
Multilinear Complexity is Equivalent to

Optimal Tester Size

Nader H. Bshouty
Technion, Israel

bshouty@cs.technion.ac.il

January 10, 2013

Abstract

In this paper we first show that Tester for an F-algebra A and mul-
tilinear forms, [2], is equivalent to multilinear algorithm for the product
of elements in A, [3]. Our result is constructive in deterministic poly-
nomial time. We show that given a tester of size ν for an F-algebra
A and multilinear forms of degree d one can in deterministic polyno-
mial time construct a multilinear algorithm for the multiplication of d
elements of the algebra of multilinear complexity ν and vise versa.

This with the constructions in [2] give the first polynomial time
construction of a bilinear algorithm with linear bilinear complexity for
the multiplication of two elements in any extension finite field.

We then study the problem of simulating a substitution of an as-
signment from an F-algebra A in a degree d multivariate polynomials
with substitution of assignments from the ground field F. We give a
complete classification of all algebras for which this can be done and
show that this problem is equivalent to constructing symmetric multi-
linear algorithms [11] for the product of d elements in A.

1 Introduction

Let F be a field and A be an F-algebra of finite dimension with unity el-
ement 1A. A tester for A and a class of multivariate polynomial M over
n variables is a set L of (not necessarily linear) maps from An to Fn that
preserve the property f(a) 6= 0 for every f ∈ M, i.e., for all f ∈ M and
a ∈ An if f(a) 6= 0 then f(`(a)) 6= 0 for some ` ∈ L. The size of the
tester is ν := |L|. In [2], we use tools from elementary algebra and algebraic

1

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Report No. 11 (2013)

function fields to construct testers of asymptotically optimal size in deter-
ministic polynomial time. Testers have many applications. See [2] for more
details.

The multilinear complexity of the multiplication of d elements in the F-
algebra A is the minimal µ such that there are λi,j ∈ A∗, i = 1, . . . , µ,
j = 1, . . . , d and γ1, γ2, . . . , γµ ∈ A where for every d elements a1, a2, . . . , ad
in A we have

a1a2 · · · ad =

µ∑
i=1

γi

d∏
j=1

λi,j(aj).

When d = 2 the multilinear complexity is called the bilinear complexity
of the multiplication of two elements in the algebra A. Bilinear complexity
is extensively studied in the literature. See for example [3, 6] and references
within. Also, all the algorithms known for matrix multiplication are bilinear
algorithms [8], i.e., algorithms of the above form.

In this paper we show that when M is the class of multilinear forms of
degree d then the size of the optimal tester forM and the F-algebra A is ex-
actly equal to the multilinear complexity of the multiplication of d elements
in the algebra A. Our result is constructive in deterministic polynomial
time. We show that given a tester for M and an F-algebra A of size ν
one can in polynomial time construct a multilinear algorithm for the multi-
plication of d elements of the algebra of multilinear complexity ν and vise
versa.

One of the open problems in bilinear complexity is to give a polynomial
time construction of a bilinear algorithm for the multiplication of two ele-
ments in the extension field Fqn over Fq with bilinear complexity O(n). Here
Fq is the finite field with q elements. Many nonconstructive algorithms are
known for this problem that has linear bilinear complexity [1, 12, 5, 4, 10].
See also all the references within [10]. In [7], Lemple et. al. gave a de-
terministic polynomial time construction of bilinear algorithm with bilinear
complexity O((log∗ n)n). In [2] we gave a deterministic polynomial time
construction of a tester for the class of bilinear forms and the field Fqn of
size O(n). This with the above result solve this open problem.

Another result that follows from our technique is the following. For a
black box that contains degree d polynomial over any field F, we show that
given a symmetric multilinear algorithm [11] (see also definition in Section
2) for the multiplication of d+ 1 elements in the F-algebra A of multilinear
complexity µ, one can simulate a black box assignment substitution of ele-
ments of the algebra with µ black box assignment substitutions of elements
of the ground field F. Does multilinear algorithms give optimal simulation?

2

In this paper we give an affirmative answer to this question. We show that
from any simulation that has complexity ν one can in polynomial time con-
struct a symmetric multilinear algorithm of the multiplication of d elements
in the algebra that has multilinear complexity ν. This means that symmetric
multilinear algorithms give optimal simulations.

We believe that the results of this paper open the possibility to further
study of multilinear complexities of algebras for dimension greater than 2
and to try to understand more the algebraic structure of such algorithms.

2 Definitions

In this section we define multivariate polynomials and forms, tester, the
multilinear complexity of the multiplication of elements in an algebra and
then simulators.

We note that throughout the paper, bold small letters, say a, denotes
vectors and its ith entry is denoted by ai.

