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Abstract

Given a machineU , ac-short program forx is a stringp such thatU(p) = x and the length ofp
is bounded byc + (the length of a shortest program forx). We show that for any universal machine,
it is possible to compute in polynomial time on inputx a list of polynomial size guaranteed to
contain aO(log|x|)-short program forx. We also show that there exist computable functions that
map everyx to a list of sizeO(|x|2) containing aO(1)-short program forx and this is essentially
optimal because we prove that such a list must have sizeΩ(|x|2). Finally we show that for some
machines, computable lists containing a shortest program must have lengthΩ(2|x|).
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1 Introduction

The Kolmogorov complexity of a stringx is the length of the shortest program computing it. Determin-
ing the Kolmogorov complexity of a string is a canonical example of a function that is not computable.
Closely related is the problem of actually producing a shortest program for x. This problem is also
not algorithmically solvable. When faced with a function that is not computable, itis natural to ask
whether it can be effectively approximated in a meaningful way. This question has been investigated for
Kolmogorov complexity in various ways. First of all, it is well-known that the Kolmogorov complexity
can be effectively approximated from above. A different type of approximation is given by what is typ-
ically called list computabilityin algorithms and complexity theory andtraceability in computability
theory. For this type of approximation, one would like to compute a list of “suspects” for the result of
the function with the guarantee that the actual result is in the list. Of course, the shorter the list is, the
better is the approximation.

The list approximability of the Kolmogorov complexity,C(x), has been studied by Beigel et
al. [BBF+06]. They observe thatC(x) can be approximated by a list of size(n−a) for every constant
a, wheren = |x|. On the other hand, they show that, for every universal machineU , there is a constant
c such that for infinitely many stringsx (in fact for at least onex at each sufficiently large lengthn),
any computable list containingCU(x) must have size larger thann/c.

In this paper we study list approximability for the problem of producing short programs. In order
to describe our results, we need several formal definitions.

∗LIRMM CNRS & University 2 of Montpellier. Supported by NAFIT ANR-08-EMER-008-01 project;
http://www.bcomp.be

†Moscow State University. The work was in part supported by the RFBR grant 12-01-00864 and the ANR grant
ProjetANR-08-EMER-008

‡E-mail: amakhlin@bk.ru
§E-mail: ver@mccme.ru, WWW home page: http://lpcs.math.msu.su/˜ver.
¶Department of Computer and Information Sciences, Towson University, Baltimore, MD.; email: mzimand@towson.edu;

http://triton.towson.edu/˜mzimand. The author is supported in part by NSF grant CCF 1016158.

1

 

ISSN 1433-8092 

Electronic Colloquium on Computational Complexity, Revision 1 of Report No. 7 (2013)



A machineU is optimal if CU(x|y) ≤CV(x|y)+O(1) for all machinesV (where the constantO(1)
may depend onV). An optimal machineU is standard1, if for every machineV there is a total com-
putable functiont such that for allp,y: U(t(p),y) = V(p,y) and|t(p)| = |p|+ O(1). For results that
hold in polynomial time, we additionally assume these functionst run in time polynomial in|p|. Let
U(p) stand forU(p, the empty string) andCU(x) for CU(x|the empty string). A c-short programfor x
with respect toU is a stringp that satisfiesU(p) = x and|p| ≤ CU(x)+c.

Given an optimal machineU , a list-approximatorfor c-short programs is a functionf that on every
inputx outputs a finite list of strings such that at least one of the elements in the list is ac-short program
for x onU . Let | f (x)| denote the number of elements in the listf (x). Obviously, for every optimalU ,
there is a (trivial) computable list-approximatorf such that| f (x)| ≤ 2|x|+O(1).

The question we study is how small can| f (x)| be for computable list-approximatorsf for c-short
programs, wherec is a constant orO(log|x|). At first glance it seems that in both cases| f (x)| must be
exponential in|x|. Surprisingly, this is not the case. We prove that there is a computable approximator
with list of size O(|x|2) for c-short programs for some constantc depending on the choice of the
standard machineU . And we show that this bound is tight. We show also that there is apolynomial
time computableapproximator with list of size poly(|x|) for c-short programs forc = O(log|x|).

We start with the positive results, i.e., the upper bounds. We show for every standard machine,
there exists a list-approximator forO(1)-short programs, with lists ofquadraticsize.

Theorem 1.1. For every standard machine U there exists a computable function f that for any x
produces a list with O(|x|2) many elements containing a program p for x of length|p| = CU(x)+O(1).

If we allow O(log|x|)-short programs we can construct lists of polynomial size inpolynomial time.

Theorem 1.2. For every standard machine U, there exists a polynomial-time computable function
f that for any x produces a list with poly(|x|) many elements containing a program for x of length
CU(x)+O(log|x|).2

Now we move to the lower bounds. We show that the quadratic lower bound in Theorem 1.1 is
optimal: it is not possible to compute lists of subquadratic size that contain aO(1)-short program.

Theorem 1.3. For all c > 0, for every optimal U, for every computable f that is a list-approximator
for c-short programs,

| f (x)| ≥ Ω(|x|2/c2),

for infinitely many x. (The constant hidden inΩ-notation depends on the function f and machine U.)

A weaker linear lower bound can be easily derived from a result of Bauwens [Bau12], improving
a theorem of Ǵacs [Gac74]. The result states thatCU(CU(x) | x) is greater than log|x| −O(1) for
infinitely manyx. Thus, for infinitely manyx,

log|x|−O(1) ≤ CU(CU(x) | x) ≤ log| f (x)|+2logc+O(1),

and therefore| f (x)| ≥ Ω(|x|/c2).
The next theorem shows that, at least for some standard machineU , we can not compute lists of

subexponential size containing a program of length exactlyC(x).

