
On the One-Way Function Candidate Proposed by Goldreich?

James Cook1 ??, Omid Etesami2 ? ? ?, Rachel Miller3 †, and Luca Trevisan4 ‡

1 U.C. Berkeley, Computer Science Division

jcook@cs.berkeley.edu

2 EPFL, Laboratoire d'Algorithmique

omid.etesami@epfl.ch

3 MIT, Computer Science and Arti�cial Intelligence Laboratory

r miller@mit.edu

4 Stanford, Computer Science Department

trevisan@stanford.edu

Abstract. A function f mapping n-bit strings tom-bit strings can be constructed from a bipartite graph

with n vertices on the left and m vertices on the right having right-degree d together with a predicate

P : {0, 1}d → {0, 1}. The vertices on the left correspond to the bits of the input to the function and the

vertices on the right correspond to the bits of the output. The value of each output bit is computed

by evaluating the predicate over the input bits corresponding to its neighbors. Goldreich (ECCC 2000)

conjectured that this function f is one-way for m = n and d = Θ(1) or d = Θ(logn), when the vertices

on the right \expand" and the predicate P is a random non-linear predicate.

Inverting f as a one-way function by de�nition means �nding an element in the preimage f−1(f(x)) of

the image of a random input x under the function f. We bound the expected size of this preimage when

the bipartite graph is a random bipartite graph with right-degree d. Our result is for when the predicate

P is a typical random predicate or P(x1, . . . , xd) = x1 ⊕ . . . ⊕ xd−h ⊕ Q(xd−h+1, . . . , xd) where Q is an

arbitrary predicate having at most d−Θ(d) variables.

Inverting the function can be seen as a constraint satisfaction problem with a \planted solution". One can

use backtracking algorithms to �nd this solution. Using the bound on the size of the preimage, we prove

those backtracking algorithms that are \myopic" and those backtracking algorithms that are \drunk"

cannot invert the function in better than exponential time on average.

Myopic backtracking algorithms are ones in which during the �rst levels of the backtracking tree, the

algorithm has a limited view of the image f(x) for which the algorithm wants to �nd an element in the

preimage f−1(f(x)). Our proof for myopic backtracking algorithms builds upon the work of Alekhnovich,

? Some of the results in this paper appeared previously in the 6th Theory of Cryptography Conference in 2009 [8].
?? This material is based upon work supported by the National Science Foundation under Grant Nos. CCF 1017403

and CCF 0729137, and by the National Sciences and Engineering Research Council of Canada under a PGS award.
? ? ? This material is based upon work in UC Berkeley supported by the National Science Foundation under Grant

Nos. CCF 1017403 and CCF 0729137, and work in EPFL supported by European Research Council Grant No.

228021-ECCSciEng.
† Work done at U.C. Berkeley, supported by an NSF SUPERB fellowship, and at MIT, supported by an NDSEG

fellowship.
‡ This material is based upon work supported by the National Science Foundation under Grant Nos. CCF 1017403

and CCF 0729137, and by the BSF under grant 2002246.

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Report No. 175 (2012)

Hirsch, and Itsykson (2005) where they instead consider solving a system of linear equations each with

three variables, that is, when P = x1 ⊕ x2 ⊕ x3.
Drunk backtracking algorithms for a constraint satisfaction problem are ones in which at each point in

the backtracking tree, even though the algorithm can choose any variable to �x next, the bit that is �rst

tried for that variable has to be random. Our proof for drunk backtracking algorithms is similar to those

of Itsykson (CSR 2010) and Miller (thesis 2009).

We show that these lower bounds also hold when the backtracking algorithm is allowed to eliminate

\pure literals" and \unit clauses" as in DPLL algorithms.

Since both being myopic and being drunk are merely theoretical restrictions that allowed us to prove

lower bounds, we also performed an experimental analysis by running one of the best available SAT

solvers on the SAT instance equivalent to the constraint satisfaction problem corresponding to inverting

the function. The solver seemed to take exponential running time.

2

1 Introduction

Goldreich [12] proposed in 2000 a candidate one-way function construction based on expanding graphs. His

construction is parameterized by the choice of a bipartite graph with n vertices per side and right-degree

d (where d is either a constant independent of n, or grows very moderately as O(logn)) and of a boolean

predicate P : {0, 1}d → {0, 1}. To compute the function, on input x ∈ {0, 1}n we label the vertices on the left by

the bits of x, and we label each vertex on the right by the value of P applied to the labels of the neighbors.

The output of the function is the sequence of n labels of the vertices on the right.

Goldreich’s Function and Cryptography in NC0. A function is computable in NC0 if every bit of the

output depends only on a constant number of bits of the input. One can view any NC0-computable function

as a generalization of Goldreich's function in which di�erent predicates can be used for di�erent bits of the

output, and in which the graph is allowed to be arbitrary, subject to having bounded right-degree.

Cryan and Miltersen [9] �rst raised the question of whether cryptographic primitives can be computed

in NC0 in a work focused on pseudorandom generators. Mossel, Shpilka and Trevisan [18] construct, for

arbitrarily large constant c, a function f : {0, 1}n → {0, 1}cn based on a bipartite graph of right-degree 5 and

the �xed predicate P(x1, · · · , x5) := x1⊕x2⊕x3⊕ (x4∧x5), and show that the function computes a small-bias

generator. Such a construction may in fact be a pseudorandom generator, and hence a one-way function.5

Applebaum, Ishai and Kushilevtiz [4,5] show that, under standard assumptions, one can construct one-

way functions and pseudorandom generators that can be computed in NC0; their one-way functions are

computable with right-degree 3.6 In their construction, the graph encodes the computation of a log-space

machine computing a one-way function (not in NC0) that is used as a primitive.

Applebaum, Barak and Wigderson [3] build a public-key cryptosystem using assumptions that include that

Goldreich's function with predicates of the form MAJ(x1⊕· · ·⊕xd/3, xd/3+1⊕· · ·⊕x2d/3, x2d/3+1⊕· · ·⊕xd)
is a pseudorandom generator; this assumption is stronger than Goldreich's original conjecture.

Applebaum [2] constructs pseudorandom generators based on the assumption that Goldreich's function

with a random predicate and graph is one-way. He constructs a linear-stretch pseudorandom generator in NC0,

a polynomial-stretch pseudorandom generator when the degree of each output bit is ω(1), and a polynomial-

stretch generator in NC0 with inverse polynomial distinguishing advantage.

In this paper, we are interested in the security of Goldreich's original proposal as a one-way function,

implemented using a random graph and a predicate that either has a certain form or is chosen randomly.

Goldreich’s Function and DPLL Algorithms. Inverting Goldreich's one-way function (and, indeed,

inverting any one-way function that is computable in NC0) can be seen as the task of �nding a solution to a

constraint satisfaction problem with a planted solution. A plausible line of attack against such functions is to

employ a general-purpose SAT solver to solve the corresponding constraint satisfaction problem. We performed

an experimental study using MiniSat, which has been used to solve instances with several thousand variables,

5 The graph used in this construction, however, is not a random graph or a strong expander graph of right-degree 5,

so this is not an instantiation of Goldreich's proposal.
6 This is the best possible, because it is easy to show that no function based on a bipartite graph of right-degree 2

can be one-way, by reducing the problem of �nding the inverse to a 2SAT instance.

3

and is generally agreed to be one of the best publicly available SAT solvers. Using a random graph of right-

degree 5, and the predicate (x1⊕x2⊕x3⊕ (x4∧x5)), we observed an exponential increase of the running time

as a function of the input length; an attack with MiniSat appears infeasible already for very modest input

lengths (a few hundred bits). See Section 8.

Our goal in this paper is to provide a rigorous justi�cation for these experimental results, and to show that

\DPLL-style" algorithms based on backtracking (such as most general SAT solvers) cannot break Goldreich's

construction in sub-exponential time. We restrict our work to algorithms that instantiate variables one at a

time in an order chosen adaptively by a \scheduler" procedure. When instantiating a variable, the scheduler

also decides whether to recurse on the instance obtained by �xing the variable to zero and then to the instance

obtained by �xing the variable to one, or vice versa. A recursive branch stops if the current partial assignment

contradicts one of the constraints in the instance. The program terminates once it �nds a satisfying assignment.

When such an algorithm runs on an unsatis�able instance, the transcript of the algorithm's substitutions

gives a \tree-like resolution proof" of unsatis�ability. A number of techniques prove exponential lower bounds

on the size of tree-like resolutions proofs of unsatis�ability, and therefore imply lower bounds for the running

time of any such algorithm on such instances, regardless of how the scheduler is designed.

When dealing with satis�able instances, however, one cannot prove non-trivial lower bounds without

putting some restriction on the scheduler. If unrestricted in computational power, the scheduler could simply

compute a satisfying assignment and assign the variables accordingly, giving an algorithm that converges in a

linear number of steps.

The Lower Bound of Alekhnovich et al. Alekhnovich, Hirsch and Itsykson [1] consider two such restric-

tions: they consider (i) \myopic" algorithms in which the scheduler chooses the next assignment to make based

on only a bounded number of clauses of the current formula, and (ii) \drunk" algorithms in which the order

of variables is chosen arbitrarily by the scheduler, but the choice of whether to �rst assign zero or one to the

chosen variables is made randomly with equal probability. Their results for drunk algorithms were proven for

carefully designed instances unrelated to Goldreich's function. Alekhnovich et al. proved lower bounds against

myopic algorithms for a �xed predicate through a reduction to the problem of certifying unsatis�ability: they

show that after a myopic algorithm assigns a certain number of variables, with high probability it is left with

an instance that is unsatis�able, but which has no sub-exponential size tree-like resolution proof of unsatis-

�ability. Hence, with high probability the algorithm must take an exponential amount of time to discover it

has chosen a bad partial assignment.

Our Results The result of Alekhnovich et al. applies to myopic algorithms for random instances of 3XOR

with a planted solution, giving a lower bound for myopic DPLL inversion algorithms for the instantiation of

Goldreich's proposal using the 3XOR predicate.

Unfortunately, despite its resistance to myopic algorithms, Goldreich's construction instantiated with the

3XOR predicate is easily inverted via Gaussian elimination. Furthermore, their result for drunken algorithms

does not seem to relate to Goldreich's function. We extend the result of Alekhnovich et al. to use either a ran-

dom predicate (as Goldreich originally proposed) or predicates of the form (x1⊕· · ·⊕xd−h⊕Q(xd−h+1, . . . , xd))

(inspired by the work of Mossell et al). We also show that the framework we build to analyze myopic algorithms

can be adapted to work for drunk algorithms as well, to produce a result similar to those of Itsykson [14] and

4

Miller [17]. In order to extend the work of Alekhnovich et al. to the setting of Goldreich's one way function,

we make the following contributions:

– The proof in [1] assumes that there is a unique solution, and this is not true in our setting. We show that

the proof carries over if one assumes that the total number of pairs x,y such that f(x) = f(y) is at most

2(1+ε)n for small ε. We are able to show an upper bound that such a condition is satis�ed by the predicates

we consider and by a random choice of graph, with ε = 2−Ω(d). This upper bound, proved in Section 3,

is interesting in itself: It is an upper bound on the expected size of preimages, or equivalently many-to-

oneness, of Goldreich's function. Panjwani [19] has also experimentally analyzed the size of pre-images of

Goldreich's function.

– The proof in [1] uses the linearity of the constraints. We show that it is su�cient for the predicate to

have nearly balanced output even after many variables have been �xed to arbitrary values. For example,

a d-ary parity remains perfectly balanced even after d− 1 variables are assigned arbitrary variables. The

predicate (x1⊕· · ·⊕xd−2⊕ (xd−1∧xd)) remains perfectly balanced even after d−3 variables are assigned

arbitrary variables, and a random predicate remains ε-close to balanced after any d−O(logd/ε) variables

are �xed to arbitrary values. (These parameters are su�cient for our proof to go through.)

– The proof in [1] uses the fact that all constraints have arity three, and relies on degree-three strongly

expanding bipartite graphs. Furthermore, it requires the adjacency matrix of the graph to have full rank,

so that the solution will be unique. There is nothing unique about arity three; as mentioned above,

we adapt their methods to work for predicates of larger arity. We also remove the requirement for the

adjacency matrix to have full rank; instead, we use random graphs, for which we prove that Goldreich's

function is not far from one-to-one. However, there is a non-negligible chance that a random graph will

violate the strong expansion condition required by the approach in [1], so in Sections 5.3 and 6.4 we show

that the lower bound still holds for graphs with a weaker form of expansion, which is violated with only

negligible probability.

– DPLL algorithms are allowed to apply two special rules to simplify their input, called unit clause elimina-

tion and pure literal elimination, which makes it more di�cult to prove lower bounds for DPLL algorithms.

However, in the case of linear predicates considered by [1], these two new rules add little to the power

of the backtracking algorithm. In considering non-linear predicates, we do further work in Section 7 to

show that lower bounds for backtracking algorithms without these two rules imply lower bounds for DPLL

algorithms.

With these contributions, we are able to show an exponential lower bound for both myopic and drunk

DPLL algorithms in a construction that uses a random graph and a predicate which is either random or of

the form (x1 ⊕ · · · ⊕ xd−h ⊕Q(xd−h+1, . . . , xd)).

Goldreich’s Analysis Goldreich [12] considered the following algorithm (as an obvious �rst attack) for

computing x given y = f(x). The algorithm proceeds in n steps, revealing the output bits one at a time. Let

Ri be the set of inputs connected to the �rst i outputs. Then in the ith step, the algorithm computes the list

Li of all strings in {0, 1}Ri which are consistent with the �rst i bits of y. The �nal list Ln enumerates the set

f−1(y). Goldreich proves that if the graph satis�es an expansion condition, the expected size of one of the

5

sets Li is exponentially large, and so this inversion algorithm runs in time exponential in the input length.

Panjwani [19] experimentally veri�ed this result.

The above algorithm is a weaker version of a myopic backtracking algorithm where before assigning values

to the bits in Ri, the algorithm has no knowledge of y except its �rst i bits.7 For this reason, our lower bounds

for myopic algorithms are more general.

Proof Overview of Upper Bound on Expected Size of Preimages To calculate the expected size

of the preimage, we note that it is equivalent to calculating the probability that the image of two di�erent

n-bit inputs collide under Goldreich's function. When the graph used for Goldreich's function is random, this

probability can be calculated in terms of the probability that the predicate P outputs the same bit when it

receives two d-bit inputs when the bits of these two inputs are random but bitwise correlated.

