with a product of terms for
c ∈ C(Cl(X ∪ {i, j})) \ C(X ∪ {i, j}). Therefore we can reduce the fraction by cancelling terms
of the form

∏
c∈C(X∪i,j) µc. Now we evaluate the numerator and denominator of this reduced

fraction separately using Claim 3.17. We set H = G, S1 = X ∪ {i, j} and S2 = Cl(X ∪ i, j)
in Claim 3.17. Observe that Claim 3.17 gives us an ordered partition i.e. F1, . . . , Fs+1s for the
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variables in Cl(X ∪ {i, j}) \ (X ∪ {i, j}). Let α ∈ {0, 1}X∪{i,j} = α · {1, 1}. Then the numerator
equals ∑

βs+1∈{0,1}Fk+1

· · ·
∑

β1∈{0,1}F1

µci1 (α · β) · · ·µcis (α · β)

When we sum over variables in F1, the term µc1(α · β) disappears since we are summing over at
least k − 2 variables from ci1 and µ is balanced and pairwise independent (and also none of the
other constraints share variables with F1). Summing over variables in F1 reduces the first term to
1/2k−|F1|. Proceeding similarly for the rest of the summation, we reduces the expression to 1/2R for
some R ∈ N. The denominator reduces in exactly the same way, except it has two extra variables
i and j which we sum over. This gives the denominator as 1/2R−2 and the ratio as 0.25.

Note that we did not use the fact that we set j = 1 in the denominator. Thus, the same proof also
shows that Emij(·|X=α)

[
1{i}(1− 1{j})

]
= 0.25 and hence Emij(·|X=α)

[
1{i}

]
= Emi(·|X=α)

[
1{i}

]
=

0.5 by doing the above calculation with a j such that i and j are not in the same compromised
constraint.

Before we begin the actual lower bound proofs in the next two subsections a remark about the
proofs in this subsection.

Remark 3.18 Lemma 3.13 (Local Consistency Lemma) and Lemma 3.15 (Explicit Evaluation
Lemma) are both with respect to any ordering of variables as far as computation of closures is
concerned. We have not assumed anything about variable ordering thus far, a freedom we will use
in the next two subsections.

The reason we made remark 3.18 is because from the next section onwards we will need to assume
that for our restricted formula FX , the variables in X are ordered before other variables when
computing the Closure. This is equivalent to saying that for every additional variable that is fixed
in FX , we not compute the closure in the graph G−X. This was also used in the previous works on
the LS+ hierarchy. In absence of this assumption, we may not have Cl(X) ⊆ Cl(X∪A), which will
be needed to bound the number of variables fixed by the closure operations over different rounds.

3.3 Rank Bounds for LS+

Given the initial cone specified by the linear constraints derived from our unsatisfiable k-CSP(P)
instance, we want to show that the cone obtained after many rounds of LS+ lift and project
is non-empty i.e. there exists a satisfying (fractional) assignment. To this end we describe a
Prover-Adversary game from Schoenebeck et al [18] originally introduced by Buresh-Oppenheim et
al [8]. The game has two players a Prover and an Adversary. In round r, starting from a point
y(r) ∈ [0, 1]n+1 the Prover constructs a lifted point / protection matrix Y (r) and a set of vectors Or
with each element in Rn+1 such that

1. Each element of O1 satisfies all initial constraints

2. Y (r) satisfies the conditions 1 and 2 in Definition 2.1

3. ∀i the column vectors Y (r)
i and Y (r)

0 − Y (r)
i can be expressed as a positive linear combination

of elements in Or.

The Adversary chooses a vector z ∈ Or, sets y(r+1) as z and the game continues as long as the Prover
can construct the protection matrices.
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Theorem 3.19 ([18]) Suppose, starting from a point y that satisfies all our initial constrains, the
Prover has a strategy that lasts r + 1 rounds against any Adversary, then y survives r rounds of
LS+ lift and project.