1This notion was introduced by Schnorr [Sch75], and he called such machinesoptimal G̈odel numberings(of the family
of all computable functions from strings to strings). We use a different term to distinguish between optimal functions in
Kolmogorov’s sense and Schnorr’s sense

2Recently Jason Teutsch [Teu12] improved this result replacingO(log|x|) by O(1).
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Theorem 1.4. There exists a standard3 machine U such that for every computable f that is a list-
approximator for0-short programs,

| f (x)| ≥ 2|x|−O(1),

for infinitely many x. (The constant hidden in O-notation depends on the function f .)4

The construction ofU can be easily adapted to show that for everyc there is a standard machine
Uc satisfying the theorem forc-short programs. This exponential lower bound does not hold for all
standard machines (see Remark 1 below).

In the proofs of upper bounds we use non-explicit and explicit bipartite graphs of small degree that
have expander-like properties and hence have good matching abilities. The lower bounds are based on
lower bounds for degree of such graphs. This connection is studied in Section 2. The upper bounds, i.e.,
Theorem 1.1 and Theorem 1.2, are proved in Section 3. The lower bounds, i.e., Theorem 1.3 and Theo-
rem 1.4, are proved in Section 4. In Section 5, we observe that our construction can be used to improve
Muchnik’s Theorem [Muc02, MRS11], and a result concerning distinguishing complexity [BFL01].

2 List approximators for short programs and on-line matching

We will show that the problem of constructing approximators for short programs is equivalent to con-
structing families of bipartite graphs of certain type. Let a bipartite graph(L,R,E ⊂ L×R) be given,
where the setL of left nodes and the setR of right nodes consist of binary strings. Assume that we
receive “requests for matching” in the graph, each request having theform (a binary stringx ∈ L, a
natural numberk). Such request means that we have to provide to the left nodex a match of length at
mostk or slightly more. It might happen that we receive a request(x,k) and later a request(x,k′) with
the samex and anotherk′ < k. In this case we are allowed to matchx to the second right node, thus
x becomes two matching right nodes. Assignments cannot be changed and different right nodes must
have different matches (however any left nodex may have different matches). We will sometimes call
right nodeshash-values.

Definition2.1. Let c(n) be a function ofn with natural values. A bipartite graph whose left and right
nodes are binary stringshas matching with overhead c(n) if the following holds. For every setSof pairs
(x∈ L,k) having at most 2k pairs with the second componentk (for all k) one can choose for every pair
(x,k) in Sa neighborp(x,k) of x so that|p(x,k)| ≤ k+c(|x|) andp(x1,k1) 6= p(x2,k2) wheneverx1 6= x2.
If this is done, we will say thatp(x,k) matches x.

A bipartite graphhas on-line matching with overhead c(n) if this can be done in the on-line fashion:
requests for matching(x,k) appear one by one and we have to findp(x,k) before the next request
appears. All the made assignments cannot be changed.

A bipartite graph is(polynomial time) computableif given a left nodex we can compute (in poly-
nomial time) the list of all its neighbors.

Theorem 2.2. Assume there is a computable graph with L= {0,1}∗ where the left node x has degree
D(x) and which has on-line matching with overhead c(n). Assume further that the matching strategy
is computable. Then for every standard machine U there exists a computable function f that for any x
produces a list with D(x) many elements containing a program p for x of length|p| = CU(x)+c(|x|)+

3The construction implies the existence of suchU with a stronger universality property: for every machineV there exists
a stringwV such thatU(wV p|z) = V(p|z) for all p,z.

4Independently, this result was obtained by Frank Stephan (personal communication).
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O(1). If the graph is polynomial time computable then the function f is polynomial timecomputable,
too.

Proof. Run the optimal machineU(q) in parallel for all stringsq. OnceU(q) halts with the resultx we
pass the request(x, |q|) to the matching algorithm in the graph and find a hash valuep of length at most
|q|+c(|x|) for x.

By construction, every stringx is matched to a stringp of length at mostCU(x)+c(|x|). Each right
node is matched to at most one node in the graph. Hence there is a machineV such thatV(p) = x
wheneverp is matched tox. Thus for every stringx there is a neighborp of x with |p| ≤CU(x)+c(|x|)
andV(p) = x. As U is a standard machine, there is a (polynomial time) computable functiont with
U(t(p)) = V(p) and|t(p)| ≤ |p|+O(1). Let f (x) be the list consisting oft(p) for all the neighborsp
of x in the graph. By construction| f (x)| = D(x) and we are done.

Remark1. If c(n) = c is a constant function, then we can construct a standard machineU1 which has a
computable approximator for 0-short programs with lists of sizeD(x). To this end letU1(0p) = V(p)
andU1(1c+2p) =U(p) and lett(p) = 0p in the construction off in the proof of the above theorem. By
Theorem 2.4 below there is a graph having on-line matching with constant overhead and degreeO(|x|2).
Thus there is a standard machineU1 which has a computable approximator for 0-short programs with
lists of sizeO(|x|2).

There is also a reduction in the other direction.

Theorem 2.3. Assume that c(n) is computable function and there are an optimal machine U and a
computable function f that for any x produces a finite list containing a program p for x of length
|p| ≤ CU(x)+ c(|x|). Consider the bipartite graph G with L= {0,1}∗ where the neighbors of node x
are all strings from f(x). Then G has on-line matching with overhead c(|x|)+O(1).