2.1 Multivariate Polynomial

In this section we define the set of multivariate polynomials over a field.
Let F be a field and x = (x1, . . . , xn) be indeterminates (or variables)

over the field F. The ring of multivariate polynomials in the indeterminates
x1, . . . , xn over F is F[x1, . . . , xn] (or F[x]). Let i = (i1, . . . , in) ∈ Nn where
N = {0, 1, 2, . . .}. We denote by xi the monomial xi11 · · ·xinn . Every multi-
variate polynomial in f ∈ F[x] can be represented as

f(x) =
∑
i∈I

aix
i (1)

for some finite set I ⊂ Nn and ai ∈ F\{0} for all i ∈ I.
When the field F is infinite, then the representation in (1) is unique. Not

every function f : Fn → F can be represented as multivariate polynomial.
Take for example a function f(x1) with one variable that has infinite number
of roots.

When the field F is finite, then every function f : Fn → F can be
represented as multivariate polynomial f ∈ F[x]. There may be many rep-
resentations for the same function f : Fn → F but a unique one that satisfies
i ∈ I ⊆ {0, 1, . . . , |F| − 1}n. In the sequel we refer to this unique represen-
tation as the minimal multivariate polynomial.

When we say that M = xi is a monomial in f we mean that M is a
monomial that appears in the minimal multivariate polynomial of f . The

3

constant ai ∈ F\{0} in (1) is called the coefficient of the monomial xi in f .
When xi is not a monomial in f then we say that its coefficient is 0.

For f, g ∈ F[x] we define coef(f, g) as follows: If g = M is a monomial
in f then coef(f,M) is the coefficient of M in the minimal multivariate
polynomial of f . Otherwise coef(f,M) = 0. If g = cM where c ∈ F then
coef(f, cM) = c · coef(f,M) and if g = g1 + g2 where g1, g2 ∈ F[x] then
coef(f, g) = coef(f, g1) + coef(f, g2).

The degree, deg(M), of a monomial M = xi is i1 + i2 + · · · + in. The
degree of xj in M , degxj (M) is ij . Therefore,

deg(M) =
n∑
i=1

degxi(M).

Let f ∈ F[x] and let g be the minimal multivariate polynomial of f . The
degree (or total degree) deg(f) is the maximum degree of the monomials
in g. The degree of xi in f , degxi(f), is the maximum degree of xi in the
monomials in g. The variable degree of f is the maximum over the degree
of each variable in f , i.e., maxi degxi(f).

2.1.1 Classes of Multivariate Polynomials

In this section we will define the following classes of multivariate polynomials

1. P(F, n) is the class of all multivariate polynomials in F[x1, . . . , xn] of
variable degree at most |F| − 1.

2. P(F, n, (d, r)) is the class of all multivariate polynomials in P(F, n) of
degree at most d and variable degree at most r.

3. P(F, n, d) = P(F, n, (d, |F| − 1)) is the class of all multivariate polyno-
mials in P(F, n) of degree at most d.

We will also consider the following special classes of multivariate poly-
nomials

1. HP(F, n): The class of all homogeneous polynomials in P(F, n). A
multivariate polynomial is called homogeneous multivariate polynomial
if all its monomials have the same degree. The classes HP(F, n, (d, r))
and HP(F, n, d) are defined in the same way as above.

2. LP(F, n): The class of all multilinear polynomials in F[x1, . . . , xn]. A
multivariate polynomial is called multilinear polynomial if degxi(f) ≤ 1
for all i = 1, . . . , n. The class ML(F, n, d) is defined in the same way
as above.

4

2.2 Multivariate Form

Let y = (y1, . . . ,ym) where yi = (yi,1, . . . , yi,n) are indeterminates over F
for i = 1, . . . ,m. A multivariate form in y is a multivariate polynomial in y.
That is, an element of

F[y1,1, . . . , y1,n, . . . , ym,1, . . . , ym,n].

We denote this class by F[y] or F[y1, . . . ,ym].
Let y(i) = (y1, . . . ,yi−1,yi+1, . . . ,ym). Every multivariate form f ∈ F[y]

can be represented as polynomial in yi with coefficients in F[y(i)]. That is,
a multivariate polynomial in F[y(i)][yi]. The degree degyi(f) is the degree

of f in F[y(i)][yi]. Every monomial M in F[y] can be written as M =
M1M2 · · ·Mm where Mi is a monomial in F[yi] for i = 1, 2, . . . ,m.

The following classes will be studied here

1. F(F, n,m) is the class of all multivariate forms in y = (y1, . . . ,ym),
where yi = (yi,1, . . . , yi,n) are indeterminates over F, of variable degree
at most |F| − 1.

2. F(F, n,m,d) where d = (d1, d2, . . . , dm) ∈ Nm is the class of all
multivariate polynomials f in F(F, n,m) where degyi(f) = di for all
i = 1, 2, . . . ,m.

3. HF(F, n,m) is the class of all multivariate forms f in F(F, n,m)
that are homogeneous in F[y(i)][yi] for all i = 1, 2, . . . ,m. That
is, there is d ∈ Nm such that every monomial in f is of the form
M = M1M2 · · ·Mm, where Mi is a monomial in F[yi] of degree di.
The class HF(F, n,m,d) is defined as above.

4. HLF(F, n,m) is HF(F, n,m, (1, 1, . . . , 1)). That is, the class of all
multilinear forms f over y = (y1, . . . ,ym) where each monomial in f
contains exactly one variable from yi for every i.