We now describe a Prover strategy which allows us to establish our required integrality gap and
rank lower bounds. The Prover initially starts with the point y = y(1) ∈ Rn+1 such that y(1)

0 = 1
and ∀i ∈ [n],

y(1)(i) = P
mi(·)

[xi = 1] = E
mi(·)

[
1{i}

]
.

Note that by Lemma 3.15, we in fact have y(1)
i = 1/2 for all i ∈ [n]. The protection matrix Y (1)

corresponding to y(1) is given by

Y (1)(i, j) = E
mij(·)

[
1{i}1{j}

]
.

To describe the set O1, we first observe that the constraints Y (1)
ii = Y

(1)
i0 = y

(1)
i imply that the

vectors Y
(1)
i

y
(1)
i

and Y
(1)
0 −Y (1)

i

1−y(1)i

correspond to fractional solutions with the ith variable set to 1 and 0

respectively. The vectors in the set O1 are defined by setting additional variables in Cl({i}) so that
the constraint graph on the variables with fractional values still remains expanding.

Define the set R1,j as the set of variables Cl(j) for j ∈ [n] and define the set A1,j as possible {0, 1}
assignments to R1,j i.e. α ∈ {0, 1}Cl(j). Here we only consider α ∈ {0, 1}Cl(j) such that for any
constraint ci ∈ C(Cl(j)) we have µi(α) > 0. Let R1 be the set of sets R1 = {R1,j : j ∈ [n]}. The
set O1 consists of vectors y(1)

R1,j=α
(i) = Emi(·|R1,j=α)

[
1{i}

]
, where mi(·|R1,l = α) stands for the

measure mi conditioned on fixing the variables in R1,j to an assignment α from A1.

Before we describe the Prover strategy for higher number of rounds we make an assumption about
the ordering of variables in Algorithm Closure from here onwards for the rest of this section. This
is an important subtlety in our application of the closure algorithm, as opposed to [6] where the
ordering on the variables could be chosen arbitrarily. In our setting, when we consider a sequence of
variables x1, . . . , xr which has been fixed by the adversary, we want these variables to occur first in
the ordering, before any other variables for which we are computing the conditional distributions.
Thus, at round r, we want the distributions {mS} to be defined according to an ordering which
has x1, . . . , xr in that order and before any other variables. However, at round r + 1, when the
adversary conditions on an additional variable xr+1, we define the measures according to the new
ordering which puts x1, . . . , xr+1 first (in that order). We now want this to be consistent with the
measure at round r, even though we did not know xr+1 at round r. This is where the online nature
of the closure algorithm (see Remark 3.8) is useful for proving consistency.

Assumption 3.20 Given an ordered set of variables X = {xi1 , .., xis} which have been conditioned
by the adversary in the same order we assume that these variables are ordered in the same fashion
when computing Cl(X). Furthermore, for any set of variables S, S ∩ X = ∅ we assume that the
variables in X are ordered before those in S when computing closure.

Remark 3.21 The ordering of variables and thus the family of locally consistent measures that we
construct after r rounds of adversary moves may differ across various adversary fixings / moves
which is allowed by the online nature of Algorithm Closure (cf. Remark 3.8.)

We now describe the Prover strategy for round r+1 for r ≥ 1. At the end of round r, the Adversary
would have chosen a vector z ∈ Or such that z = y

(r)
X=α for X ∈ Rr. So in round r+1 the Prover has
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input y(r+1) = z and the Prover outputs a matrix with entries Y (r+1)(i, j) = Emij(·|X=α)

[
1{i}1{j}

]
.

We then define Rr+1 as
Rr+1 := {X ∪ Cl(j) : j 6∈ X} . (3.2)

The allowed assignments for Rr+1,j in Ar+1 are α′ ∈ {0, 1}X′ such that for any constraint c ∈ C(X ′)
we have µc(α′) > 0. We define the set

Or+1 := {y(r+1)
Rr+1,j=α′

∈ Rn+1 : Rr+1,j ∈ Rr+1, α
′ ∈ Ar+1}, (3.3)

where y(r+1)
Rr+1,j=α′

(i) = Emi(·|Rr+1,j=α′)

[
1{i}

]
.

