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Abstract

We consider Reed-Solomon (RS) codes whose evaluation points belong to a subfield, and give a
linear-algebraic list decoding algorithm that can correct a fraction of errors approaching the code dis-
tance, while pinning down the candidate messages to a well-structured affine space of dimension a con-
stant factor smaller than the code dimension. By pre-coding the message polynomials into a subspace-
evasive set, we get a Monte Carlo construction of a subcode of Reed-Solomon codes that can be list
decoded from a fraction (1 − R − ε) of errors in polynomial time (for any fixed ε > 0) with a list
size of O(1/ε). Our methods extend to algebraic-geometric (AG) codes, leading to a similar claim over
constant-sized alphabets. This matches parameters of recent results based on folded variants of RS and
AG codes, but our construction here gives subcodes of Reed-Solomon and AG codes themselves (albeit
with restrictions on the evaluation points).

Further, the underlying algebraic idea also extends nicely to Gabidulin’s construction of rank-metric
codes based on linearized polynomials. This gives the first construction of positive rate rank-metric
codes list decodable beyond half the distance, and in fact gives codes of rate R list decodable up to the
optimal (1−R− ε) fraction of rank errors. A similar claim holds for the closely related subspace codes
studied by Koetter and Kschischang.

We introduce a new notion called subspace designs as another way to pre-code messages and prune
the subspace of candidate solutions. Using these, we also get a deterministic construction of a polynomial
time list decodable subcode of RS codes. By using a cascade of several subspace designs, we extend our
approach to AG codes, which gives the first deterministic construction of an algebraic code family of
rate R with efficient list decoding from 1 − R − ε fraction of errors over an alphabet of constant size
(that depends only on ε). The list size bound is almost a constant (governed by log∗ (block length)), and
the code can be constructed in quasi-polynomial time. Finding more efficient constructions of subspace
designs is an interesting problem in pseudorandomness arising out of our work.
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1 Introduction
Reed-Solomon codes are a classical and widely used family of algebraic error-correcting codes. An [n, k]
Reed-Solomon (RS) code over a field F encodes polynomials f ∈ F[X] of degree < k by their evaluations
at a sequence α1, α2, . . . , αn of n 6 |F| distinct field elements. The rate R of this code equals k/n, and any
two distinct codewords differ on more than (1 − R)n positions. Thus, a codeword can be unambiguously
identified when up to a fraction (1−R)/2 of its symbols are corrupted. Polynomial time algorithms dating
back to 1960 are known to correct a fraction (1−R)/2 of errors and recover the correct codeword [32]. We
stress that in this work we focus on worst-case symbol errors, and the error fraction counts the proportion
of symbols of the received word which differ from the corresponding codeword symbol.

When the error fraction ρ exceeds (1 − R)/2, unique recovery of the correct codeword may not be
possible, but one can hope to list decode a small set of codewords that includes all codewords within distance
ρn from the noisy input string. In fact, such a list decoding task can be accomplished in polynomial time
for Reed-Solomon codes for ρ as large as 1 −

√
R [39, 18]. This remains the best known bound on list

decodable error-fraction for RS codes. The 1 −
√
R bound is best possible (in the sense that a larger noise

level might necessitate super-polynomial list size) in some more general settings like list recovery [16], but
for list decoding itself the only known limit is the trivial bound of 1−R.

Recently, variants of RS codes, such as folded Reed-Solomon codes and derivative codes [17, 19, 24],
have been used to decode up to a fraction of errors approaching 1 − R. The 1 − R bound is the Singleton
bound on relative distance of codes, and information-theoretically optimal for error-correction as one cannot
hope to correct an error fraction larger than the proportion of redundant symbols in the codeword.

In this work, we show that certain subcodes of RS codes where the evaluation points α1, . . . , αn belong
to a subfield of F can also be decoded up to the 1−R radius. In fact, we show that these RS codes themselves
can be list decoded up to radius (1−R−ε), pinning down the candidate messages to a subspace of dimension
εk.1 The list size, i.e., bound on number of codewords that might be output, is ≈ |F|εk; though exponential,
note that it is non-trivially smaller than the total number |F|k of possible messages.

To bring down the list size and decoding complexity, we use a subcode of the RS code that only encodes
polynomials whose coefficients are restricted to belong to a carefully chosen subset that is (a) large (so
we don’t lose much in rate) and (b) subspace-evasive. Specifically, we ensure that this subset has a small
intersection with every subspace of the sort output by the list decoder, and further allows for polynomial
time computation of this intersection. (Note that testing all |F|εk candidates in the subspace for membership
in the subspace-evasive subset would take too long.)

An explicit construction of a large subspace-evasive set in Fk that intersects every d-dimensional sub-
space in dO(d) points was given by Dvir and Lovett [6]. The intersection size was improved to 2O(d) at the
expense of worse construction complexity [1]. In our applications, the subspaces we need to evade have
Ω(k) dimension, so we cannot afford an intersection size that is exponential in the dimension. We instead
exploit the structural properties of the subspaces we encounter in list decoding to construct subsets with
much smaller intersection. We do this in two ways: (i) using hierarchically subspace-evasive (h.s.e) as in
our previous work [20]2; this in fact achieves Oε(1) intersection size, but we only know a randomized con-
struction, and (ii) using subspace designs, a notion apparently new to this work, which we can construct
deterministically, and which ensures that the intersection is itself a subspace of (nearly) Oε(1) dimension.
Further details on our techniques, both algebraic and pseudorandomness related, are discussed in Section 2.

1To be accurate, it will be a subspace over the subfield K of F of dimension εk[F : K].
2Actually, we use a combination of h.s.e sets with the Dvir-Lovett construction; see Section 2 for details.
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Code Construction Alphabe size List size Decoding time Reference
Folded RS/derivative Explicit nO(1/ε2) nO(1/ε) nO(1/ε) [17, 19], [24]
Folded RS subcode Monte Carlo nO(1/ε2) O(1/ε) nO(1/ε) [19]
Folded RS subcode Explicit nO(1/ε2) (1/ε)O(1/ε) nO(1)21/εO(1)

[6]
Folded cyclotomic Las Vegas (log n)O(1/ε2) nO(1/ε2) nO(1/ε2) [13]

Folded AG subcode Monte Carlo exp(Õ(1/ε2)) O(1/ε) nO(1)21/εO(1)
[20]

RS subcode Monte Carlo nO(1/ε2) O(1/ε) nO(1)21/εO(1)
Thm. 1.1

RS subcode Explicit nO(1/ε2) nO(1/ε2) nO(1/ε2) Thm 1.1
AG subcode Monte Carlo exp(Õ(1/ε2)) O(1/ε) nO(1)21/εO(1)

Thm. 1.2

AG subcode Explicit† exp(Õ(1/ε2)) ` = 22(log∗ n)2

nO(1)(1/ε)O(`) Thm. 1.2

Figure 1: Parameters of various constructions of codes that enable list decoding (1 − R − ε) fraction of
errors, with rate R. The last four lines are from this work. “Explicit” means the code can be constructed
in deterministic polynomial time. The † refers to quasi-polynomial construction time. The rows with first
column in boldface are not dominated by other constructions. The last row gives the first deterministic
construction of algebraic codes for efficient optimal rate list decoding over constant-sized alphabets.

1.1 Our results for Reed-Solomon and Algebraic-geometric codes

Below is a statement of our result on list decoding RS codes (the details can be found in Section 7.1).

Theorem 1.1 (List decoding Reed-Solomon (sub)-codes). Let ε > 0, and k, n be integers with 1 6 k < n.
Let Fq be a field of characteristic 2, with n 6 q 6 poly(n). Let m = Θ(1/ε2). Consider the [n, k] Reed-
Solomon code over alphabet Fqm of rate R = k/n whose evaluation points lie in the subfield Fq. This code
can be list decoded in polynomial time up to (1− ε)(n− k) errors pinning down the candidate messages to
an subspace over Fq of dimension at most εmk.

Further, there are subcodes of this RS code, of rate (1 − ε)R, list-decodable in polynomial time (for
fixed ε > 0) from fraction (1−R− ε) of errors using list size `, with

(i) ` = O(1/(Rε)). (This subcode is non-linear and admits a Monte Carlo construction in (n/ε)O(1)

time.)

(ii) ` = nO(1/ε2), with the list contained in a subspace of dimension O(1/ε2) over Fq. (This subcode is
Fq-linear and can be constructed in npoly(1/ε) time.)

As a comparison, folded RS and derivative codes offer a list size guarantee similar to the deterministic
construction (ii) above (in fact, the bound on dimension is better and equals O(1/ε)) [19]. Those codes also
admit a randomized subcode construction (using appropriate subspace-evasive sets) that brings down the list
size toOε(1), similar to (i) above [19], and an explicit construction to reduce the list size to exp(Õ(1/ε)) [6].
These and other previous results for list decoding from 1 − R − ε error fraction are listed in Figure 1. The
main point of Theorem 1.1 above is not the parameters, but that we can construct subcodes of Reed-Solomon
codes themselves that can be list decoded up to the optimal error fraction with polynomial complexity.
Perhaps more importantly, the methods extend to (i) Algebraic-geometric codes, leading to explicit codes
offering new trade-offs (the last row of Figure 1), and (ii) Gabildulin codes for the rank metric, giving the
first algorithm to list decode beyond half the distance with positive rate, as discussed in Section 1.2.
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AG subcodes. In our work [20], we extended the linear-algebraic list decoding algorithm to folded algebraic-
geometric (AG) codes, and showed that (pseudorandom) subcodes of certain folded AG codes achieve sim-
ilar parameters to part (i) of Theorem 1.1 and in addition have an alphabet size exp(Õ(1/ε2)) (the alphabet
size using RS codes in Theorem 1.1 is nO(1/ε2)). Here, we extend our approach for RS codes with evalua-
tion points in a subfield to algebraic-geometric codes based on constant extensions. Using pseudorandomly
constructed subcodes of such AG codes, in this work we match these parameters obtained in [20]. Perhaps
more significantly, we also give a deterministic subcode construction (in quasi-polynomial time) with near-
constant list size. This gives the first deterministic construction of an algebraic code family with optimal
rate list decoding (i.e., list decoding 1 − R − ε fraction of errors with rate R) over an alphabet of constant
size (that depends only on ε). Previously, such codes were known only via code concatenation with inner
codes found by brute-force combined with expander-based symbol redistribution [17]. Additionally, the list
size in our construction is bounded by a very slowly growing function of the block length. The one minus
point is that the construction time is quasi-polynomial in the block length. Below is a more formal statement
that we can prove for AG list decoding (the details appear in Section 7.2).

Theorem 1.2 (List decodable algebraic-geometric (sub)-codes). For arbitrary R, ε ∈ (0, 1), pick a prime
power q = Θ(1/ε2) and integer m = Θ(1/ε2). Then, we can construct a family of algebraic-geometric
codes over Fqm of rate R that can be list decoded from a fraction (1 − R)(1 − ε) of errors, pinning down
the candidate messages to an subspace over Fq of dimension at most εmk (where k is the dimension of the
code).

Further, there are subcodes of this AG code, of rate at least (1− ε)R with the following guarantees for
list decoding from fraction (1−R− ε) of errors:

(i) List size O(1/(Rε)), decoding complexity poly(N, exp(1/ε2)). This subcode is non-linear and ad-
mits a Monte Carlo construction in (N/ε)O(1) time where N is the block length.

(ii) An (N/ε)O(1) time decoder that finds a subspace of dimension exp(O(log∗N)2) over Fq containing
the list.3 This subcode is Fq-linear and can be constructed deterministically in NO(log3

q N) time.

A point worth noting about our deterministic constructions (part (ii) of Theorems 1.1 and 1.2) is that the
subcode is linear over the subfield Fq of the alphabet Fqm . Further, the list decoder will prune the ≈ εmk-
dimensional to a near-constant dimensional subspace by imposing additional Fq-linear constraints on the
message.

To summarize, our basic construction is based on Reed-Solomon codes themselves, and not any folded
version or other variant.4 The underlying approach can be extended to AG codes, and yields codes matching
previous parameters for randomized constructions, and a deterministic construction with improved parame-
ters. Figure 1 compares parameters of different constructions for optimal rate list decoding.

As mentioned earlier, a further advantage of our approach is that it extends to give similar guarantees
for Gabidulin codes [8], which are the rank-metric analog of Reed-Solomon codes, based on linearized
polynomials. In fact, we originally discovered the new algorithm in the context of rank-metric codes, and
later realized it also applied for RS and AG codes. We describe rank-metric codes and the prior and our
results for list decoding them next.

3log∗ n denotes the number of iterated logarithms to the base 2 needed to reach a number below 1.
4We note though that restricting the evaluation points to a subfield makes our construction an “interleaved” RS code construction

over the subfield Fq . Decoding algorithms for interleaved RS codes for close to a fraction (1−R) of random errors were given in
[4, 3].
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1.2 Rank-metric codes

A rank-metric code C is a collection of matrices of certain dimension over a finite field (say, C ⊆Mn×t(Fh),
with n 6 t, where Mn×t(Fh) denotes the set of n× tmatrices with entries in Fh). The rate of C is defined to
be logh |C|/(nt). The notion of distance d(A,B) between matrices A,B is the rank distance rank(A−B),
and the (rank) distance d of C equals minA 6=B∈C rank(A − B). Gabidulin gave a construction of rank-
metric codes which are the analog of RS codes in the world of linearized polynomials [8]. The messages of
Gabidulin codes are h-linearized polynomials over Fht of h-degree less than k, and such a polynomial f is
encoded into (f(α1), f(α2), . . . , f(αn))T ∈ Mn×t(Fh), where α1, . . . , αn ∈ Fht are linearly independent
over Fh, and we think of f(αj) as a column vector in Fth under a fixed Fh-basis of Fht . The rate of this code
is k/n, and its rank distance is n− k + 1, which is optimal and meets the Singleton bound for rank-metric
codes.

Prior and recent work. The rank metric was first considered in the context of coding theory by Delsarte
(who used the terminology of bilinear forms) [5]. In addition to being a natural concept of inherent inter-
est, rank-metric codes are motivated by applications such as reliable communication of messages in linear
network coding [37], crisscross error-correction in magnetic tape recording or memory chip arrays [34],
space-time coding in wireless communications [28], public key cryptosystems [10, 27], etc. The Gabidulin
codes play a preeminent role in the subject, and the problem of unique decoding them up to (n− k)/2 rank
errors (this means recovering a codeword matrixM given M +E where the error matrix E has rank at most
(n− k)/2) has received a lot of attention. In fact, it has been solved several times, by adapting the different
approaches for unique decoding Reed-Solomon codes to the linearized setting, starting with Gabidulin’s
original paper [8], and later in [9, 34, 33, 26, 36, 23].