Proof. For eachn let Gn be the subgraph ofG with L = {0,1}≤n. W.l.o.g. we assume that all strings
in f (x) have length at most|x|+O(1) and hence the graphGn is finite. We claim thatGn has on-line
matching with overheadc(|x|)+O(1) for all n, (where theO(1) constant does not depend onn).

We first show that this implies the theorem. Suppose thatM1,M2, . . . are on-line matching strategies
for graphsG1,G2, . . . It suffices to convert them to strategiesM′

1,M
′
2, . . . for G1,G2, . . . such that for

all i, j > i strategyM′
j is an extension ofM′

i , i.e. on a series of requests only containing nodes from
Gi , strategyM′

j behaves exactly asM′
i . Because eachGn finite, there are only finitely many different

matching strategies forGn. Hence, there is a strategyM′
1 that equals the restriction ofMn to G1 for

infinitely many n. Therefore there is also a strategyM′
2 that is an extension ofM′

1 and equals the
restriction ofMn to G2 infinitely often, and so on.

It remains to show the claim. For the sake of contradiction assume that for every constanti there
is n such thatGn has not on-line matching with overheadc(|x|)+ i, (and f is a list-approximator for
c(|x|)-short programs onU). BecauseGn is finite, for alln andc one can find algorithmically (using an
exhaustive search) whetherGn has on-line matching with overheadc(|x|)+ i or not. One can also find
a winning strategy for that player who wins (“Matcher” or “Requester”). Therefore for everyi we can
algorithmically find the firstn such that the graphGn has not on-line matching with overheadc(|x|)+ i
and the corresponding winning strategy for Requester forGn.

Let that strategy play against the following “blind” strategy of Matcher. Receiving a request(x,k)
the Matcher runsU(p) for all p∈ f (x), |p| ≤ k+c(|x|)+ i, in parallel. If for somep, U(p) halts with
the resultx, he matches the first suchp to x and proceeds to the next request. Otherwise the request
remains not fulfilled.
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Consider the following machineV. On input(q, i) with |q| = k it finds the firstGn such that the
graphGn has not on-line matching with overheadc(|x|)+ i and a winning strategy for Requester, and
runs it against the blind strategy of Matcher. Then it returnsx where(x,k) is theqth request with the
second componentk. As Requester wins, there is a request(x,k) that was not fulfilled. We have

CU(x) ≤CV(x)+O(1) ≤ k+2logi +O(1) ≤ k+ i (1)

(the last inequality holds for all large enoughi). As the request(x,k) was not fulfilled, there is nop in
f (x) with |p| ≤ k+ i +c(|x|). Due to (1),f (x) has noc(|x|)-short program forx, a contradiction.

From the technical point of view, our main contributions are the following theorems.

Theorem 2.4 (Combinatorial version of Theorem 1.1). There is a computable graph with L= {0,1}∗

with left degree D(x) = O(|x|2) which has on-line matching with overhead O(1).

Theorem 2.5 (Combinatorial version of Theorem 1.2). There is a polynomial time computable graph
with L= {0,1}∗ with left degree D(x) = poly(|x|) which has on-line matching with overhead O(log|x|).

Theorem 2.6 (Combinatorial version of Theorem 1.3). In every graph G with L= {0,1}n that has
off-line matching with overhead c, the maximal degree of left nodes isΩ(n2/(c+O(1))2).

Theorems 2.4, 2.5 and 2.6 imply Theorems 1.1, 1.2 and 1.3, respectively. Moreover, our on-line
matching strategy used in the proofs of Theorems 2.4 and 2.5 are very simple:receiving a new request
of the form(x,k) we just find the maximali ≤ k+c such that there is a free hash-value of lengthi and
matchx with the first neighbor ofx, in some order, which is not used so far.

3 The upper bounds

In this section we prove Theorems 2.4 and 2.5. We will need the notion of a graph with on-line
matching, introduced in [MRS11].

Definition 3.1. Say that a bipartite graph hasmatching up to K with at most M rejections, if for any
set of left nodes of size at mostK we can drop at mostM its elements so that there is a matching in
the graph for the set of remaining nodes. A graph has anon-line matching up to K with at most M
rejectionsif we can do this in on-line fashion. ForM = 0 we say that the graph hasmatching up to
K. A bipartite graph is called a(K,K′)-expander, if every set ofK left nodes has at leastK′ distinct
neighbors.

Graphs that have matching up toK are closely related to(K,K)-expanders. Indeed, any graph
having off-line matching up toK is obviously a(K′,K′)-expander for allK′ ≤ K. Conversely, by Hall’s
theorem [Hal35] any graph which is a(K′,K′)-expander for allK′ ≤ K has off-line matching up toK.

In [MRS11] it was shown that a reduction from expanders toon-line matching is also possible.
More specifically, every family of(2i ,2i)-expanders, one for eachi < k, sharing the same setL of left
nodes can be converted into a graph with the same setL of left nodes that has on-line matching up to
2k, at the expense of multiplying the degree byk and increasing hash-values by 1. (We will present the
construction in the proof of Theorem 3.3.)

The connection between graphs with matching up toK and graphs with matching with overheadc
is the following. If a graphG has (on-line) matching with overheadc then removing fromG all left
nodes of length different fromn and all right nodes of length more thank+ c(n) we obtain a graph
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with (on-line) matching up to 2k. On the other hand, assume that for somen for all k < n we have a
graphGn,k with L = {0,1}n andR= {0,1}k+c(n) which has (on-line) matching up to 2k. Then the union
Gn of Gn,k over all k < n has (on-line) matching with overheadc, provided all requests(x,k) satisfy
k < |x|. At the expense of increasing the degree andc by 1, the graphGn can be easily modified to have
(on-line) matching with overheadc unconditionally: append 0 to all right nodes ofGn and for every
x∈ {0,1}n add a new right nodex1 connected tox only.