We need to show that a random predicate P performs well for all the in�nite number of ways in which the

two d-bit inputs to P can be bitwise correlated. Since the number of ways is in�nite, we cannot directly apply

a union bound. Rather, we apply the union bound after showing how to \summarize" performance for all the

ways of bitwise correlation by performance on a �nite number of other types of correlations.

Proof Overview of Lower Bound for Backtracking Algorithms Our proof is similar to the proof of

Alekhnovich et al. [1] that myopic backtracking algorithms take an exponentially long time to solve systems

of linear equations.

Let A be a myopic or drunk backtracking algorithm. We pick a random x ∈ {0, 1}n, and run A on input

b = f(x). Our goal is to show that A will run for a long time before returning any x ′ ∈ f−1(b), but we begin
with an easier goal: to show that A will either run for a long time or return a value that is not exactly equal to

x. In the case that f is an injective function, these goals are one and the same. In the general case, Lemma 3.1

allows us to reduce the harder goal to the easier goal.

Our strategy to prove the easier goal is to show �rst that with high probability A will choose an incorrect

value for a variable, and second, that it will take a long time to recover from its mistake. We are only able to

prove the second part when the mistake the algorithm made is \locally consistent" (De�nition 4.4).

At every point during the execution of A, its partial truth assignment ρ can be in one of three states:

1. ρ is consistent with x.

2. ρ is not consistent with x, but is locally consistent.

3. ρ is not locally consistent.

We need to show that the algorithm reaches state 2 with high probability.

In order to make our task simpler, we start in by modifying A so that it becomes a clever algorithm

that never enters state 3 before it makes a large number of assignments (Lemma 4.13). Then we show (in

Lemma 5.1 when A is myopic and in Lemma 6.4 when A is drunk) that with high probability, the algorithm

reaches state 2.
7 We introduce myopic backtracking algorithms in De�nitions 2.8 and 2.9. The list Li mentioned above corresponds

to the nodes at level |Ri| of the backtracking tree of the myopic backtracking algorithm. To simulate the algorithm

considered by Goldreich by a myopic backtracking algorithm, the scheduler of the backtracking algorithm does not

need to look at the output to decide which variable to assign next, nor to decide which value to try assigning to that

variable �rst.

6

History of This Work A subset of the results in this paper appeared in the 6th Theory of Cryptography

Conference in 2009 [8]. Speci�cally, we presented our lower bound for myopic backtracking algorithms on

instances of Goldreich's function that use a random graph that satis�es an expansion condition, and the

predicate x1 ⊕ . . .⊕ xd−2 ⊕ (xd−1 ∧ xd). Though Goldreich [12] suggested using random predicates, our proof

was missing a bound on the size of pre-images of Goldreich's function for this case.

Itsykson [14] later proved a similar lower bound for drunk DPLL algorithms for random graphs and the

more general predicate x1⊕ . . .⊕xd−h⊕Q(xd−h+1, . . . , xd). He also noted that our proof applies to this more

general predicate. Miller [17] independently looked at lower bounds for drunk algorithms inverting Goldreich's

function.

This version of our work di�ers from the conference version by the following additions:

– We prove our result for random predicates by bounding the size of pre-images of Goldreich's function. In

Section 3, we describe a property that is both computable and su�cient for the needs of our proof, and

which a uniformly random d-ary predicate satis�es with high probability8. This brings our work more in

line with Goldreich's original suggestion.

– We show that our lower bounds apply to DPLL algorithms, which are backtracking algorithms with the

additional ability to apply certain simpli�cation rules. See Section 7.

– Our original expansion requirement (as well as those of [14] and [17]) is violated by a constant-degree uni-

formly random graph with polynomial probability. We weaken our expansion condition by allowing small

non-expanding sets. The probability that a random graph violates our weaker condition is exponentially

small. See Section 5.2.

– We include our own proof of the lower bound for drunk algorithms, which is similar to the work of Itsykson

and Miller. The proofs of the myopic and drunk lower bounds given in this paper follow each other very

closely, diverging for only a few steps.

Related Work on Inverting Goldreich’s Function Besides Itsykson's independent lower bound on drunk

DPLL backtracking algorithms mentioned before, there has been other further work since the publication of

the conference version of this work.

Bogdanov and Qiao [7] present an e�cient algorithm for inverting instances of Goldreich's function where

the number of output bits is much larger than the number of input bits, and the predicate is correlated with

one or two of its inputs. Notice that Goldreich's original proposal suggests that the number of input bits be

equal to the number of output bits.

Itsykson and Sokolov [13] �nd a lower bound for the running time of myopic and drunk DPLL algorithms

for an explicit construction of Goldreich's function whose pre-images have size 2o(n), which is interesting

compared to our results for random graphs. However, their function partitions the input variables into two

parts: o(n) variables which a�ect the output non-linearly, and n − o(n) variables which a�ect the output

linearly. The fact that the non-linear part is small allows an algorithm to invert the function in 2o(n) time.

In a more recent work, Itsykson and Sokolov [15] �nd a lower bound for myopic DPLL algorithms with

the addition of a myopic cut heuristic which allows the algorithm to remove branches from the backtracking

tree. This is signi�cant since previous work, as well as this paper, rely on the fact that a DPLL algorithm

8 More exactly, the probability is 1− 2−2
Ω(d)

by Lemma 3.8.

7

would encounter a large subtree containing no solutions, and would be forced to explore the entire subtree

before continuing. The hard formulas they consider are systems of linear equations, which are equivalent to

instances of Goldreich's function with an XOR predicate.

Open Questions Our work adds motivation for further experimental and rigorous analysis of Goldreich's

construction.

The limitation of the present work is the somewhat arti�cial nature of both myopic algorithms and drunk

algorithms. Myopic algorithms fail to capture certain natural \global" heuristics used in SAT solvers. Since the

algorithm is required to work only with partial information on the object given as an input, negative results

for myopic algorithms are similar in spirit (but very di�erent technically) to results on \space bounded cryp-

tography." Drunk algorithms are restricted in a way that is more computational than information-theoretic,

but the random selection of variable values is clearly contrived. Despite these limitations, we hope our results

will serve as an important step toward lower bounds for more general classes of algorithms.

Another interesting goal would be to show that no \variation of Gaussian elimination" can invert Goldre-

ich's function when non-linear predicates are used. Unfortunately, it is not clear how to even formalize such

a statement. For example, here is an algorithm for inverting Goldreich's function with predicates of the form

P(x) = x1⊕ . . .⊕xd−2⊕(xd−1∧xd)) which uses a combination of backtracking and Gaussian elimination: �rst,

consider a graph H on n vertices, where for every constraint of the form xi1 ⊕ . . .⊕ xid−2
⊕ (xid−1

∧ xid) = bj

there is an edge between the id−1-th and id-th vertices. Find a vertex cover for the random graph H, and

backtrack to set the values of the variables corresponding to this vertex cover. Once these variables have been

set, the values of the remaining variables can be found using Gaussian elimination. This will give an improved

running time (though still exponential) because the vertex cover contains a strict subset of the n variables.

2 Definitions and Statement of Theorems

2.1 The Problem of Inverting Goldreich’s Function

Definition 2.1 The one-way function candidate f = fP,G : {0, 1}n → {0, 1}m proposed by Goldreich is

parameterized by

– a d-ary predicate P : {0, 1}d → {0, 1}, and

– a bipartite graph G with n vertices on the left and m vertices on the right having right-degree d.

We represent the bipartite graph as G ∈ [n]m×d where [n] = {1, . . . ,n}. In this representation, the set of

vertices on the left is L = [n], the set of vertices on the right is R = [m], and vertex i on the right is

connected with vertices Gi,1,. . . ,Gi,d on the left. The function f = fP,G is de�ned by

f(x)i = P(xGi,1 , . . . , xGi,d) for each i ∈ [m].

That is, we evaluate P over the neighbors of each right vertex.

As we represent the graph as G ∈ [n]m×d, we are implicitly imposing an ordering on the set of edges going

out of each vertex on the right.

An algorithm A for inverting the function f is said to be successful given some b ∈ {0, 1}m if it can return

some A(b) ∈ {0, 1}n such that f(A(b)) = b.

8

Definition 2.2 Fix a d-ary predicate P. We say that Goldreich's function fP,G with random graph G is

secure against a class of algorithms A if with probability > 1−2−Θ(n) over random uniform choice of a

bipartite graph G with m = n right nodes of degree d, for every algorithm A in that class of algorithms,

only with probability 6 2−Θ(n) over random uniform choice of x ∈ {0, 1}n is A given b = fP,G(x) successful

in time 6 2Θ(n). The hidden constants in the asymptotic notation Θ(n) in this de�nition may depend

on d.

2.2 Expected Size of the Preimage

Definition 2.3 We de�ne the expected size of the preimage under f : {0, 1}n → {0, 1}m as

E
x∼Unif({0,1}n)

[|f−1(f(x))|].

When this expected size is M, we can think that the function f is M-to-one on average. We expect that for a

good one-way function, M is not too large.

Theorem 2.4 Whenever the predicate P passes a certain test, Goldreich's fP,G satis�es

E
G∼Unif([n]n×d)

E
x∼Unif({0,1}n)

[|f−1P,G(fP,G(x))|] 6 n
O(1)22

−Ω(d)n.

This test

(A) is satis�ed by a uniformly random predicate with probability 1− od(1);

(B) is satis�ed by predicates of the form P = x1 ⊕ . . . ⊕ xd−h ⊕ Q(xd−h+1, . . . , xd) when d − h is any

function of d which is Ω(d);

(C) can be performed in time 2O(d).

2.3 Backtracking Algorithms

Definition 2.5 At each step of a backtracking algorithm A for inverting Goldreich's function, i.e.

�nding x such that f(x) = b, a subset of the variables x1, . . . , xn have been assigned binary values and the

rest of the variables are free. At the beginning of the backtracking algorithm, all variables are free. The

backtracking algorithm A stops searching a path further if for some i, all the variables xGi,1 ,. . . ,xGi,d

have values assigned to them and P(xGi,1 , . . . , xGi,d) 6= bi. Otherwise, A chooses an assignment xj ← a

where xj is a free variable and a ∈ {0, 1} is a value for xj. The algorithm �rst assigns the value a to

variable xj and recursively calls the algorithm. If the algorithm A does not �nd x such that f(x) = b in

this recursion, it recurses again this time assigning 1− a to xj. The algorithm stops when there are no

free variables and f(x) = b.

We consider \drunk" and \myopic" backtracking algorithms.

2.4 Drunk Backtracking Algorithm

Definition 2.6 A drunk backtracking algorithm A for inverting fP,G is one in which at each step, when

choosing the pair (j,a), the index j of variable xj is allowed to be chosen by algorithm A from among

any of the free variables xj, but the value a ∈ {0, 1} has to be chosen each time using an independent

unbiased binary coin ip.

9

Theorem 2.7 Goldreich's function fP,G with random graph G is secure against the class of drunk

backtracking algorithms whenever the predicate P passes a test that satis�es the properties (A) and (C)

of Theorem 2.4 together with a new property (B'). Property (B') says that for every constant 0 6 c < 1
2

there exists a lower bound D such that whenever d > D, the test is satis�ed by predicates of the form

P = x1 ⊕ . . .⊕ xd−h ⊕Q(xd−h+1, . . . , xd) for h 6 cd.

2.5 Myopic Backtracking Algorithm

Definition 2.8 A myopic backtracking algorithm A for inverting fP,G is one which always has a limited

view of the given b ∈ {0, 1}m for which it wants to �nd an x ∈ f−1P,G(b). Basically, at each step, the

algorithm knows a subset of the bits of b. On the other hand, the algorithm has full knowledge of P and

of G. In the beginning, A knows nothing about b. At each step, the algorithm is allowed to

– either query a bit of b,

– or choose a pair (j,a); then assign the value a to xj and recurse; if no x ∈ f−1(b) is found during

this recursion, then assign 1− a to xj and recurse.

When the algorithm recurses, the knowledge of b is preserved; but the knowledge of b is not passed from

one recursion tree to a sibling recursion tree. In other words, when we return back from a recursion,

we leave behind all the knowledge we gained.

Definition 2.9 A myopic backtracking algorithm is called (s, t)-myopic if it never tries to read more

than t bits of b before it has assigned binary values to at least s variables.

Theorem 2.10 There is t = Θ(n) such that for any s such that s/n = 2−o(d), Goldreich's function fP,G

with random graph G is secure against the class of (s, t)-myopic backtracking algorithms whenever the

predicate P passes a test that satis�es all the properties (A), (B'), and (C) in Theorem 2.7. The hidden

constant in the asymptotic Θ(n) notation depends on d.

2.6 Backtracking Algorithms with DPLL Elimination Rules

Definition 2.11 Assume we are in the middle of a backtracking algorithm trying to �nd an element x

in the preimage of b under fP,G: A subset of the variables x1, . . . , xn have been assigned binary values

and the rest of the variables are free. Let xj be a free variable and let a ∈ {0, 1}. We call xj ← a a DPLL

assignment if, given all the already-assigned variables, one of the following two situations happens:

– xj = a is implied from the equation bi = P(xGi,1 , . . . , xGi,d) for some i; in this case we say that a

unit clause exists.

– for all i = 1, . . . ,m, switching the value of xj from 1 − a to a can never change the equations

bi = P(xGi,1 , . . . , xGi,d) to become false; in this case we say that a pure literal exists.

(The terms \unit clause" and \pure literal" come from the context of CNF formulas: We have adapted the

terminology in the context of Goldreich's function.) When xj ← a is a DPLL assignment, conditioned on the

already assigned values for the variables x1, . . . , xn that are not free, if there is no x in the preimage with

xj = a, neither is there an x in the preimage with xj = 1− a.

10

Definition 2.12 A DPLL backtracking algorithm is similar to an ordinary backtracking algorithm except

that at each step, for any existing DPLL assignment xj ← a, we have the option of eliminating xj from

the list of free variables by assigning a to xj and recursing (and when this recursion �nishes, we do not

try assigning 1− a to xj.)

DPLL drunk backtracking algorithms are simply drunk backtracking algorithms that are allowed to eliminate

as above free variables xj in DPLL assignments xj ← a. De�ning DPLL myopic backtracking algorithms

involves a certain subtlety: Having access to the set of DPLL assignment xj ← amight reveal extra information

about b. However, we allow a DPLL myopic backtracking algorithm to know the set of DPLL assignments.

Yet, we allow this knowledge to be only passed further down in recursions; we do not allow such knowledge to

be passed from a recursion tree to a sibling recursion tree. Besides knowing the set of DPLL assignments, an

(s, t)-myopic DPLL backtracking algorithm for �nding x ∈ f−1(b) may not read more than t bits of b before

making at least s non-DPLL assignments to x.