Finally, the game continues as long as the measure mij(·|Rr,l = α) is well defined for all allowed
assignments α ∈ Ar to members of Rr. Hence we need to prove the following statements based on
the Prover strategy. For the statements below, let FX,αX ( abbreviated to FX when αX is irrelevant)
denote the formula obtained by a {0, 1} assignment αX to variables in X.

Lemma 3.22 Let FX,α be a formula obtained by fixing variables in X, for an instance of MAX-k-
CSP(P) for a promise predicate P . Let the constraint graph G−X be (3, k−1−ε)-expanding. Then
for any 0-1 assignment to a given variable i ∈ G−X there exists an assignment α′ ∈ {0, 1}X∪Cl(i)
such that α′|X = α and µc(α′) > 0 for any constraint c in F .

Proof: The proof is an immediate corollary of Lemma 3.15 since we know Emi(·|X=α)

[
1{i}

]
=

Emi(·|X=α)

[
1− 1{i}

]
= 0.5 > 0. Hence, there must exist an extension to the assignment α to

X ∪ Cl(i) with the required property.

Lemma 3.23 The measure mij(·|X = α) for allowed assignments α ∈ Ar to X for any X ∈ Rr is
well defined, and therefore the protection matrices Y (r) are also well defined i.e. the entries of Y (r)

lie in [0, 1], for all r ≤ r0 where r0 = Ωk,ε,δ(n) rounds.

Proof: There are two scenarios which can lead to mij(·|X = α) being undefined. First, it
is possible that some X itself is undefined since the closure is larger than the parameter t for
which we have t-consistency. However, we know from Lemma 3.6 that |X ∪ Cl(i)| ≤ O(kr/ε) (cf.
Remark 3.18). Thus, since t = Ωk,ε,δ(n), the sets X are well defined for r = Ωk,ε(n) rounds.

Second, it is possible that for some value of variable i i.e. 0 or 1, in round r we may not be able to
extend a 0-1 assignment αi over Cl(X ∪ i) such that all c ∈ C(Cl(X ∪ i)) have µc(αi) > 0. However,
we can discount this possibility due to Lemma 3.22. Hence the statement follows.

Note that we have used the assumption about ordering of variables (Assumption 3.20) in the
previous two Lemmas, but the rest of the proofs in this subsection will continue to hold without
Assumption 3.20 as long as the conditioning set is closed and of small enough size i.e. Ok,ε,δ(n).

Lemma 3.24 The matrices Y (r) i.e. Y (r)(i, j) = Emij(·|X=α)

[
1{i}1{j}

]
, are positive semidefinite

for all X ∈ Rr, α ∈ Ar and for some r = Ωk,ε,δ(n).

Proof: Observe that both G and G−X are k−1− ε expanding and so any constraint c ∈ G−X
has at least k or k − 1 neighbors in G − X. Given variables i and j, recall that a constraint c is
uncompromised if it has at least k − 2 neighbors in G − X − {i, j}. Otherwise, we say that c is

13



compromised. If the variables i and j do not belong to the same compromised constraint then by
Lemma 3.15:

E
mij(·|X=α)

[
1{i}1{j}

]
= 0.25,

where X ∈ Rr, α ∈ {0, 1}X . To take care of the remaining case i.e. if both variables i and j belong
to some compromised constraint c, we decompose Y (r) into a single base matrix B and a series of
“correction” matrices Cc. The protection matrix Y (r) has the following properties:

• Y (r)(i, i) = Y (r)(0, i) = Y (r)(i, 0) = 0.5 and Y (r)(0, 0) = 1 for all i ∈ [n].