In [MRS11] it is observed that every(2k−1,2k−1)-expander has on-line matching up to 2k with at
most 2k−1 rejections. We need a slight generalization if this fact.

Lemma 3.2. Every(2k−ℓ,2k−2k−ℓ)-expander has on-line matching up to2k with at most2k−ℓ rejec-
tions.

Proof. Use the following greedy strategy for on-line matching: each time a left vertexis received,
check if it has a neighbor that was not used yet. If yes, any such neighbor is selected as the match for
that node. Otherwise, the node is rejected.

For the sake of contradiction, assume that the number of rejected nodes is more than 2k−ℓ. Choose
from them exactly 2k−ℓ rejected nodes. By expansion property, they have at least 2k−2k−ℓ neighbors
and all those neighbors are used by the greedy strategy (otherwise the node having a non-used neighbor
would not be rejected). Thus we have at least 2k−2k−ℓ matched left nodes and more than 2k−ℓ rejected
nodes. Thus we have received more than 2k requests.

In particular, every(2k,2k)-expander has on-line matching up to 2k+1 with at most 2k rejections.
For Theorem 2.4 we will use non-explicit such graphs, for Theorem 2.5we will need explicit such
graphs, which we obtain from the disperser of [TSUZ07].

Assume that for everyn andk < n we are given a(2k,2k)-expanderGn,k with L = {0,1}n, R =
{0,1}k+c(n) and the degree of all left nodes is at mostD(n). Assume further that givenn,k and a left
nodex in Gn,k we can algorithmically find the list of all neighbors ofx in Gn,k.

Theorem 3.3. Given a family of expanders as above we can construct a computable graph G with
L = {0,1}∗ that has on-line matching with overhead c(n)+O(logn) and the degree of each left node
is O(D(n)n). The matching strategy for G is computable. Moreover, if given n,k and a left node x in
Gn,k we can find the list of all neighbors of x in time poly(n) then G is polynomial time computable.

Proof. The main tool is borrowed from [MRS11]: all the graphsGn,k share the same set of left nodes
while their sets of right nodes are disjoint. LetHn,k denote the union ofGn,i over all i < k. ThenHn,k

has on-line matching up to 2k (without rejections). Indeed, each input left node is first given to the
matching algorithm forGn,k−1 (that has on-line matching up to 2k with at most 2k−1 rejections) and, if
rejected is given to the matching algorithm forGn,k−2 and so on.

Using this construction we can prove the theorem with slightly worse parameters as claimed. To
this end identify right nodes of the graphHnk with strings of lengthk+ c(n)+ 1 (the number of right
nodes ofHn,k does not exceed the sum of geometrical series 2k+c(n) +2k+c(n)−1 + · · · < 2k+c(n)+1). The
degree ofHn,k is D(n)k.

Recall the connection between matching up to 2k and matching with overhead (the third paragraph
after Definition 3.1). We see that the familyHn,k can be converted into a graphHn with L = {0,1}n

and degreeD(n)n(n−1)/2+1 having on-line matching with overheadc(n)+2. Finally, prepend each
right nodes ofHn by aO(logn)-bit prefix code of the numbern and consider the union of allHn. The
resulting graph has on-line matching with overheadc(n)+O(logn), its set of left nodes is{0,1}∗ and
the degree of every left node of lengthn is O(D(n)n2).
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Now we will explain how to reduce the degree toO(D(n)n). Consider four copies ofGn,k−1 with
the same setL of left nodes and disjoint sets of right nodes (say append 00 to every right node to get
the first copy, 01 to get the second copy and so on). Their union is a(2k−1,2k+1)-expander, and hence
has matching up to 2k+1 with at most 2k−1 rejections.5 Its left degree is 4D(n) and the length of right
nodes isk+ c(n)+2. Replace in the above construction ofHn the graphHn,k by this graph. Thus the
left degree ofHn becomesO(D(n)n) in place ofO(D(n)n2). It remains to show that (the union of all
graphs)Hn has still on-line matching with overheadc(n)+O(logn)

Again the matching strategy is greedy. Once we receive a request(x,k) with |x| = n, we matchx
to 1x if k ≥ n. Otherwise we passx to the matching algorithm inHn,k. If the algorithm rejectsx, we
passx to the matching algorithm inHn,k−1 and so on. We claim that we eventually find a match in one
of the graphsHn,i for i ≤ k. To prove the claim it suffices to show that the matching algorithm forHn,k

receives at most 2k+1 input strings. This is proved by a downward induction onk (for any fixedn). For
k = n−1 this is obvious: we try to match inHn,n−1 up to 2n−1 strings. The induction step: by induction
hypothesis the matching algorithm forHn,k+1 receives at most 2k+2 input strings an thus rejects at most
2k of them. The matching algorithm forHn,k thus receives at most 2k rejected strings and at most 2k

new ones, coming from requests of the form(x,k).

3.1 Proof of Theorem 2.4

A weaker form of Theorem 2.4 can be derived from Theorem 3.3 and the following lemma
from [Muc02].