Theorem 2.13 Theorem 2.7 and Theorem 2.10 respectively hold for DPLL drunk and DPLL myopic

backtracking algorithms as well.

This theorem, as stated in this section, gives super-polynomial lower bounds on the running time of drunk

and myopic DPLL backtracking algorithms for inverting Goldreich's function with non-negligible probability,

when the predicate passes the tests mentioned in Theorems 2.7 and 2.10, if d is large enough but still constant

compared to n. However, if one looks at the proof of the theorem, the same result holds when d = o(logn) or

when d 6 c logn for suitably small positive constant c.

3 Expected Size of the Preimage

Inverting a candidate one-way function f : {0, 1}n → {0, 1}m is the problem of �nding, given b ∈ {0, 1}m, an

element in the preimage f−1(b), where b = f(x) for x ∈ {0, 1}n chosen uniformly at random. The problem of

�nding x itself given b is a harder problem, but as the following lemma shows, these two problems are related

via the expected size of the preimages under f.

Lemma 3.1 Let f : {0, 1}n → {0, 1}m be a function with expected preimage size M = Ex∈{0,1}n |f−1(f(x))|.

Let A be an algorithm that, given b ∈ {0, 1}m, returns A(b) ∈ {0, 1}n. Choose x uniformly at random

from {0, 1}n and let b = f(x). Consider the events E = {x : A(b) = x}, and F = {x : A(b) ∈ f−1(b)}. We

have

Pr[F] 6 2
√
MPr[E].

Proof. Consider the event H = {x : |f−1(b)| 6 M ′}, where we will specify M ′ > 0 shortly. We have Pr[F] 6

Pr[F,H] +Pr[Hc]. To upper-bound Pr[Hc], we use Markov's inequality and get Pr[Hc] 6M/M ′. We also have

Pr[E] > Pr[E|F,H] · Pr[F,H] > 1

M ′
· Pr[F,H],

so we get Pr[F,H] 6M ′ Pr[E]. We complete the proof by taking M ′ =
√
M/Pr[E], so that

Pr[F] 6 Pr[F,H] + Pr[Hc] 6M ′ Pr[E] +M/M ′ = 2
√
MPr[E].

ut

11

The rest of this section is devoted to proving the upper bound of Theorem 2.4 on the expected size of the

preimage for Goldreich's function. This theorem was shown for h = 2 and Q(x,y) = x ∧ y in the conference

version of this paper [8]. Itsykson [14] pointed out that the same proof works for general predicates Q for

h+1 < d/4. The proof for random predicates is original to this work. We also mention that Panjwani [19] has

previously done some experimental analysis of the size of preimages in Goldreich's function, composed with

itself many times.

Theorem 2.4 concerns the expected size of preimages |f−1P,G(fP,G(x))| of Goldreich's function fP,G. We

assume the predicate P satis�es a test which we will de�ne later, and choose the graph G ∈ [n]n×d and the

input x ∈ {0, 1}n uniformly at random.

We begin by observing that the expected size of the preimage M is equal to 2−n times the number of

colliding pairs of inputs:

M = E
G∼Unif([n]n×d)

E
x∼Unif({0,1}n)

[|f−1P,G(fP,G(x))|]

=2−n E
G∼Unif([n]n×d)

|{x,y ∈ {0, 1}n : fP,G(x) = fP,G(y)}|

This allows us to express the expected preimage size in terms of collision probabilities:

M =2−n
∑

x,y∈{0,1}n
Pr

G∼Unif([n]n×d)
[fP,G(x) = fP,G(y)}]

=2−n
∑

x,y∈{0,1}n
Pr

G∼Unif([n]n×d)
[∀i ∈ [n], fP,G(x)i = fP,G(y)i]

Recall that the i-th output bit of Goldreich's function fP,G depends on the input bits xGi,1 , . . . , xGi,d . Since

the input indices Gi,1, . . . ,Gi,d are chosen independently at random for each i, for a �xed x and y, the events

fP,G(x)i = fP,G(y)i for di�erent values of i are independent:

M =2−n
∑

x,y∈{0,1}n

n∏
i=1

Pr
G∼Unif([n]n×d)

[fP,G(x)i = fP,G(y)i]

We introduce the notation PEP(x,y) = PrG∼Unif([n]n×d)[fP,G(x)i = fP,G(y)i] (for Probability of Equality)

noticing that the value is the same for every index i:

M =
∑

x,y∈{0,1}n
(2−1 PEP(x,y))

n (1)

Now, suppose there are nab indices j such that xj = a and yj = b; n00+n01+n10+n11 = n. Then PEP(x,y)

depends only on the predicate P and the four numbers nab, since the equality fP,G(x)i = fP,G(y)i depends

only on the pairs of bits (xGi,1 ,yGi,1), . . . , (xGi,d ,yGi,d). This motivates the following de�nition.

Definition 3.2

12

– For a pair (x,y) ∈ ({0, 1}n)2, de�ne NA (for Number of Appearances) by NA(x,y) = (n00,n01,n10,n11),

where nab is the number of indices i such that xi = a and yi = b. If we let ∆2(n) = {β : {0, 1}2 →
N|

∑
β = n} be the set of ways of putting n balls into four bins, then NA(x,y) ∈ ∆2(n). Furthermore,

if we let ∆2 = {p : {0, 1}2 → R
>0

|
∑
p = 1} be the set of probability distributions over {0, 1}2, then

NA(x,y)/n ∈ ∆2. For example, NA(0110, 1000)/4 = (1/4, 1/4, 1/2, 0).

– For α ∈ ∆2, we de�ne αd to be the distribution over ({0, 1}d)2 such that (x,y) ∼ αd means each pair

(xi,yi) is distributed according to α independently. For example, if α is the uniform distribution,

αd is also the uniform distribution, and if α assigns a probability of 1 to the string 01, then αd

assigns a probability of 1 to the pair (0 · · · 0, 1 · · · 1). Finally, H(α) denotes the base-2 entropy of the

distribution: H(α) = −
∑
i,j∈{0,1} αi,j lgαi,j.

The value PEP(x,y) depends only on P and the normalized number of occurrences NA(x,y)/n.

Definition 3.3 For a predicate P : {0, 1}d → {0, 1} and a probability distribution α ∈ ∆2, the probability

of equality of P over α is

PEP(α) = Pr
(x,y)∼αd

[P(x) = P(y)].

This allows us to rewrite (1) as

M =
∑

x,y∈{0,1}n
(2−1 PEP(NA(x,y)/n))

n

In the above expression, NA(x,y) takes on values in ∆2(n) depending on the strings x and y. For any particular

β ∈ ∆2(n), the number of pairs x,y ∈ {0, 1}n satisfying NA(x,y) = β is equal to
(

n
β00,β01,β10,β11

)
. So we have:

M =
∑

β∈∆2(n)

(
n

β00,β01,β10,β11

)
(2−1 PEP(β/n))

n

(using Stirling's approximation)

6
∑

β∈∆2(n)

O((2H(β/n) · 2−1 PEP(β/n))n)

6|∆2(n)| max
α∈∆2

O((2H(α)−1 PEP(α))
n)

=O(n3) max
α∈∆2

(2H(α)−1 PEP(α))
n.

Therefore, in order to prove the lower bound of Theorem 2.4 thatM 6 nO(1)22
−Ω(d)n, we have only to show:

∀α ∈ ∆2, H(α) + lg PEP(α) 6 1+ 2−Ω(d). (2)

In sections 3.1 and 3.2, we show that most random predicates and predicates of the form Ph,Q = x1 ⊕ . . . ⊕
xd−h ⊕ Q(xd−h+1, . . . , xd) satisfy (2). It is possible in time 2O(d) to test whether a predicate has the form

Ph,Q, or whether it has the properties we demand of random predicates in Section 3.2, so our proof is complete.

13

3.1 Proof of (2) for P = x1 ⊕ . . .⊕ xd−h ⊕Q(xd−h+1, . . . , xd)

For predicates of the above form, we have

PEP(α) =
1+ E[(−1)P(x)+P(y)]

2

=
1+

(∏d−h
i=1 E[(−1)xi+yi]

)
E[(−1)Q(xd−h+1,...,xd)+Q(yd−h+1,...,yd)]

2

6
1+

∣∣∣∏d−h
i=1 E[(−1)xi+yi]

∣∣∣
2

=
1+ |α00 + α11 − α10 − α01|

d−h

2
.

Let p = min{α00 + α11,α01 + α10}. Then:

PEP(α) 6
1+ (1− 2p)d−h

2

6
1+ (1− p)d−h

2
.

Given p, the maximum value of H(α) is achieved when α00 = α11 and α01 = α10; thus H(α) 6 1 + H(p).

Therefore, to prove H(α)+ lg PEP(α) 6 1+2−Ω(d), it su�ces to show H(p)+ lg(1+(1−p)d−h) 6 1+2−Ω(d).

As long as d− h = Ω(d), the following lemma completes the proof with τ = (d− h)/d.

Lemma 3.4 ∀τ ∈ (0, 1], ∃ε > 0, ∀p ∈ [0, 1] ∀d > 1, H(p) + lg(1+ (1− p)τd) 6 1+ 2−εd.

The proof of this lemma can be found in Section 3.3.

3.2 Proof of (2) for a Random Predicate P

If ∆2 were a small �nite set, then we could prove (2) as follows. First, show that for any particular α ∈ ∆2,
a random predicate with probability 1 − ε satis�es H(α) + lg PEP(α) 6 1 + 2−Ω(d). Then with probability

1−ε|∆2| this is true for all α ∈ ∆2 simultaneously, which is exactly (2). Since ∆2 is an in�nite set, this doesn't

work, but our proof is similar in spirit: We will devise a small �nite set of properties, each of which a random

predicate P satis�es with high probability, then show that (2) follows from these properties.

In order to describe this set of properties, we begin with a new way to measure collisions under a predicate

P. We have already seen PEP(α) where α ∈ ∆2.

Definition 3.5 For β ∈ ∆2(d), the probability of equality of P over β is

PEP(β) = Pr
(x,y)∼NA−1(β)

[P(x) = P(y)],

where NA−1(β) denotes the uniform distribution over the set of pairs (x,y) ∈ ({0, 1}d)2 satisfying

NA(x,y) = β.

The two de�nitions of PEP are related by PEP(α) = Eβ∼Mult(α,d)[PEP(β)], where Mult(α,d) denotes the

multinomial distribution which draws d samples from {0, 1}2 according to the distribution α.

14

Definition 3.6 (One-Bit Entropy, αa∗, α∗a, H∗(α)) Let α ∈ ∆2.

– For a ∈ {0, 1}, αa∗
def
= α(a, 0) + α(a, 1) and α∗a

def
= α(0,a) + α(1,a).

– We de�ne the one-bit entropy of α to be H∗(α)
def
= max{H(α0∗,α1∗),H(α∗0,α∗1)}.

We now de�ne a small set of properties from which (2) will follow.

Definition 3.7 (Collision-Averse Predicate) For δ > 0 and β ∈ ∆2(d), we say P is (δ,β)-collision

averse if

PEP(β) 6 1
2
+ 2−d(H

∗(β/d)−δ)/2.

Let E(d) (for Equal) be the set of β ∈ ∆2(d) such that β(0, 1) = β(1, 0) = 0. Notice that if (x,y) ∈
NA−1(β), then x = y i� β ∈ E(d).

If P is (δ,β)-collision averse for every β ∈ ∆2(d) \ E(d), we say P is δ-collision averse.

Lemma 3.8 Fix any δ > 0 and β ∈ ∆2(d) \ E(d). Choose P : {0, 1}d → {0, 1} uniformly at random. Then

Pr[P is not (δ,β)-collision averse] 6 exp(− 1
2
2δd/poly(d)).

Taking a union bound,

Pr[P is not δ-collision averse] 6 exp(−2δd−O(logd)).

Proof (Lemma 3.8). Without loss of generality, assume H∗(β/d) = H(β0∗/d,β1∗/d). Let S ⊆ {0, 1}d be the

support of the marginal distribution on x when (x,y) ∼ NA−1(β): that is, S is the set of strings with β0∗

zeroes and β1∗ ones.

Pick any x ∈ S. If P,P ′ : {0, 1}d → {0, 1} are predicates which di�er only at x, then PEP ′(β)−PEP(β) 6 cx,

where

cx = Pr
(x′,y′)∼NA−1(β)

[x ′ = x∨ y ′ = x] 6
2

|S|
=

2(
d
β0∗

) .
Fix P arbitrarily on all x 6∈ S, but choose the value of P independently at random for all x ∈ S: then

E[PEP(β)] =
1
2
, since β 6∈ E(d). By McDiarmid's inequality, for any ε,

Pr[PEP(β) >
1
2
+ ε] 6 exp

(
−

2ε2∑
x∈S c

2
x

)
6 exp

(
− 1

2
ε2
(
d

β0∗

))
6 exp

(
− 1

2
ε22dH(β0∗/d,β1∗/d)/poly(d)

)
.

To complete the proof, take ε = 2−d(H(β0∗/d,β1∗/d)−δ)/2. ut

Lemma 3.9 There exists δ > 0 such that Equation (2) holds for every δ-collision averse predicate.

That is, there exist δ,η > 0 and D ∈ N such that whenever d > D and a d-ary predicate P is δ-collision

averse,

∀α ∈ ∆2, H(α) + lg PEP(α) 6 1+ 2−ηd.

15

Proof. Let α ∈ ∆2. By the concavity of the logarithm function,

lg PEP(α) 6 lg ξ+
1

ξ ln 2
(PEP(α) − ξ)

where ξ will be determined later. Since PEP(α) = Eβ∼Mult(α,d)[PEP(β)], we have

lg PEP(α) 6 lg ξ+
1

ξ ln 2

(
E

β∼Mult(α,d)
PEP(β) − ξ

)
. (3)

We assume P is δ-collision averse, where δ will be determined later. That means that whenever β(0, 1) +

β(1, 0) > 0, it is the case that PEP(β) 6 1
2
+ 2−d(H

∗(β/d)−δ)/2. So, if we let E(d) = {β : β(0, 1) = β(1, 0) = 0}

and γ = Prβ∼Mult(α,d)[β ∈ E(d)], we have:

E
β∼Mult(α,d)

PEP(β) 6γ+ (1− γ) · E
β∼Mult(α,d)

[min{1, 1
2
+ 2−d(H

∗(β/d)−δ)/2}|β 6∈ E(d)]

= 1+γ
2

+ (1− γ) · E
β∼Mult(α,d)

[min{ 1
2
, 2−d(H

∗(β/d)−δ)/2}|β 6∈ E(d)]

61+γ
2

+ E
β∼Mult(α,d)

[min{ 1
2
, 2−d(H

∗(β/d)−δ)/2}].