Therefore a multilinear form in y of degree d is a multivariate polynomial
of the form ∑

i∈[n]d
αi · y1,i1 · · · yd,id .

where αi ∈ F and [n] = {1, 2, . . . , n}.

5

2.3 Tester

Definition 1. (Tester,[2]). Let F be a field and A be an F-algebra with
unity element 1A. Let M ⊆ F[x1, x2, . . . , xn] be a class of multivariate
polynomials. Let L = {l1, . . . , lν} be a set of (not necessarily linear) maps
An → Fn. We denote by fL the map An → Fν where for a ∈ An,

(fL)(a) = (f(l1(a)), . . . , f(lν(a))).

We say that L is an (M,A,F)-tester (or a tester for M and A) if for every
a ∈ An and f ∈M we have (Here 0 = 0ν is the zero vector of length ν)

(fL)(a) = 0 =⇒ f(a) = 0.

The integer ν = |L| is called the size of the tester. The minimal size
of an (M,A,F)-tester is denoted by νF(M,A). When A and F are known
from the context we then just say that L is a tester for M.

We will also allow L = {l1, . . . , lν} to be a set of maps A → F. In
that case li : An → Fn is defined as li(a) = (li(a1), . . . , li(an)) where a =
(a1, . . . , an) ∈ An. In such case we call the tester symmetric tester.

We say that the tester is componentwise tester if li(a) = (li,1(a1), . . . , li,n(an))
for some li,j : A → F. A componentwise tester is called linear if each li,j is
a linear map and is called reducible if li,j(1A) = 1 where 1A is the identity
of the algebras A.

In this paper we will study testers for the class of multilinear forms of
degree d and multivariate polynomials of degree d.

We will use the following abbreviations

The Expression Abbreviation

νF(P(F, n, d),A) νPF (d,A)

νF(P(F, n, (d, r)),A) νPF ((d, r),A)

νF(HP(F, n, d),A) νHPF (d,A)

νF(F(F, n,m,d),A) νFF ((d,A)

νF(HF(F, n,m,d),A) νHFF (d,A)

νF(HLF(F, n,m),A) νHLFF (m,A)

2.4 Multilinear Algorithms

A multilinear algorithm for the multiplication of d elements in the algebra A
with multilinear complexity µ is a sequence (γ1,λ1), . . . , (γµ,λµ) ∈ A×(A∗)d

6

and γ1, γ2, . . . , γµ ∈ A such that for every d elements a1, a2, . . . , ad in A we
have

a1a2 · · · ad =

µ∑
i=1

γi

d∏
j=1

λi,j(aj).

The minimal µ is called the multilinear complexity of the multiplication
of d elements in the algebra A and is denoted by µF(d,A). When λi,j are
independent of j, i.e., the multilinear algorithm is of the form

a1a2 · · · ad =

µ∑
i=1

γi

d∏
j=1

λi(aj),

then we call the multilinear algorithm symmetric multilinear algorithm. The
symmetric multilinear complexity of the multiplication of d elements in the
algebra A is denoted by µsF(d,A).

Let 1A be the identity element of the algebra A. We may assume
that λi,j(1A) is either 1 or 0. Because otherwise we can replace λi,j with
λi,j/λi,j(1A) and γi with γiλi,j(1A). Therefore, throughout the paper we
assume λi,j(1A) ∈ {0, 1}.

If in a symmetric multilinear algorithm λi(1A) = 1 for all i then we call
the multilinear algorithm reducible symmetric multilinear algorithm. The re-
ducible symmetric multilinear complexity of the multiplication of d elements
in the algebra A is denoted by µrsF (d,A).

In [2] (also follows from folklore results for bilinear algorithms [3]) we
show that multilinear algorithms for the multiplication of d elements in
any algebra always exist. In Section 7 we show that symmetric multilinear
algorithms for the multiplication of d elements in an F-algebra A exist if
and only if either |F| ≥ d or |F| < d and a|F| = a for all a ∈ A. Reducible
symmetric multilinear algorithms for the multiplication of d elements in an
F-algebra A exist if and only if either |F| ≥ d+ 1 or |F| < d+ 1 and a|F| = a
for all a ∈ A.

When d = 2 the above multilinear complexity is called the bilinear com-
plexity (resp. symmetric bilinear algorithm) of the multiplication of two
elements in the algebra A. The bilinear complexity were extensively studied
in the literature. See for example [3, 6] and the references within. Symmetric
bilinear complexity was first defined and studied in [11].

2.5 Simulators

Given a class of multivariate polynomial M⊆ F[x1, . . . , xn]. Given a black
box that contains a function f ∈ M and can answer substitution oracle to

7

f . That is, for b ∈ Fn, the oracle answers f(b). A simulator for M and an
algebra A is an algorithm that for every a ∈ An generates a1,a2, . . . ,at ∈ Fn
such that for every f ∈ M the values f(a1), . . . , f(at) uniquely determine
f(a). We say that the simulator is polynomial time simulator if the simulator
generates a1, . . . ,at from a in polynomial time and f(a) from f(a1), . . . ,
f(at) in polynomial time. That is, the simulator runs in polynomial time.
The maximal integer t over all a ∈ A is called the simulation complexity of
the simulator and is denoted by σF(M,A). The simulator is called optimal
if the simulation complexity is optimal.