Despite this interest and many results paralleling RS codes, an algorithm for list decoding Gabidulin
codes beyond half the distance has remained elusive. Recently, by adapting a construction from [2], Wachter-
Zeh showed that for Gabidulin codes, correcting more than a fraction 1−

√
R of rank errors is not possible

with a polynomial sized list [40]. This is in contrast with the situation for Reed-Solomon codes where we
still do not know if the list size can become super-polynomial beyond the 1 −

√
R bound. Perhaps this

indicates the difference in behavior of list decoding Gabidulin and RS codes. In this context, it is worth
mentioning that no analog of the Johnson bound (which implies a small list size up to radius 1−

√
R for RS

codes) is known for rank-metric codes. Therefore, we currently do not even know if list decoding Gabidulin
codes up to radius 1 −

√
R, or for that matter any error fraction exceeding (1 − R)/2, is combinatorially

feasible (in that the number of close-by codewords is guaranteed to be small).
Recently, a folded variant of Gabidulin codes (paralleling the folded RS codes of [17]) was considered

in [14] (and independently in [30]), and a linear-algebraic list decoding algorithm along the lines of [19]
was given for these codes. The results of [14] are stated for the model of “subspace codes” and deal with
the analog of Gabidulin codes in this setting defined by [41, 23]. But subspace codes are closely related
to rank-metric codes (see [37]), and the results of [14] can be readily translated to rank-metric codes. In
particular, the authors of [14] give a code construction that can correct a fraction (1 − ε) of rank errors
for any ε > 0, but the rate is polynomially small. The loss in rate occurs because in order to keep the list
size small, the h-linearized message polynomials must be restricted to have coefficients in the base field Fh
instead of Fht , and this makes the rate a factor t smaller. The same drawback applies to [30] (though the
title claims decodability up to the Singleton bound, in this case the output list size would be exponentially
large in the dimensions of the matrix).

List decoding of subspace codes that are in some sense the linearized analog of Parvaresh-Vardy codes [31]
was studied in [29], but their algorithm could only correct “insertions” (and not removal of basis elements
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from the subspace), and so does not immediately apply to the rank-metric setting.

Our results. In this work, we consider Gabidulin codes where the n evaluation points α1, α2, . . . , αn belong
to a subfield Fhn of the field Fht over which the message polynomials are defined (so we require n|t). The
evaluation points thus form an Fh-basis of Fhn . We give a list decoding algorithm for these Gabidulin
codes, and combine them with suitable hierarchical subspace-evasive sets, to prove the following statement
paralleling Theorem 1.1.

Theorem 1.3. Let Fh be a finite field of characteristic 2, ε > 0, and k, n, t be integers with 1 6 k <
n < O(ε2t) and n|t. Consider the Gabidulin code G ⊆Mn×t(Fh) consisting of evaluations of h-linearized
polynomials in Fht [X] of h-degree at most k − 1 at an Fh-basis of Fhn . The code G can be list decoded in
polynomial time up to (1− ε)(n− k) rank errors pinning down the candidate messages to an Fh-subspace
of dimension at most εtk.

Further, there is a Monte Carlo construction of a subcode of this Gabidulin code, of rateR = (1−ε)k/n,
which can be list decoded from (1− ε)(n− k) errors in poly(n, log h, exp(1/ε2)) time, outputting a list of
size at most O(1/(Rε)).

Thus we are able to give a Monte Carlo construction of a rank-metric code of rateR that is efficiently list
decodable up to a fraction (1−R− ε) of rank errors. Note that we list decode up to the best possible radius,
approaching the Singleton bound. Further, to our knowledge, this is the first construction of rank-metric
codes with rate bounded away from zero that can be list decoded beyond the half-the-distance bound.

Subspace codes. We can also obtain a result for subspace codes using similar methods, yielding list de-
codable codes with trade-offs almost matching existential bounds. For simplicity we focus on rank-metric
codes in the body of the paper, and discuss subspace codes only in Appendix A.

1.3 Organization

We give an overview of some of the main ideas in this work in Section 2. We abstract the key “periodicity”
property of the subspaces arising in our linear-algebraic list decoding in Section 3. Section 4 discusses the
list decoding algorithms for Reed-Solomon and algebraic-geometric codes, including a separate treatment
of Garcia-Stichtenoth codes in Section 4.3. We put forth the notion of subspace designs and study their
constructions as well as cascaded subspace designs in Section 5. Hierarchical subspace evasive (h.s.e) sets
are defined and constructed in Section 6. With the necessary pseudoranom ingredients in place, in Section 7,
we construct appropriate subcodes of RS and AG codes with improved list size. In Section ??, we develop
a linear-algebraic list decoder for Gabidulin codes, and construct a good subcode of that code by pre-coding
using h.s.e sets.

2 Our techniques

We now discuss at a high level some of the new ingredients in this work.

Algebraic ideas. We begin by describing how restricting evaluation points to a subfield enables correcting
more errors, which is the algebraic starting point of our work. The idea behind list decoding results for
folded RS (or derivative) codes in [17, 19] is that the encoding of a message polynomial f ∈ FQ[X]
includes the values of f and closely related polynomials at the evaluation points. Given a string not too
far from the encoding of f , one can use this property together with the “interpolation method” to find an
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algebraic condition that f (and its closely related polynomials) must satisfy, eg. A0(X) + A1(X)f(X) +
A2(X)f ′(X) + · · ·+ As(X)f (s−1)(X) = 0 in the case of derivative codes [19] (here f (i) denotes the i’th
formal derivative of f , and the A0, A1, . . . , As are low-degree polynomials found by the decoder). The
solutions f(X) to this equation form an affine space, which can be efficiently found (and later pruned for
list size reduction when we pre-code messages into a subspace-evasive set).

For Reed-Solomon codes as in Theorem 1.1, the encoding only includes the values of f atα1, α2, . . . , αn.
But since αi ∈ Fq, we have f(αi)

q = fσ(αi) where fσ is the polynomial obtained by the action of the
Frobenius automorphism that maps y 7→ yq on f (formally, fσ(X) =

∑k−1
j=0 f

q
jX

j if f(X) =
∑k−1

j=1 fjX
j).

Thus the decoder can “manufacture” the values of fσ (and similarly fσ
2
, fσ

3
, etc.) at the αi. Apply-

ing the above approach then enables finding a relation A0(X) + A1(X)f(X) + A2(X)fσ(X) + · · · +
As(X)fσ

s−1
(X) = 0, which is again an Fq-linear condition on f that can be used to solve for f .

To extend this idea to algebraic-geometric codes, we work with constant extensions Fqm ·F of algebraic
function fields F/Fq. The messages belong to a Riemann-Roch space over Fqm , but they are encoded via
their evaluations at Fq-rational points. Similarly to [20], for decoding we recover the message function f
in terms of the coefficients of its local expansion at some rational point P . (The Reed-Solomon setting is a
special case when F = Fq(X), and P is 0, i.e., the zero of X .) To get the best trade-offs, we use AG codes
based on a tower of function fields due to Garcia and Stichtenoth [11, 12] which achieve the optimal trade-
off between the number of Fq-rational points and the genus. For this case, we recover messages in terms of
their local expansion around the point at infinity P∞ which is also used to define the Riemann-Roch space
of messages. So we treat this setting separately (Section 4.3), after describing the framework for general
AG codes first (Section 4.2).

Subspace designs and subspace-evasive sets. In the case of folded RS codes, the solutions to the equation
A0(X) + A1(X)f(X) + A2(X)f(γX) + · · · + As(X)f(γs−1X) = 0 are restricted to an s-dimensional
space over FQ with Q = qm, if f ∈ FQ[X] [19], and a similar statement holds for derivative codes.
For the Reed-Solomon codes with evaluation points in Fq considered in this work, each coefficient fj ,
j = 0, 1, . . . , k − 1, of f = f0 + f1X + · · ·+ fk−1X

k−1 ∈ Fqm [X] will be restricted to an s-dimensional
Fq-subspace of Fqm . This would lead to a list size bound of (qs)k, which is exponentially large. Thus, to get
polynomial complexity, we need to prune this space by intersecting it with a large subspace-evasive subset of
Fmkq (where we treat the coefficient vector (f0, f1, . . . , fk−1) as an element of Fmkq by fixing some Fq-basis
of Fqm). Despite the large dimension, the solution subspace has a nice “periodic” structure; namely, once
f0, f1, . . . , fi−1 are fixed, the i’th “block” fi belongs to an s-dimensional subspace of Fmq . Exploiting this,
we can use hierarchically subspace-evasive (h.s.e) sets of the kind constructed in [20] to randomly construct
a subcode achieving list size as small as O(1/ε).5

Naively computing the intersection of the solution space with the h.s.e set will involve trying all possi-
bilities in Fmq to compute the allowed extensions fi to each partial solution f0, . . . , fi−1. The resulting qm

time complexity will be a large polynomial (like n1/ε2) in the Reed-Solomon case, and worse still, super-
polynomial in the case of Gabidulin codes for rank-metric. To circumvent this problem, we compose the
h.s.e set with an “inner” subspace-evasive subset I ⊂ Fmq in each of the k blocks. (That is, we insist fi
belongs to I, in addition to (f0, . . . , fk−1) belonging to the h.s.e set.)

For the subset I, we use the subspace-evasive variety constructed by Dvir and Lovett [6] (with a different
choice of degree parameters to accommodate any field size). The intersection of an s-dimensional subspace
with this variety can be found in time polynomial in the intersection size. This allows us to find the allowed

5We actually observe and use a simplification of this construction, by defining the set based on values of random polynomials
instead of their zero sets, following [19, Sec. 4.1].
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extensions fi to f0, . . . , fi−1 efficiently without searching over all qm possibilities, and leads to the claimed
runtime bounds for decoding the (randomized) subcodes of RS and Gabidulin codes in Theorems 1.1 and
1.3.

The h.s.e sets are constructed randomly and lead to Monte Carlo constructions of the associated sub-
codes. We next turn to our deterministic subcode constructions (parts (ii) of Theorems 1.1 and 1.2). The
starting point for this is an observation we make that the periodic property of the subspace of candidate
solutions is even nicer than what was used in [20]. Specifically, there is a subspace W ⊂ Fmq such that
once f0, f1, . . . , fi−1 are fixed, fi belongs to a coset of W (the point is that this W is the same for every
block i). Our idea then is to restrict fi to belong to a subspace Hi where H1, H2, . . . ,Hk are a collection
of subspaces in Fmq such that for any s-dimensional subspace W ⊂ Fmq , only a small number of them have
non-trivial intersection with W . More precisely, we require that

∑k
i=1 dim(W ∩Hi) is small. We call such

a collection as a subspace design in Fmq . We feel that the concept of subspace designs is interesting in its
own right, and view the introduction of this notion in Section 5 as a key contribution in this work.

There are well known explicit constructions of “spreads” which are a collection of ≈ qm/2 subspaces of
Fmq which pairwise intersect only at 0 [21]. These would ensure that

∑k
i=1 dim(W ∩Hi) 6 dim(W ) 6 s.

But the subspaces in such spreads necessarily have dimension at most m/2, so restricting fi ∈ Hi for such
subspaces would incur a factor two loss in rate. We instead resort to random choices of the subspaces.
We prove that qΩ(εm) random subspaces of dimension (1 − ε)m have small total intersection with every
s-dimensional W . Fortunately, we are able to derandomize this construction using conditional expectations
to also get a deterministic construction. This leads to our explicit subcode of Reed-Solomon codes promised
in Theorem 1.1, part (ii).

For explicit subcodes of algebraic-geometric codes (Section 7.2), we need additional ideas. The di-
mension k in the case of AG codes is much larger than the alphabet size qm (that’s the whole point of
generalizing to AG codes). So we cannot have a subspace design in Fmq with k subspaces. We therefore
use several “layers” of subspace designs in a cascaded fashion – the first one in Fmq , the next one in Fm1

q

for m1 � q
√
m, the third one in Fm2

q for m2 � q
√
m1 and so on. Since the mi’s increase exponentially,

we only need about log∗ k levels of subspace designs. Each level incurs about a factor 1/ε increase in the
dimension of the “period subspace” (which is W when we begin). With a careful technical argument and
choice of parameters, we are able to obtain the bounds of Theorem 1.2, part (ii).

The field size in Gabidulin codes is too large to accommodate a deterministic construction of subspace
designs using our methods. So for the Gabidulin case, we only construct subcodes using h.s.e sets.

3 Periodic subspaces

In this section we formalize a certain “periodic” property of affine subspaces that will arise in our list
decoding application. A property of similar nature was formulated in our earlier work [20]; here we give a
more restrictive definition which turns out to more accurately capture the kind of subspaces we encounter.
This in turn facilitates pruning the list of candidate solutions in the subspace via appropriate pre-coding of
the messages.

We begin with some notation. For a vector y = (y1, y2, . . . , ym) ∈ Fmq and positive integers t1 6 t2 6
m, we denote by proj[t1,t2](y) ∈ Ft2−t1+1

q its projection onto coordinates t1 through t2, i.e., proj[t1,t2](y) =
(yt1 , yt1+1, . . . , yt2). When t1 = 1, we use projt(y) to denote proj[1,t](y). These notions are extended to
subsets of strings in the obvious way: proj[t1,t2](S) = {proj[t1,t2](x) | x ∈ S}.
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Definition 1 (Periodic subspaces). For positive integers r, b,Λ and κ := bΛ, an affine subspace H ⊂ Fκq is
said to be (r,Λ, b)-periodic if there exists a subspace W ⊆ FΛ

q of dimension at most r such that for every

j = 1, 2, . . . , b, and every “prefix” a ∈ F(j−1)Λ
q , the projected affine subspace of FΛ

q defined as

{proj[(j−1)Λ+1,jΛ](x) | x ∈ H and proj(j−1)Λ(x) = a}

is contained in an affine subspace of FΛ
q given by W + va for some vector va ∈ FΛ dependent on a.6

The motivation of the above definition will be clear when we present our linear-algebraic list decoders,
which will pin down the messages that must be output within an (s− 1,m, k)-periodic (affine) subspace of
Fmkq (where qm will be the alphabet size of the code, k its dimension, and s a parameter of the algorithm
that governs how close the decoding performance approaches the Singleton bound).

The following properties of periodic affine spaces follow from the definition.

Claim 3.1. Let H be an (r,Λ, b)-periodic affine subspace. Then for each j = 1, 2, . . . , b,

1. the projection of H to the first j blocks of Λ coordinates, projjΛ(H) = {projjΛ(x) | x ∈ H}, has
dimension at most jr. (In particular H has dimension at most br.)

2. for each a ∈ F(j−1)Λ
q , there are at most qr extensions y ∈ projjΛ(H) such that proj(j−1)Λ(y) = a.

For an affine space H , its underlying subspace is the subspace S such that H is a coset of S.

Definition 2 (Representing periodic affine subspaces). The canonical representation of an (r,Λ, b)-periodic
subspace H consists of a matrix B ∈ FΛ×Λ

q such that ker(B) has dimension at most r, and vectors ai ∈ FΛ
q

and matrices Ai,j ∈ FΛ×Λ
q for 1 6 i 6 b and 1 6 j < i, such that x ∈ H if and only if for every

i = 1, 2, . . . , b the following holds:

ai +
( i−1∑
j=1

Ai,j · proj[(j−1)Λ+1,jΛ](x)
)

+B · proj[(i−1)Λ+1,iΛ](x) = 0 .

Ultra-periodic subspaces. For our result on pre-coding algebraic-geometric codes with subspace designs,
we will exploit an even stronger property that holds for the subspaces output by the linear-algebraic list
decoder. We formalize this notion below.

Definition 3. An affine subspaceH of Fκq is said to be (r,Λ)-ultra periodic if for every integer `, 1 6 ` 6 κ
Λ ,

setting b` =
⌊
κ
`Λ

⌋
, we have projb`·`Λ(H) is (`r, `Λ, b`)-periodic.

The definition captures the fact that the subspace is periodic not only for blocks of size Λ, but also for
block sizes that are multiples of Λ. Thus the subspace looks periodic in all “scales” simultaneously.