• Else, Y (r)(i, j) = Emij(·|X=α)

[
1{i}1{j}

]
for both i, j ∈ c and the constraint c is compromised.

• Otherwise Y (r)(i, j) = 0.25.

Let B = bbT where b ∈ Rn+1, b0 = 1, bi = 0.5 for i ∈ [n] \ X and bi = α|i for i ∈ X. For every
compromised constraint c we define the (k−1)×(k−1) matrix Cc(i, j) := [Emij(·|X=α)

[
1{i}1{j})

]
−

0.25] for i, j ∈ c. Since a variable can not belong to two compromised constraints due to high
expansion, observe that Y (r) = B +

∑
cCc. Hence it suffices to prove that each Cc is positive

semidefinite. Let us consider a specific matrix Cc from the LHS of the decomposition for Y (r). As
long as |Cl(X)| is small enough so that G −X is (k − 1 − ε) expanding and Lemma 3.15 applies,
we get

E
mij(·|X=α)

[
1{i}1{j}

]
− 0.25 = E

mij(·|X=α)

[
(1{i} − 0.5)(1{j} − 0.5)

]
.

Let S denote the union over all i, j ∈ c of Cl(X ∪ i, j). As long as |S| is small enough to meet the
local consistency requirement of Lemma 3.13, which is true for |X| = Ok,ε,δ(n), we can rewrite the
matrix Cc as an expectation over measures so that the underlying measure no longer depends on i
and j, i.e.

Cc(i, j) = E
mS(·|X=α)

[
(1{i} − 0.5)(1{j} − 0.5)

]
.

Therefore we have expressed Cc as a positive linear combination of rank-one matrices of the form
(
−−−−−−→
1{i} − 0.5)(

−−−−−−→
1{i} − 0.5)T . Hence each Cc is positive semidefinite and so is Y (r).

Lemma 3.25 Y
(r)
i and Y

(r)
0 − Y (r)

i can be expressed as a convex combination of elements in Or
for all r ≤ r0 where r0 = Ok,ε,δ(n).

Proof: We give the argument for Y (r)
i below. The argument for the column Y

(r)
0 − Y (r)

i . is
identical. Let y(r)

X=α (or simply y(r)) be obtained by fixing X = α for some X ∈ Rr−1. Also, note
that X is a closed set and hence y(r)

i = 0.5 for any i /∈ X by Lemma 3.15. Consider the column
vector Y (r)

i /y
(r)
i . For j ∈ X, we have Y (r)

ij = y
(r)
i ·αj and hence the corresponding entry in Y (r)

i /y
(r)
i

is just αj . For j 6∈ X ∪ Cl(i), i and j can not be in the same compromised constraint and hence
Y

(r)
ij = 0.25 by Lemma 3.15 which gives Y (r)

ij /y
(r)
i = 0.5.

Thus, we only need to bother about j ∈ Cl(i) \X. For such a j, we have

Y
(r)
ij

y
(r)
i

=
Emij(·|α)

[
1{i}1{j}

]
Emi(·|α)

[
1{i}

] =

∑
β∈{0,1}X∪Cl(i),β|X=α,βi,j=1,1

∏
c∈C(X∪Cl(i)) µc(β)∑

β∈{0,1}X∪Cl(i),β|X=α,βi=1

∏
c∈C(X∪Cl(i)) µc(β)
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Let the product in the above terms be denoted by pβ. Then we have

Y
(r)
ij

y
(r)
i

=

∑
β∈{0,1}X∪Cl(i),β|X=α,βi=1 pβ · βj∑
β∈{0,1}X∪Cl(i),β|X=α,βi=1 pβ

=

∑
β∈{0,1}X∪Cl(i),β|X=α,βi=1 pβ · βj

Z

where Z =
∑
pβ. Since this holds for all j ∈ Cl(i) \X, we can write

Y
(r)
i

y
(r)
i

=
1
Z
·

∑
β∈{0,1}X∪Cl(i),β|X=α,βi=1

pβzβ

where (zβ)j is βj for j ∈ X ∪ Cl(i) and 0.5 otherwise. Since all the vectors zβ for which pβ is
non-zero correspond to elements of Or, this completes the proof.