We will use the same abbreviations used in Section 2.3. For example,
σPF (d,A) is σF(P(F, n, d),A).

In Section 7 we show that simulators for multivariate polynomials of
degree d and |F|-algebra A exist if and only if either |F| ≥ d+1 or |F| < d+1
and a|F| = a for all a ∈ A.

3 Results

The first result in this paper shows that testers for multilinear forms and
multilinear algorithms are equivalent

Theorem 1. Let A be F-algebra and M = HLF(F, n, d) be a class of mul-
tilinear forms of degree d. Then

1. νHLFF (d,A) = µF(d,A).

2. Given a set of polynomial time computable maps L that is (M,A,F)-
tester of size ν one can in polynomial time construct a multilinear
algorithm for the multiplication of d elements in A with multilinear
complexity ν.

3. Given a multilinear algorithm for the multiplication of d elements in
A with multilinear complexity ν one can in polynomial time construct
a set of polynomial time computable maps L that is (M,A,F)-tester
of size ν.

4. Given a set of polynomial time computable maps L that is (M,A,F)-
tester of size ν one can in polynomial time construct a linear compo-
nentwise (M,A,F)-tester of size ν.

In [2] we gave a deterministic polynomial time construction of an (HLF(F, n, d)

8

,Fqn ,Fq)-tester of size ν = O(dτ(d,q)n) where

τ(d, q) =

3 if q ≥ cd2, c > 1 constant , q perfect square
4 if q ≥ cd, c > 1 constant
5 if q ≥ d+ 1
6 if q = d

(2)

We also proved the lower bound Ω(dn) when q ≥ d. Therefore our construc-
tion (for q ≥ d) is within at most O(d5) of the optimal size tester.

Theorem 1 with (2), gives

Corollary 2. For any q ≥ d there is a polynomial time construction of a
multilinear algorithm for the multiplication of d elements in Fqn with multi-
linear complexity µ = O(dτ(d,q)n).

In particular, we also prove

Corollary 3. For any q there is a polynomial time construction of a bi-
linear algorithm for the multiplication of two elements in Fqn with bilinear
complexity µ = O(n).

This solves the open problem of deterministic polynomial time construct-
ing a bilinear algorithm with linear bilinear complexity for the multiplication
of two elements in finite fields [1, 12, 4].

To study testers over any multivariate polynomials we need the F-algebra
to be commutative F-algebra. Otherwise, we have to deal with multivariate
polynomials with noncommutative indeterminates, another line of research
that is left for future study. Therefore in all the following results we assume
that A is commutative F-algebra.

In Section 5 we study testers for homogeneous multivariate polynomials
and show that they are equivalent to symmetric multilinear algorithms. We
prove

Theorem 2. Let A be a commutative F-algebra and M = HP(F, n, d) be a
class of homogeneous multivariate polynomials of degree d. Then

1. νHPF (d,A) = µsF(d,A).

2. Given a set of polynomial time computable maps L that is (M,A,F)-
tester of size ν one can in polynomial time construct a symmetric
multilinear algorithm for the multiplication of d elements in A with
multilinear complexity ν.

9

3. Given a symmetric multilinear algorithm for the multiplication of d
elements in A with multilinear complexity ν one can in polynomial
time construct a set of polynomial time computable maps L that is
(M,A,F)-tester of size ν.

4. Given a set of polynomial time computable maps L that is (M,A,F)-
tester of size ν one can in polynomial time construct a linear symmet-
ric (M,A,F)-tester of size ν.

We note here that since (2) is also true for symmetric testers Corollaries 2
and 3 are also true for symmetric multilinear algorithms.

In Section 6 we study simulators and prove that symmetric multilinear
algorithms are “almost” equivalent to simulators. We prove

Theorem 3. we have the following

1. Given a reducible symmetric multilinear algorithm for the multiplica-
tion of d elements in an F-algebra A with multilinear complexity ν one
can in polynomial time construct a polynomial time simulator for the
class of polynomials of degree d and A of simulation complexity ν.

In particular,
σPF (d,A) ≤ µrsF (d,A).

2. From any polynomial time simulator for the set of all multivariate
polynomials of degree d and an F-algebra A of simulation complexity
ν one can construct in polynomial time a symmetric multilinear algo-
rithm for the product of d elements in A of multilinear complexity ν.

In particular,
µsF(d,A) ≤ σPF (d,A).

We then study some connections between symmetric multilinear algo-
rithms and reducible symmetric multilinear algorithms. We prove

Theorem 4. we have the following

1. Given a symmetric multilinear algorithm for the multiplication of d+1
elements in an F-algebra A with multilinear complexity ν one can in
polynomial time construct a reducible symmetric multilinear algorithm
for the multiplication of d elements in A with multilinear complexity ν.
In particular

µrsF (d,A) ≤ µsF(d+ 1,A)

10

and

1 ≤
σPF (d,A)

µsF(d,A)
≤
µsF(d+ 1,A)

µsF(d,A)
.