4 List decoding of Reed-Solomon and algebraic-geometric codes

In this section, we will present a linear-algebraic list decoding algorithm for algebraic-geometric (AG)
codes based on evaluations of functions at rational points over a subfield. The algorithm will manage to

6In fact, in our applications this affine space will either be empty or equal to a coset of W , but for a simpler definition we just
require that it is always contained in a coset of W .

8



correct a large fraction of errors, and pin down the possible messages to a well-structured affine subspace
of dimension much smaller than that of the code. For simplicity, we begin with the case of Reed-Solomon
codes in Section 4.1. We then extend it to a general framework for decoding AG codes based on constant
field extensions in Section 4.2. Finally, in Section 4.1, we instantiate the general framework (with a slight
twist) to codes based on the Garcia-Stichtenoth tower.

4.1 Decoding Reed-Solomon codes

Our list decoding algorithm will apply to Reed-Solomon codes with evaluation points in a subfield, defined
below.

Definition 4 (Reed-Solomon code with evaluations in a subfield). Let Fq be a finite field with q elements,
and m a positive integer. Let n, k be positive integers satisfying 1 6 k < n 6 q. The Reed-Solomon code
RS(q,m)[n, k] is a code over alphabet Fqm that encodes a polynomial f ∈ Fqm [X] of degree at most k − 1
as

f(X) 7→ (f(α1), f(α2), · · · , f(αn))

where α1, α2, . . . , αn are an arbitrary sequence of n distinct elements of Fq.

Note that while the message polynomial has coefficients from Fqm , the encoding only contains its eval-
uations at points in the subfield Fq. The above code has rate k/n, and minimum distance (n− k + 1).

We now present a list decoding algorithm for the above Reed-Solomon codes. Suppose the codeword
(f(α1), f(α2), · · · , f(αn)) is received as (y1, y2, . . . , yn) ∈ Fnqm with at most e = τn errors (i.e., yi 6=
f(αi) for at most e values of i ∈ {1, 2, . . . , n}). The goal is to recover the list of all polynomials of degree
less than k whose encoding is within Hamming distance e from y. As is common in algebraic list decoders,
the algorithm will have two steps: (i) interpolation to find an algebraic equation the message polynomials
must satisfy, and (ii) solving the equation for the candidate message polynomials.

Interpolation step. Let 1 6 s 6 m be an integer parameter of the algorithm. Choose the “degree parame-
ter” D to be

D =

⌊
n− k + 1

s+ 1

⌋
. (1)

Definition 5 (Space of interpolation polynomials). LetP be the space of polynomialsQ ∈ Fqm [X,Y1, Y2, . . . , Ys]
of the form

Q(X,Y1, Y2, . . . , Ys) = A0(X) +A1(X)Y1 +A2(X)Y2 + · · ·+As(X)Ys , (2)

with each Ai ∈ Fqm [X] and deg(A0) 6 D + k − 1 and deg(Ai) 6 D for i = 1, 2, . . . , s.

The lemma below follows because for our choice ofD, the number of degrees of freedom for polynomi-
als in P exceeds the number n of interpolation conditions (3). We include the easy proof for completeness.

Lemma 4.1. There exists a nonzero polynomial Q ∈ P such that

Q(αi, yi, y
q
i , y

q2

i , · · · , y
qs−1

i ) = 0 for i = 1, 2, . . . , n . (3)

Further such a Q can be found using O(n3) operations over Fqm .
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Proof. Note that P is an Fqm-vector space of dimension

(D + k) + s(D + 1) = (D + 1)(s+ 1) + k − 1 > n,

where the last inequality follows from our choice (1). The interpolation conditions required in the lemma
impose n homogeneous linear conditions on Q. Since this is smaller than the dimension of P , there must
exist a nonzero Q ∈ P that meets the interpolation conditions

Q(αi, yi, y
q
i , y

q2

i , · · · , y
qs−1

i ) = 0 for i = 1, 2, . . . , n .

Finding such a Q amounts to solving a homogeneous linear system over Fqm with n constraints and at most
dim(P) 6 n+ s+ 2 unknowns, which can be done in O(n3) time.

Lemma 4.3 below shows that any polynomial Q given by Lemma 4.1 yields an algebraic condition that
the message functions f we are interested in list decoding must satisfy.

Definition 6 (Frobenius action on polynomials). For a polynomial f ∈ Fqm [X] with f(X) = f0 + f1X +
· · ·+ fk−1X

k−1, define the polynomial fσ ∈ Fqm [X] as fσ(X) = f q0 + f q1X + · · ·+ f qk−1X
k−1.

For i > 2, we define fσ
i

recursively as (fσ
i−1

)σ.

The following simple fact is key to our analysis.

Fact 4.2. If α ∈ Fq, then f(α)q
j

= (fσ
j
)(α) for all j = 1, 2, . . . .

Lemma 4.3. Suppose Q ∈ P satisfies the interpolation conditions (3). Suppose f ∈ Fqm [X] of degree
less than k satisfies f(αi) 6= yi for at most e values of i ∈ {1, 2, . . . , n} with e 6 s

s+1(n − k). Then
Q(X, f(X), fσ(X), fσ

2
(X), · · · , fσs−1

(X)) = 0.

Proof. Define the polynomial Φ ∈ Fqm [X] by Φ(X) := Q(X, f(X), fσ(X), fσ
2
(X), · · · , fσs−1

(X)). By
the construction of Q and the fact that deg(f) 6 k− 1, we have deg(Φ) 6 D+ k− 1 6 n−k+1

s+1 + k− 1 =
n
s+1 + s

s+1(k − 1).

Suppose yi = f(αi). By Fact 4.2, we have yqi = f(αi)
q = (fσ)(αi), and similarly yq

j

i = (fσ
j
)(αi) for

j = 2, 3, . . . . Thus for each i such that f(αi) = yi, we have Φ(αi) = Q(αi, f(αi), f
σ(αi), · · · , fσ

s−1
(αi)) =

Q(αi, yi, y
q
i , · · · , y

qs−1

i ) = 0. Thus Φ has at least n− e > n
s+1 + s

s+1k zeroes. Since this exceeds the upper
bound on the degree of Φ, Φ must be the zero polynomial.

Finding candidate solutions. The previous two lemmas imply that the polynomials f whose encodings
differ from (y1, · · · , yn) in at most s

s+1(n−k) positions can be found amongst the solutions of the functional
equation A0 +A1f +A2f

σ + · · ·+Asf
σs−1

= 0. We now prove that these solutions form a well-structured
affine space over Fq.

Lemma 4.4. For integers 1 6 s 6 m, the set of solutions f =
∑k−1

i=0 fiX
i ∈ Fqm [X] to the equation

A0(X) +A1(X)f(X) +A2(X)fσ(X) + · · ·+As(X)fσ
s−1

(X) = 0 (4)

when at least one of {A0, A1, . . . , As} is nonzero is an affine subspace over Fq of dimension at most (s −
1)k. Further, fixing an Fq-basis of Fqm and viewing each fi as an element of Fmq , the solutions are an
(s− 1,m, k)-periodic subspace of Fmkq . A canonical representation of this periodic subspace (in the sense
of Definition 2) can be computed in poly(k,m, log q) time.
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Proof. If f, g are two solutions to (4), then so is αf+βg for any α, β ∈ Fq with α+β = 1. So the solutions
to (4) form an affine Fq-subspace. We now proceed to analyze the structure of the subspace.

First, by factoring out a common powers of X that divide all of A0(X), A1(X), . . . , As(X), we can
assume that at least one Ai∗(X) for some i∗ ∈ {0, 1, . . . , s} is not divisible by X , and has nonzero constant
term. Further, if A1(X), . . . , As(X) are all divisible by X , then so is A0(X), so we can take i∗ > 0.

Let us denote Aι(X) = aι,0 + aι,1X + aι,2X
2 + · · · for ι = 0, 1, 2, . . . , s. For l = 0, 1, 2, . . . , k − 1,

define the linearized polynomial

Bl(X) = a1,lX + a2,lX
q + a3,lX

q2
+ · · ·+ as,lX

qs−1
. (5)

We know that ai∗,0 6= 0, and therefore B0 6= 0. This implies that the solutions β ∈ Fqm to B0(β) = 0 is a
subspace, say W , of Fqm of dimension at most s− 1.

Fix an i ∈ {0, 1, . . . , k − 1}. Expanding the equation (4) and equating the coefficient of Xi to be 0, we
get

a0,i +Bi(f0) +Bi−1(f1) + · · ·+B1(fi−1) +B0(fi) = 0 . (6)

This implies fi ∈ W + θi for some θi ∈ Fqm that is determined by f0, f1, . . . , fi−1. Therefore, for each
choice of f0, f1, . . . , fi−1, fi must belong to a fixed coset of the subspace W of dimension at most s − 1.
Thus, the solutions belong to an (s − 1,m, k)-periodic subspace. Also, it is clear from (6) that a canonical
representation of the periodic subspace can be computed in poly(k,m, log q) time.

Combining Lemmas 4.3 and 4.4, we see that one can find an affine space of dimension (s − 1)k that
contains the coefficients of all polynomials whose encodings differ from the input (y1, . . . , yn) in at most
a fraction s

s+1(1 − R) of the positions. Note the dimension of the message space of the Reed-Solomon
code RS(q,m)[n, k] over Fq is km. The above lemma pins down the candidate polynomials to a space of
dimension (s − 1)k. For s � m, this is a lot smaller. In particular, it implies one can list decode in time
sub-linear in the code size (the proof follows by taking s = d1/εe and m > s

γ ).

Corollary 4.5. For every R ∈ (0, 1), and ε, γ > 0, there is a positive integer m such that for all large
enough prime powers q, the Reed-Solomon code C = RS(q,m)[q,Rq] can be list decoded from a fraction
(1−R− ε) of errors in |C|γ time, outputting a list of size at most |C|γ .

Since the dimension of the subspace guaranteed by Lemma 4.4 grows linearly in k, we still cannot afford
to list this subspace as the decoder’s output for polynomial time decoding. Instead, we will use a “pre-code”
that only allows polynomials with coefficients in a carefully chosen subset that is guaranteed to have small
intersection with the space of solutions to any equation of the form (4). Further, this intersection can be
found quickly without going over all solutions to (4). In Sections 5 and 6, we will see two approaches to
accomplish this based on subspace designs and hierarchical subspace-evasive sets respectively.

4.2 Decoding algebraic-geometric codes

In this section we generalize the Reed-Solomon algorithm to algebraic-geometric codes. The description
in this section will be for a general abstract AG code. So we will focus on the algebraic ideas, and not
mention complexity estimates. The next subsection will focus on a specific AG code based on Garcia-
Stichtenoth function fields, which will require a small change to the setup, and where we will also mention
computational aspects. We assume familiarity with the basic setup of algebraic function fields and codes
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based on function fields, and use standard terminology and notation; the reader is referred to Stichtenoth’s
book for basic background information [38].

Let F/Fq be a function field of genus g. Let P∞, P1, P2, . . . , PN be N + 1 distinct Fq-rational places.
Let σ ∈ Gal(Fqm/Fq) be the Frobenius automorphism, i.e, ασ = αq for all α ∈ Fqm . Then we can extend
σ to an automorphism in Gal(Fm/F ), where Fm is the constant extension Fqm · F . Note that P σ = P for
any place of F .

For a place P of F , we denote by νP the discrete valuation of P . For an integer l, we consider the
Riemann-Roch space over Fq defined by

L(lP∞) := {h ∈ F \ {0} : νP∞(h) > −l} ∪ {0}.

Then the dimension `(lP∞) is at least l − g + 1 and equality holds if l > 2g − 1. Furthermore, we define
the Riemann-Roch space over Fqm by

Lm(lP∞) := {h ∈ Fm \ {0} : νP∞(h) > −l} ∪ {0}.

Then Lm(lP∞) is the tensor product of L(lP∞) with Fqm . This implies that

dimFqm (Lm(lP∞)) = dimFq(L(lP∞))

and an Fq-basis of L(lP∞) is also an Fqm-basis of Lm(lP∞).
Consider the Goppa geometric code defined by

C(m; l) := {(f(P1), f(P2), . . . , f(PN )) : f ∈ Lm(lP∞)}.

The following result is a fundamental fact about algebraic-geometric codes.

Lemma 4.6. The above code C(m; l) is an Fqm-linear code over Fqm , rate at least l−g+1
N , and minimum

distance at least N − l.

We now present a list decoding algorithm for the above codes. The algorithm follows the linear-algebraic
list decoding algorithm for RS codes. Suppose a codeword encoding f ∈ Lm((k+2g−1)P∞) is transmitted
and received as y = (y1, y2, . . . , yN ).

Given such a received word, we will interpolate a nonzero linear polynomial over Fm

Q(Y1, Y2, . . . , Ys) = A0 +A1Y1 +A2Y2 + · · ·+AsYs (7)

where Ai ∈ Lm(DP∞) for i = 1, 2, . . . , s and A0 ∈ Lm((D + k + 2g − 1)P∞) with the degree parameter
D chosen to be

D =

⌊
N − k + (s− 1)g + 1

s+ 1

⌋
. (8)

If we fix a basis of Lm(DP∞) and extend it to a basis of Lm((D + k + 2g − 1)P∞), then the number of
freedoms of A0 is at least D+k+ g and the number of freedoms of Ai is at least D− g+ 1 for i > 1. Thus,
the total number of freedoms in the polynomial Q equals

s(D − g + 1) +D + k + g = (s+ 1)(D + 1)− (s− 1)g − 1 + k > N. (9)

for the above choice (8) of D. The interpolation requirements on Q ∈ Fm[Y1, . . . , Ys] are the following:

Q(yi, y
σ
i , . . . , y

σs−1

i ) = A0(Pi) +A1(Pi)yi +A2(Pi)y
σ
i + · · ·+As(Pi)y

σs−1

i = 0 (10)
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for i = 1, 2, . . . , N . Thus, we have a total of N equations to satisfy. Since this number is less than the
number of freedoms in Q, we can conclude that a nonzero linear function Q ∈ Fm[Y1, . . . , Ys] of the form
(7) satisfying the interpolation conditions (10) can be found by solving a homogeneous linear system over
Fqm with at most N constraints and at least s(D − g + 1) +D + k + g variables.

The following lemma gives the algebraic condition that the message functions f ∈ Lm((k+2g−1)P∞)
we are interested in list decoding must satisfy.

Lemma 4.7. If f is a function in Lm((k+ 2g − 1)P∞) whose encoding agrees with the received word y in
at least t positions with t > D + k + 2g − 1, then

Q(f, fσ, . . . , fσ
s−1

) = A0 +A1f +A2f
σ + · · ·+Asf

σs−1
= 0. (11)

Proof. The proof proceeds by comparing the number of zeros of the function Q(f, fσ, . . . , fσ
s−1

) = A0 +
A1f + A2f

σ + · · · + Asf
σs−1

with D + k + 2g − 1. Note that Q(f, fσ, . . . , fσ
s−1

) is a function in
Lm((D + k + 2g − 1)P∞). If position i of the encoding of f agrees with y, then

0 = A0(Pi) +A1(Pi)yi +A2(Pi)y
σ
i + · · ·+As(Pi)y

σs−1

i

= A0(Pi) +A1(Pi)f(Pi) +A2(Pi)(f(Pi))
σ + · · ·+As(Pi)(f(Pi))

σs−1

= A0(Pi) +A1(Pi)f(Pi) +A2(Pi)f
σ(Pi) + · · ·+As(Pi)f

σs−1
(Pi)

= (A0 +A1f +A2f
σ + · · ·+Asf

σs−1
)(Pi)

i.e., Pi is a zero ofQ(f, fσ, . . . , fσ
s−1

). Thus, there are at least t zeros for all the agreeing positions. Hence,
Q(f, fσ, . . . , fσ

s−1
) must be the zero function when t > D + k + 2g − 1.