Whenever a random variable X is bounded above by 1, Markov's inequality gives E[X] 6 a+Pr[X > a] for all

a > 0. Taking a = 2−δd/2 where the value of δ still has to be determined,

E
β∼Mult(α,d)

PEP(β) 6
1+γ
2

+ 2−δd/2 + Pr
β∼Mult(α,d)

[H∗(β/d) < 2δ].

Now, substitute back in to (3) taking ξ = 1+γ
2
:

lg PEP(α) 6 lg 1+γ
2

+ 2
(1+γ) ln 2

(
2−δd/2 + Pr

β∼Mult(α,d)
[H∗(β/d) < 2δ]

)
6 lg 1+γ

2
+ 3

(
2−δd/2 + Pr

β∼Mult(α,d)
[H∗(β/d) < 2δ]

)
.

Since H∗(β/d) > H(β0∗/d), we have:

lg PEP(α) 6 lg 1+γ
2

+ 3

(
2−δd/2 + Pr

β∼Mult(α,d)
[H(β0∗/d) < 2δ]

)
.

Sampling β ∼ Mult(α,d) and looking at β0∗ is the same as sampling k ∼ Binom(α0∗,d). So we can rewrite

the above as:

lg PEP(α) 6 lg 1+γ
2

+ 3

(
2−δd/2 + Pr

k∼Binom(α0∗,d)
[H(k/d) < 2δ]

)
. (4)

Since lg PEP(α) 6 0, the claim of the lemma follows when H(α) 6 1; so henceforth we assume H(α) > 1, and

hence H∗(α) > 1/2. We may further assume without loss of generality that H(α0∗) > 1/2. Let p0 ∈ (0, 1
2
) be

the unique number satisfying H(p0) =
1
2
; we know α0∗ ∈ [p0, 1 − p0]. We now introduce a technical lemma

which is proved in Section 3.3:

16

Lemma 3.10 For every p0 ∈ (0, 1
2
], there exists δ > 0 such that for all su�ciently large d ∈ N,

∀p ∈ [p0, 1− p0], Pr
k∼Binom(p,d)

[H(k/d) < 2δ] + 2−δd/2 6 2−δd/3.

Apply this lemma to get δ > 0, and substitute back into (4):

lg PEP(α) 6 lg(1+ γ) − 1+ 3 · 2−δd/3.

Now, the aim of this Lemma is to bound H(α) + lg PEP(α). We have so far:

H(α) + lg PEP(α) 6H(α) + lg(1+ γ) − 1+ 3 · 2−δd/3

6H(α00 + α11) + lg(1+ γ) + 3 · 2−δd/3.

Now, γ = Pr[β(0, 1) = β(1, 0) = 0] = (α00 + α11)
d. Apply Lemma 3.4, taking τ = 1 and p = 1 − (α00 + α11).

Then:

H(α) + lg PEP(α) 61+ 2−εd + 3 · 2−δd/3.

Take η < min{ε, δ/3} and d su�ciently large that 2−ηd > 2−εd + 3 · 2−δd/3 to complete the proof. ut

3.3 Proof of Lemmas 3.4 and 3.10

Proof of Lemma 3.4. Assume τ ∈ (0, 1] is given. First we show that we can choose positive D and ε ′ such

that

∀p ∈ [0, 1], ∀d > D, H(p) + lg(1+ (1− p)τd) 6 1+ 2−ε
′d. (5)

We prove this by considering four possible cases for the value of p, namely, p ∈ (ε1, 1], p ∈ (ε2/d, ε1],

p ∈ (2−ε3d, ε2/d], p ∈ [0, 2−ε3d], where ε1, ε2, ε3 are positive constants to be chosen. We will choose the

numbers D and ε ′, ε1, ε2, ε3 as we go along, but according to the following dependency graph:

ε2 // ε1

�� A
AA

AA
AA

A

ε ′ D

ε3

OO >>}}}}}}}}

– Case 1: p > ε1. Then

H(p) + lg(1+ (1− p)τd) 6 1+ (1− ε1)
τd lg e 6 1+ 2−ε

′d,

for ε1 < 1, ε ′ 6 − 1
2
τ lg(1− ε1), d > D > −2 lg lg e/(τ lg(1− ε1)).

For the remaining three cases, p is small. Using the Taylor expansion of lg around 2, we get

lg(1+ (1− p)τd) 6 1+
(1− p)τd − 1

2 ln 2
6 1+

e−τpd − 1

2 ln 2
.

17

– Case 2: p ∈ (ε2/d, ε1]. Then

H(p) + lg(1+ (1− p)τd) 6 H(ε1) + 1+
e−τε2 − 1

2 ln 2
6 1,

if we choose ε1 small enough that ε1 6 1/2 and H(ε1) 6 (1− e−τε2)/(2 ln 2).

For the remaining two cases we �x ε2 = (2τ)−1. Now, τpd 6 1
2
, and we have the approximation

H(p) + 1+
e−τpd − 1

2 ln 2
6 (p lg(1/p) + 2p) + 1−

τpd

4 ln 2
= 1+ p

(
lg(1/p) −

τ

4 ln 2
d+ 2

)
.

– Case 3: p ∈ (2−ε3d, ε2/d].

For ε3 <
τ

4 ln2
and d > D for su�ciently large D (depending on ε3): lg(1/p) −

τ
4 ln2

d+ 2 < 0.

– Case 4: p 6 2−ε3d.

For ε ′ 6 1
2
ε3 and d > D for su�ciently large D (depending on ε3): p lg(1/p) 6 ε3d2−ε3d 6 2−ε

′d.

We have proved (5). It remains to prove the lemma for d ∈ [1,D]. Let f(p,d) = H(p)+lg(1+(1−p)τd). Since f is

a continuous function on the compact set [0, 1]× [1,D], it achieves a �nite maximumM = f(p∗,d∗) on this set.

It is easy to see thatM ∈ (1, 2). Let ε = min{ε ′,−D−1 lg(M−1)}. Then for d ∈ [1,D], f(p,d) 6M 6 1+2−εd,

and for d ∈ (D,∞), f(p,d) 6 1+ 2−ε
′d 6 1+ 2−εd. ut

Proof of Lemma 3.10. Let DKL denote the Kullback-Leibler divergence

DKL(q‖p) = q lg
q

p
+ (1− q) lg

1− q

1− p
.

Fix λ > 0 to be small enough that λ < 1/2 and for any p ∈ [p0, 1− p0],

DKL(λ‖p) > H(λ).

Now, choose any p ∈ [p0, 1− p0].

Pr
k∼Binom(p,d)

[H(k/d) < H(λ)] =Pr[k/d < λ] + Pr[k/d > 1− λ]

(Without loss of generality, assume p 6 1
2
.) 62Pr[k/d < λ]

(Apply Cherno�'s bound.) 62 exp(−DKL(λ‖p)d)

<2 exp(−H(λ)d).

Complete the proof by taking δ = H(λ)/2 and taking d to be su�ciently large that 2 exp(−H(λ)d) < 2−δd/3−

2−δd/2. ut

4 Locally Consistent Partial Assignment

In this section, we assume we are given an instance of Goldreich's function f = fP,G : {0, 1}n → {0, 1}m together

with b ∈ {0, 1}m. We want to analyze a backtracking algorithm A that tries to �nd an element in the preimage

f−1(b). A crucial concept in this analysis will be that of a locally consistent partial assignment. In order to

introduce this concept, we will introduce some preliminary concepts.

18

Definition 4.1 (Partial Assignment) A partial assignment is a function ρ : [n] → {0, 1, ∗}. Its set of

�xed variables is Vars(ρ) = ρ−1({0, 1}). Its set of free variables is ρ−1({∗}). Its size is de�ned to be |ρ| =

|Vars(ρ)|. Given f : {0, 1}n → {0, 1}m, the restriction of f by ρ, denoted f|ρ, is the function obtained by

�xing the variables in Vars(ρ) and allowing the rest of the variables of f to vary.

For a partial assignment ρ, an index j ∈ [n], and a value a ∈ {0, 1}, we de�ne the partial truth

assignment ρ[xj ← a] by

ρ[xj ← a](i) =

a, i = j;

ρ(i), i 6= j.

Definition 4.2 (Boundary, Neighborhood, and Expansion) Let G ∈ [n]m×d be a bipartite graph as

in De�nition 2.1. Let I ⊆ R be a subset of vertices on the right. Its neighborhood Γ(I) ⊆ L is the set of

all nodes adjacent to nodes in I. For i ∈ I, the boundary of i in I, denoted ∂Ii, is the set of nodes in L

with one edge to i but no other edges to I. The boundary of I, denoted ∂I, is the set of all nodes j ∈ L
such that there is exactly one edge from j to I. Equivalently, ∂I =

⋃
i∈I ∂Ii.

G is an (r, c)-boundary expander if for all I ⊆ R such that |I| 6 r, we have |∂I| > c|I|.

Definition 4.3 (Closure) Let G ∈ [n]m×d be a bipartite graph as in De�nition 2.1. Assume G is an

(r, c)-boundary expander. Fix a subset of input nodes J ⊆ L. We say a subset of output nodes I ⊆ R of

size |I| 6 r/2 is a closure for J if the subgraph of G obtained by deleting nodes in J∪ Γ(I) and nodes in I

is an (r/2, c/2)-boundary expander.

Note that a closure for a set of left-nodes is a set of right-nodes.

Definition 4.4 (Locally Consistent Partial Assignment) Let f be Goldreich's function for graph G

and predicate P. Let b ∈ {0, 1}m and let ρ be a partial assignment. For a set of output nodes I ⊆ R,
we say ρ is consistent with I if ρ can be extended to some x ′ ∈ {0, 1}n such that f(x ′)I = bI. We say ρ

is locally consistent if there exists a closure I for Vars(ρ) such that ρ is consistent with I. We say ρ is

globally consistent if ρ is consistent with R.

4.1 Backtracking Trees and Resolution Proofs

Definition 4.5 (Backtracking Tree) The running of a backtracking algorithm A in �nding a solution

to the equation fP,G(x) = b can be modeled by a backtracking tree. Each node of the backtracking tree

is labeled by a partial assignment ρ : [n] → {0, 1, ∗}, where ρj = ∗ means variable xj is free and ρj 6= ∗
means variable xj is assigned the value ρj. We measure the running time of algorithm A in terms of the

number of nodes in its backtracking tree.

The root of the backtracking tree is labeled by the empty partial assignment ∗n. If at a step of the

backtracking, the current partial assignment is ρ and algorithm A chooses the assignment xj ← a where

xj is a free variable and a ∈ {0, 1}, then the left child of the current node is labeled by ρ[xj ← a]. If the

current node has a right child, the label of this right child is ρ[xj ← 1− a].

19

For example, here is part of a backtracking tree. One of the nodes is boxed. The label of that node is a partial

assignment that assigns values 0, 1, 0 to variables x5, x7, and x8 respectively.

∗n

ttjjjjjjjjjjjjjjjjjj

[x5 = 0]

wwo o o o o o o

))TTTTTTTTTTTTTTT

[x5 = 0, x7 = 1]

uukkkkkkkkkkkkkk

$$J
J

J
J

J
J

[x5 = 0, x7 = 1, x8 = 0]

vvn n n n n n n

**TTTTTTTTT

In this subsection, we motivate the de�nition of locally consistent partial assignments by showing that

a backtracking subtree with a root that is labeled by a locally consistent but globally inconsistent partial

assignment has exponential size.

Definition 4.6 (Tree-like Resolution Proof) If C = a ∨ D and C ′ = ¬a ∨ D ′ are two clauses each

consisting of an OR of literals, C and C ′ together imply D ∨ D ′. In this case, D ∨ D ′ is called the

resolution of C and C ′. Let Φ be a CNF formula. A resolution proof for refuting Φ is a sequence of

clauses C1,C2, . . . ,Cl where Cl is the empty clause, and for i = 1, . . . , l,

– either Ci is a clause appearing in Φ,

– or Ci is the resolution of two clauses that appear before Ci in the sequence.

If each clause in the sequence (except the last clause Cl) is used exactly once to imply a later clause in the

sequence through a resolution, then the resolution proof is called tree-like. The length of the resolution

proof is l. The width of the resolution proof is the width of the maximum-width clause among C1, . . . ,Cl.

Lemma 4.7 (Refer to for example [16, Proposition 1]) Let ρ be the label of the root of a subtree of a

backtracking tree for �nding a solution x to fP,G(x) = b. One can express fP,G(x) = b by a CNF formula

Φ by translating each constraint P(xGi,1 , . . . , xGi,d) = bi into 6 2d clauses of width d. De�ne Φ|ρ to be

the CNF formula which is the restriction of Φ by ρ. If no solution x is found in this subtree, then Φ|ρ

has a tree-like resolution proof of length no bigger than the number of nodes in the subtree.

Proof. To each node labeled ρ ′ in this subtree, we can in the following recursive way associate a clause Cρ′

over the free variables of ρ such that Cρ′ is false under the partial assignment ρ ′:

– For a leaf node labeled ρ ′, one of the constraints P(xGi,1 , . . . , xGi,d) 6= bi is not satis�able under ρ ′.

Therefore at least one clause Cρ′ exists in Φ|ρ that is not satis�able under ρ ′.

– For a node labeled ρ ′ with left and right children ρl = ρ ′[xj ← a] and ρr = ρ ′[xj ← 1− a], if either of the

two clauses Cρl or Cρr does not include the variable xj, then choose that clause as Cρ′ , otherwise let Cρ′

be the resolution of Cρl and Cρr .

20

In this way, the labels of a postorder tree traversal of the subtree rooted at ρ can give a tree-like resolution

proof for refuting Φ|ρ. ut

Definition 4.8 (Robust Predicate) Let 0 6 h < d be an integer. The predicate P : {0, 1}d → {0, 1} is

h-robust if after any partial assignment of values to the input variables of P that lets > h of the input

variables of P be free, the predicate P can still take both of the two possible values of 0 and 1 as its

value. For example, the predicate that sums all its inputs modulo 2 is 0-robust.

Theorem 4.9 [6, Theorem 3.3] The length of any tree-like resolution refutation of a CNF formula Ψ is

at least 2w−wΨ , where w is the minimal width of a resolution refutation of Ψ, and wΨ is the maximal

width of a clause in Ψ.