2. If |F| ≥ d + 1 then given a symmetric multilinear algorithm for the
multiplication of d elements in an F-algebra A with multilinear com-
plexity ν one can in polynomial time construct a reducible symmetric
multilinear algorithm for the multiplication of d elements in A with
multilinear complexity (d+ 1)ν. In particular, if |F| ≥ d+ 1 then

µrsF (d,A) ≤ (d+ 1) · µsF(d,A)− d · µrsF (d− 1,A)

and

1 ≤
σPF (d,A)

µsF(d,A)
≤ d+ 1.

3. If |F| =∞ (or large enough) then given a symmetric multilinear algo-
rithm for the multiplication of d elements in an F-algebra A with mul-
tilinear complexity ν one can in polynomial time construct a reducible
symmetric multilinear algorithm for the multiplication of d elements
in A with multilinear complexity ν. In particular, if |F| =∞ then

σPF (d,A) = µrsF (d,A) = µsF(d,A).

We believe that µsF(d+ 1,A) = O(µsF(d,A)) for any algebra A. This will
implies σPF (d,A) = Θ(µsF(d,A)).

For A = Fqn over Fq, Theorem 6 below shows that no simulator exists
when |F| < d+1. When |F| ≥ d+1 Theorem 4 shows that the complexity of
simulators constructed from optimal symmetric multilinear algorithms for
the multiplication of d elements in Fqn are within a factor of d + 1 of the
optimal simulators complexity for P(Fq, n, d) and Fqn .

This gives another motivation for further study of multilinear complexity
of the product of d elements in an extended finite field for d > 2.

Another result that follows from Theorem 2 and Theorem 3 is

Corollary 4. Given a tester for the class of all polynomials of degree d+ 1
and A of size ν that runs in polynomial time one can in polynomial time
construct a simulator of simulation complexity ν that runs in polynomial
time.

This result is a surprising result since testers only test if f(a) = 0 for
a ∈ An where simulators requires computing f(a) which can be any element
in A.

11

It is known that every F-algebra has a multilinear algorithm for the
multiplication d elements of the algebra for any d. See the case d = 2 in
[3]. The generalization to any d is trivial. In Section 7 we give a complete
classification of all algebras that has symmetric multilinear algorithm and
reducible symmetric algorithm. We prove

Theorem 5. Let A be F-algebra. There is a symmetric multilinear algo-
rithm for the multiplication of d elements in A if and only if A is commu-
tative and one of the following conditions is true

1. |F| ≥ d

2. |F| < d and for every element a ∈ A, we have a|F| = a.

Theorem 6. Let A be an F-algebra. The following conditions are equivalent

1. There is a simulator algorithm for multivariate polynomials of degree d
and A.

2. A is commutative algebra and one of the following conditions is true

(a) |F| ≥ d+ 1

(b) |F| < d+ 1 and for every element a ∈ A we have a|F| = a.

3. There is a reducible symmetric multilinear algorithm for the multipli-
cation of d elements in A.

The proofs of Theorems 1 and 2 will be presented for the case d = 2,
that is, for the bilinear forms, quadratic forms (i.e., homogenous multivari-
ate polynomials of degree 2), multivariate polynomials of degree 2, bilinear
complexity and symmetric bilinear complexity. The extension to any dimen-
sion is straightforward. The proofs of the other results will be presented for
any d.

4 Testers and Multilinear Algorithms

In this section we prove the following Theorem 1 for d = 2. The proof for
any d is straightforward generalization of the proofs in this section

Theorem 1. Let A be F-algebra and M = HLF(F, n, d) be a class of mul-
tilinear forms of degree d. Then

1. νHLFF (d,A) = µF(d,A).

12

2. Given a set of polynomial time computable maps L that is (M,A,F)-
tester of size ν one can in polynomial time construct a multilinear
algorithm for the multiplication of d elements in A with multilinear
complexity ν.

3. Given a multilinear algorithm for the multiplication of d elements in
A with multilinear complexity ν one can in polynomial time construct
a set of polynomial time computable maps L that is (M,A,F)-tester
of size ν.

4. Given a set of polynomial time computable maps L that is (M,A,F)-
tester of size ν one can in polynomial time construct a linear compo-
nentwise (M,A,F)-tester of size ν.

Let x = (x1, x2, . . . , xn)T and y = (y1, y2, . . . , yn)T be (column) vectors
of distinct indeterminates. Let B = HLF(F, n, 2) = {xTAy | A ∈ Fn×n} ⊂
F[x,y] be the set of bilinear forms. For two vectors a and b we denote
by a ⊗ b the Kronecker product of vectors. All the vectors in this paper
are column vectors and T is the transpose of vectors (or matrices). For an
n × m matrix A we denote by vec(A) the the vector of length nm where
vec(A)(i−1)m+j = Ai,j . The standard basis is denoted by {ei}i. For an
integer n we denote [n] = {1, 2, . . . , n}. For an F-algebra A and a set of
vectors V = {v1, . . . ,v`} ⊆ An we denote

SpanA(V) =

{∑̀
i=1

δivi

∣∣∣∣∣ δi ∈ A
}
.