Let P be a rational place in F and let T ∈ F be a local parameter of P . Then T σ = T . Here, we have
two scenarios, i.e., P = P∞ or P 6= P∞. In Subsection 4.3, we will consider the case where P = P∞ for
the Garcia-Stichtenoth tower. While in this subsection, we only discuss the case where P 6= P∞. This was
the case with Reed-Solomon codes with message polynomials in Fq[X] in Subsection 4.1 where P∞ was
the pole of X , and P the zero of X .

Assume that a function f ∈ Lm((k + 2g − 1)P∞) has a local expansion at P

f =

∞∑
j=0

fjT
j (12)

for some fj ∈ Fqm . Then f is uniquely determined by (f0, f1, . . . , fk+2g−1) since f has the pole degree at
most k + 2g − 1.

Lemma 4.8. The set of solutions f ∈ Lm((k + 2g − 1)P∞) to the equation (10)

A0 +A1f +A2f
σ + · · ·+Asf

σs−1
= 0

when at least oneAi is nonzero has size at most q(s−1)(k+2g−1). Further, the possible coefficients (f0, f1, . . . ,

fk+2g−1) of f ’s local expansion at P belong to an (s− 1,m)-ultra periodic affine subspace of F(k+2g−1)m
q .

Proof. The argument is very similar to Lemma 4.4. Let u = min{νP∞(Ai) : i = 1, 2, . . . , s}. Then it is
clear that u > 0 and νP (A0) > u. Each Ai has a local expansion at P :

Ai = T u
∞∑
j=0

ai,jT
j
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for i = 0, 1, . . . , s.
Assume that at P , the function f has a local expansion (12). Then fσ

i
has a local expansion at P as

follows

fσ
i

=

∞∑
j=0

f q
i

j T
j .

For l = 0, 1, . . . , define the linearized polynomial

Bl(X) := a1,lX + a2,lX
q + · · ·+ as,lX

qs−1

From the definition of u, one knows thatB0(X) is nonzero. Equating the coefficient of T d+u inA0 +A1f+
A2f

σ + · · ·+Asf
σs−1

to equal 0 gives us the condition

a0,d +Bd(f0) +Bd−1(f1) + · · ·+B0(fd) = 0 . (13)

Let W = {α ∈ Fqm : B0(α) = 0}. Then W is an Fq-subspace of Fqm of dimension at most s −
1, since B0 is a nonzero linearized polynomial of q-degree at most s − 1. As in Lemma 4.4, for each
fixed f0, f1, . . . , fd−1, the coefficient fd must belong to a coset of the subspace W . This implies that the
coefficients (f0, f1, . . . , fk+2g−1) belong to an (s− 1,m, k+ 2g − 1)-periodic subspace of Fm(k+2g−1)

q . In
particular, there are at most q(s−1)(k+2g−1) solutions f ∈ Lm((k + 2g − 1)P∞) to (10).

The equation (13) also shows that each group of ` successive coefficients fd−`+1, fd−`+2, · · · , fd belong
to cosets of the same underlying `(s−1) dimensional subspace of Fm`q . This implies that (f0, f1, . . . , fk+2g−1)
in fact belong to an (s− 1,m)-ultra periodic subspace.7

Restricting message functions using local expansions. Using Lemma 4.8, we will recover the message in
terms of the coefficients of its local expansion at P . In order to prune the subspace of possible solutions,
we will pick a subcode that corresponds to restricting the coefficients to a carefully constructed subset of
all possibilities. This requires us to index message functions in terms of the local expansion coefficients.
However, not all (k+ 2g− 1) tuples over Fqm arise in the local expansion of functions in the k-dimensional
subspace Lm((k + 2g − 1)P∞). Below we show that we can find a k-dimensional subspace of Lm((k +
2g − 1)P∞) such that their top k local expansion coefficients give rise to all k-tuples over Fqm .

Lemma 4.9. There exist a set of functions {g1, g2, . . . , gk} in Lm((k + 2g − 1)P∞) such that the k × k
matrix A formed by taking the ith row of A to be the first k coefficients in the local expansion (12) for gi at
P is nonsingular.

Proof. Let {ψ1, ψ2, . . . , ψg} be a basis of Lm((k + 2g − 1)P∞ − kP ). Extend this basis to a basis
{ψ1, ψ2, . . . , ψg, g1, g2, . . . , gk} of Lm((k + 2g − 1)P∞). We claim that the functions {g1, g2, . . . , gk}
are our desired functions.

Suppose that the matrix A is obtained from expansion of functions gi and it is singular. This implies that
there exists elements {λi}ki=1 such that the function

∑k
i=1 λigi has expansion

∑∞
i=k aiT

i at P for some ai ∈
Fqm . Therefore, the function

∑k
i=1 λigi belongs to the space Lm((k+2g−1)P∞−kP ), i.e.,

∑k
i=1 λigi is a

linear combination of ψ1, ψ2, . . . , ψg. This forces that all λi are equal to 0 since {ψ1, . . . , ψg, g1, g2, . . . , gk}
is linearly independent. This completes the proof.

7This ultra-periodicity was also true for the Reed-Solomon case in Lemma 4.4, but we did not state it there as we will not make
use of this extra property for picking a subcode in the case of Reed-Solomon codes.
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With the above lemma in place, we now describe our AG code in a manner convenient for pruning the
possible local expansion coefficients.

Encoding. Assume that we have found a set of functions {g1, g2, . . . , gk} of Lm((k + 2g − 1)P∞) as
in Lemma 4.9. After elementary row operations on the matrix A defined in Lemma 4.9, we may assume
that A is the k × k identity matrix, i.e., we assume that, for 1 6 i 6 k, the function gi has expansion
T i−1 +

∑∞
j=k λijT

j for some λij ∈ Fqm .

Now for any subset M ⊆ Fkqm , we may assume that our messages belong to M , and encode each
message (a1, a2, . . . , ak) ∈ M to the codeword (f(P1), f(P2), . . . , f(PN )), where f =

∑k
i=1 aigi. Thus,

our actual code is a subcode of C(m; k + 2g − 1) given by

C(m; k + 2g − 1 |M)
def
= {(f(P1), f(P2), . . . , f(PN )) : f =

k∑
i=1

aigi, (a1, a2, . . . , ak) ∈M} . (14)

Decoding. To decode, we first establish the equation (11) and solve this equation to find the subspace of
possible first k coefficients f0, f1, . . . , fk−1 in the local expansion of the function f =

∑k
i=1 aigi at P . The

following claim implies that the message tuple (a1, a2, . . . , ak) belongs to this subspace.

Lemma 4.10. The first k coefficients f0, f1, . . . , fk−1 of the local expansion of f =
∑k

i=1 aigi at P equal
a1, a2, . . . , ak.

Proof. Since gi has local expansion T i−1+
∑∞

j=k λijT
j , it is clear that the local expansion of f is

∑k−1
i=0 ai+1T

i+∑∞
j=k aj+1T

j for some ak+1, ak+2, . . . in Fqm . Thus the first k coefficients of the local expansion of f are
a1, a2, . . . , ak.

Combining Lemmas 4.7, 4.8, and 4.10, and recalling the choice of D in (8), we get the following.

Corollary 4.11. For the code C(m; k+ 2g−1 | Fkqm), we can find an (s−1,m)-ultra periodic subspace of
Fmkq that includes all messages whose encoding differs from a received word y ∈ FNqm in at most s

s+1(N −
k)− 3s+1

s+1 g positions.

4.3 Decoding the codes from the Garcia-Stichtenoth tower

Let r be a prime power and let q = r2. The Garcia-Stichtenoth towers that we are going to use for our code
construction were discussed in [11, 12]. The reader may refer to [11, 12] for the detailed background on
the Garcia-Stichtenoth function tower. There are two optimal Garcia-Stichtenoth towers that are equivalent.
For simplicity, we introduce the tower defined by the following recursive equations [12]

xri+1 + xi+1 =
xri

xr−1
i + 1

, i = 1, 2, . . . , e− 1.

Put Ke = Fq(x1, x2, . . . , xe) for e > 2.
The function field Ke has at least re−1(r2− r) + 1 rational places. One of these is the “point at infinity”

which is the unique pole P∞ of x1 (and is fully ramified). The other re−1(r2 − r) come from the rational
places lying over the unique zero of x1 − α for each α ∈ Fq with αr + α 6= 0. Note that for every α ∈ Fq
with αr +α 6= 0, the unique zero of x1−α splits completely in Ke, i.e., there are re−1 rational places lying
over the zero of x1−α. Let P be the set of all the rational places lying over the zero of x1−α for all α ∈ Fq
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with αr + α 6= 0. Then, intuitively, one can think of the re−1(r2 − r) rational places in P as being given by
e-tuples (α1, α2, . . . , αe) ∈ Feq that satisfy αri+1 +αi+1 =

αri
αr−1
i +1

for i = 1, 2, . . . , e− 1 and αr1 +α1 6= 0.

For each value of α ∈ Fq, there are precisely r solutions to β ∈ Fq satisfying βr + β = αr

αr−1+1
, so the

number of such e-tuples is re−1(r2 − r) (r2 − r choices for α1, and then r choices for each successive αi,
2 6 i 6 e).

The genus ge of the function field Ke is given by

ge =

{
(re/2 − 1)2 if e is even
(r(e−1)/2 − 1)(r(e+1)/2 − 1) if e is odd.

Thus the genus ge is at most re. The ratio of ge to the number of Fq-rational points is at most 1/(r − 1) =
1/(
√
q − 1).

Now we put F = Ke and Fm = Fqm · Ke. The encoding and decoding is almost identical to the
algebraic geometric code described in the previous section except here we use P∞ for local expansion.

Encoding. As in Lemma 4.9, we can find a set of functions {h1, h2, . . . , hk} of Lm((k+ 2ge−1)P∞) such
that the k×k matrixA formed by taking the ith row ofA to be the first k coefficients in the expansion (16) for
hi at P∞ is nonsingular (note that in this case, the local expansion starts from T−(k+2ge−1), while in the pre-
vious subsection the local expansion starts from T 0). Furthermore, after some elementary row operations on
A, we may assume that, for 1 6 i 6 k, the function hi has expansion T−(k+2ge−1)

(
T i−1 +

∑∞
j=k λijT

j
)

for some λij ∈ Fqm .
We encode a message k-tuple (a1, a2, . . . , ak) ∈ Fkqm by the codeword (f(P1), f(P2), . . . , f(PN ))

where f =
∑k

i=1 aihi, and P1, P2, . . . , PN are arbitrary Fq-rational points (other than P∞) in the function
field. The block length N can be any integer satisfying k 6 N 6 re−1(r2 − r). As in Section 4.2, for any
subset M ⊆ Fkqm , we can consider the subcode obtained by only encoding tuples in M :

CGS(m; k+ 2ge− 1 |M)
def
= {(f(P1), f(P2), . . . , f(PN )) : f =

k∑
i=1

aihi, (a1, a2, . . . , ak) ∈M} . (15)

Computing the code. Note that an explicit specification of the code simply requires the evaluations of the
basis functions h1, h2, . . . , hk at the N rational points. One can find a basis of Lm(lP∞) along with its
evaluations at the rational points using poly(N, l,m) operations over Fq [35] (see also [15, Sec. 7]). We
can also compute the first l coefficients of the local expansion of the basis functions at P∞ using poly(l,m)
operations over Fq as described in [20]. The computation of the hi’s following the method of Lemma 4.9
only requires elementary matrix operations, so we can compute its evaluations at the rational points also in
polynomial time.

List decoding. In order to list decode, we can find a functional equation A0 +A1f +A2f
σ + · · ·+Asf

σs−1

exactly as in Lemma 4.7. To solve for f from this equation, we consider the local expansions of the message
functions f at P∞. Let T ∈ Ke be a local expansion of P∞ and suppose that a function f ∈ Lm((k+ 2ge−
1)P∞) has a local expansion at P∞

f = T−(k+2ge−1)
∞∑
j=0

fjT
j (16)

for some fj ∈ Fqm . As in Lemma 4.10, if f =
∑k

i=1 aihi, then the top k coefficients f0, f1, . . . , fk−1

in the above local expansion equal a1, a2, . . . , ak. Thus we can determine such f uniquely by finding
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f0, f1, . . . , fk−1. The following lemma is similar to Lemma 4.8 and shows that the coefficients belong to an
ultra-periodic subspace.

Lemma 4.12. Suppose f ∈ Lm((k + 2ge − 1)P∞) satisfies the equation

A0 +A1f +A2f
σ + · · ·+Asf

σs−1
= 0

when at least one Ai is nonzero. Then the possible first k coefficients (f0, f1, . . . , fk−1) of f ’s local expan-
sion (16) at P∞ belong to an (s− 1,m)-ultra periodic affine subspace of Fkmq .

Proof. Let u = min{νP∞(Ai) : i = 1, 2, . . . , s} (so that −u is the maximum number of poles any Ai,
1 6 i 6 s, has at P∞). Then it is clear that u > −D and νP∞(A0) > u − (k + 2ge − 1). Each Ai has a
local expansion at P∞:

A0 = T u−(k+2ge−1)
∞∑
j=0

a0,jT
j ; and Ai = T u

∞∑
j=0

ai,jT
j for i = 1, 2, . . . , s.

Assume that at P∞, the function f has a local expansion (12). Then fσ
i

has a local expansion at P as
follows

fσ
i

=
∞∑
j=0

f q
i

j T
j .

For l = 0, 1, . . . , define the linearized polynomial

Bl(X) := a1,lX + a2,lX
q + · · ·+ as,lX

qs−1

From the definition of u, one knows that B0(X) is nonzero. Equating the coefficient of T d+u−(k+2ge−1) in
A0 +A1f +A2f

σ + · · ·+Asf
σs−1

to equal 0 gives us the condition

a0,d +Bd(f0) +Bd−1(f1) + · · ·+B0(fd) = 0 .

Arguing as in Lemma 4.8 this constrains (f0, f1, . . . , fk−1) to belong to an (s − 1,m)-ultra periodic sub-
spaces of Fmkq .

Similar to Corollary 4.11, we can now conclude the following:

Corollary 4.13. The code CGS(m; k+ 2ge− 1 | Fkqm) can be list decoded from up to s
s+1(N −k)− 3s+1

s+1 ge
errors, pinning down the messages to an (s− 1,m)-ultra periodic subspace of Fmkq .

We conclude the section by incorporating the trade-off between ge and N , and stating the rate vs. list
decoding radius trade-off offered by these codes, in a form convenient for improvements to the list size using
subspace evasive sets and subspace designs. The claim about the number of possible solution subspaces
follows since the subspace is determined by A0, A1, . . . , As, and for our choice of parameter D, there are at
most qO(mN) choices of those.