Lemma 3.4. For all n and k< n, there exists a(2k,2k)-expander with L= {0,1}n, R= {0,1}k+2 and
all left nodes have degree at most n+1.6

Proof. We use the probabilistic method, and for each left node we choose itsn+ 1 neighbors at ran-
dom: all neighbors of each node are selected independently among all 2k+2 right nodes with uniform
distribution, and the choices for different left nodes are independenttoo. We show that expansion prop-
erty is satisfied with positive probability. Hence there exists at least one such graph. To estimate the
probability that the property is not satisfied, consider a pair of setsL′ andR′ of left and right nodes,
respectively, of sizes 2k,2k −1. The probability that the neighbors of all nodes inL′ belong toR′ is
upper-bounded by(1/4c)(1/c)(n+c)2k

= (1/4)(n+c)2k
. The total probability that expansion condition is

not satisfied, is obtained by summing over all suchL′,R′, i.e.

(
1
4

)(n+1)2k

(2n)2k
(2k+2)2k−1 ≤

(
2n2k+2

4n+1

)2k

≤

(
2n2n+1

4n+1

)2k

=

(
1
2

)2k

< 1.

Remark2. By the very same construction we can obtain a graph withL = {0,1}n, R = {0,1}k+2,
D = n+ 1 that is a(t, t)-expanderfor all t ≤ 2k. Indeed, the probability that a random graph is not
(t, t)-expander is at most

(
1
2

)t
(we may replace 2k by t in the above formulas). By union bound, the

probability that it happens for somet ≤ 2k is at most the sum of geometric series∑2k

t=1

(
1
2

)t
< 1. By

Hall’s theorem, this graph has off-line matching up to 2k. An interesting open question is whether there
is a graph with the same parameters, i.e.L = {0,1}n, R = {0,1}k+O(1), D = O(n), that hason-line
matching up to 2k.

5One can also consider the union ofGn,k−1 andGn,k, which also has matching up to 2k+1 with at most 2k−1 rejections.
6This older lemma improves a technical result in [MRS11] by replacingk+ O(logn) to k+ 2. Jason Teutsch suggested

this improvement could turn list-approximators forO(logn)-short programs to list-approximators forO(1)-short programs in
a length-conditional setting.
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From this lemma and Theorem 3.3 we obtain a computable graph with on-line matchingwith
overheadO(logn), degreeO(|x|2) andL = {0,1}∗ We now need to replace theO(logn) overhead by
O(1). Recall theO(logn) appeared from the prefix code ofn added to hash values. To get rid of it
we need a computable graphFk in place of previously usedGn.k with the same parameters but with
L = {0,1}>k, and notL = {0,1}n. Such a graph is constructed in the following

Lemma 3.5. For every k there is a computable bipartite graph Fk with L= {0,1}≥k, R= {0,1}k+3 that
is a (2k,2k)-expander and the degree of every left node x is O(|x|).

Proof. We first build such a graph with left nodes being all strings of length between k andK = 2k+3.
This is again done by probabilistic method: we choose|x|+3 neighbors of every nodex independently.
Let Li stand for all left nodes of lengthi. For anyi ∈ k, . . . ,K, the probability that all elements of a

fixed L′ ⊂ Li are mapped to a fixed set of size at most 2k −1 at the right is at most
(

1
23

)(i+3)|L′|
. The

probability that someti elements inLi are mapped into a fixed set of 2k − 1 elements at the right is
bounded by

2it i

(
1
23

)(i+3)ti

=

(
1
22

)it i
(

1
23

)3ti

≤

(
1
22

)(i+3)ti+ti

≤

(
1
22

)(k+3)ti+ti

=

(
1
K

)2ti (1
2

)2ti

.

If ∑K
i=k ti = t with t = 2k, the probability that the union of neighbors oftk elements inLk, tk+1 elements

in Lk+1, . . . , andtK elements inLK are mapped to a fixed set of size at most 2k − 1 is bounded by

∏i

(
1

2K

)2ti =
(

1
2K

)2t
. Multiplying by the numberK2k−1 ≤ Kt of different right sets of sizeK −1, and

multiplying by the numberKt of different solutions to the equation∑K
i=k ti = K, we find

(
1

2K

)2t

Kt Kt ≤

(
1
4

)t

< 1.

Hence, the total probability to randomly generate a graph that is not an expander is strictly less than 1.
Therefore, a graph satisfying the conditions must exist, and can be found by exhaustive search.

On the left side, we now need to add the strings of length larger thanK = 2k+3. These nodes are
connected to all the nodes on the right side. Thus the degree of every such nodex is 2k ≤ |x|/23 ≤O(|x|)
and we are done.

Remark3. By the very same construction we can obtain a graph withL = {0,1}≥k, R = {0,1}k+3,
D = O(n) that is a(t, t)-expanderfor all t ≤ 2k and thus has off-line matching up to 2k (use the union
bound over allt ∈ {k, . . . ,K}). An interesting open question is whether there is a graph with the same
parameters that hason-linematching up to 2k.

Now we can finish the proof of Theorem 2.4. Appending all 2-bit strings toall the right nodes of
the graphFk−1 (and thus increasing the degree 4 times) we obtain a(2k−1,2k+1)-expanderHk. The
union ofHk over allk is a computable graph, whose left degree isO(|x|2), and the set of left nodes is
{0,1}∗. It has on-line matching with constant overhead. This is proved by the downward induction, as
in Theorem 3.3. Indeed, by steps in the matching, there are only finitely many requests for matching.
By a downward induction onk we can again prove that the number of matching requests inHk is at
most 2k+1. Now the base of induction is the maximalk for which there has been at least one request
for matching inHk up to steps. We conclude that the request made at steps is satisfied and, since this
holds for everys, we are done.
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3.2 Proof of Theorem 2.5

By Theorem 3.3 we have to construct for everyk≤nan explicit(2k,2k)-expander of left degree poly(n),
with 2n left nodes and poly(n)2k right nodes. A graph isexplicit if there is an algorithm that on input
x∈ {0,1}n = L lists in poly(n) time all the neighbors ofx.