We first prove

Lemma 5. Let L = {l1, . . . , lν} be a set of (not necessarily linear) maps
A2n → F2n. Then L = {l1, . . . , lν} is a (B,A,F)-tester if and only if for
every a, b ∈ An we have

a⊗ b ∈ SpanA{li,1(a, b)⊗ li,2(a, b)}νi=1 (3)

where li,1(a, b) (resp. li,2(a, b)) is the vector of length n that contains the
first (resp. last) n entries of li(a, b).

Proof. By the definition of tester, L is a (B,A,F)-tester if for every A ∈ Fn×n
and a, b ∈ An

(∀i) li,1(a, b)TA li,2(a, b) = 0 =⇒ aTAb = 0.

13

Suppose (3) is true. Then for any A ∈ Fn×n we have

aTAb = (a⊗ b)T · vec(A)

∈ SpanA{(li,1(a, b)⊗ li,2(a, b))T · vec(A)}νi=1

= SpanA{li,1(a, b)TA li,2(a, b)}νi=1.

Therefore there are γi ∈ A, i = 1, . . . , ν, such that

aTAb =

ν∑
i=1

γi · li,1(a, b)TA li,2(a, b).

Now if li,1(a, b)
TA li,2(a, b) = 0 for all i then aTAb = 0. Therefore L is a

(B,A,F)-tester.
Now suppose L is a (B,A,F)-tester and assume for the contrary that (3)

is not true. That is, there are a, b ∈ An such that for M := {li,1(a, b) ⊗
li,2(a, b)}νi=1 we have

a⊗ b 6∈ SpanA(M).

Notice thatM ⊆ Fn2
. We may assume w.l.o.g thatM is linearly independent

(over F). Otherwise, if, say, lν,1(a, b) ⊗ lν,2(a, b) is linearly dependent on
{li,1(a, b)⊗li,2(a, b)}ν−1i=1 then lν,1(a, b)

T Alν,2(a, b) is linearly dependent on
{li,1(a, b)TAli,2(a, b)}ν−1i=1 for every A and if li,1(a, b)

TAli,2(a, b) = 0 for i =
1, . . . , ν − 1 then lν,1(a, b)

TA lν,2(a, b) = 0. Therefore lν,1(a, b)⊗ lν,2(a, b)
can be eliminated from the tester.

Consider the set E = {ei⊗ej}i,j∈[n]. Let E′ ⊂ E be of minimal size such

that a⊗b ∈ SpanA(M ∪E′). Such E′ exists since a⊗b ∈ SpanA(E) = An2
.

Again as before, M ∪E′ is linearly independent and E′ is not empty. Since
a⊗ b ∈ SpanA(M ∪ E′) and a⊗ b 6∈ SpanA(M) we have

a⊗ b =
∑

v∈M∪E′

δvv

where δv ∈ A and δv0 6= 0 for some v0 = ei0 ⊗ ej0 ∈ E′

Consider a vector c ∈ Fn2
such that vTc = 0 for all v ∈ (M∪E′)\{v0} ⊆

Fn2
and vT0 c = 1. Let A ∈ Fn×n be a matrix such that vec(A) = c. Then

for every i

li,1(a, b)
TAli,2(a, b) = (li,1(a, b)⊗ li,2(a, b))T vec(A)

= (li,1(a, b)⊗ li,2(a, b))Tc = 0

14

and

aTAb = (a⊗ b)T vec(A)

=
∑

v∈M∪E′

δvv
Tc

= δv0 6= 0.

Which is a contradiction to the fact that L is a (B,A,F)-tester.

Now the following result with Lemma 5 show that Tester for bilinear
forms gives bilinear algorithm for the multiplication of two elements in the
algebra of bilinear complexity that is equal to the tester size.

Lemma 6. Let n ≥ dimA. Let L = {l1, . . . , lν} be a set of maps A2n → F2n.
If for every a, b ∈ An we have

a⊗ b ∈ SpanA{li,1(a, b)⊗ li,2(a, b)}νi=1 (4)

where li,1(a, b) (resp. li,2(a, b)) is the first (resp. last) n entries of li(a, b),
then there are λi,j ∈ A∗, i = 1, . . . , ν, j = 1, 2 and γ1, γ2, . . . , γν ∈ A such
that for every two elements a1, a2 in A we have

a1a2 =
ν∑
i=1

γiλi,1(a1)λi,2(a2).

That is, (4) implies that there is a bilinear algorithm for the multiplica-
tion of two elements in A of bilinear complexity ν.

Proof. Suppose (4) is true. Consider a basis ω1, ω2, . . . , ωt for A over F
where t = dimA. Consider the vector ω = (ω1, . . . , ωt, 0, . . . , 0)T ∈ An. By
(4),

ω ⊗ ω ∈ SpanA{li,1(ω,ω)⊗ li,2(ω,ω)}νi=1.

Therefore there are γ1, . . . , γν ∈ A such that

ω ⊗ ω =

ν∑
i=1

γi · li,1(ω,ω)⊗ li,2(ω,ω).