Theorem 4.14. Let q be the even power of a prime. Let 1 6 s 6 m be integers, and let R ∈ (0, 1).
Then for infiitely many N (all integers of the form qe/2(

√
q − 1)), there is a deterministic polynomial time

construction of an Fqm-linear code GS(q,m)[N, k] of block length N and dimension k = R ·N that can be
list decoded in poly(N,m, log q) time from s

s+1(N − k)− 3N√
q−1 errors, pinning down the messages to one

of qO(mN) possible (s− 1,m)-ultra periodic Fq-affine subspaces of Fmkq .
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5 Subspace designs

The linear-algebraic list decoder discussed in the previous sections pins down the coefficients of the message
to a periodic subspace. This subspace has linear dimension, so we need to restrict the coefficients further so
that the subspace can be pruned to a small list of solutions. In this section, we will use a special collection
of subspaces, which we call a subspace design to achieve this.

Definition 7. Let Λ be a positive integer, and q a prime power. For positive integers r < Λ and d, an
(r, d)-subspace design in FΛ

q is a collection of subspaces of FΛ
q such that for every r-dimensional subspace

W ⊂ FΛ
q , we have ∑

H∈H
dim(W ∩H) 6 d .

The cardinality of a subspace designH is the number of subspaces in its collection, i.e., |H|. If all subspaces
inH have the same dimension t, then we refer to t as the dimension of the subspace designH.

The usefulness of subspace designs in the context of pruning periodic subspaces is captured by the following
key lemma.

Lemma 5.1 (Periodic subspaces intersected with a subspace design). Suppose H1, H2, . . . ,Hb are sub-
spaces in an (r, d)-subspace design in FΛ

q , and T is a (r,Λ, b)-periodic affine subspace of FΛb
q with under-

lying subspace S. Then the set

T = {(f1, f2, . . . , fb) ∈ T | fj ∈ Hj for j = 1, 2, . . . , b}

is an affine subspace of FΛb
q of dimension at most d. Also, the underlying subspace of T is contained in

S def
= S ∩ (H1 ×H2 × · · · ×Hb).

Proof. It is clear that T is an affine subspace, since its elements are restricted by the set of linear constraints
defining T and the Hj’s. Also, the difference of two elements in T is contained in both the subspaces S and
(H1 ×H2 × · · · ×Hb), which implies that the underlying subspace of T is contained in S.

We will prove the bound on dimension by proving that |T | 6 qd. To prove this, we will imagine
the elements of T as the leaves of a tree of depth b, with the nodes at level j representing the possible
projections of T onto the first j blocks. The root of this tree has as children the elements of the affine space
proj[1,Λ](T )∩H1. LetW be the subspace of FΛ

q of dimension at most r associated with the periodic subspace
T (in the sense of Definition 1). Note that the underlying subspace of the affine space proj[1,Λ](T ) ∩H1 is
contained in the subspace W ∩H1.

Continuing this argument, the children of an element a ∈ FjΛq at level j will be a followed by the
possible extensions of a to the (j + 1)’th block, given by

{proj[jΛ+1,(j+1)Λ](x) | x ∈ T and projjΛ(x) = a} ∩Hj+1 .

The periodic property of T and the fact that Hj+1 is a subspace implies that the possible extensions of a are
given by a coset of a subspace ofW ∩Hj+1. Thus the nodes at level j have degree at most qdim(W∩Hj+1) for
j = 0, 1, . . . , b− 1. Since the Hj’s belong to an (r, d)-subspace design we have

∑b
j=1 dim(W ∩Hj) 6 d.

Therefore, the tree has at most qd leaves, which is also an upper bound on |T |.
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5.1 Constructing subspace designs

We now turn to the construction of subspace designs of large size and dimension. We first analyze the
performance of a random collection of subspaces.

Lemma 5.2. Let η > 0 and q be a prime power. Let r,Λ be integers Λ > 8/η and r 6 ηΛ/2. Consider
a collection H of subspaces of FΛ

q obtained by picking, independently at random, qηΛ/8 subspaces of FΛ
q of

dimension (1− η)Λ each. Then, with probability at least 1− q−Λr,H is an (r, 8r/η)-subspace design.8

Proof. Let ` = 8r/η, and let M = qηΛ/8 denote the number of randomly chosen subspaces.9 Let
H1, H2, . . . ,HM be the subspaces in the collection H. Fix a subspace W of FΛ

q of dimension r. Fix a
tuple of nonnegative integers (a1, a2, . . . , aM ) summing up to `. For each j ∈ {1, 2, . . . ,M}, the probabil-
ity that dim(W ∩Hj) > aj is at most qrajq−ηΛaj . Since the choice of the differentHj’s are independent, the
probability that dim(W ∩Hj) > aj for every j is at most q(r−ηΛ)` 6 q−ηΛ`/2 (the last step uses r 6 ηΛ/2).

A union bound over the at most qΛr subspaces W ⊂ FΛ
q of dimension r, and the at most

(
`+M
`

)
6

(M + `)` 6 M2` choices of the tuples (a1, a2, . . . , aM ), we get the probability that H is not an (r, `)-
subspace design is at most

qΛr · q−ηΛ`/2 · (qηΛ/8)2` = qΛr · q−ηΛ`/4 6 q−Λr

where the last step uses ` > 8r/η.

Note that given a collection H of subspaces, one can deterministically check if it is an (r, d)-subspace
design in FΛ

q in qO(Λr)|H| time by doing a brute-force check of all r-dimensional subspaces W of FΛ
q , and

for each computing
∑

H∈H dim(W ∩H) using |H|ΛO(1) operations over Fq. Thus the above lemma already
gives a Las Vegas construction of an (r, d)-subspace design with many subspaces each of large dimension
(1 − η)m (recorded formally as a part of Lemma 5.3 below). We next observe that the construction can in
fact be derandomized using the method of conditional expectations, thus giving a deterministic construction
in similar runtime.

Lemma 5.3. For parameters η, r,Λ as in Lemma 5.2, for any b 6 qηΛ/8, one can compute an (r, 8r/η)-
subspace design in FΛ

q of dimension (1 − η)Λ and cardinality b deterministically in time polynomial in
qΛ(Λ+r)(br/η)r/η. One can also compute such a subspace in qO(Λr) Las Vegas time.

Proof. The claim about the Las Vegas construction follows from the above argument. Let us turn to the
deterministic computation. For each subspace W of FΛ

q of dimension r, and each b-tuple τW of subspaces
W1,W2, . . . ,Wb of W with

∑b
j=1 dim(Wj) = ` = 8r/η, define the indicator random variable I(W, τW )

for the event
b∧

j=1

[Wj ⊆ Hj ] ,

for a random choice of (1 − η)Λ-dimensional subspaces H1, H2, . . . ,Hb of FΛ
q . Let Z be the random

variable equal to the sum of I(W, τW ) over all choices of W, τW . The proof of Lemma 5.2 in fact shows
that E[Z] � 1 when the Hj’s are chosen independently at random. Clearly, E[Z] can be calculated in
poly(b, qΛr) time.

8For sake of clarity, we did make any attempt to optimize the constants.
9For simplicity, we ignore the floor and ceil signs in defining integers; these can be easily incorporated.
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For any t ∈ {0, 1, . . . , b} and any choice of subspaces L1, L2, . . . , Lt, we can also compute the condi-
tional expectation E[Z | Hj = Lj , 1 6 j 6 t] over the random and independent choices of Ht+1, · · · , Hb.
Indeed, for a fixed r-dimensional subspace W ⊂ FΛ

q and b-tuple τW of its subspaces (W1, . . . ,Wb)

with
∑b

j=1 dim(Wj) = b, the conditional expectation of I(W, τW ) equals 0 if Wj 6⊆ Lj for some j ∈
{1, 2, . . . , t}, and equals

∏b
j=t+1 q

−ηΛ dim(Wj) otherwise. The conditional expectation of Z is the sum of
the conditional expectations of I(W, τW ) over all W, τW , and be computed in time polynomial in the num-
ber of pairs W, τW , which is at most qΛr · qr`(b+ `)`. For our setting of parameters, this quantity is bounded
by a polynomial in qΛr(br/η)r/η.

Using the above, we can deterministically compute a sequence of subspaces L1, L2, . . . , Lb with Z < 1
(and hence equal to 0), by successively picking, for t = 1, 2, . . . , b, a subspace Ht = Lt that minimizes
the conditional expectation E[Z | Hj = Lj , 1 6 j 6 t] over the random and independent choices of
Ht+1, · · · , Hb. This choice of Ht can be made by doing a brute-force search over all (1− η)Λ-dimensional
subspaces of FΛ

q in qO(Λ2) time.

Finally, we record the construction of subspaces with low-dimensional intersection with every periodic
subspace based on the above subspace designs. This form will be convenient for later use in pre-coding
Reed-Solomon codes.

Theorem 5.4. Let η ∈ (0, 1) and q be a prime power, and r,Λ, b be integers such that Λ > 8/η, r 6 ηΛ/2
and b 6 qηΛ/8. Then, one can construct a subspace V of FbΛq of dimension at least (1 − η)bΛ in either
deterministic qO(Λ2) time or Las Vegas qO(Λr) time with the following guarantee: For every (r,Λ, b)-periodic
subspace T ⊂ FbΛq , V ∩ T is an Fq-affine subspace of dimension at most 8r/η.

Proof. We will take V = H1 ×H2 × · · ·Hb where the Hi’s belong to a (r, 8r/η)-subspace design in FΛ
q of

cardinality b and dimension at least (1 − η)Λ as guaranteed by Lemma 5.3. Clearly dim(V ) > (1 − η)bΛ
since each Hi has dimension at least (1− η)Λ. The claim now follows using Lemma 5.1.

5.2 Cascaded subspace designs

In preparation for our results about algebraic-geometric codes, whose block length� qm is much larger than
the possible size of subspace designs in Fmq , we now formalize a notion that combines several “levels” of
subspace designs. The definition might seem somewhat technical, but it has a natural use in our application
to list-size reduction for AG codes. Note that there is no “consistency” requirement between subspace
designs at different levels other than the lengths and cardinalities matching.

Definition 8 (Subspace designs of increasing length). Let l be a positive integer. For positive integers
r0 6 r1 6 · · · 6 rl and m0 6 m1 6 · · · 6 ml such that mι−1|mι for 1 6 ι 6 l, an (r0, r1, . . . , rl)-
cascaded subspace design with length-vector (m0,m1, . . . ,ml) and dimension vector (d0, d1, . . . , dl−1)
is a collection of l subspace designs, specifically an (rι−1, rι)-subspace design in Fqmι−1 of cardinality
mι/mι−1 and dimension dι−1 for each ι = 1, 2, . . . , l.

Note that the l = 1 case of the above definition corresponds to an (r0, r1)-subspace design in Fm0
q of

dimension d0 and cardinality m1/m0. In Lemma 5.1, we used the subspace H1 ×H2 × · · · ×Hb based on
a subspace design consisting of the Hi’s to prune a periodic subspace. Generalizing this, we now define a
subspace associated with a cascaded subspace design based on the subspace designs comprising it.
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Definition 9 (Canonical subspace). LetM be a cascaded subspace design with length-vector (m0,m1, . . . ,ml)

such that the ι’th subspace design inM has subspaces H(ι)
1 , H

(ι)
2 , · · · , H(ι)

mι/mι−1
⊂ Fmι−1

q , for 1 6 ι 6 l.

The canonical subspace associated with such a cascaded subspace design, denotedU(M), is a subspace
of Fmlq defined as follows: A vector x ∈ Fmlq belongs to U(M) if and only if for every ι ∈ {1, 2, . . . , l},
each of the mι-sized blocks of x given proj[jmι+1,(j+1)mι](x) for 0 6 j < ml/mι) belongs H(ι)

1 ×H
(ι)
2 ×

· · · ×H(ι)
mι/mι−1

.

The following simple fact gives a lower bound on the dimension of a canonical subspace.

Observation 5.5. For a cascaded subspace designM as above, if the ι’th subspace design has dimension
at least (1 − ξι−1)mι−1 for 1 6 ι 6 l, then the dimension of the canonical subspace U(M) is at least(

1− (ξ0 + ξ1 + · · ·+ ξl−1)
)
ml.

The following is the crucial claim about pruning ultra-periodic subspaces using (the canonical subspace
of) a cascaded subspace design. It generalizes Lemma 5.1 which corresponds to the l = 1 case.

Lemma 5.6. LetM be a (r0, r1, . . . , rl)-cascaded subspace design with length-vector (m0,m1, . . . ,ml).
Let T be a (r0,m0)-ultra periodic affine subspace of Fmlq . Then the dimension of the affine space T ∩U(M)
is at most rl.

Proof. The idea will be to apply Lemma 5.1 inductively, for increasing periods m0,m1, . . . ,ml−1. Since T
is (r0,m0)-ultra periodic, it is (r0,m0)-periodic and ((m1/m0)r0,m1)-periodic. Using this together with
Lemma 5.1, it follows that

T ∩ {x ∈ Fmlq | proj[jm1+1,(j+1)m1](x) ∈ H(1)
1 ×H(1)

2 × · · · ×H(1)
m1/m0

for 0 6 j < ml/m1}

is an affine subspace that is (r1,m1)-periodic. Continuing this argument, the affine subspace of T formed
by restricting each mι-block to belong to H(ι)

1 ×H
(ι)
2 × · · · ×H

(ι)
mι/mι−1

for 1 6 ι 6 j is (rj ,mj)-periodic.
For j = l, we get the intersection T ∩ U(M) ⊂ Fmlq will be (rl,ml)-periodic, which simply means that it
is an rl-dimensional affine subspace of Fmlq .

We conclude this section by recording a good construction of a canonical subspace that has low-
dimensional intersection with ultra-periodic subspaces. This statement will be used later in pre-coding
algebraic-geometric codes based on the Garcia-Stichtenoth tower.

Theorem 5.7. Let η ∈ (0, 1), q > 4 be a prime power, and integers r,Λ satisfy Λ > Ω(1/η2) and r 6 ηΛ/2.
For all large enough multiples κ of Λ, we can construct a subspace U of Fκq of dimension at least (1− η)κ
such that for every (r,Λ)-ultra periodic affine subspace T ⊂ Fκq , the dimension of the affine subspace U ∩T
is at most r · (1/η)O(log∗ κ)2O((log∗ κ)2). The subspace U can be constructed in deterministically in κO(log3

q κ)

time.

Proof. We will take U to the canonical subspace U(M) of an appropriate cascaded subspace design M.
To this end, given our work so far, the main remaining task is to pick the parameters ofM carefully. Let
ηι = η

4·2ι for ι = 0, 1, 2, . . . . Let m0 = Λ, and for ι > 0, mι+1 = mι · qd
√
mιe. Let r0 = r, and for ι > 0,

rι+1 = b8rι/ηιc. It is easy to check that rι 6 ηιmι/2 for all ι. So by Lemma 5.3, we can construct an
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(rι, rι+1)-subspace design in Fmιq of dimension (1−ηι)mι and cardinality at least qΩ(ηιmι). By our choice of
parameters, ηιmι �

√
mι,10 so we can construct such a subspace design of cardinality qd

√
mιe = mι+1/mι.

Pick l to the smallest integer so that ml−1 > (logq κ)2. Since m0 = Λ > 2 and mι+1 > q
√
mι

for 0 6 ι < l, it is easy to see that that l 6 O(log∗ κ) Redefine ml−1 to equal m′l−1 which is the smallest
multiple ofml−2 that is at least (logq κ)2. Sinceml−2 < (logq κ)2, we have (logq κ)2 6 m′l−1 < 2(logq κ)2.
We also redefine ml to equal the largest multiple m′l of m′l−1 that is at most κ. This implies κ−m′l < m′l−1.