Lemma 4.10 Consider running a backtracking algorithm for solving fP,G(x) = b. Assume that the

algorithm reaches a locally consistent but globally inconsistent partial assignment ρ. Assume P is h-

robust. Then in the backtracking tree, the subtree rooted at ρ has size at least 2(c/2−h)r/4−d.

Proof. (Our proof follows the proof of [1, Lemma 8], which in turn uses the Ben-Sasson-Wigderson measure

of [6].) Let Φ|ρ be as in Lemma 4.7. By Theorem 4.9, it su�ces to show that every resolution refutation of

Φ|ρ has width at least w
def
= (c/2− h)r/4.

Since ρ is locally consistent, there exists a closure I for Vars(ρ) and ρ can be extended to some x ′ ∈ {0, 1}n

such that f(x ′)I = bI. Let J = Vars(ρ) ∪ Γ(I). We will prove the stronger statement that every resolution

refutation of Φ[xJ=x′J]
has width at least w.

For a clause C on the variables xL\J and a set I ′ ⊆ R \ I, we say I ′ implies C if for every x such that

(f(x)I′ = bI′ ∧ xJ = x
′
J), the clause C is satis�ed by x. We de�ne the measure of C to be

µ(C) = min{|I ′| : I ′ ⊆ R \ I, and I ′ implies C}.

Since ρ is globally inconsistent, this measure is well-de�ned. Assume µ(C) 6 r/2, and let I ′ be a smallest

subset of R \ I which implies C. No vertex i ∈ I ′ contains more than h neighbors in ∂I′i \ J that do not appear

in C, since otherwise, by the h-robustness of the predicate P, then I ′ \ {i} would also imply C. Since I is a

closure for Vars(ρ), we know |∂I ′ \ J| > c|I ′|/2, so C consists of at least (c/2−h)µ(C) variables. Thus we have

proved:

For any clause C, µ(C) is either 6
width(C)

c/2− h
or > r/2. (#)

We have:

1. µ(C) = 1 for any clause C in the CNF formula Φ[xJ=x′J]
.

2. µ(C) > r/2 for the empty clause C = False (because of (#) and because the empty clause has positive

measure µ(C).)

3. µ is subadditive: If C2 is the resolution of C0 and C1, then µ(C2) 6 µ(C0) + µ(C1), because whenever I ′0
implies C0 and I

′
1 implies C1, it follows that I

′
0 ∪ I ′1 implies C2.

Putting 1, 2 and 3 together, we �nd that every resolution refutation of Φ[xJ=x′J]
contains a clause C whose

measure is in the range (r/4, r/2]. By (#), the width of C is at least w = (c/2 − h)r/4, which completes the

proof. ut

21

4.2 Clever Backtracking

For the analysis of drunk and myopic backtracking algorithms, we consider the left-most node in the backtrack-

ing tree among nodes labeled by locally consistent partial assignments. In order to argue about this particular

partial assignment more easily, we modify the backtracking algorithm into a so-called clever backtracking

algorithm such that this particular partial assignment appears on the left-most branch of the tree.

Definition 4.11 (Locally Forced Assignment) Let f be Goldreich's function, let b ∈ {0, 1}m, let ρ be a

partial assignment, and let j ∈ [n] \ Vars(ρ). We say an assignment xj ← a is locally forced if ρ[xj ← a]

is locally consistent but ρ[xj ← 1− a] is not. Otherwise we say the assignment is locally unforced.

Definition 4.12 (Clever Backtracking) Let A be a backtracking algorithm for �nding a solution x

to fP,G(x) = b. The algorithm A is clever if whenever the current partial assignment is ρ and the

assignment xj ← 1− a is locally forced, the algorithm does not �rst try the assignment xj ← a.

Given a backtracking algorithm A, we can give a clever version C(A) of A as follows: C(A) is similar

to A except that at each step when the current partial assignment is ρ, if A chooses the assignment

xj ← a to try �rst, the clever version C(A) checks whether xj ← 1 − a is locally forced. If xj ← 1 − a is

locally forced, C(A) tries the assignment xj ← 1− a �rst instead of xj ← a.

It is clear that the running time of the clever version of any backtracking algorithm A is as good as the

algorithm A itself, since the clever algorithm only delays searching those subtrees that we are sure do not

contain any solution in the preimage f−1(b).

Here is our main lemma about clever backtracking algorithms. We will defer its proof to the next section

when we have developed the necessary tools.

Lemma 4.13 Consider a clever backtracking algorithm A. Assume the predicate P is h-robust for h <

c/2 − 1. The algorithm will make at least bcr/4c locally unforced assignments on its leftmost branch.

Furthermore, the partial assignment ρ obtained on this branch after bcr/4c locally unforced assignments

is locally consistent.

4.3 Some Properties of Closures and Consistency

Lemma 4.14 If I ⊆ R is a closure for J ⊆ L, then I is a closure also for J ∪ Γ(I).

Proof. The statement follows directly from the de�nition of closure. ut

Lemma 4.15 Analogous to [1, Lemma 6].

Let J ⊆ L have size |J| 6 cr/4. Then there exists a closure C for J such that |C| 6 2c−1|J|.

Proof. Call I ⊆ R nonexpanding if |∂I \ J| 6 c|I|/2. For a nonexpanding I we have |∂I| 6 c|I|/2 + |J|. If,

furthermore, |I| 6 r, by the (r, c)-boundary-expansion of G we have |∂I| > c|I|, so |I| 6 2c−1|J| 6 r/2. Therefore

a nonexpanding I ⊆ R has either > r vertices or 6 r/2 vertices.

Let C be a largest nonexpanding set with 6 r/2 vertices. (C might be empty.) We claim that C is a closure

for J. Indeed, let S be any subset of R \C with 6 r/2 vertices. It su�ces to show that |∂S \ (J∪ Γ(C))| > c|S|/2.

22

Suppose otherwise: then S is nonempty, and also |∂(C∪ S) \ J| 6 |∂C \ J|+ |∂S \ (J∪ Γ(C))| < c|C|/2+ c|S|/2 =

c|C∪ S|/2. Then C∪ S is a nonexpanding set with 6 r vertices, and therefore 6 r/2 vertices. This contradicts

our assumption that C was a largest nonexpanding set with 6 r/2 vertices.

Finally, we showed at the start of the proof that |C| < 2c−1|J|. ut

Lemma 4.16 Analogous to [1, Lemma 7].

A partial assignment ρ is consistent with all I ⊆ R having size |I| 6 r/2 if ρ is locally consistent and

P is h-robust for h < c/2. The same is true about ρ if ρ is consistent with a closure C for Vars(ρ) \ A

where A ⊆ Vars(ρ) and P is h-robust for h < c/2− |A|.

Proof. (We only prove the second statement of the Lemma: The statement about locally consistent ρ follows

from the second statement by �xing A = ∅.)
Let I be a smallest set such that ρ is not consistent with I. Assume that, contrary to the statement of

the lemma, |I| 6 r/2. We know I ′ = I \ C is non-empty. De�ne J = Vars(ρ) ∪ Γ(C). Since C is a closure for

Vars(ρ)\A, we have |∂I ′ \ J| > c|I ′|/2− |A|. In particular, there must be some i ∈ I ′ with |∂I′i\ J| > dc/2− |A|e.
Since I is a smallest set with which ρ is not consistent, ρ is consistent with I \ {i}. So extend ρ to a

partial assignment x ′ which satis�es (f(x ′))I\{i} = bI\{i}. Since P is a dc/2− |A|− 1e-robust predicate, we can
modify input bits in the set |∂I′i \ J| and leave all other input bits the same to produce an input x ′′ such that

(f(x ′′))i = bi. Since x
′′ is equal to x ′ on every input bit in Γ(I \ {i}), we have (f(x ′′))I = bI. This contradicts

the assumption that ρ is not consistent with I. ut

We are now ready to prove Lemma 4.13.

Proof (of Lemma 4.13). Consider the running of clever algorithm A for s steps on its leftmost branch of its

backtracking tree. Let ρ0, . . . , ρs, where |Vars(ρi)| = i, be the sequence of the partial assignments appearing

on the nodes of this leftmost branch. Let Fs be the set of indices j ∈ Vars(ρs) of variables xj whose assignment

by A during this branch was locally forced. Let Us = Vars(ρs) \ Fs.

We �rst prove by induction on s the following claim that

if C is a closure for Us then Fs ⊆ Γ(C), and thus by Lemma 4.14 C is a closure for Vars(ρs).

The base case s = 0 is obvious. Now assume the claim is true for s − 1, and we want to prove the claim for

s. Since C is a closure for Us, it is also a closure for the smaller set Us−1, hence Fs−1 ⊆ Γ(C). If Fs−1 = Fs,

we are done with the proof of the claim. Otherwise, ρs = ρs−1[xj ← a], where ρs is locally consistent but

ρs−1[xj ← 1−a] is not locally consistent. ρs is consistent with a closure I for Vars(ρs). Thus, by Lemma 4.16,

ρs is consistent with C. If j ∈ Γ(C), we are done with the proof of the claim. Otherwise, ρ ′ := ρs−1[xj ← 1−a]

is also consistent with C. By an application of Lemma 4.16 with A = {j}, we know ρ ′ is consistent with I which

is also a closure for Vars(ρ ′). This contradicts the fact that ρ ′ is not locally consistent, proving the claim.

In order to prove the Lemma itself, it su�ces to prove the following two facts:

1. If |Us| 6 bcr/4c, there exists a closure C for Vars(ρs) (and therefore s < n).

2. If |Us−1| < bcr/4c and ρs−1 is locally consistent, then ρs is locally consistent.

To prove the �rst fact, notice that by Lemma 4.15 there exists a closure C for Us. By the claim we proved

earlier, C is also a closure for Vars(ρs).

23

To prove the second fact, let C be the closure for Vars(ρs) which is guaranteed to exist by the �rst fact. If

ρs is not locally consistent, neither is ρs−1[xj ← 1− a] locally consistent because A is clever. Therefore, both

ρs−1[xj ← a] and ρs−1[xj ← 1 − a] are not consistent with C. But this exactly means ρs−1 is not consistent

with C; hence by Lemma 4.16, ρs−1 is not locally consistent. This contradiction proves the second fact. ut

5 Drunk Backtracking Algorithms

The goal of this section is to prove Theorem 2.7.

5.1 Probability of Correct Guess

Notice that the clever version C(A) of a drunk algorithm A is also randomized whenever it makes a locally

unforced assignment.

Lemma 5.1 (Main Drunk Lemma) Let A be a drunk backtracking algorithm for inverting Goldreich's

function. Assume that we are guaranteed that C(A) makes at least s ′ locally unforced assignments on the

left-most branch of its backtracking tree as e.g. by Lemma 4.13. Choose x ′ ∈ {0, 1}n and let b = fP,G(x
′).

When b is given as input to C(A), let ρs
′
be the resulting partial assignment on the left-most branch

after s ′ locally unforced assignments. The probability, over the randomness of algorithm C(A), that ρs
′

can be extended to x ′ is exactly 2−s
′
.

Proof. We shall prove this by induction on s ′. The statement for the base case s ′ = 0 is clear: ∗n can always

be extended to x.

For s ′ > 1, let ρs
′

bef be the partial assignment just before the s ′-th non-forced assignment is made. Since

ρs
′

bef is obtained from ρs
′−1 by adding some locally forced assignments, we know that ρs

′

bef can be extended to

x ′ if and only if ρs
′−1 can be.

Furthermore, to get from ρs
′

bef to ρ
s′ , the drunk algorithm A makes a choice xj ← a where Pr[a = 0] =

Pr[a = 1] = 1/2. Since this step is not locally forced, the clever version C(A) allows �rst trying the choice of

a for xj, which is not equal to x ′j with probability 1/2. Therefore,

Pr[ρs
′
can be extended to x ′] =Pr[ρs

′

bef can be extended to x ′] Pr[a = xi|ρ
s′

bef can be extended to x ′]

=Pr[ρs
′−1 can be extended to x ′] · 1/2

=2−s
′+1 · 1/2 = 2−s

′
.

ut

5.2 Choice of Predicate and Graph

For Lemmas 4.10 and 4.13, we need that the predicate P be h-robust for small h. The following lemma provides

two classes of predicates that satisfy this.

Lemma 5.2 The predicate P = x1 ⊕ . . . ⊕ xd−h ⊕Q(xd−h+1, . . . , xd) is h-robust. A random predicate P

on d variables is Θ(logd)-robust with probability 1− od(1).

24

Proof. Predicates of the form P = x1⊕ . . .⊕xd−h⊕Q(xd−h+1, . . . , xd) are h-robust, since any subset of h+1

variables includes at least one of the variables x1, . . . , xd−h.

Now assume P is a random d-ary predicate. Let ρ be any partial assignment on d variables which �xes all

but h+ 1 variables. Let Eρ be the event that the predicate P becomes constant under the partial assignment

ρ. We have Pr[Eρ] = 2 · 2−2h+1

= 21−2
h+1

. P is h-robust if for none of the 2d−h−1
(
d
h+1

)
partial assignments ρ,

the event Eρ holds. Taking a union bound,

Pr[P is not h-robust] 6 2d−h−1
(

d

h+ 1

)
21−2

h+1

6 2d−h−2
h+1

dh+1

= od(1),

for h = Θ(logd). ut

In this paper we analyze Goldreich's function fP,G where G ∈ [n]n×d is a random bipartite graph. For

Lemmas 4.10 and 4.13, the graph G should be a boundary expander, but there is a non-negligible (i.e. inverse

polynomial in n) probability that G is not a good boundary expander. However, the following Lemma shows

that always except with probability exponentially small in n the graph is an \imperfect" boundary expander.

In the next subsection, we shall see that our results about drunk algorithms when G is a boundary expander

also work when G is an imperfect boundary expander.

Definition 5.3 (Imperfect Expansion) A graph G ∈ [n]n×d is an rbad-imperfect (r, c)-boundary ex-

pander if there exists a subset Ibad ⊆ R of size |Ibad| 6 rbad such that G \ (Ibad ∪ Γ(Ibad)), i.e. the graph

obtained by removing vertices Ibad and Γ(Ibad) from G, is an (r, c)-boundary expander. We call Ibad an

extraneous set of G.

Lemma 5.4 A random bipartite graph G ∈ [n]n×d with n left nodes and n right nodes, and of right-

degree d, is with probability 1−(1/4)rbad an rbad-imperfect (r, c)-boundary expander for any c = d−Ω(d),

provided r+ rbad 6 rmax(n,d, c), where rmax = Ω(n/d).