Finally, we can fix the expansion parameter ε to a suitable constant (say 0.1) and conclude the
main theorem below.

Theorem 3.26 Let P be a promise predicate on k variables, δ > 0 and F be a random instance of
MAX-k-CSP(P) on n variables for sufficiently large n. Then with probability exp(−O(k422k/δ4))
over the choice of F , the LS+ hierarchy has an integrality gap of 2k

P−1(1)
(1 − δ) on F even after

Ωk,δ(n) rounds. Also, with the above probability, any LS+ refutation of F requires rank Ωk,δ(n).

3.4 Size Lower Bound

In this subsection we use the techniques developed in the previous section, esp. Lemma 3.24,
for proving rank lower bounds and ideas similar to [12] to prove a size lower bound for promise
predicates in static-LS+. We continue to assume that the variables in the ordered set X are ordered
before all other variables when computing closure i.e. Assumption 3.20 holds. Given a formula F
for a MAX-k-CSP(P) with promise predicate P we let FX denote the formula obtained by fixing
variables in a set X and since the actual assignment to variables in X will not be important we do
not include it in the notation. Note that the constraint graph G−X naturally corresponds to FX .

Theorem 3.27 (Degree Lower Bound) Let F be an unsatisfiable instance of MAX-k-CSP(P)
on n variables, for a promise predicate P . Let X be a subset of variables such that the formula FX
with the constraint graph G −X is (r, k − 1 − ε) expanding for some r = Ωk,ε,δ(n). Then FX has
(multilinear) degree Ωk,ε,δ(n) for any valid static-LS+ refutation.

Proof: Observe that any static-LS+ refutation of F , with degree ≤ d, has the form (equation 2.1):∑
l

ωl · ϕIl,Jl = −1,

where ϕIl,Jl = sl ·
∏
i∈Il xi ·

∏
j∈Jl(1−xj) for an axiom sl ≥ 0 and ωl ∈ R+. Let V ar(sl) denote the

set of variables in the axiom sl ≥ 0 and let Sl := Il ∪ Jl ∪ V ar(sl). We evaluate ϕIl,Jl at ~y ∈ R( n≤d),
where

yS = E
mS(·|X=α)

[
(
∏
i∈S

1{i})

]
,
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so that

ϕIl,Jl(y) = E
mSl (·|X=α)

(sl(1)
∏
i∈Il

1{i}
∏
j∈Jl

(1− 1{j}))

 , (3.4)

where sl(1) denotes the axiom sl evaluated by setting xi ∈ sl to 1{i}. Note that this evaluation at
~y defines a R-valued linear map on the set of multilinear polynomials of degree at most d. The idea
of this proof is to show that under this evaluation, which is well defined for d = Ok,ε,δ(n), the LHS
of any refutation maps to some non-negative quantity while the RHS maps to −1 - a contradiction.

If sl is just an initial linear constraint then to show ϕIl,Jl(y) ≥ 0 we simply check that mSl(·|X = α)
is Ωk,ε(n) locally consistent and supported only on satisfying assignments to C(Sl ∪ X), both of
which are true as long as |Sl ∪X| ≤ Ok,ε,δ(n) (Lemma 3.13).