Note that m′l−1 6 ml−2q
d√ml−2e and m′l 6 q

√
m′l−1 . For notational simplicity, let us redenote m′l−1 and m′l

by ml−1 and ml.
Thus for these parameters, we can construct an (r0, r1, . . . , rl)-cascaded subspace design Ml with

length-vector (m0,m1, . . . ,ml) and dimension-vector (d0, d1, . . . , dl−1) where dι > (1− η/2ι+2)mι.
The construction time for subspace designs guaranteed by Lemma 5.3 implies that Ml can be con-

structed in deterministic qO(m2
l−1) = qO(logq κ)4

time. We define the desired subspace U ⊂ Fκq as U(Ml)×
0κ−ml , i.e., U consists of the vectors in the canonical subpsace U(Ml) ⊂ Fmlq padded with κ −ml zeroes
at the end. By Observation 5.5, the dimension of U is at least

(
1−

l−1∑
ι=0

η

4 · 2ι
)
ml > (1− η/2)ml > (1− η/2)(κ−ml−1) > (1− η/2)κ− 2(logq κ)2 > (1− η)κ

for large enough κ. This proves that the subspace U has dimension at least (1− η)κ, and can be constructed
deterministically in qO(logq κ)4

time.
It remains to prove the claimed intersection property with ultra-periodic subspaces. Let T be an arbitrary

(r,Λ)-ultra periodic affine subspace of Fκq . By Lemma 5.6, projml(T ) ∩ U(M) is an affine subspace of
Fmlq of dimension at most rl. Clearly, the same dimension bound also holds for T ∩U since the last κ−ml

coordinates for vectors in U are set to 0. The proof is complete by noting that for our choice of parameters,
rl 6 r · (1/η)O(l)2O(l2), and l 6 O(log∗ κ).

6 Pseudorandom subspace-evasive sets

For our code constructions, we will need to pre-code the messages into large subsets of Fκq that have small
intersection with the sort of subspaces of the message space Fκq output by the linear-algebraic list decoder.
We already saw one approach to accomplish this using subspace designs by exploiting the periodic nature
of the subspaces we encounter. In this section, we will develop a different approach, again exploiting
periodicity of the subspaces, that will lead to better parameters at the expense of settling for Monte Carlo
constructions. We begin by recalling the notion of a subspace-evasive set [19], which is the most general
object that has small intersection with subspaces of bounded dimension.

Definition 10. For positive integer parameters r, `, a set S ⊂ Fκq is (r, `)-subspace evasive if for every affine
subspace H of Fκq of dimension at most r, |S ∩H| 6 `.

Let F be a family of affine subspaces of Fκq each of dimension at most r. A set S ⊂ Fκq is (F , r, `)-
subspace evasive if |S ∩H| 6 ` for every affine subspace H ∈ F .

We now turn to a more specific notion of subspace evasiveness, tailored to periodic subspaces. Exploit-
ing the fact the projections of a periodic subspace grow gradually in dimension, we will ensure that the

10We could be more careful in lower-bounding ηιmι here, but prefer the somewhat crude bound for simplicity.

22



subspace-evasive set also avoids large intersections with projections of the subspace on certain prefixes of
the κ coordinates. This will enable the efficient computation of the intersection of the subspace-evasive set
with the candidate periodic subspace.

Hierarchical subspace-evasive sets. We now define the special subspace-evasive sets that are useful for
efficient pruning of candidate messages belonging to a (r,Λ, b)-periodic subspace. This notion is the same
as the one from our previous work [20].

Definition 11. Let F be a family of (r,Λ, b)-periodic subspaces of FbΛq , and L > 1 an integer. A subset
S ⊂ FbΛq is said to be (F , r,Λ, b, L)-h.s.e (for hierarchically subspace evasive) if for every affine subspace
H ∈ F , the following bound holds for j = 1, 2, . . . , b:

|projjΛ(S) ∩ projjΛ(H)| 6 L . (17)

The following result is similar to Theorem 4.6 in [20]. The parameters claimed, most notably the
encoding time to compute HSE, are somewhat different from those given in [20]. Therefore we briefly
sketch the construction in Appendix B. The main difference is that, following [19, Sec. 4.1], we will define
the h.s.e set based on the values of random polynomials rather than zero sets of random polynomials.

Lemma 6.1. Suppose b, c,Λ, r are positive integers, κ = bΛ, q a prime power, and ζ ∈ (0, 1/4) satisfying
the conditions r < ζΛ/4 and cκ < qr. Let F be a family of (r,Λ, b)-periodic subspaces of Fκq with
|F| 6 qcκ. Then there exists a randomized poly(κ, 1/ζ, log q) time construction of an injective map HSE :

F(1−2ζ)κ
q → Fκq with the following properties.

1. [Structure] Given x = (x1, x2, . . . , xb) with each xi ∈ F(1−2ζ)Λ
q , HSE(x) is of the form x1 ◦ ξ1 ◦

x2 ◦ ξ2 ◦ · · · ◦ xb ◦ ξb where each ξj ∈ F2ζΛ
q for j = 1, 2, . . . , b and depends only on the prefix

x1 ◦ x2 ◦ · · · ◦ xj .
2. [Computability] Computing ξj from x1 ◦ x2 ◦ · · · ◦ xj can be done deterministic poly(κ, 1/ζ, log q)

time.11

3. [Subspace-evasiveness] With high probability, the image of HSE is (F , r,Λ, b, cκ)-h.s.e and (F , br, 2c/ζ)-
subspace evasive as a subset of Fκq . Further, given a (r,Λ, b)-periodic subspace H ∈ F , one can

compute the set {x ∈ F(1−2ζ)κ
q | HSE(x) ∈ H} of size at most 2c/ζ in deterministic poly(κ, qr, 1/ζ)

time.

The algorithm claimed above to compute the intersection of the h.s.e set with a periodic subspace H is
iterative, and for each block, involves searching over all qr extensions in H to check which ones belong in
the (projection of) the h.s.e set. This search will lead to a large exponent in the polynomial runtime of our
algorithm for Reed-Solomon codes. In the case of our decoding algorithm for Gabidulin codes, the field
size will be too large and going over all qr extensions will in fact take super-polynomial time. Therefore, we
will use an additional encoding to ensure that the possible extensions will themselves be restricted to belong
a (r, `)-subspace evasive subset of FΛ

q , for which the intersection with an r-dimensional affine space can be
computed in poly(`, log q) time. Specifically, we will use the following result, based on a construction due
to Dvir and Lovett [6], with a minor change in some degree parameters to handle efficient encoding for any
field Fq. A proof sketch appears in Appendix B.

11By construction, this immediately implies that the following tasks can also be done in the same time complexity: computing
HSE; checking membership in Im(HSE) (the image of HSE); computing the inverse of HSE on its image; and for every j =
1, 2, . . . , b, checking membership in projjΛ(Im(HSE)) and computing the inverse prefix when it exists.
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Lemma 6.2. Let Fq be a finite field of characteristic p. Let υ, r be positive integers satisfying r < υ < q.
There is an explicit map ψ : Fυ−rq → Fυq , computable in deterministic poly(υ, log q) time, such that

(i) ψ is injective and further projυ−r(ψ(x)) = x for every x ∈ F(1−η)υ
q .

(ii) The image of ψ is a (r, (max{pυ, pr})r)-subspace evasive subset of Fυq . Further, given an affine
subspace H ⊆ Fυq of dimension at most r, we can compute the set {x ∈ Fυ−rq | ψ(x) ∈ H} in
poly(υr, pr

2
, log q) time.12

We will now combine the constructions of Lemmas 6.1 and 6.2 to get a construction of an h.s.e set which
has the properties we need for efficient pruning of the subspace of candidate solutions produced by the list
decoder. The key difference compared to Lemma 6.1 is the improvement in time needed to compute the
intersection with a given periodic subspace H — instead of the qr term, we now have Λr, which is a big
savings for large fields (particularly in the case of Gabidulin codes). The proof can be found in Appendix B.

Theorem 6.3. Suppose b, c,∆, r are positive integers, k = b∆, q a power of a prime p, and ζ ∈ (0, 1/6)
satisfying the conditions r < ζ∆/4 and ck < qr. Let F be a family of (r,∆, b)-periodic subspaces of Fkq
with |F| 6 qck. Then there exists a randomized poly(k, 1/ζ, log q) time construction of an injective map
H̃SE : F(1−3ζ)k

q → Fkq such that

1. One can compute H̃SE in deterministic poly(k, 1/ζ, log q) time.

2. With high probability, the image of H̃SE is (F , br, 2c/ζ)-subspace evasive as a subset of Fkq .

Further, given a (r,∆, b)-periodic subspace H ∈ F , one can compute the set {x ∈ F(1−3ζ)k
q |

H̃SE(x) ∈ H} of size at most 2c/ζ in deterministic poly(k, pr
2
,∆r, 1/ζ, log q) time.

7 Good list decodable subcodes of RS and AG codes

We now combine our code constructions with a pre-coding step that restricts coefficients to belong to either
a subspace design or a hierarchical subspace-evasive set, and thereby obtain subcodes that are list decodable
with smaller list-size in polynomial time.

7.1 Reed-Solomon codes

We begin with the case of Reed-Solomon codes. For a finite field Fq, constant ε > 0, integers n, k,m, s
satisfying 1 6 k < n 6 q and 1 6 s 6 εm/12, we will define subcodes of RS(q,m)[n, k]. Below for a poly-
nomial f ∈ Fqm [X] with k coefficients f0, f1, . . . , fk−1, we denote by f0, f1, . . . , fk−1 the representation
of these coefficients as vectors in Fmq by fixing some Fq-basis of Fqm .

7.1.1 Subcode construction based on subspace designs

Define the subcode R̂S of RS(q,m)[n, k] consisting of the encodings of f ∈ Fqm [X] such that (f0, f1, . . . , fk−1) ∈
V for a subspace V ⊆ Fmkq guaranteed by Theorem 5.4, when applied with the parameter choices

Λ = m; b = k; r = s− 1; η = ε .

12If char(Fq) is large, then we can use a different construction that replaces the pr
2

term by a (log q)r term. For simplicity, we
assume a choice of field with small characteristic is made.
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Note that R̂S is an Fq-linear code over the alphabet Fqm of rate (1 − ε)k/n, and it can be constructed in
deterministic qO(m2) time, or Las Vegas qO(ms) time.13

Theorem 7.1. Given an input string y ∈ Fnqm , a basis of an affine subspace of dimension at most O(s/ε)
that includes all codewords of the above subcode within Hamming distance s

s+1(n−k) from y can be found
in deterministic poly(n, log q,m) time.

Proof. By Lemma 4.4, we can compute the (s − 1,m, k)-periodic subspace T of messages whose Reed-
Solomon encodings can be within Hamming distance s

s+1(n− k) from y. By Theorem 5.4, the intersection
T ∩ V is is an affine subspace over Fq of dimension d = O(s/ε). Since both steps involve only basic linear
algebra, they can be accomplished using poly(n,m) operations over Fq.

By picking s = Θ(1/ε) and m = Θ(1/ε2) in the above construction, we can conclude the following.

Corollary 7.2. For every R ∈ (0, 1) and ε > 0, and all large enough integers n < q with q a prime power,
one can construct a rate R Fq-linear subcode of a Reed-Solomon code of length n over Fqm , such that the
code can be (i) encoded in (n/ε)O(1) time and (ii) list decoded from a fraction (1 − ε)(1 − R) of errors in
(n/ε)O(1) time, outputting a subspace over Fq of dimension O(1/ε2) including all closeby codewords. The
code can be constructed deterministically in qε

−O(1)
time.

We note that the above list decoding guarantee is in fact weaker than what is achieved for folded Reed-
Solomon codes in [19], where the codewords were pinned down to a dimension O(1/ε) subspace. We
can improve the list size above to poly(1/ε) using pseudorandom subspace-evasive sets as in [19], or to
exp(ε−O(1)) using the explicit subspace-evasive sets from [6]. The main point of the above result is not
the parameters but that an explicit subcode of RS codes has optimal list decoding radius with polynomial
complexity.

7.1.2 Subcode construction based on h.s.e sets

We now pre-code the messages of the RS code with an h.s.e set instead of subspace designs. This gives
a much better list size, but we only get a randomized construction. Define the subcode of RS(q,m)[n, k]

consisting of the encodings of f ∈ Fqm [X] such that (f0, f1, . . . , fk−1) = H̃SE(x) for some x ∈ F(1−ε)mk
q

where H̃SE is the (randomized) map guaranteed by Theorem 6.3 for parameters

ζ = ε/3, ∆ = m, b = k, and r = s− 1 . (18)

By definition, the above is a code of rate (1 − ε)k/n over the alphabet Fqm . It is also encodable in
poly(n,m, log q, 1/ε) time, since both H̃SE and the Reed-Solomon encoding can be computed in this time.
We now turn to the list decoding.

Theorem 7.3. Given an input string y ∈ Fnqm , a list of size at most O(1/(Rε)) that includes all code-
words of the above subcode within Hamming distance s

s+1(n − k) from y can be found in deterministic
poly(n, log q, 1/ε,ms, ps

2
) time, where p = char(Fq).14

13It can also be constructed in Monte Carlo (q/ε)O(1) time by randomly picking subspaces for the subspace design used to
construct V in Theorem 5.4.

14When p is large, the ps
2

term in the runtime can be replaced by (log q)r using a different construction in Lemma 6.2, but we
skip this variant for simplicity.
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Proof. We first use Lemma 4.4 to compute the affine subspaceW of messages whose Reed-Solomon encod-
ings can be within Hamming distance s

s+1(n−k) from y. We note two crucial things about this spaceW of
solutions: (i) it is an (s− 1,m, k)-periodic subspace of Fmkq , and (ii) it belongs to a family F consisting of
at most qO(mn) subspaces. The latter follows since the space of solutions is determined by the polynomials
A0, A1, . . . , As, and by our choice of degree parameter D, there are at most qO(mn) = qO(mk/R) choices of
those.

We now apply Theorem 6.3 with parameter c = O(1/R) (and b = k, ∆ = m, r = s− 1, and ζ = ε/3
as chosen in (18)). Note that the condition r < ζ∆/4 is satisfied by virtue of the requirement s 6 εm/12.
By Theorem 6.3, the intersection of the h.s.e set withW will have size at most O(1/(Rε)) and can be found
in poly(n, log q, 1/ε,ms, ps

2
) time.

By picking q 6 2n to be a power of 2 and setting s = Θ(1/ε) and m = Θ(1/ε2) in the above
construction (so that the requirement s 6 εm/12 is met), we can conclude the following.

Corollary 7.4. For every R ∈ (0, 1) and ε > 0, there is a Monte Carlo construction of a rate R subcode of
a Reed-Solomon code of length n over a field of characteristic 2 and size at most nO(1/ε2) (with evaluation
points in a subfield) that can be encoded in (n/ε)O(1) time and that with high probability can be list decoded
from a fraction (1 − ε)(1 − R) of errors in deterministic poly(n, exp(1/ε2)) time, outputting a list of size
at most O(1/(Rε)).