Proof. Let c ′ = (c + d)/2. Let Ibad be a largest set of right-nodes I ⊆ R of size at most r + rbad such

that |Γ(I)| 6 c ′|I|. Remove Ibad and Γ(Ibad) from G. Then any set S of 6 r + rbad − |Ibad| right vertices in

G \ (Ibad ∪ Γ(Ibad)) has at least c ′|S| distinct neighbors, and hence has at least (2c ′ − d)|S| = c|S| boundary

neighbors (because every non-boundary neighbor is connected via > 2 edges to S). Thus in order to show G

is an rbad-imperfect (r, c)-boundary expander, we just need to show that |Ibad| 6 rbad.

We note that the probability that a speci�c set I of i right nodes has < c ′i neighbors is at most(
n

bc ′ic

)(
bc ′ic
n

)di
6

(
ne

bc ′ic

)bc′ic(bc ′ic
n

)di
.

Thus the probability that |Ibad| > rbad is at most

r+rbad∑
i=rbad+1

(
n

i

)(
ne

bc ′ic

)bc′ic(bc ′ic
n

)di
6

r+rbad∑
i=rbad+1

(ne
i

)i (ne
c ′i

)c′i(c ′i
n

)di
=

r+rbad∑
i=rbad+1

((
i

n

)d−c′−1
c ′d−c

′
e1+c

′

)i
.

25

Let ai = (i
n
)d−c

′−1c ′d−c
′
e1+c

′
. De�ne

rmax =
n

c ′
(4c ′e1+c

′
)−1/(d−c

′−1) = Ω(n/d).

For i 6 rmax, we have ai 6 1/4. Thus the above sum is at most (1/4)rbad . ut

5.3 Coping with Imperfect Expansion

Lemma 5.5 Let f = fG,P : {0, 1}n → {0, 1}m be an instance of Goldreich's function. Let I ⊆ R be a set of

right-nodes in G and de�ne f̂ = f(G\I),P : {0, 1}n → {0, 1}m−|I|.

Sample x ′ ∈ {0, 1}n uniformly at random and let b = f(x) and b̂ = f̂(x) = bR\I. Let A be a drunk

backtracking algorithm for inverting f that returns the exact solution x ′ in time 6 maxtime with prob-

ability p. Then there exists a drunk backtracking algorithm A ′ for inverting f̂(x ′) that given bR\I with

probability at least p2−|Γ(I)| returns the exact solution x ′ in time 6 maxtime+ |Γ(I)|.

A �rst attempt to prove Lemma 5.5 is to have A ′ convert the output b̂ ∈ {0, 1}m−|Γ(I)| into a complete

output b ∈ {0, 1}m by guessing the output values bI randomly. This guess would be correct with probability

2−|I|, and A ′ could then try to emulate the original algorithm A on the complete input b, by making the same

decision that A would make at each node of the backtracking tree. The trouble with this approach is that

when A reaches a node whose partial assignment is inconsistent with a bit in bI, it can backtrack. A ′ is only

allowed to backtrack from nodes which are inconsistent with bits in b̂, and so A ′ may be forced to explore

backtracking subtrees that A is allowed to skip. To �x this problem, we guess the input bits x ′Γ(I) instead of

guessing the output bits bI.

Proof. A ′ will begin by assigning values to the bits xΓ(I) in a drunk (random) way. With probability 2−|Γ(I)|,

the resulting partial assignment ρ agrees with x ′. We are not interested in the behavior of A ′ if the partial

assignment ρ does not agree with x. But if it agrees, then we continue A ′ as if A were running. However,

sometimes A tries to assign a value to a variable in Γ(I): In this case, A ′ has already assigned the correct

value to that variable and A ′ does not need to assign a new value. Clearly, since ρ agrees with x ′, A will never

backtrack because of the inconsistency of its current partial assignment with a bit bi where i ∈ I. Rather, A
will backtrack because of an inconsistency with a bit bi where i ∈ R\I; but, in this case A ′ will also backtrack.

To summarize, conditioned on ρ agreeing with x ′, the running time of A ′ is at most |Γ(I)| steps more than

the running time of A, and if A �nds x ′ so does A ′. The statement of the lemma follows. ut

5.4 Putting It All Together

Proof (Proof of Theorem 2.7). Given predicate P, we �rst check that P satis�es the test that implies the

upper bound of Theorem 2.4. Next, we check that P is h-robust for h = d/2−Ω(d). If both checks are satis�ed,

we say that the predicate has passed the test. By Lemma 5.2, the test satis�es properties (A), (B'), and (C).

Let G ∈ [n]n×d be chosen uniformly at random. By Theorem 2.4 and Markov's inequality, fP,G has

expected preimage size 6 M2 with probability > 1 − 1/M for M = nO(1)22
−Θ(d)n. Also let c = d/2 + h.

Then c = d−Ω(d), and by Lemma 5.4, a random G ∈ [n]n×d is an rbad-imperfect (r, c)-boundary expander

with probability 1 − 2−Θ(n2−Θ(d)) for r = Θ(n/d), rbad = Θ(n2−Θ(d)), and r + rbad 6 rmax(n,d, c), with

26

extraneous set Ibad. To summarize, with probability 1 − 2−n2
−Θ(d)+O(logn) over the choice of G, both G is

an rbad-imperfect (r, c)-boundary expander and fP,G has expected preimage size 6M2. We show that in this

case, any drunk backtracking algorithm A cannot invert f̂ = fP,G\Ibad with high probability e�ciently.

Let A be a drunk backtracking algorithm. Choose x ∈ {0, 1}n uniformly at random and let b̂ = fP,G\Ibad(x).

By Lemma 4.13, in �nding an element in the preimage of b̂ the clever version C(A) of A makes at least

bcr/4c = Ω(n) locally unforced assignments on the left-most branch of its backtracking tree. Let ρ be the

partial assignment on the left-most branch after bcr/4c locally unforced assignments. By Lemma 4.13, ρ is

locally consistent, and by Lemma 5.1, with probability 1 − 2−Ω(n), the partial assignment ρ does not agree

with x. Assume ρ does not agree with x. Then

– either ρ is globally consistent in which case C(A) returns C(A)(b̂) 6= x from its search of the backtracking

tree rooted at ρ,

– or ρ is globally inconsistent, in which case, by Lemma 4.10, C(A)(b̂) spends 2(c/2−h)r/4−d steps in searching

the backtracking tree rooted at ρ. Noticing that c/2− h = Ω(d), this amounts to 2Θ(n) steps.

In either case, C(A) and hence A does not return x as output in time better than 2Θ(n). So A outputs x in

time better than 2Θ(n) with probability 6 p = 2−Θ(n).

By Lemma 5.5, drunk backtracking algorithms for f = fP,G itself also cannot return x given b = f(x) in time

better than 2Θ(n) with probability better than p2|Γ(Ibad)| = 2−Θ(n), because |Γ(Ibad)| 6 d|Ibad| = Θ(n2−Θ(d)).

By Lemma 3.1, drunk backtracking algorithms cannot return any element in the preimage f−1P,G(b) in time

better than 2Θ(n) with probability better than 2
√
M22−Θ(n). This probability is at most 2−C(d)n where C(d)

only depends on d and is positive for large enough d. This completes the proof. ut

6 Myopic Backtracking Algorithms

The goal of this section is to prove Theorem 2.10.

6.1 Choice of Predicate and Graph

To prove the security of Goldreich's function against drunk backtracking algorithms, we assumed the predicate

P was h-robust, that the graph G was an (r, c)-expander, and that G and P were such that fP,G had small

preimages. In the case of myopic backtracking algorithms, we add one more condition on P and one more

condition on G.

Definition 6.1 (Balanced Predicate) For a predicate P : {0, 1}d → {0, 1}, real number εbal ∈ [0, 1/2),

and integer h ∈ [0,d− 1], we say predicate P is (h, εbal)-balanced if after �xing all but h+ 1 variables,

|Pr[P(x1, . . . , xd) = 0| �xed variables] − 1
2
| 6 εbal.

For example, the predicate P2,∧ = x1⊕· · ·⊕xd−2⊕ (xd−1∧xd) is (2, 0)-balanced and (1, 1
4
)-balanced. The

predicate that sums all its inputs modulo 2 is (0, 0)-balanced. A predicate is h-robust i� there is some

εbal ∈ [0, 1) such that P is (h, εbal)-balanced.

Lemma 6.2 A random predicate on d variables is (Θ(log d
εbal

), εbal)-balanced with probability 1−exp[−poly(d/εbal)].

Predicates of the form Ph,Q = x1 ⊕ · · · ⊕ xd−h ⊕Q(xd−h+1, . . . , xd) are (h, 0)-balanced.

27

Proof. Let ρ be any partial assignment which �xes all but h + 1 variables. There are 2h+1 inputs consistent

with ρ: call them xρ1 , . . . , x
ρ
2h+1 . Let Eρ be the event that P is not balanced under the partial assignment ρ:

Eρ = {|#{i : P(xρi) = 1}− 2h| > 2h+1εbal}.

P is balanced if for none of the 2d−h−1
(
d
h+1

)
partial assignments ρ, the event Eρ holds. By a Cherno�

bound, Pr[Eρ] 6 2e−ε
2
bal2

h+2

. Taking a union bound,

Pr[P is not (h, εbal)-balanced] 6 2d−h−1
(

d

h+ 1

)
2e−ε

2
bal2

h+2

6 2d−hdh+1e−ε
2
bal2

h+2

= exp[(h+ 1) lnd+ (d− h) ln 2− ε2bal2
h+2].

Finally, to show the desired result, take h = Θ(log d
εbal

).

To see that the predicate Ph,Q(x1, . . . , xd) = x1⊕· · ·⊕xd−h⊕Q(xd−h+1, . . . , xd) is (h, 0)-balanced, notice

that any subset of h+ 1 variables includes at least one of the variables x1, . . . , xd−h. ut

Lemma 6.3 A bipartite graph G ∈ [n]n×d chosen uniformly at random from [n]n×d, with n left nodes,

n right nodes, and of right-degree d has with probability > 1− 2−nbad at most nbad left nodes of degree

> dleft, provided dleft > 2ed and nbad > 2en2−d.

Proof. The probability that there are > nbad left vertices of degree > dleft is at most the probability that

there exists a set S of nbad left vertices such that at least nbaddleft of the edges of the graph have an endpoint

in S. For each set S of nbad left vertices, this happens with probability at most(
nd

nbaddleft

)(nbad
n

)nbaddleft
6

(
nde

nbaddleft

)nbaddleft (nbad
n

)nbaddleft
6 2−dnbad ,

where the last inequality is true provided dleft > 2de. Now by a union bound, the probability that such an S

exists is at most (
n

nbad

)
2−dnbad 6

(
ne

nbad

)nbad

2−dnbad 6 2−nbad

provided nbad > 2ne2−d. ut

6.2 Probability of a Correct Guess

Lemma 6.4 (Main Myopic Lemma) Let A be an (s, r)-myopic backtracking algorithm for inverting

Goldreich's function fP,G, where s = 2−o(d)n. Assume that we are guaranteed that A makes at least s

assignments on the left-most branch of its backtracking tree before it stops searching that path. Let P be

any (h, εbal)-balanced predicate where εbal = 2−Ω(d), and let G ∈ [n]m×d be any (r, c)-boundary expander

with m = O(n) where all but nbad = 2−Ω(d)n of the left-nodes have degree O(d).

Choose x ′ ∈ {0, 1}n uniformly at random and let b = fP,G(x
′). When b is given as input to A, let

ρs(b) be the resulting partial assignment on the left-most branch after s assignments. The probability,

over the randomness of x ′ ∈ {0, 1}n, that ρs(b) can be extended to x ′ is at most 2−2
−o(d)n.

28

Lemma 6.5 Assume G is an (r, c)-boundary expander of right-degree d, with at most nbad left-nodes of

degree bigger than dleft. Let h > 0 be a real number and assume c > h+ 1. Let W be a set of left-nodes

of G. Then there exists U ⊆W such that

|U| >
|W|− nbad
2dleftd

and for every A ⊆ R with |A| 6 r, there is some i ∈ A such that |∂Ai \U| > h.

Proof. Let ĉ = dc− h− 1e. Construct U using the following algorithm:

– U← ∅.

– For every i ∈ L, set ni ←

ĉ if i ∈W and i has degree at most dleft;

0 otherwise.

– The following invariant holds every time the following while loop checks its loop condition: every right-

node connected to a left-node j has at most ĉ− nj adjacent left-nodes in U.

– while ∃i, ni > 0,

• U← U ∪ {i}.

• ni ← 0.

• For every j ∈ L distinct from i, if i and j have a common neighbor, then nj ← max{0,nj − 1}.

In the beginning,
∑
i ni > ĉ(|W|−nbad), and in the end,

∑
i ni = 0. At each step,

∑
i ni decreases by at most

ĉ+ dleft(d− 1). Therefore the number of steps we took is

|U| >
ĉ(|W|− nbad)

ĉ+ dleft(d− 1)
>

|W|− nbad
2dleftd

.

By the loop invariant, every right-node has at most ĉ adjacent left-nodes in U. Let A ⊆ R have size |A| 6 r.

Then by the expansion of G, there is some i ∈ A such that |∂Ai| > c. It follows that |∂Ai \U| > c− ĉ > h. ut

Proof (of Lemma 6.4). As the myopic algorithm A runs, it may query bits of b = f(x ′) in order to decide

which assignment to try next. Let T(b) ⊆ [m] be the set of indices of bits of b that A queries after following

the leftmost branch for s steps. Since A is (s, r)-myopic, we know |T(b)| 6 r. The decisions of A are based

only on the bits in T(b), so whenever b ′T(b) = bT(b), it must be that ρ
s(b ′) = ρs(b) and T(b ′) = T(b).

For any b̂ ∈ {0, 1}n, de�ne the set

Eb̂ = {x ′ ∈ {0, 1}n : f(x ′)T(b̂) = b̂T(b̂)}.

We begin by showing that the sets {Eb̂ : b̂ ∈ {0, 1}n} form a partition of {0, 1}n. These sets cover all of {0, 1}n

because x ′ ∈ Ef(x′) for every x ′ ∈ {0, 1}n. Now assume, for b̂, b̂ ′ ∈ {0, 1}n, the sets Eb̂ and Eb̂′ share a string

x ′. Then f(x ′)T(b̂) = b̂T(b̂), so T(f(x
′)) = T(b̂) and similarly T(f(x ′)) = T(b̂ ′). Thus, T(b̂) = T(b̂ ′), and

b̂T(b̂) = f(x
′)T(b̂) = b̂

′
T(b̂′). This means that any two intersecting sets Eb̂ and Eb̂′ are equal.