The proof relies on the explicit disperser graphs of Ta-Shma, Umans, and Zuckerman from Theo-
rem 3.7 below.

Definition3.6. A bipartite graphG= (L,R,E) is a(K,δ )-disperser, if every subsetB⊆ L with |B| ≥ K
has at least(1−δ )|R| distinct neighbors.

Theorem 3.7. [Ta-Shma, Umans, Zuckerman [TSUZ07]] For every K,n and constantδ , there exists
explicit (K,δ )-dispersers G= (L = {0,1}n,R = {0,1}m,E ⊆ L×R) in which every node in L has
degree D= poly(n) and|R| = αKD

n3 , for some constantα .

Givenn andk we apply this theorem toK = 2k andδ = 1/2. We obtain a(2k, α2kD
2n3 )-expander with

degreeD = poly(n), L = {0,1}n and |R| = αKD
n3 . Considert = max{1,⌈2n3

αD⌉} disjoint copies of this
graph and identify left nodes of the resulting graphs (keeping their sets of right nodes disjoint). We get
an explicit(2k,2k)-expander with 2n left and 2kpoly(n) right nodes and degree poly(n)t = poly(n).

4 The lower bounds

4.1 Proof of Theorem 2.6

Assume thatG has off-line matching with overheadc. Let G[ℓ,k] denote the induced graph that is
obtained fromG by removing all right nodes of length more thank or less thanℓ. The graphG[0,k+c]
is obviously a(2k,2k)-expander for everyk. As there are less than 2k−1 strings of length less thank−1,
it follows that the graphG[k−1,k+c] is a(2k,2k−1 +1)-expander.

The next lemma inspired by [KST54] (see [RTS00, Theorem 1.5]) showsthat any such expander
must have large degree.

Lemma 4.1. Assume that a bipartite graph with2ℓ left nodes and2k+c right nodes is a(2k,2k−1 +1)-
expander. Then there is a left node in the graph with degree more than D= min{2k−2,(ℓ−k)/(c+2)}.

Proof. For the sake of contradiction assume that all left nodes have degree at most D (and w.l.o.g. we
may assume that all degrees are exactlyD). We need to find a set of right nodesB of size 2k−1 and
2k left nodes all of whose neighbors lie inB. The setB is constructed via a probabilistic construction.
Namely, chooseB at random (all

(2k+c

2k−1

)
sets have equal probabilities). The probability that all neighbors

of a fixed left node are inB is equal to

(2k+c−D
2k−1−D

)
(2k+c

2k−1

) =
2k−1(2k−1−1) · · ·(2k−1−D+1)

2k+c(2k+c−1) · · ·(2k+c−D+1)
.

Both products in the numerator and denominator haveD factors and the ratio of corresponding factors
is at least

2k−1−D+1
2k+c−D+1

≥ 2−c−2

(the last inequality is due to the assumptionD≤ 2k−2). Thus the probability that all neighbors of a fixed
left node are inB is at least 2−D(c+2). Hence the average number of left nodes having this property is at
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least 2ℓ−D(c+2), which is greater than or equal to 2k by the choice ofD. Hence there isB that includes
neighborhoods of at least 2k left nodes, a contradiction.

This lemma states that at least one left node has large degree. However, itimplies more: if the
number of left nodes is much larger than 2ℓ, then almost all left nodes must have large degree. Indeed,
assume that a bipartite graph with 2k+c right nodes is a(2k,2k−1 +1)-expander. Choose 2ℓ left nodes
with smallest degree and apply the lemma to the resulting induced graph (which is also a(2k,2k−1+1)-
expander). By the lemma, in the original graph all except for less than 2ℓ nodes have degree more than
D = min{2k−2,(ℓ−k)/(c+2)}.

Choosen/4 < k ≤ n/2. As noticed, the graphG[k−1,k+ c] is a (2k,2k−1 +1)-expander and has
less than 2k+c+1 right nodes. By Lemma 4.1 (applied toℓ = 3n/4, k, c+1), all except for at most 23n/4

left nodes ofG[k−1,k+c] have degree at leastn/4(c+3).
Pick nowℓ differentk’s that arec+2 apart of each other, whereℓ is aboutn/(4(c+2)). For most

left nodes for all pickedk there aren/4(c+3) edges from those nodes inG[k−1,k+c]. As all picked
k’s arec+2 apart of each other, the degree of all those nodes isΩ(n2/(c+3)2).

4.2 Proof of Theorem 1.4.

The size of list-approximators is closely related to total conditional Kolmogorovcomplexity, which
was first introduced by A. Muchnik and was used in [Ver09, Bau10].Total conditional Kolmogorov
complexitywith respect toU is defined as:

CTU(u|v) = min{|q| : U(q,v) = u∧∀z[U(q,z) ↓]} ,

whereU(q,z) ↓ means thatU(q,z) halts. IfU is a standard machine thenCTU(u|v) ≤ CTV(u|v)+cV

for every machineV. The connection to list-approximators is the following:

Lemma 4.2. If f is computable function that maps every string to a finite list of strings then
CTU(p|x) ≤ log| f (x)|+ O(1) for any standard machine U and every p in f(x). The constant in
O-notation depends on f and U.