Let a1 = a1,1ω1 + · · · + a1,tωt and a2 = a2,1ω1 + · · · + a2,tωt be two
elements in A where ai,j ∈ F, i = 1, 2 and j = 1, . . . , t. Let a1 =

15

(a1,1, a1,2, . . . , a1,t, 0, . . . , 0)T and a2 = (a2,1, a2,2, . . . , a2,t, 0, . . . , 0)T in Fn.
Then

a1a2 = (aT1 ω)(aT2 ω)

= (a1 ⊗ a2)T (ω ⊗ ω)

=

ν∑
i=1

γi · (a1 ⊗ a2)T (li,1(ω,ω)⊗ li,2(ω,ω))

=

ν∑
i=1

γi · (aT1 li,1(ω,ω))(aT2 li,2(ω,ω))

=

ν∑
i=1

γiλi,1(a1)λi,2(a2)

where λi,1(a1) = aT1 li,1(ω,ω) and λi,2(a2) = aT2 li,2(ω,ω) and λi,1, λi,2 ∈
A∗.

The following result shows that a bilinear algorithm for the multiplica-
tion of two elements in the algebra of bilinear complexity µ gives a Tester
for bilinear forms of size µ

Lemma 7. If there are λi,j ∈ A∗, i = 1, . . . , µ, j = 1, 2 and γ1, γ2, . . . , γµ ∈
A such that for every two elements α1, α2 in A we have

α1α2 =

µ∑
i=1

γiλi,1(α1)λi,2(α2)

then the set of maps L = {l1, . . . , lµ} where

li(a, b) = (λi,1(a1), . . . , λi,1(an), λi,2(b1), . . . , λi,2(bn))

i = 1, . . . , µ is a (B,A,F)-tester.

Proof. Let li,1(a, b) and li,2(a, b) be the first and last n entries of li(a, b),

16

respectively. Let A ∈ Fn×n and a, b ∈ An. Then

aTAb =
n∑
i=1

n∑
j=1

Ai,jaibj

=
n∑
i=1

n∑
j=1

Ai,j

µ∑
k=1

γkλk,1(ai)λk,2(bj)

=

µ∑
k=1

γk

n∑
i=1

n∑
j=1

Ai,jλk,1(ai)λk,2(bj)

=

µ∑
k=1

γk · lk,1(a, b)TAlk,2(a, b).

Therefore if li,1(a, b)
TAli,2(a, b) = 0 for all i = 1, . . . , µ then aTAb = 0 and

therefore L is a (B,A,F)-tester.

We are now ready to prove Theorem 1.

Proof. We now prove 1 in Theorem 1 for any d. By Lemma 5 and 6 we
have νHLFF (d,A) ≥ µF(d,A). By Lemma 7 we have νHLFF (d,A) ≤ µF(d,A).
Therefore the result follows.

We now prove 2 in Theorem 1 for d = 2. The proof for any constant d
is a simple extension of this proof. The proof for any d is given in the next
subsection.

Given a (B,A,F)-tester L = {l1, . . . , lν} and a basis ω1, . . . , ωt for A over
F. Let ω = (ω1, . . . , ωt, 0, . . . , 0)T ∈ An. We compute li(ω,ω) for every i.
By Lemma 6 there are γi ∈ A such that

ω ⊗ ω =
ν∑
i=1

γi · li,1(ω,ω)⊗ li,2(ω,ω).

To find γi we write γi = γi,1ω1 + · · · + γi,tωt where γi,j ∈ F. Then write

ω ⊗ ω = u1ω1 + . . . + utωt where uk ∈ Fn2
. Then for each j = 1, 2, . . . , t

solve the following system of linear equation over F

uj =

ν∑
i=1

γi,j · li,1(ω,ω)⊗ li,2(ω,ω)

to find γi,j . Now as in Lemma 6, for two elements a1 = a1,1ω1 + · · ·+ a1,tωt,
a2 = a2,1ω1 + · · · + a2,tωt in A where ai,j ∈ F, i = 1, 2 and j = 1, . . . , t,

17

a1 = (a1,1, a1,2, . . . , a1,t, 0, . . . , 0)T and a2 = (a2,1, a2,2, . . . , a2,t, 0, . . . , 0)T in
Fn we have

a1a2 =

ν∑
i=1

γi · (aT1 li,1(ω,ω))(aT2 li,2(ω,ω))

=
ν∑
i=1

γiλi,1(a1)λi,2(a2)

where λi,1(a1) = aT1 li,1(ω,ω) and λi,2(a2) = aT2 li,2(ω,ω) and λi,1, λi,2 ∈ A∗.
Now the proof of 3 in Theorem 1 for any d = 2 follows from Lemma 7.

The proof for any d is a simple extension of this proof.
The proof of 4 in Theorem 1 also an immediate consequence of Lemma 5,

6 and 7.