Since the sets Eb̂ partition {0, 1}n, we can prove the Lemma by showing that for every b̂, the probability

that ρs can be extended to x ′, conditioned on event x ′ ∈ Eb̂, is at most 2−2
−o(d)n.

Therefore from now on we �x b̂. Conditioning on the event x ′ ∈ Eb̂ �xes ρs. By Lemma 6.5 with W =

Vars(ρs), there exists a set of input nodes U ⊆ Vars(ρs) of size (s − nbad)/(2dΘ(d)) = 2−o(d)n such that

every subset of T(b) has boundary expansion > h outside U. We know that

Pr[ρs can be extended to x ′|x ′ ∈ Eb̂] 6 Pr[x ′U = ρsU|x
′ ∈ Eb̂],

29

so it su�ces to show

Pr[xU = y|x ′ ∈ Eb̂] = 2−2
−o(d)n, (6)

for y = ρsU.

Here is a two-sentence overview of the proof of (6) for any y ∈ {0, 1}|U|. We �rst show that xU has little

inuence on the distribution of bT(b̂). Then by Bayes' rule, we conclude that the bits bT(b̂) do not contain

much information about x ′U.

Order the nodes in T(b̂) as v1, v2, . . . , v|T(b̂)| such that for every 1 6 i 6 |T(b̂)|, we have |Γ(Ti) \ (Γ(Ti−1)∪
U)| > h + 1 for Ti = {v1, . . . , vi}. This ordering is possible because every subset of T(b̂) has a node with

boundary > h outside U. For any y ∈ {0, 1}|U|, we have

Pr[x ′ ∈ Eb̂|xU = y] =

|T(b̂)|∏
i=1

Pr[bvi = b̂vi |bTi−1
= b̂Ti−1

, xU = y]

∈[(1
2
− εbal)

|T(b̂)|, (1
2
+ εbal)

|T(b̂)|],

since P is (h, εbal)-balanced and since for every 1 6 i 6 |T(b̂)|, vi has at least h+ 1 neighbors outside Γ(Ti−1)

and U. Using Bayes' rule, for any y,y ′ ∈ {0, 1}|U|,

Pr[x ′U = y ′|x ′ ∈ Eb̂]
Pr[x ′U = y|x ′ ∈ Eb̂]

=
Pr[x ′ ∈ Eb̂|x ′U = y ′]Pr[x ′U = y ′]

Pr[x ′ ∈ Eb̂|x ′U = y]Pr[x ′U = y]

=
Pr[x ′ ∈ Eb̂|x ′U = y ′]

Pr[x ′ ∈ Eb̂|x ′U = y]

>

(
1− 2εbal
1+ 2εbal

)|T(b̂)|

.

Fixing y and summing the above inequality over all y ′ ∈ {0, 1}|U|, we get

1

Pr[x ′U = y|x ′ ∈ Eb̂]
> 2|U|

(
1− 2εbal
1+ 2εbal

)|T(b̂)|

.

Since |U| = 2−o(d)n, εbal = 2−Ω(d) and |T(b̂)| 6 m = O(n), Equation (6) follows. ut

6.3 Clever Myopic Algorithms

We will need a stronger version of Lemma 4.15.

Lemma 6.6 Let J ⊆ L have size |J| 6 cr/4. Then there exists a closure C for J such that |C| 6 2c−1|J|

and |∂C \ J| 6 c|C|/2.

Furthermore, if C ′ is any set such that |C ′| 6 2c−1|J| and |∂C ′ \ J| 6 c|C ′|/2, then we can pick C to be

a superset of C ′.

Proof. The proof is the same as the proof of Lemma 4.15, except for the following change. Instead of saying

\Let C be a largest nonexpanding set with 6 r/2 vertices", the proof should say \Let C be a largest superset of

C ′ which is nonexpanding and has 6 r/2 vertices." We know there is such a set because C ′ itself is a superset

of C ′ which is nonexpanding and has 6 r/2 vertices. ut

30

Consider a myopic backtracking algorithm A and the clever version C(A). In order to decide which assign-

ment to make next, C(A) queries the same bits of b that A would, but it also checks at every step whether

the partial assignment is locally consistent. Since C(A) makes this additional kind of query, it is not clear

whether C(A) is myopic. However, as the following lemma shows, it is possible to create a myopic algorithm

which behaves in the same way as C(A) by reading a limited number of additional bits of b.

Lemma 6.7 Let A be an (s, t)-myopic backtracking algorithm for inverting Goldreich's function fP,G.

If G is an (r, c)-boundary expander, s 6 cr/4 and P is a (c/2 − 1)-robust predicate, then there is an

(s, t+ 2c−1s)-myopic backtracking algorithm A ′ which has the same backtracking tree as C(A).

Proof. During the task of �nding x ∈ f−1P,G(b), algorithm A ′ will maintain a set C ⊆ R of right-nodes of G.

Whenever A ′ adds a new node i to C, it will also query the corresponding bit bi. When A ′ �nishes exploring

a subtree and consequently forgets some bits of b, it removes the corresponding nodes from the set C: so A ′

always knows every bit bi for i ∈ C. The algorithm will use this knowledge of b in order to emulate the clever

decisions made by C(A).

A ′ will maintain the following invariant at every point in its execution where it has assigned values to less

than s variables. Let ρ be the current partial assignment, let xj ← a be the next assignment that A would

make at this point, and let J = Vars(ρ) ∪ {j}. Then C is a closure for J, |C| 6 2c−1|J|, and |∂C \ J| 6 c|C|/2.

Since s 6 cr/4, Lemma 6.6 ensures that A ′ can maintain this invariant.

Now, whenever C(A) makes a new assignment, it makes the same assignment xj ← a that A would make,

unless xj ← 1 − a is locally forced. Therefore, to see that A ′ can emulate C(A), all that remains is to show

that the bits bi for i ∈ C always provide enough information to determine whether any partial assignment

to the variables in J is locally consistent. Indeed, if a partial assignment to J is consistent with C, then it is

locally consistent by de�nition, and conversely, if it is locally consistent, then by Lemma 4.16 it is consistent

with C. ut

6.4 Coping with Imperfect Expansion

So far, when studying the behavior of myopic backtracking algorithms, we have assumed that the graph used

to construct Goldreich's function is an (r, c)-boundary expander. However, as discussed in Section 5.2, the

probability that a graph is not a boundary expander is non-negligable. Here we show that the results in this

section also apply to imperfect boundary expanders, analagously to Lemma 5.5.

Lemma 6.8 Let f = fG,P : {0, 1}n → {0, 1}m be an instance of Goldreich's function. Let I ⊆ R be a set of

right-nodes in G and de�ne f̂ = f(G\I),P : {0, 1}n → {0, 1}m−|I|.

Sample x ′ ∈ {0, 1}n uniformly at random and let b = f(x) and b̂ = f̂(x) = bR\I. Let A be an (s, t)-

myopic backtracking algorithm for inverting f that returns the exact solution x ′ in time 6 maxtime with

probability p. Then there exists an (s, t)-myopic backtracking algorithm A ′ for inverting f̂(x ′) that given

bR\I with probability at least p2−|Γ(I)| returns the exact solution x ′ in time 6 maxtime+ |Γ(I)|.

Proof. The proof of Lemma 5.5 gives us a randomized backtracking algorithm A ′ which with probability

> p2−|Γ(I)| returns x ′ in time 6 maxtime+ |Γ(I)|. This algorithm is (s, t)-myopic, since while it is guessing the

bits xΓ(I) it does not look at b at all, and the rest of its decisions are made according to the myopic algorithm

A. ut

31

6.5 Putting It All Together

Proof (Proof of Theorem 2.10). The proof is the same as the proof of Theorem 2.7 in Section 5.4, with the

following changes.

– We test the predicate P with the same test as in Theorem 2.7, but we additionally test that P is (h, εbal)-

balanced for h = d/2 −Ω(d) and εbal = 2−Ω(d). If both the old and new tests are satis�ed, we say that

P has passed the test. By Lemma 6.2, this new test satis�es properties (A), (B'), and (C).

– We use Lemma 6.3 to show that a random G has with probability 1 − 2−2
−Θ(d)n no more than nbad =

2en2−d left vertices of degree > 2ed.

– Rather than assuming A is a drunk algorithm, we assume A is (s, t)-myopic, where s = 2−o(d)n and

t = r/2 = Ω(n/d). Let s ′ = min{s, bcr/4c} = 2−o(d)n. Then A is (s ′, t)-myopic. By Lemma 6.7, the clever

version C(A) is (s ′, t+ r/2)-myopic, so we can apply Lemma 6.4 to C(A). As for the success probability of

algorithm A on fP,G\Ibad in �nding x itself, instead of the upper bound of p = 2−Θ(n), we get the upper

bound of p = 2−2
−o(d)n.

– We use Lemma 6.8 where the proof of Theorem 2.10 uses Lemma 5.5. This shows a drunk backtracking

algorithm on fP,G has success probability of at most 2−2
−o(d)n in �nding x itself. This shows that the

success probability of �nding any element in the preimage is at most 2
√
M22−2−o(d)n, and this completes

the proof.

ut

7 Myopic and Drunk DPLL Backtracking Algorithms

Here we prove Theorem 2.13.

7.1 Simulating DPLL Algorithms

Let us forget myopic and drunk algorithms for a moment, and compare backtracking algorithms as described

by De�nition 2.5 to DPLL backtracking algorithms described by De�nition 2.12. Both kinds of algorithm have

the option at every step of taking a free variable xj and a bit a and trying �rst the assignment xj ← a and

then, if no solution was found on that branch, the assignment xj ← 1 − a. A DPLL algorithm is also able to

make a DPLL assignment xj ← a and skip the alternative assignment xj ← 1−a. The following lemma shows

that this additional ability does not help a DPLL algorithm, except to decrease the number of nodes it must

explore by a factor of at most 2d.

Lemma 7.1 Let fP,G be an instance of Goldreich's function, where P is any d-ary predicate and G is

any graph. For any DPLL backtracking algorithm D, there is a (non-DPLL) backtracking algorithm

S(D) which simulates D: When algorithms D and S(D) are given b and asked to �nd some x ∈ f−1P,G(b),
then they both return the same result, and the backtracking tree of S(D) contains at most 2d times as

many nodes as that of D.

Proof. Whenever D makes a non-DPLL assignment xj ← a, the simulation S(D) makes the same assignment.

However, ifDmakes a DPLL assignment xj ← a, then the behavior of S(D) depends on whether the assignment

is a unit clause or a pure literal.

32

If xj ← a is a pure literal, S(D) postpones making this assignment by adding it to a \to-do list" of pure

literal assignments. The following invariant is always maintained:

If the union of the current partial assignment of S(D) together with its to-do list contradicts

any equation bi = fP,G(x)i = P(xGi,1 , . . . , xGi,d), then the current partial assignment without the

to-do list contradicts that same equation.

This means that whenever D returns back from a recursion because some bit bi has been contradicted, S(D)

can also return back in 6 2d − 1 steps by exhaustively assigning values to all of the variables xGi,1 , . . . , xGi,d

which are still free. (Assuming P is non-trivial, it has at most d− 1 free variables at this point, and 2d − 1 is

the number of nodes in a complete binary tree of depth d− 1.)

The other possible action D might take is to assign a unit clause xj ← a. This means that there is some

output bit i such that the equation bi = P(xGi,1 , . . . , xGi,d) implies xj = a. In this case, S(D) �rst makes

the assignment xj ← 1 − a. Together with the assignments in the to-do list, this contradicts the equation

bi = P(xGi,1 , . . . , xGi,d), so by the invariant, S(D) can exhaust the branch in 6 2d− 1 steps. S(D) is then free

to make the DPLL assignment xj ← a.

If D succeeds in �nding a complete input x ∈ f−1(b), then S(D) proceeds to make all the pure literal

assignments in its to-do list, and arrives at the same complete assignment x. ut

7.2 Drunk DPLL Algorithms

Lemma 7.2 . If D is a drunk DPLL backtracking algorithm, then there is a non-DPLL backtracking

algorithm S ′(D) that relates to D in the same way as S(D) in Lemma 7.1, except that S ′(D) is drunk,

and also might return a di�erent x ∈ f−1(b) from the one S(D) returns.

Proof. The simulation S(D) from the proof of Lemma 7.1 makes four kinds of assignment. The �rst kind copies

the non-DPLL assignments made by D. These are already drunk, so S ′(D) can behave the same way. The

second kind of assignment is made when S(D) is exhaustively assigning values some set of 6 d− 1 variables.

In this case, we lose nothing by having S ′(D) behave the same way except to try each pair of assignments

xj ← 0 and xj ← 1 in a random order. The third kind of assignment is when D has assigned a unit clause

xj ← a. In this case, S(D) �rst tries the incorrect assignment xj ← 1−a, but we lose nothing by having S ′(D)

try the assignments xj ← a and xj ← 1− a in random order.

The fourth and �nal kind of assignment S(D) makes is when D has found a solution x ∈ f−1(b), and S(D)

proceeds to make all the assignments in its to-do list of pure literal assignments, in the same order they were

added to the list. In this case, S ′(D) will make the assignments in reverse order, and will chose the bit to

assign randomly in each case. If xj ← a is a pure literal with respect to a partial assignment ρ, then it is still a

pure literal with respect to any ρ ′ which extends ρ. Therefore, if S ′(D) makes assignments in its to-do list in

reverse order, then at each step, the remaining assignments still form a sequence of pure literal assignments.

Now, if the last assignment on the to-do list is xj ← a and S ′(D) drunkenly assigns xj ← 1− a instead, let x ′

be the full assignment we get by applying the remaining pure literals from the to-do list. Now, either f(x ′) = b,

in which case we continue making assignments in the to-do list in reverse order, or for some i, f(x ′)i 6= bi,

and since the remaining assignments are all pure literals, there is no way to satisfy bi = P(xGi,1 , . . . , xGi,d)

given the values already assigned. In the latter case, we exhaust all possible assignments to those variables in

6 2d − 1 steps, and continue with the correct assignment xj ← a. ut

33

Proof (Proof of Theorem 2.13 for DPLL drunk backtracking algorithms). The theorem in the case of

DPLL drunk backtracking algorithms follows immediately from Theorem 2.7 and Lemma 7.2. ut

7.3 Myopic DPLL Algorithms

Definition 7.3 (Nonmonotone Predicate) Let 0 6 h < d be an integer. The predicate P : {0, 1}d →
{0, 1} is h-nonmonotone i� after any partial assignment of values to the input variables of P that lets

> h of the input variables be free, the resulting restricted predicate is not constant and has the following

additional property. Pick any input bit xi among the > h + 1 unrestricted inputs. Then either the

restricted predicate does not depend on xi, or the restricted predicate is not monotone in xi.