In the remaining case sl is the square of a linear form, say sl = (cTl x)2. Let Al := Il ∪ Jl. Observe
that the evaluation for ϕIl,Jl = sl ·

∏
i∈Il xi ·

∏
j∈Jl(1− xj) can be viewed as an expectation where

all variables in Al are fixed to some 0-1 values i.e. Al = β for β ∈ {0, 1}Al such that each variable
in Il is 1 and each variable in Jl is 0. So to prove that ϕIl,Jl(y) ≥ 0 it suffices to prove that the
following n× n matrix is positive semidefinite:

Ml(i, j) := m{i,j}∪Al(xi = 1, xj = 1, Al = β|X = α), ∀i, j ∈ [n] , (3.5)

since ϕIl,Jl(y) = cTl Mlcl. However by local consistency (Lemma 3.13) we have,

m{i,j}∪Al(xi = 1, xj = 1, Al = β|X = α) =
m{i,j}∪Al∪X(xi = 1, xj = 1, Al = β,X = α)

mX(X = α)
. (3.6)

Local consistency also allows us to write

m{i,j}∪Al∪X(xi = 1, xj = 1, Al = β,X = α)

=
∑

β∈{0,1}Cl(Al)

β|Al
=β

m{i,j}∪Cl(Al)∪X(xi = 1, xj = 1, Cl(Al) = β,X = α) . (3.7)

Consider each term in the RHS of equation 3.7, they represent the following matrix as i and j vary
over [n]:

Ml,β(i, j) := m{i,j}∪Cl(Al)∪X(xi = 1, xj = 1, Cl(Al) = β,X = α).

It suffices to show that all Ml,β are positive semidefinite. If mCl(Al)∪X(Cl(Al) = β,X = α) is
positive i.e. matrix Ml,β is not all-zero, then we divide Ml,β by mCl(Al)∪X(Cl(Al) = β,X = α) and
use local consistency to obtain:

Ml,β(i, j) := m{i,j}(xi = 1, xj = 1|Cl(Al) = β,X = α).

Two cases arise in this process:

1. i ∈ Cl(Al) or j ∈ Cl(Al). Assume without loss of generality that i ∈ Cl(Al). This case can
be divided into two further cases:

(a) β|i = 0 then the entire row and column for i in Ml,β is 0 and we simply ignore the
variable as far as the positive semidefiniteness of Ml,β is concerned.

(b) β|i = 1 then two cases arise:

16



i. j ∈ Cl(Al) then βj = 1 otherwise we can ignore j. Moreover Ml,β = 1.
ii. j 6∈ Cl(Al) then Ml,β = 0.5 by Lemma 3.15.

2. i, j 6∈ Al then matrix Ml,β is the same as the matrix Y , restricted to unfixed variables, in
Lemma 3.24.

So the matrix Ml,β looks exactly like the matrix Y (r) in Lemma 3.24, where the fixed variables in
Y (r) correspond to the variables in X ∪ Cl(Al). Therefore an argument exactly as in Lemma 3.24
can be used to show Ml,β is positive semidefinite and finish the proof.

Given the degree lower bound it is now easy to prove the size lower bound (cf. Grigoriev et al [11],
Itsykson and Kojevnikov [12]) which implies Theorem 1.3.

Theorem 3.28 Let P be a promise predicate on k variables and F be a random instance of MAX-
k-CSP(P) on n variables for sufficiently large n. Then with probability exp(−O(k422k)) over the
choice of F , any static-LS+ refutation of F requires size exp(Ωk(n)).

Proof: By Theorem 3.3 the underlying constraint graph of F is Ωk,ε,δ(n)-expanding with pairwise
independent support with the required probability. So it suffices to consider only such instances for
this proof. Moreover, we assume that ε and δ are fixed to some small constants for the purposes of
this proof.

Let MG be the number of degree ≥ d terms of the form ϕ in the static-LS+ refutation of G. By
pigeon-hole principle there exists a variable xi and a {0, 1} assignment bi to xi which sets to 0 i.e.
“kills”, at least MGd

2n of the ϕs with degree d.