Proof. Let V( j,x) stand for thejth entry of the listf (x), if j ≤ | f (x)|, and for the empty string (say)
otherwise. ObviouslyCTV(p|x) ≤ log| f (x)| for all p in f (x). HenceCTU(p|x) ≤ log| f (x)|+ O(1).

Thus to prove the theorem it suffices to construct a standard machineU0 such that for infinitely
manyx every 0-shortp for x with respect toU0 satisfiesCTU(p|x) ≥ |x| −O(1). To this end we fix
any standard machineU and construct another machineV such that for some constantd and for every
integerk there are stringsp,x such that:
(a) p is the unique 0-short program forx with respect toV,
(b) CU(x) ≥ k,
(c) |x| = |p| = k+d,
(d) CTU(0p|x) ≥ k.

Once suchV has been constructed, we letU0(0q|z) = V(q|z) andU0(1d+2q|z) = U(q|z). The latter
equality guarantees thatU0 is a standard machine. And both equalities together with items (a), (b) and
(c) imply that 0p is the unique 0-short program forx with respect toU0. Finally, item (d) guarantees
that its total complexity conditional tox is at least|x|−d−1.
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The construction ofV can be described in game terms. (The game-based technique in recursion
theory was introduced by Lachlan [Lac70] and further developed by A.Muchnik and others [MMSV10,
Ver08, MSV12].)

Description of the game. The game has integer parametersk,d and is played on a rectangular grid
with 2k+d rows and 2k+d columns. The rows and columns are identified with strings of lengthk+ d.
Two players, Black and White, play in turn. In her turn White can either passor put a pawn on the
board. White can place at most one pawn in each row and at most one pawnin each column. Once a
pawn is placed, it can not be moved nor removed. In his turn Black can either pass, or choose a column
anddisableall its cells, or choose at most one cell in every column anddisableall of them. If a player
does not pass, we say that she/hemakes a move. Black is allowed to make less that 2k+1 moves. The
game is played for an infinite time and White looses if at some point after her turn,all her pawns are in
disabled cells.

We will show that, ford = 3, for everyk, White wins this game. More specifically, there is a
winning strategy for White that is uniformly computable givenk. Assume that this is done. Then
consider the following “blind” strategy for Black: start enumeration of all strings x with CU(x) < k
and all stringsq of length less thank such thatU(q,x) ↓ for all x of lengthk+ d. That enumeration
can be done uniformly ink. In his tth turn Black: disables all cells in thexth column, if on step
t in this enumeration a newx of lengthk+ d with CU(x) < k appears; disables all cells(p,x) with
|x| = |p| = k+ d, U(q,x) = 0p, if on stept a new stringq of length less thank appears such that
U(q,x) ↓ for all x of lengthk+d; and passes if none of these events occurs. Note that the total number
of Black’s moves is less that 2k +2k = 2k+1, as required.

Now consider the following machineV(p): let k = |p|−d and let the White’s computable winning
strategy play against Black’s blind strategy. Watch the play waiting until White places a pawn on a
cell (p,x) in pth row. Then outputx and halt. Note that suchx is unique (if exists), as White places at
most one pawn in each row. And that cell(p,x) satisfies all the requirements (a)–(d). Thus it suffices
to design a computable winning strategy for White.

A winning White’s strategy. The strategy is a greedy one. In the first round White places a pawn
in any cell. Then she waits until that cell becomes disabled. Then she placesthe second pawn in
any enabled cell that lies in another row and another column and again waits until that cell becomes
disabled. At any time she chooses any enabled cell that lies in a row and a column that both are free of
pawns. In order to show that White wins, we just need to prove that there issuch cell. Indeed, Black
makes less than 2k+1 moves, thus White makes at most 2k+1 moves. On each of Black’s moves at most
2k+d cells become disabled. On each of White’s moves at most 2k+d+1 cells becomes non-free because
either their column or row already has a pawn. Thus if the total number of cellsis more than

2k+12k+d +2k+12k+d+1 = 6·22k2d,

we are done. The total number of cells is 2k+d2k+d = 22k22d. As 22d grows faster that 6·2d, for large
enoughd (actually ford = 3) the total number of cells is larger than the number of disabled or non-free
cells. The theorem is proved.

Note that changing the construction a little bit we can prove the same statement for c-short pro-
grams for everyc. To this end we just need to letU0(1c+d+2q) = U(q) instead ofU0(1d+2q) = U(q).
The optimal machineU0 constructed in this way depends on the choice ofc, which is inevitable by
Theorem 1.1.
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5 Other applications of explicit graphs with on-line matching

The two first applications are related with the resource bounded Kolmogorov complexity. Recall a
machineU is called standard if for any machineV there is a total computable functionf such that
U(t(p),z) = V(p,z) and|t(p)| ≤ |p|+O(1) for all p,z. In this section we assume thatt is polynomial
time computable and that running time ofU(t(p),z) is bounded by a polynomial of the computation
time ofV(p,z). By CT

U(x|z) we denote the minimal length ofp such thatU(p,z) = x in at mostT steps.

Muchnik’s Theorem [Muc02, MRS11]. Let a andb be strings such that|a| = n andC(a | b) = k.
Then there exists a stringp such that (1)|p| = k+O(logn), (2) C(p | a) = O(logn), (3) C(a | p,b) =
O(logn).

In our improved version, we replace (2) by (2’)Cq(n)(p | a) = O(logn), whereq is a polynomial.

Proof. Fix an explicit graph withL = {0,1}∗, polynomial degree, and that has computable on-line
matching with logarithmic overhead. Given a stringb run the optimal machineU(q,b) in parallel
for all q and once for someq, U(q,b) halts with the resultx pass the request(x, |q|) to the matching
algorithm in the graph. It will return a neighborp of length at most|q|+ O(logn) of x. At some
moment a shortest programq for a conditional tob will halt and we get the soughtp.