7.2 Subcodes of Garcia-Stichtenoth codes

We now pre-code the codes constructed in Section 4.3. For a finite field Fq, constant ε > 0, and integers
s,m satisfying 1 6 s 6 εm/12 and m > Ω(1/ε2), we will define subcodes of GS(q,m)[N, k] guaranteed
by Theorem 4.14. Note that messages space of this code can be identified with Fmkq .

7.2.1 Subcode construction based on cascaded subspace designs

Define the subcode ĜS of GS(q,m)[N, k] consisting of the encodings of a subspace U ⊆ Fmkq guaranteed by
Theorem 5.7, when applied with the parameter choices

η = ε; r = s− 1; Λ = m; κ = km . (19)

Note that ĜS is an Fq-linear code over the alphabet Fqm of rate (1− ε)k/N . Also, it can be constructed in
deterministic (km)O(log3

q(km)) time by virtue of the construction complexity of U .

Lemma 7.5. Given an input string y ∈ FNqm , a basis of an affine subspace of dimension at most

s · (1/ε)O(log∗(km))2O((log∗(km))2)

that includes all codewords of the above subcode within Hamming distance s
s+1(N − k) − 3N/(

√
q − 1)

from y can be found in deterministic poly(n, log q,m) time.

Proof. By Theorem 4.14, we can compute the (s − 1,m)-ultra periodic subspace T of messages whose
encodings can be within Hamming distance s

s+1(N − k)− 3N/(
√
q − 1) from y. By Theorem 5.7, for the

above choice of parameters (19), the intersection T ∩ U is is an affine subspace over Fq of dimension s ·
(1/ε)O(log∗(km))2O((log∗(km))2). Since both steps involve only basic linear algebra, they can be accomplished
using poly(N,m) operations over Fq.
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By taking q = Θ(1/ε2), and choosing s = Θ(1/ε) and m = Θ(1/ε2) in the above lemma, we conclude
the following main result concerning deterministic construction of codes list decodable up to the Singleton
bound.

Theorem 7.6 (Main deterministic code construction). For every R ∈ (0, 1) and ε > 0, for q = Θ(1/ε2),
we can construct an Fq-linear family of codes of rate R over an alphabet of size qO(ε−2) such that a code
of block length N in the family can be (i) encoded in (N/ε)O(1) time, and (ii) list decoded from a fraction
(1 − R − ε) of errors in (N/ε)O(1) time, outputting a subspace over Fq of dimension at most 2O((log∗N)2)

(for large enough N ) that includes all closeby codewords. The code can be constructed deterministically in
NO(log3

q N) time.

7.2.2 Subcode construction based on h.s.e. sets

We now pre-code the messages of the Garcia Stichtenoth code with an h.s.e set. This gives a much better
list size, but we only get a randomized construction. Define the subcode of GS(q,m)[N, k] consisting of the
encodings of messages in Fmkq which are of the form H̃SE(x) for some x ∈ F(1−ε)mk

q where H̃SE is the
(randomized) map guaranteed by Theorem 6.3 for parameters

ζ = ε/3, ∆ = m, b = k, and r = s− 1 . (20)

By definition, the above is a code of rate (1 − ε)k/n over the alphabet Fqm . It is also encodable in
poly(N,m, log q, 1/ε) time, since both H̃SE and the encoding into GS(q,m)[N, k] can be computed in this
time. We now turn to the list decoding.

Lemma 7.7. Given an input string y ∈ FNqm , a list of size at most O(1/(Rε)) that includes all codewords
of the above subcode within Hamming distance s

s+1(N − k) − 3N/(
√
q − 1) from y can be found in

deterministic poly(N, log q, 1/ε,ms, ps
2
) time, where p = char(Fq).

Proof. By Theorem 4.14, we can compute an affine subspaceW ⊂ Fmkq of messages whose encodings lie
within Hamming distance s

s+1(N −k)−3N/(
√
q−1) from y. The rest of the proof is identical to Theorem

7.3. We recall two crucial things about this spaceW of solutions: (i) it is an (s−1,m, k)-periodic subspace
of Fmkq , and (ii) it belongs to a family F consisting of at most qO(mN) subspaces.

We now apply Theorem 6.3 with parameter c = O(1/R) (and b = k, ∆ = m, r = s− 1, and ζ = ε/3
as chosen in (20)). Note that the condition r < ζ∆/4 is satisfied by virtue of the requirement s 6 εm/12.
By Theorem 6.3, the intersection of the h.s.e set withW will have size at most O(1/(Rε)) and can be found
in poly(N, log q, 1/ε,ms, ps

2
) time.

By picking q to be a power of 2 and setting s = Θ(1/ε) andm = Θ(1/ε2) in the above construction, we
can conclude the following. The parameters of this corollary match our earlier result for folded algebraic-
geometric codes from [20].

Theorem 7.8. For every R ∈ (0, 1) and ε > 0, there is a Monte Carlo construction of a rate R subcode
of an algebraic-geometric code of length N over a field of characteristic 2 and size at most (1/ε)O(1/ε2)

that can be encoded in (N/ε)O(1) time and that with high probability can be list decoded from a fraction
(1−R− ε) of errors in deterministic poly(N, exp(1/ε2)) time, outputting a list of size at most O(1/(Rε)).
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8 Linear-algebraic list decoding of Gabidulin codes

First we briefly review rank-metric codes that were introduced by Gabidulin in [8]. Let h be a prime power
and denote by Mn×t(Fh) the set of n× t matrices over Fh. For two matrices A,B ∈ Mn×t(Fh), we define
the rank distance betweenA andB, denoted by d(A,B), by the rank ofA−B, i.e., d(A,B) = rank(A−B).
A rank-metric code C is a subset of Mn×t(Fh). The minimum distance and the rate of a rank-metric code C
are defined as

d(C) := min{d(A,B) : A 6= B ∈ C}, and R(C) :=
logh |C|
nt

,

respectively. Such a rank-metric code always satisfies the Singleton bound d 6 n − R(C)n + 1. A rank-
metric code achieving the Singleton bound is called a maximum-rank-distance code (or MRD code for
short). Linearized polynomials can be used to construct a class of MRD codes, i.e., the Gabidulin codes.
Let us briefly recall this construction.

For a nonnegative integer i, we denote Xhi by X [i]. A h-linearized polynomial over Fht is a polynomial
of the form

∑`
i=0 aiX

[i], where ai ∈ Fht . The integer ` is called the h-degree of this polynomial, denoted
by degh(f), if a` 6= 0. It is easy to verify that (X [i])[j] = X [i+j]. We denote by Lh(t) the set of h-linearized
polynomials over Fht .

Let 0 < k 6 n 6 t be three integers and choose n elements α1, α2, . . . , αn ∈ Fht such that they are
linearly independent over Fh. For every h-linearized polynomial f ∈ Fht [X] with the h-degree at most
k − 1, we get a column vector Mf := (f(α1), f(α2), . . . , f(αn))T over Fht . Since every coordinate in Mf

is Fh-linearly mapped to a row vector in Fth under a fixed Fh-basis of Fht , the vector Mf can be viewed as
an n× t matrix over Fh. Thus, we get a rank-metric code

CG(h;n, t, k) := {Mf ∈Mn×t(Fh) | f ∈ Lh(t),degh(f) 6 k − 1} .

It can be shown that this code is in fact the Gabidulin code [8, 22]. Moreover, it is easy to verify that
CG(h;n, t, k) is an MRD code meeting the Singleton bound for rank-metric codes.

Before list decoding rank-metric codes, let us define the notion of “errors” first. Assume that a codeword
matrix X is transmitted and a matrix Y is received. We say that there are e errors from X to Y if rank(X −
Y ) = e. We denote by 〈X〉 and 〈Y 〉 the Fh-spaces spanned by the rows of X and Y , respectively. Then we
have the following fact.

Lemma 8.1. Let X,Y ∈Mn×t(Fh) with rank(X − Y ) 6 e. Then dimFh(〈X〉 ∩ 〈Y 〉) > dimFh(〈X〉)− e.

Proof. First we observe that the two Fh-spaces 〈X〉+ 〈Y 〉 and 〈X − Y 〉+ 〈Y 〉 are equal. Thus,

dimFh(〈X〉)+dimFh(〈Y 〉)−dimFh(〈X〉∩〈Y 〉) = dimFh(〈X−Y 〉)+dimFh(〈Y 〉)−dimFh(〈X−Y 〉∩〈Y 〉).

This gives

dimFh(〈X〉 ∩ 〈Y 〉) = dimFh(〈X〉)− dimFh(〈X − Y 〉) + dimFh(〈X − Y 〉 ∩ 〈Y 〉) > dimFh(〈X〉)− e ,

completing the proof.

To list decode the above Gabidulin code CG(h;n, t, k) in a manner similar to the linear-algebraic algo-
rithm for Reed-Solomon codes from Section 4, we need to impose one condition on the parameters, namely,
n|t. This will ensure that Fht has a subfield Fhn . We can now choose n evaluations points α1, α2, . . . , αn
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that are linearly independent over Fh from the subfield Fhn . Put q = hn and m = t
n , so that Fhn = Fq

and Fht = Fqm . In this case, we also denote CG(h;n, t, k) by CG(q;n,m, k). Suppose that a codeword
Mf = (f(α1), f(α2), . . . , f(αn))T is transmitted and Y = (y1, y2, . . . , yn)T is received with at most e
errors (note that we identify every row vector in Y with an element yi in Fht = Fqm).

Interpolation step. Let 1 6 s 6 m be an integer parameter of the algorithm. Choose the “degree parame-
ter” D =

⌊
n−k+1
s+1

⌋
.

Definition 12 (Space of interpolation linearized polynomials). Let L be the space of polynomials Q ∈
Fqm [X,Y1, Y2, . . . , Ys] of the form Q(X,Y1, Y2, . . . , Ys) = A0(X) + A1(Y1) + A2(Y2) + · · · + As(Ys),
with each Ai ∈ Fqm [X] being an h-linearized polynomial and degh(A0) 6 D + k − 1 and degh(Ai) 6 D
for i = 1, 2, . . . , s.

The following lemma is similar to Lemma 4.1.

Lemma 8.2. There exists a nonzero polynomial Q ∈ L such that Q(αi, yi, y
q
i , y

q2

i , · · · , y
qs−1

i ) = 0 for
i = 1, 2, . . . , n. Further such a Q can be found using O(n3) operations over Fqm .

Proof. Note that L is an Fqm-vector space of dimension (D + k) + s(D + 1) = (D + 1)(s + 1) + k − 1.
This dimension is bigger than n by our choice of D. The conditions imposed by the Lemma amount to n
homogeneous linear conditions on Q. Since this is smaller than the Fqm-dimension of L, there must exist a
nonzeroQ ∈ L that meets the interpolation conditionsQ(αi, yi, y

q
i , y

q2

i , · · · , y
qs−1

i ) = 0 for i = 1, 2, . . . , n.
Finding such a Q amounts to solving a homogeneous linear system over Fqm with n constraints and at most
dimFqm (L) 6 n+ s+ 2 unknowns, which can be done in O(n3) time.

Lemma 8.3 below shows that any polynomial Q given by Lemma 8.2 yields an algebraic condition
that the message functions f we are interested in list decoding must satisfy. Recall that for a polynomial
f(X) = f0 + f1X + · · ·+ fk−1X

k−1, fσ denotes the polynomial fσ(X) = f q0 + f q1X + · · ·+ f qk−1X
k−1.

Lemma 8.3. Let f ∈ Fqm [X] be a h-linearized polynomial with h-degree at most k − 1. Suppose that a
codeword Mf = (f(α1), f(α2), . . . , f(αn))T is transmitted and Y = (y1, y2, . . . , yn)T is received with at
most e errors. If e 6 s(n− k)/(s+ 1), then Q(X, f(X), fσ(X), fσ

2
(X), · · · , fσs−1

(X)) = 0.

Proof. The polynomial f(X) defines an Fh-linear map from Fhn = Fq to Fqm . The kernel ker(f) has
dimension dimFh(ker(f)) = dimFh(Fq)− rank(Mf ) = n− rank(Mf ).
Consider the Fh-vector space

f−1(〈Y 〉) = {α ∈ Fq : f(α) ∈ 〈Y 〉}.
We claim that the Fh-dimension of f−1(〈Y 〉) is at least n− e. To see this, we make use of the identity

dimFh(f−1(〈Y 〉)) = dimFh(ker(f)) + dimFh(Im(f) ∩ 〈Y 〉).

Now our claim follows from the fact that Im(f) = 〈Mf 〉 and Lemma 8.1.
It is clear that for all α ∈ f−1(〈Y 〉), we have

0 = Q(α, f(α), f(α)q, . . . , f(α)q
s−1

) = Q(X, f, fσ, . . . , fσ
s−1

)(α) .

As the h-degree of Q(X, f, fσ, . . . , fσ
s−1

) is at most D + k − 1, under the condition

D + k − 1 < n− e, (21)
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we have

Q(X, f, fσ, . . . , fσ
s−1

) = A0(X) +A1(f(X)) +A2(fσ(X)) + · · ·+As(f
σs−1

(X)) = 0. (22)

This completes the proof since (21) is indeed satisfied by our given condition on e and choice of D =
bn−k+1

s+1 c.

Finding candidate solutions. As in the case of Reed-Solomon codes, we want to study the structure of a
linearized polynomial f satisfying the condition of Lemma 8.3.

Lemma 8.4. The set of solutions f =
∑k−1

i=0 fiX
hi ∈ Fqm [X] to the equation

A0(X) +A1(f(X)) +A2(fσ(X)) + · · ·+As(f
σs−1

(X)) = 0 (23)

when at least one of {A0, A1, . . . , As} is nonzero is an (s − 1,m, k)-periodic subspace. A canonical rep-
resentation of this periodic subspace (in the sense of Definition 2) can be computed in poly(k,m, log q)
time.

We can mimic the proof of Lemma 4.4 to prove Lemma 8.4. We skip the details.
Combining Lemmas 8.3 and 8.4, we see that, as in the Reed-Solomon case, one can find an Fq-affine

space of dimension (s − 1)k that contains the coefficients of all polynomials whose encodings differ from
the input (y1, . . . , yn) by a matrix of rank at most s

s+1(1 − R)n (where R is the rate). When s � m, this
dimension is much smaller than the dimension of the message space of the Gabidulin code CG(q;n,m, k)
over Fq which is km.

8.1 List-size reduction using h.s.s sets

The list decoding guarantee proved for Gabidulin codes in Lemma 8.4 is identical to the Reed-Solomon
case (Lemma 4.4). Therefore, we can similarly use the h.s.e construction of Theorem 6.3 to randomly con-
struct an efficiently list decodable subcode of the Gabidulin code. Recall that in our Gabidulin construction
CG(h;n, t, k), q = hn and m = n/t. Also char(Fq) = char(Fh). We can thus state the following result
paralleling Corollary 7.4 (we omit the analogous statement to Theorem 7.3 for brevity).