Ideally, we would like to use the previous idea repeatedly and “kill” all high degree inequalities and
derive a low degree refutation of a smaller instance, where the constraint graph G is expanding with
pairwise independent support and then use Theorem 3.27 to prove our statement. However, we
may end up with a G which is not expanding or we may end up with a G where some constraints do
not support distributions that meet our conditions. We may even end up falsify a constraint when
fixing the variables. In all the previously mentioned cases we will not obtain a valid static-LS+

refutation of some instance of a formula which is Ωk,ε,δ(n) expanding with promise predicates. We
can remedy the above problem by repeated expansion correction as used in the previous subsection
(or see [11, 12]).

Starting with constraint graphGnew := G we alternately fix a variable xi to “kill”≥ MGd
2n constraints

of degree ≥ d and then fix variables in Cl(i) to ensure that Gnew ← G − Cl(i) is expanding with
pairwise independent support. The variables in Cl(i) \ {i} can be fixed according to Lemma 3.22
to obtain a valid static-LS+ refutation of the formula FXt , where Xt is the set of fixed variables in
t steps of the form

⋃
j≤tCl(ij) (ij is the variable fixed at step j).

From Theorem 3.27, we know that there exists constants δ1 and δ2, such that for t ≤ δ2n, any
static LS+ refutation of FXt must require degree at least d = δ1n. We continue the above process
for δ2n steps. At each step we kill at least a d/2(n − |Xt|) ≥ d/2n fraction of terms of degree at
least d. After t0 = δ2n steps, we are left with a static LS+ refutation of FXt0 which has at most

MG ·
(
1− d

2n

)δ2n terms of degree at least d. But a refutation of FXt0 must still require degree d.
Hence, there should be at least one term of degree at least d remaining and we should have

MG ·
(

1− d

2n

)δ2n
= MG ·

(
1− δ1

2

)δ2n
≥ 1
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which gives the required bound.

4 Extension to Almost All Formulae

Thus far all our claims hold for random instances of CSPs with promise predicates with a constant
probability. In this section we sketch an approach which will allow us to generalize our main
theorems to almost all random instances of CSPs with promise predicates. This section avoids
details and is meant to mainly illustrate the idea of how local consistency could potentially be used
to prove integrality gaps for more stronger SDP hierarchies. In order to accomplish our goal all we
need to do is remove the assumption on the girth of our constraint graph in Theorem 3.3, since for
a random instance the first two points of Theorem 3.3 hold with probability 1 − o(1) [6]. We will
show that it is sufficient to replace the assumption of large girth by the assumption that there are
no large sunflowers in our constraint graph.

Definition 4.1 Given a hypergraph H, a (s, t)-sunflower is a set of t, (t ≥ 2), hyperedges E := {hi}
such that ∀i, j ∈ E, hi ∩ hj = S for a set S of vertices of size s.

Given a formula F on a k-CSP(P), where P is a promise predicate, its constraint bigraphG naturally
defines a hypergraph with variables as vertices and constraints as hyperedges. Observe that for any
(s, t)-sunflower in such a hypergraph s ≤ 2 (due to k − 2− ε expansion) and t ≤ Ok,ε,δ(poly log n)
with high probability. This follows by a simple union bound. So from now onwards we replace the
girth condition in Theorem 3.3 with: “F contains no (s,Ωk,ε,δ(poly log n))-sunflower”.

Now if we inspect closely the main tools of our lower bounds then we have essentially two main
themes:

1. Local consistency (cf. Lemmas 3.13 and 3.11) and

2. Explicit evaluation i.e. construction of our positive semidefinite matrices (cf. Lemma 3.15).

A close inspection reveals that neither Lemma 3.13 or 3.11 depend on the girth of G being large.
Only case 2 in Claim 3.16 needed in Lemma 3.15 requires the girth to be large to ensure k− 2− ε′
boundary expansion of G−X −{i, j}. Due to high boundary expansion a compromised constraint
can not share two variables with an uncompromised constraint. Therefore, in absence of the
girth assumption, Claim 3.16 may fail only when variables i and j belong to the same (2, t)-
sunflower σ, where each hyperedge in σ corresponds to an uncompromised constraint in FX . Let us
denote such sunflowers as uncompromised sunflowers. Therefore we can prove a (weaker) version
of Lemma 3.15 without making the large girth assumption but as long as we additionally assume
that variables i and j do not simultaneously belong to the same uncompromised (2, t)-sunflower.
We take care of the two outlier cases i.e. variables i and j belong to the same compromised
constraint or the same uncompromised (2, t)-sunflower, by using a few more correction matrices
in Lemma 3.24. Note that the definition of our (protection) matrices will remain the same i.e.
Y (r)(i, j) = Emij(·|X=α)