Lemma 7.4 The predicate P = x1 ⊕ · · · ⊕ xd−h ⊕Q(xd−h+1, . . . , xd) is (h+ 1)-nonmonotone. A random

predicate P on d variables is Θ(logd)-nonomonotone with probability 1− od(d).

Proof. By Lemma 5.2, we may assume that P is h-robust, and so only the \additional property" part of

De�nition 7.3 remains to be shown.

If we �x all but h + 1 input bits and select an input bit xi among those h + 1, then the probability that

a random d-ary predicate is monotone nondecreasing in xi is exactly (3/4)2
h

. Taking a union bound, the

probability that for any choice of h + 1 variables, together with an index i among those h + 1 and a way of

�xing the remaining d− h− 1 variables, the predicate becomes monotone in xi is at most

2

(
d

h+ 1

)
2d−h−1(h+ 1)(3/4)2

h

,

which is exp(−poly(d)) if we take h = Θ(logd).

Now, consider a predicate Ph,Q = x1 ⊕ · · · ⊕ xd−h ⊕Q(xd−h+1, . . . , xd) where Q is any h-ary predicate.

Consider any subset S ⊆ [d] of h + 2 variable indices, together with an index i ⊆ S and a partial assignment

ρ that �xes x[d]\S. We are to show that after the assignments in ρ are �xed, P either does not depend on xi

or is not monotone in xi. We have two cases.

Case 1. 1 6 i 6 d−h. Then xi is not one of the inputs to the predicate Q. Since |S| > h+ 2, there is at least

one other unrestricted input xj that is not an input to Q, so our predicate has the form xi⊕xj⊕P ′(x[d]\{i,j}).
This is not monotone in xi.

Case 2. d−h+1 6 i 6 d. In this case, xi is an input to Q. Since |S| > h+1, there is at least one unrestricted

input xj that is not an input to Q, so our predicate has the form xj⊕P ′(xi, x[d]\{i,j}) where P ′ is a (d− 1)-ary

predicate. We may assume that after assignments in ρ are �xed, P ′ does not ignore xi, so there is some value

x̂ for x[d]\{i,j} which is consistent with ρ and such that P ′(0, x̂) 6= P ′(1, x̂). For di�erent values of xj, then, P

increases or decreases with xi, so P is not monotone in xi. ut

Lemma 7.5 Let fG,P be an instance of Goldreich's function for graph G and an h-nonmonotonoe

predicate P. Consider the execution of a DPLL backtracking algorithm which is searching for x ∈ f−1(b),
where the current partial assignment is ρ. Let I ⊆ R be a set of indices such that every node in R \ I has

at least h+ 1 distinct neighbors which are not in Vars(ρ). Then without reading any bits bi for i 6∈ I, it
is possible to know all the DPLL assignments which can be made starting from ρ.

34

Proof. In order to know which unit clause assignments can be made, iterate through the bits bi for i ∈ I. In
each case, check whether, given ρ, the equation bi = P(xGi,1 , . . . , xGi,d) together with ρ implies any variable

xj has a particular value a. If any of these equations force xj to take a value a, then xj ← a is a unit clause.

Finding all the pure literal assignments requires a bit more work. For every possible assignment xj ← a,

check whether it is a pure literal assignment as follows. First, iterate through all output bits bi { even the

ones we are not allowed to read { and in each case, consider the equation bi = P(xGi,1 , . . . , xGi,d). Even if we

don't know bi, we can still check whether, after �xing the variables in ρ, the truth of the equation can ever

depend on the value of xj (equivalently, whether P ignores the input xj once ρ is �xed). If the truth never

depends on xj, we call output bi passive with respect to xj. Now, iterate through the bits bi for i ∈ I, and
note which of the equations bi = P(xGi,1 , . . . , xGi,d) can never be changed to false by setting xj = a. Call

these output bits monotone toward xj = a. If xj is only connected to outputs which are passive with respect

to xj and outputs i ∈ I which are monotone toward xj = a, then xj ← a is a pure literal assignment.

What is left is to show that the above procedure �nds every unit clause and pure literal assignment.

If xj ← a is a unit clause assignment, then there must be some output bit bi such that the equation

bi = P(xGi,1 , . . . , xGi,d) implies xj = a. Since P is h-nonmonotone, this implies that output i must be

connected to 6 h inputs not in Vars(ρ), so i ∈ I, and so the above procedure �nds the assignment.

If xj ← a is a pure literal, then given ρ, every output bit bi connected to xj is either passive with respect

to xj or is monotone toward xj = a. Now, if an output bit bi is not passive with respect to xj but is monotone

toward xj = a, then since P is h-nonmonotone, bi must be connected to 6 h inputs which are not in Vars(ρ).

Therefore, the above procedure will �nd xj ← a. ut

Proof (Proof of Theorem 2.13 for DPLL myopic backtracking algorithms). Given a predicate P, we �rst

check that P satis�es the test of Theorem 2.10. We then check that P is h-nonmonotone, for h = d/2−Ω(d).

If both checks are satis�ed, we say that the predicate has passed the test. By Lemma 7.4, the test satis�es

properties (A), (B'), and (C).

Let tnon−DPLL be the value given by Theorem 2.10 such that Goldreich's function is secure against

(s, tnon−DPLL)-myopic bactracking algorithms. The proof of Theorem 2.10 guarantees that we can have tnon−DPLL =

Ω(n/d).

Let G ∈ [n]n×d be chosen uniformly at random. Let c = d/2+h. Then c = d−Ω(d), and by Lemma 5.4, G

is an rbad-imperfect (r, c)-boundary expander with probability > 1−2−Θ(n/d) for r = Ω(n/d), r 6 tnon−DPLL,

rbad = r/3, and r+ rbad 6 rmax(n,d, c), with extraneous set Ibad.

Given s such that s/n = 2−o(d)n, let D be an (s, t)-myopic DPLL backtracking algorithm, where t = r/3 =

Ω(n/d). Let s ′ = min{s, bcr/6c} = 2−o(d)n. Then D is an (s ′, t)-myopic DPLL algorithm. By Lemma 7.1,

there is a non-DPLL algorithm S(D) which produces the same result as D and takes at most 2d as long. We

will show that S(D) can be turned into a myopic algorithm too: that is, we will design an (s, tnon−DPLL)-

myopic backtracking algorithm S ′(D) which has the same backtracking tree as S(D). Theorem 2.10 tells us

that Goldreich's function is secure against (s, tnon−DPLL)-myopic non-DPLL backtracking algorithms. Thus,

Goldreich's function is secure against S ′(D) and hence also against D.

When �nding a preimage x ∈ f−1(b) to Goldreich's function, the myopic DPLL algorithm D, and therefore

its simulation S(D), uses two sources of information. In order to behave in the same way as S(D), the myopic

algorithm S ′(D) must obtain both kinds of information. First, S(D) reads bits of b, but it reads no more than

35

t = r/3 bits before it has assigned values to s ′ variables. In order to have this information, S ′(D) reads the

same bits of b that D does. Second, S(D) knows at all times the set of all DPLL assignments that can be

made. To obtain this knowledge, S ′(D) will maintain a set C ⊆ R of right-nodes of G, and S ′(D) will make

sure it has always read all the bits in C by reading bi whenever it adds a node i to C. (The set C plays the

same role here as in the proof of Lemma 6.7.) C will always contain every node in the extraneous set Ibad. In

addition, S ′(D) will maintain the following invariants:

– C \ Ibad is a closure for Vars(ρ) \ Γ(Ibad) in the graph Ĝ = G \ (Ibad ∪ Γ(Ibad)).
– |C \ Ibad| 6 2c−1|Vars(ρ)|.

– |∂C \ (Vars(ρ) ∪ Γ(Ibad))| 6 c|C \ Ibad|/2.

By Lemma 6.6, applied to the graph Ĝ instead of the imperfectly expanding G, algorithm S ′(D) can maintain

these properties as long as it has assigned less than s ′ 6 bcr/4c variables. By Lemma 7.5, reading the bits in

the set C is enough for S ′(D) to know all the DPLL assignments that can be made, and so S ′(D) has enough

knowledge to behave in the same way as S(D). Before assigning values to s ′ variables, S ′(D) reads at most

r/3 bits of bi because D read them, at most rbad = r/3 bits from Ibad, and at most 2c−1s ′ = r/3 bits from

C \ Ibad, so S ′(D) is (s ′, r)-myopic, and therefore (s ′, tnon−DPLL)-myopic. ut

8 MiniSat Experiment

Inverting Goldreich's function can be seen as the task of solving a constraint satisfaction problem with a

planted solution. This suggests the use of a general-purpose SAT solver to solve the constraint satisfaction

problem. We performed an experiment using MiniSat version 2.0 beta [11,10], which is one of the best publicly

available SAT solvers. We always use the degree-�ve predicate P5(x) = x1⊕ x2⊕ x3⊕ (x4∧ x5). For each trial,

we choose a new random graph of right-degree 5. MiniSat requires a boolean formula in conjunctive normal

form as input, so we represent each constraint P(xj1 , xj2 , xj3 , xj4 , xj5) = vi by 16 clauses: one for each truth

assignment to xj1 , · · · , xj5 that would violate the constraint.

We ran MiniSat on a Lenovo T61 laptop with 2GB of RAM and a 2.00GHz Intel T7300 Core Duo CPU.

Fig. 1 plots the number of seconds taken to �nd a solution versus the input size n. The graph is plotted on a

logarithmic scale. The time appears to grow exponentially in n.

9 Acknowledgements

The authors bene�ted from helpful discussions with Alekh Agarwal and Amir Shpilka.

References

1. Michael Alekhnovich, Edward A. Hirsch, and Dmitry Itsykson. Exponential lower bounds for the running time of

DPLL algorithms on satis�able formulas. J. Autom. Reasoning, 35:51{72, 2005.

2. Benny Applebaum. Pseudorandom generators with long stretch and low locality from random local one-way

functions. Electronic Colloquium on Computational Complexity (ECCC), 18:7, 2011. Presented at the 44th

ACM Symposium on Theory of Computing (STOC 2012).

36

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 10000

 100000

 0 20 40 60 80 100 120 140 160 180

ti
m

e
 i

n
 s

e
c
o
n
d
s

n

Fig. 1. Number of seconds taken by MiniSat to invert Goldreich's function for di�erent values of n. We use the

degree-�ve predicate P5(x) = x1 ⊕ x2 ⊕ x3 ⊕ (x4 ∧ x5) and a random bipartite graph of right-degree �ve.

3. Benny Applebaum, Boaz Barak, and Avi Wigderson. Public-key cryptography from di�erent assumptions. In

Leonard J. Schulman, editor, STOC, pages 171{180. ACM, 2010.

4. Benny Applebaum, Yuval Ishai, and Eyal Kushilevitz. Cryptography in NC0. SIAM J. on Computing, 36(4):845{

888, 2006.

5. Benny Applebaum, Yuval Ishai, and Eyal Kushilevitz. On pseudorandom generators with linear stretch in NC0.

In APPROX-RANDOM, pages 260{271, 2006.

6. Ben-Sasson and Wigderson. Short proofs are narrow{resolution made simple. JACM: Journal of the ACM, 48,

2001.

7. Andrej Bogdanov and Youming Qiao. On the security of goldreich's one-way function. In Irit Dinur, Klaus Jansen,

Joseph Naor, and Jos�e D. P. Rolim, editors, APPROX-RANDOM, volume 5687 of Lecture Notes in Computer

Science, pages 392{405. Springer, 2009.

8. James Cook, Omid Etesami, Rachel Miller, and Luca Trevisan. Goldreich's one-way function candidate and

myopic backtracking algorithms. In Omer Reingold, editor, Theory of Cryptography, 6th Theory of Cryptography

Conference, TCC 2009, San Francisco, CA, USA, March 15-17, 2009. Proceedings, volume 5444 of Lecture

Notes in Computer Science, pages 521{538. Springer, 2009.

9. Mary Cryan and Peter B. Miltersen. On pseudorandom generators in NC0. In Proceedings of MFCS'01, 2001.

10. Niklas E�en and Armin Biere. E�ective preprocessing in SAT through variable and clause elimination. In Fahiem

Bacchus and Toby Walsh, editors, SAT, volume 3569 of Lecture Notes in Computer Science, pages 61{75. Springer,

2005.

11. Niklas E�en and Niklas S�orensson. An extensible SAT-solver. In Enrico Giunchiglia and Armando Tacchella, editors,

SAT, volume 2919 of Lecture Notes in Computer Science, pages 502{518. Springer, 2003.

12. Oded Goldreich. Candidate one-way functions based on expander graphs. Electronic Colloquium on Computa-

tional Complexity (ECCC), 7(90), 2000.

13. Dmitri Itsykson and Dmitry Sokolov. The complexity of inversion of explicit goldreich's function by DPLL algo-

rithms. 2010.

37

14. Dmitry Itsykson. Lower bound on average-case complexity of inversion of goldreich's function by drunken back-

tracking algorithms. In Farid M. Ablayev and Ernst W. Mayr, editors, CSR, volume 6072 of Lecture Notes in

Computer Science, pages 204{215. Springer, 2010.

15. Dmitry Itsykson and Dmitry Sokolov. Lower bounds for myopic DPLL algorithms with a cut heuristic. In Takao

Asano, Shin-Ichi Nakano, Yoshio Okamoto, and Osamu Watanabe, editors, ISAAC, volume 7074 of Lecture Notes

in Computer Science, pages 464{473. Springer, 2011.

16. Kazuo Iwama and Shuichi Miyazaki. Tree-like resolution is superpolynomially slower than dag-like resolution for

the pigeonhole principle. In Proceedings of ISAAC, volume 1741 of Lecture Notes in Computer Science, pages

133{142, 1999.

17. Rachel Miller. Goldreich's one-way function candidate and drunken backtracking algorithms, 2009. Distinguished

Majors Thesis.

18. Elchanan Mossel, Amir Shpilka, and Luca Trevisan. On ε-biased generators in NC0. Random Structures and

Algorithms, 29(1):56{81, 2006.

19. Saurabh Kumar Panjwani. An experimental evaluation of goldreich's one-way function. 2001.

38

ECCC ISSN 1433-8092

http://eccc.hpi-web.de