As the graph is explicit and has polynomial degree, we haveCpoly(n)(p | a) = O(logn) (requirement
(2)). Requirement (1) holds by construction. Finally,C(a | p,b) = O(logn) as givenp andb we may
identify a by running the above algorithmic process (it is important thata is the unique string that was
matched top).

Distinguishing complexity [BFL01].
LetV be a machine,x a string andT a natural number. Thedistinguishing complexity CDTV(x) with

respect to Vis defined as the minimal length ofp such thatU(p,x) = 1 (p “accepts”x) in at most
T steps, andU(p,x′) = 0 for all x′ 6= x (p ”rejects” all other strings). From our assumption for the
standard machineU it follows that for every machineV there is a polynomialf and a constantc such
thatCDf (T)

U (x) ≤ CDT
V(x)+ c. Indeed, letp is a shortest distinguishing program forx working in T

steps with respect toV. Thent(p) is a program forU that acceptsx in poly(T) steps and rejects all
other strings.

For a setA of binary strings letA=n stand for the set of all strings of lengthn in A.

Theorem 5.1 ([BFL01]). For every functionε(n) (mapping natural numbers to numbers of the form
1/natural) computable in time poly(n) there is a polynomial f such that for every set A, for all x∈ A=n

except for a fractionε(n), CDf (n),A
U (x) ≤ log|A=n|+polylog(n/ε(n)).

We mean here that the setA is given to the standard machineU as an oracle (so we assume that the
standard machine is an oracle machine and all the requirements hold for every oracle.)

In our improved version, we obtainCDf (n),A(x) ≤ log|A=n|+O(log(n/ε(n))).

Proof. For our improvement we need for everyn, k≤ n andε a bipartite graphGn,k,ε with L = {0,1}n,
R= {0,1}k+O(logn/ε) and degree poly(n/ε) that has the following property:

for every subsetSof at most 2k left nodes for every nodex in Sexcept for a fractionε there
is a right neighborp of x such thatp has no other neighbors inS.

Assume that we have such an explicit family of graphsGn,k,ε . Explicit means that givenn, k, ε, a
left nodex andi we can in polynomial time find theith neighbor ofx in Gn,k,ε . Then we can construct
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a machineV that given a tuple(p, i,n,k), a stringx andA as oracle verifies thatx is in A=n and thatx is
the i-th neighbor ofp in G|x|,k,ε(n). If this is the case it accepts and rejects otherwise. By the property
of the graph, applied toS= A=n andk = ⌈log|S|⌉ we see that

CDf (n),A
V (x) ≤ |(p, i,n,k)| ≤ log|A=n|+O(logn/ε(n))

for some polynomialf (n) for all but a fractionε(n) for x ∈ A=n. By the assumptions onU the same
inequality holds forU .

The graphGn,k,ε is again obtained from the disperser of [TSUZ07]. Givenn, k andε we apply
Theorem 3.7 toK = 2kε and δ = 1/2. We obtain a(K, αKD

2n3 )-expander with degreeD = poly(n),

L = {0,1}n and|R| = αKD
n3 . Considert = max{1,⌈2n3

αD⌉} disjoint copies of this graph and identify left
nodes of the resulting graphs (keeping their sets of right nodes disjoint).We get an explicit(2kε,2kε)-
expander with 2n left and 2kpoly(n)/ε right nodes and degreeD = poly(n)t/ε = poly(n)/ε.

This graph, calledHn,k,ε , has the following “low-congestion property”:for every set of2k left nodes
S for every node x in S except for a fractionε there is a right neighbor p of x such that p has at most
D/ε neighbors in S.

Indeed, the total number of edges in the graph originating inS is at most|S|D. Thus less than
|S|D/(D/ε) = |S|ε right nodes are “fat” in the sense that they have more thanD/ε neighbors landing in
S. By the expander property ofHn,k,ε there are less thanε|S| left nodes inSthat have only fat neighbors.

It remains to “split” right nodes ofHn,k,ε so thatD/ε becomes 1. This is done exactly as in [BFL01].
Using the Prime Number Theorem, it is not hard to show (Lemma 3 in [BFL01]) that for every setW
of d strings of lengthn the following holds:for every x∈ W there is a prime number q≤ 4dn2 such
that x 6≡ x′ (mod q) for all x′ ∈W different from x(we identify here natural numbers and their binary
expansions).

We apply this lemma tod = D/ε. To every right nodep in Hn,k,ε we add a prefix code of two
natural numbersa,q, both at most 4dn2, and connect a left nodex to (p,a,q) if x is connected top
in Hn,k,ε andx ≡ a (mod q). We obtain the graphGn,k,ε we were looking for. Indeed, for everyS
of 2k left nodes for allx ∈ S but a fraction ofε there is a neighborp of x in Hn,k,ε that has at most
d = D/ε = poly(n)/ε neighbors inS. Besides there is a primeq≤ 4n2d = poly(n)/ε such thatx 6≡ x′

(mod q) for all neighborsx′ of p different fromx. Thus the neighbor(p,q,x modq) of x in Gn,k,ε has
no other neighbors inS.

The degree ofGn,k,ε is D× (4n2D/ε)2 = poly(n)/ε2. The number of right nodes is

(poly(n)2k/ε)(4n2D/ε)2 = 2kpoly(n)/ε3.

Thus right nodes can be identified with strings of lengthk+O(logn/ε) and we are done.
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