[
1{i}1{j}

]
. We briefly sketch why the proof of Lemma 3.24 should continue

to hold even with the weaker version of Lemma 3.15.

Each of the following is a straightforward result of k − 2 − ε, for small enough ε > 0, boundary
expansion:
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1. A variable in FX can not simultaneously belong to two compromised constraints. We already
used this fact before.

2. A variable in FX can not simultaneously belong to a compromised constraint and any (2, t)-
sunflower.

3. A variables in FX can not simultaneously belong to two uncompromised (2, t)-sunflowers.

Therefore we have a local structure (similar to a compromised constraint) which induces a partition
among all the effected variables. So we can write small (polylogarithmic) sized correction matrices
as in Lemma 3.24, and show using the same methods (essentially local consistency of measures)
that each such correction matrix will be positive semidefinite. Thereby proving Lemma 3.24, which
is sufficient to ensure that both the rank and size lower bounds extend to the case of almost all
instances of random CSPs.

5 Open Problems

A couple of interesting problems remain for promise predicates. It would be interesting to prove
rank lower bounds for many consecutive rounds of positive semidefinite steps without intermediate
projection steps. Like prior work on resolution [5] and PC [2] we need high expansion (in fact
higher) and it would be interesting to get the same bounds with moderately expanding CSPs.
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A Missing Proofs in Section 3

Lemma A.1 ([6]) If G is (r1, e1) expanding then G − Cl(X) is (r2, e2) expanding, where X is a
set of variables with |X| ≤ (e1 − e2)r1, r2 ≥ r1 − |X|

e1−e2 and |Cl(X)| ≤ k+2e1−e2
e1−e2 |X|.

Proof: The proof is similar to the one in [6] except that “boundary neighbors” is replaced by
“neighbors”. We essentially repeat the argument below.

In algorithm Closure let ξS be the value of ξ when iteration |S| = t terminates. We prove the
loop invariant: G − Cl(S) is (ξS , e2) expanding. Clearly the invariant holds in the beginning as
ξ > ξS and e1 > e2. Suppose G − Cl(S) − {xj} is not expanding after iteration j. Therefore
there must exist a M ′ ⊆ L, disjoint from Mj , such that |N(M ′)| ≤ e2|M ′| and |M ′| ≤ ξ − |Mj |, so
|N(Mj ∪M ′)| ≤ e2|Mj ∪M ′|. But this contradicts the maximality of Mj in the algorithm. Hence
the invariant holds.
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Next let M =
⋃t
j=1Mj so |M | =

∑t
j=1 |Mj | = r1 − ξS . Then by expansion of G: e1(r1 − ξS) ≤

|N(M)|. Also since the Mj are disjoint and ∀j ≤ t, |N(Mj)| ≤ e2|Mj |, we have |N(M)| ≤ |S| +
e2(r1− ξS). Combining the two previous bounds for |N(M)| we get our bound on ξS ≥ r1− |S|

e1−e2 .

Also,

|Cl(S)| ≤ |S|+
t∑

j=1

|N(Mj)| ≤ |S|+
e2 + k

2

∑
j

|Mj | ≤ |S|+
(e2 + k)|S|
2(e1 − e2)

=
(2e1 + k − e2)|S|

2(e1 − e2)

as required.

Finally, placing S = X and ξS = r2 in the above we get the desired results in the required form.
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