Theorem 8.5. Let Fh be a finite field, R ∈ (0, 1), ε > 0, and n a large enough integer. For k = n
R(1−ε) and

t = Θ(n/ε2), there is a Monte Carlo construction of a rate R subcode of the Gabidulin code CG(h;n, t, k)
(whose elements are n× t matrices over Fh) such that the subcode

(i) admits encoding in poly(n, log h, 1/ε) time, and
(ii) offers the following list decoding guarantee with high probability: given a matrix M ∈ Mn×t(Fh),

the set of codeword matrices within rank distance (1−ε)(1−R)n fromM has cardinality at mostO(1/(Rε))
and can be found in deterministic poly(n, log h, char(Fh)1/ε2) time.
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A List decoding of subspace codes up to Singleton bound

We now briefly sketch the extension of our results from rank-metric codes to the closely related subspace
codes (also called finite field Grassmanian codes). A subspace code S over finite field Fh is a collection of
n-dimensional subspaces of FNq for integer parameters n < N . The distance property of the code is that any
two subspaces U, V ∈ S have a low-dimensional intersection (or equivalently, the distance between U and
V in the Grassmanian metric, defined as dim(U) + dim(V ) − 2 dim(U ∩ V ), is large). The rate of such a
subspace code S is defined to be

logh |S|
nN

(the rationale is that there are about hnN subspaces of dimension n in FNh when n is much smaller than N ).

A.1 Subspace code construction

The construction of subspace codes by Koetter and Kschischang [23] is equivalent to the one given earlier in
[41]. We call these subspace codes as KK codes for short. The relation between the KK subspace codes and
Gabidulin codes have been discussed in several papers [23, 37, 30]. In this section, we briefly look at the
list decoding of the KK codes by employing the same idea that we used for list decoding of Reed-Solomon
and Gabidulin codes.

As in the case of the Gabidulin codes, we assume that n is a divisor of t and let q = hn and m = t/n.
Let α1, . . . , αn ∈ Fq be Fh-linearly independent. Let Z be the Fh-vector space Fq × Fqm . It is clear that
dimFh(Z) = n+mn = n+ t.

Choose an integer k with 0 < k < n and for each h-linearized polynomial f ∈ Fqm [X] of h-degree at
most k − 1, define an Fh-subspace of Z by

Vf = span{(αi, f(αi)) : i = 1, 2, . . . , n}.
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The KK-code is defined as the collection of Vf for all h-linearized polynomials f ∈ Fqm [X] of h-degree at
most k − 1. Note that the rate of this code equals

logh q
mk

n(n+ t)
=
k

n

(
1

1 + n/t

)
≈ k/n (when n� t) . (24)

A.2 List decoding KK-codes

We now present a list decoding algorithm for the above codes. The algorithm follows the earlier linear-
algebraic list decoding algorithm for Gabidulin codes.

Before describing the algorithm, we first need to define the error model. The error level will be quantified
by two integer parameters: (i) ρ, the maximum number of insertions allowed, and (ii) µ, the maximum
number of deletions allowed.15

Suppose a codeword Vf encoded from f is transmitted. In the above error model, the subspace Vf is
received as U = W ⊕E, where dimFh(E) 6 ρ andW is a subspace of Vf with dimFh(Vf )−dimFh(W ) :=
ν 6 µ. Assume that dimFq(U) = d.
Consider a nonzero polynomial in Fqm [X,Y1, Y2, . . . , Ys] with 1 6 s 6 m

Q(X,Y1, Y2, . . . , Ys) = A0(X) +A1(Y1) +A2(Y2) + · · ·+As(Ys), (25)

where every Ai ∈ Fqm [X] is a h-linearized polynomial with degh(A0) 6 D + k − 1 and degh(Ai) 6 D
for i = 1, . . . , s; and D is chosen to be

D =

⌊
d− k − s+ 1

s+ 1

⌋
. (26)

Choose an Fh-basis {(ai, bi)}di=1 of U (where ai ∈ Fq and bi ∈ Fqm) and we interpolate a polynomial Q of
the above form satisfying

Q(ai, bi, b
q
i , . . . , b

qs−1

i ) = 0 for i = 1, 2, . . . , d .

There are d equations, but D + k + s(D + 1) = (s+ 1)D + k + s freedoms in Q. Hence, such a nonzero
polynomial Q exists since d < (s+ 1)D + k + s. It is clear that for all (α, f(α)) ∈W , we have

0 = Q(α, f(α), f(α)q, . . . , f(α)q
s−1

) = Q(X, f, fσ, . . . , fσ
s−1

)(α),

where σ is the Frobenius automorphism of Fqm over Fq, i.e., σ sends every element α in Fqm to αq.

As the h-degree of Q(X, f, fσ, . . . , fσ
s−1

) is at most D + k − 1, under the condition

D + k − 1 < n− ν, (27)

we have

Q(X, f, fσ, . . . , fσ
s−1

) = A0(X) +A1(f(X)) +A2(fσ(X)) + · · ·+As(f
σs−1

(X)) = 0. (28)

15Here we follow the terminology of [14] which gave the first list decoding algorithm for subspace codes that could handle both
insertions and deletions. Earlier results in [29] gave list decoding algorithms when only insertions were allowed.
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Note that we have

ρ < s(n− µ− k+ 1)⇒ ρ < s(n− ν − k+ 1)⇒ d− n+ ν < s(n− ν − k+ 1)⇒ D+ k− 1 < n− ν.

Thus, Condition (27) is met if
sµ+ ρ < s(n− k + 1). (29)

The above analysis shows that we can list decode up to ρ insertions and µ deletions as long as ρ and ν
satisfy (29).

The equation (28) satisfied by f is identical to (23), and therefore one can pin down f to an affine space
of solutions exactly as in Lemma 8.4. After pre-coding by H̃SE, this space can then be efficiently pruned
leading to a claim similar to Theorem 8.5. Since the details are identical to the Gabidulin case, we do not
repeat them.

We conclude by commenting on the quality of our condition (29) for successful decoding, which is
implied by the condition

µ+
ρ

s
< n

(
1−R− t

n

)
, (30)

where R is the rate (24) of the code. For comparison, the condition for successful decoding for the folded
KK codes in [14] is

µ+
ρ

s
< n(1−RN)

which necessitates a sub-constant rate for the code (a similar situation holds for [30]).
In [14], a random coding argument is used to show the existence of subspace codes that can be list

decoded with list size L when

µ+
ρ

L+ 1
< n

(
1−R− 1

L+ 1

)
, (31)

where R is the rate of the code. To compare this with our result for KK codes, we note that after the
combination with h.s.e sets, the analog of Theorem 8.5 will imply that we can take s = Θ(1/ε), m = n/t =
Θ(1/ε2), and have a list decodable subspace code that can correct µ deletions and ρ insertions provided

µ+ ερ < n(1−R− ε) ,

with a worst-case output list size of O(1/(Rε)). This essentially matches the existential trade-off (31) up to
constant factors in the list size.

B Omitted proofs concerning h.s.e sets

We now give the proofs that were omitted in Section 6.

B.1 Proof of Lemma 6.1

Proof. (Sketch) The parameters claimed, most notably the encoding time to compute HSE, are somewhat
different than in [20], so let us briefly sketch the construction. The main difference is that, following [19,
Sec. 4.1], we will define the h.s.e set based on the values of random polynomials rather than zero sets of
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random polynomials. The claim about the the structure of the map and its efficient computability will be
clear from the construction. The proof of the h.s.e property is based on t-wise independence of values of
random degree t polynomials and is more or less identical to the argument in [20, Sec. 4.3], and is therefore
omitted.

Let κ1 = (1− ζ)κ, κ2 = (1− 2ζ)κ, and for j = 1, 2, . . . , b, let nj = (1− ζ)jΛ and mj = (1− 2ζ)jΛ,
and let Kj be the extension field Fqnj , and Lj the extension field Fqmj . Fix some basis Bj (resp. B′j) of Kj

(resp. Lj) over Fq.
The construction of HSE will be based on polynomials Pj ∈ Kj [X] and Qj ∈ Lj [X], j = 1, 2, . . . , b,

each chosen uniformly and independently among polynomials of degree at most t := ck. The polynomials
Pj will be used to define a map ςj : Fnjq → FζΛq where to compute ςj(α), we treat α as an element of Kj

using the basis Bj , compute Pj(α), and output the first ζΛ coordinates of Pj(α) when viewed as a vector in
Fnjq w.r.t basis Bj . We can similarly define maps ϑj : Fmjq → FζΛq based on polynomials Qj .

Using the maps ςj , we will define HSE1 : Fκ1
q → Fκq as follows: To compute HSE1(x), we (i) break

x into b blocks x1, x2, . . . , xb with each xj ∈ F(1−ζ)Λ
q , (ii) compute vj = ςj(x1 ◦ x2 · · · ◦ xj) ∈ FζΛq for

j = 1, 2, . . . , b (here ◦ denotes concatenation of vectors), and (iii) output x1 ◦ v1 ◦x2 ◦ v2 ◦ · · · ◦xb ◦ vb. We
can similarly define HSE2 : Fκ2

q → Fκ1
q using the maps ϑj . The final map HSE : Fκ2

q → Fκq will be defined
by the composition HSE(y) = HSE1(HSE2(y)). By construction, if y = y1 ◦ · · · ◦ yb, then HSE(y) is of
the form y1 ◦ ξ1 ◦ y2 ◦ ξ2 ◦ · · · ◦ yb ◦ ξb where, for 1 6 j 6 b, each ξj ∈ F2ζΛ

q , depends only on the prefix
y1 ◦ y2 ◦ · · · ◦ yj , and can be computed in poly(κ, 1/ζ, log q) time.

Let S = Im(HSE). Given a subspace H ∈ F , one can compute H ∩ S by computing projjΛ(H) ∩
projjΛ(S) for j = 1, 2, . . . , b iteratively, following the approach taken in [20]. At each step, to extend the
intersection from j − 1 blocks to j blocks, for each prefix a ∈ proj(j−1)Λ(H) ∩ proj(j−1)Λ(S) (there will
be at most cκ such prefixes by the guarantee (17)), we can try each of the at most qr possible extensions of
a in projjΛ(H) and check which ones fall also belong to projjΛ(S) (note that this step will prune back the
number of candidates to cκ due to the h.s.e property of S). Since the latter task can be done efficiently for
our construction, the overall runtime will be polynomial in κ, qr, 1/ζ.

B.2 Proof of Lemma 6.2

Proof. (Sketch) The construction is due to Dvir and Lovett [6], with a minor change in some degree param-
eters to handle efficient encoding for any field Fq. Choose γ1, γ2, . . . , γυ to be arbitrary distinct nonzero
elements in Fq (this is possible since q > υ). Let d1, d2, . . . , dυ be distinct positive integers with dj = pj−1

for j = 1, 2, . . . , r, and dj = p(j − r) + 1 for r < j 6 υ. Note that dmax := maxj dj < max{pr, pυ}.
For 1 6 i 6 r and 1 6 j 6 υ, define Ai,j = γij and fi ∈ Fq[X1, X2, . . . , Xυ] as

fi(X1, X2, . . . , Xυ) =
υ∑
j=1

Ai,jX
dj
j .

The subspace-evasive set will be the variety VFq(f1, f2, . . . , fr) of common zeroes of f1, f2, . . . , fr in Fυq .
The key property of the r × υ matrix A is its Vandermonde nature: every r columns of A are linearly
independent.

Since raising to a power of p is an automorphism of Fq, the argument of [6] can be applied to show that
for each setting of Fq-values to {Xj | r < j 6 υ} (say a = (αr+1, . . . , αυ)), there is a unique setting of
Fq-values to X1, X2, . . . , Xr, say b = (α1, . . . , αr) such (α1, α2, . . . , αυ) ∈ VFq(f1, f2, . . . , fr). Further,
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one can compute b given a efficiently (by solving a linear system and some exponentiation operations in
Fq) in poly(υ, log q) time. We use this to define the injective map ψ : Fυ−rq → Fυq claimed in (i) in the
natural way: ψ(a) = a ◦ b.

Let F be the algebraic closure of Fq. The main result in [6] shows that VF(f1, f2, . . . , fr) is an everywhere-
finite variety that intersects every r-dimensional affine space over F in at most drmax points in Fυ. This
implies that the image of ψ, which equals V = VFq(f1, f2, . . . , fr), is (r, drmax)-subspace evasive. Known
algorithms for solving systems of polynomial equations (see for instance [7, 25]) can be used to compute
the intersection H ∩ V for an r-dimensional subspace H ⊆ Fυq using a number of Fq-operations that is at
most polynomial in υ and the intersection size.

Let us briefly sketch the high level approach behind this. Suppose H is given by affine constraints
l1(x) = l2(x) = · · · = lυ−r(x) = 0. The approach is to compute the Gröbner basis of the zero-dimensional
ideal (f1, f2, . . . , fr, l1, l2, . . . , lυ−r) w.r.t. the lexicographic ordering X1 < X2 < · · · < Xn — this can
be done using υO(1)d

O(r)
max operations over Fq [7]. One can then use the elimination ideals to solve for

all possible values to X1, extend those to all possible values of (X1, X2), and so on, akin to solving a
triangular linear system. The finiteness theorem for zero-dimensional ideals and the extension theorem of
Gröbner basis theory imply that the number of operations needed by the iterative solution finding procedure
is polynomial in the number of solutions.

B.3 Proof of Theorem 6.3

Proof. The idea will be to use the construction of Lemma 6.1 at the “outer” level, and further encode blocks
using Lemma 6.2 at the inner level. Let κ = (1− ζ)k, Λ = (1− ζ)∆. Let HSE : F(1−2ζ)κ

q → Fκq be the map
guaranteed by Lemma 6.1 for this choice of κ,Λ (and b, c, r, q as in the Lemma hypothesis); by padding the
input with 0s, we can assume HSE maps F(1−3ζ)k

q → F(1−ζ)∆b
q . Let ψ be the map guaranteed by Lemma 6.2

for the choice υ = ∆, η = ζ, and r, q as in the hypothesis. Since r < ζ∆, again we may pad the input with
0s as needed and assume that ψ : F(1−ζ)∆

q → F∆
q .

Our final map H̃SE : F(1−3ζ)k
q → Fkq will be defined as follows. Given input x = x1 ◦ x2 ◦ · · · ◦ xb ∈

F(1−3ζ)∆b
q , first compute HSE(x) = y1 ◦ y2 ◦ · · · ◦ yb with each yj ∈ F(1−ζ)∆

q . we define H̃SE(x) =

ψ(y1) ◦ ψ(y2) ◦ · · · · ψ(yb). The efficient computability of H̃SE follows by construction and the properties
of HSE and ψ. For j = 1, 2, . . . , b, define H̃SEj(x) to be projj∆(H̃SE(x)); by construction H̃SEj is only a
function of the the first j blocks x1 ◦ x2 ◦ · · · ◦ xj of x.

To compute the intersectionH∩S, where S = Im(H̃SE) andH is an (r,∆, b)-periodic subspace, we use
the same approach as in Lemma 6.1. The main difference is that, given some prefix xj−1 = x1◦x2◦· · ·◦xj−1

where each xl ∈ F(1−3ζ)∆
q that satisfies

a := H̃SEj−1(xj−1) ∈ proj(j−1)∆(H) ∩ proj(j−1)∆(S) ,

we only need to try max{pr2
, (p∆)r} possible extensions xj of xj−1 (instead of the earlier qr bound). These

extensions are the ones in the set Ψ ⊆ F(1−3ζ)∆
q defined as

Ψ := {proj(1−3ζ)∆(z) | z ∈ F(1−ζ)∆
q and ψ(z) ∈ Hj}

whereHj is the affine subspace of extensions h ∈ F∆
q such that a◦h ∈ projj∆(H). Note that the dimension

ofHj is at most r asH is an (r,∆, b)-periodic subspace. The size of Ψ is therefore at most max{pr2
, (p∆)r}

by Lemma 6.2 and it can be enumerated in time polynomial in its size.
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