Notice that the algorithm in the above proof of 2 in Theorem 1 for any
d has time complexity O(nd). This is because finding γi in the equation

ω⊗ d· · · ⊗ω =

ν∑
i=1

γi · li,1(ω,
d· · ·,ω)⊗ · · · ⊗ li,d(ω,

d· · ·,ω)

requires accessing vector of length nd. Therefore the above construction is
polynomial time only when d is constant. In the next subsection we give a
deterministic polynomial time algorithm in n and d that solves this problem.

4.1 Polynomial Time Construction for any d

In this section we prove 2 in Theorem 1 for any d.
Given a (HLF(F, n, d),A,F)-tester L = {l1, . . . , lν} and a basis ω1, . . . , ωt

for A over F. Since that HLF(F, n, d) is the set of all multilinear function
over y = (y1, . . . ,yd) where yi = (yi,1, . . . , yi,n), i = 1, . . . , d we have that
li(y1, . . . ,yd) : Adn → Fdn, i = 1, . . . , ν .

Let ω = (ω1, . . . , ωt, 0, . . . , 0)T ∈ An. The algorithm first computes
li(ω, d. . .,ω) for every i. By Lemma 6 there are γi ∈ A, i = 1, . . . , ν such that
for any d elements aj = aj,1ω1 + · · ·+aj,tωt, j = 1, . . . , d in A where aj,i ∈ F
for j = 1, . . . , d and i = 1, . . . , t and aj = (aj,1, aj,2, . . . , aj,t, 0, . . . , 0)T ∈ Fn
we have

a1a2 · · · ad =

ν∑
i=1

γi · (aT1 li,1)(aT2 li,2) · · · (aTd li,d)

=
ν∑
i=1

γiλi,1(a1)λi,2(a2) · · ·λi,d(ad) (5)

18

where li,j is the n-vector that contains the entries (j − 1)n + 1, (j − 1)n +
2, . . . , jn of li(ω, d. . .,ω) and λi,j(a1) = aTj li,j , j = 1, . . . , d and i = 1, . . . , ν.

Now λi,j for j = 1, . . . , d and i = 1, . . . , ν can be found in polynomial
time. The problem now is to find γ1, . . . , γν that satisfies (5) in polynomial
time. In what follows we give an algorithm that solves this problem.

Define the linear space

Λ = SpanF{Λi | Λi : Ad → F, Λi(a1, . . . , ad) := λi,1(a1) · · ·λi,d(ad)}.

Every element Λ′ ∈ Λ will be represented in the algorithm as Λ′ =
∑ν

i=1 βiΛi
where βi ∈ F.

Now, the goal of the algorithm is to find in polynomial time a basis
{Λ(1), . . . ,Λ(ν′)} for Λ and δ1, . . . , δν′ ∈ A such that for every a1, . . . , ad ∈ A
we have

a1a2 . . . ad =

ν′∑
i=1

δiΛ
(i)(a1, . . . , ad). (6)

Obviously, the algorithm can then finds γi that satisfies (5) in polynomial
time.

We now show that if (6) holds and the algorithm knows all Λ(i) and
δ1, . . . , δw but not δw+1, . . . , δν′ then it can replace Λ(w+2), . . . ,Λ(ν′) with
Λ

′(w+2), . . . ,Λ
′(ν′) such that

{Λ(1), . . . ,Λ(w+1),Λ
′(w+2), . . . ,Λ

′(ν′)} (7)

is a basis for Λ and finds δ′w+1 such that for every a1, . . . , ad ∈ A

a1a2 . . . ad =

w∑
i=1

δiΛ
(i)(a1, . . . , ad) + δ′w+1Λ

(w+1)(a1, . . . , ad)

+

ν′∑
i=w+2

δiΛ
′(i)(a1, . . . , ad). (8)

Then repeating this procedure solves the problem.
Given (6). In the next Lemma we show how to find in polynomial time

elements b1, . . . , bd ∈ A such that Λ(w+1)(b1, . . . , bd) = 1. If no such b1, . . . , bd
exist then the algorithm knows that Λ(w+1) ≡ 0 and then it can choose
δ′w+1 = 0. Let Λ(w+1)(b1, . . . , bd) = 1 and Λ(i)(b1, . . . , bd) = αi ∈ F and
consider the new basis in (7) where

Λ
′(i) = Λ(i) − αiΛ(w+1) (9)

19

for i = w + 2, . . . , ν ′. Notice that for i = w + 2, . . . , ν ′

Λ
′(i)(b1, . . . , bd) = Λ(i)(b1, . . . , bd)− αiΛ(w+1)(b1, . . . , bd) = 0.

By (9) and (6) we have (8) for some δ′w+1 ∈ A. Now notice that if we
substitute b1, . . . , bd in (8) and get

b1b2 . . . bd =

w∑
i=1

δiΛ
(i)(b1, . . . , bd) + δ′w+1Λ

(w+1)(b1, . . . , bd)

+
ν′∑

i=w+2

δiΛ
′(i)(b1, . . . , bd)

=
w∑
i=1

δiΛ
(i)(b1, . . . , bd) + δ′w+1

and therefore

δ′w+1 = b1b2 . . . bd −
w∑
i=1

δiΛ
(i)(b1, . . . , bd).

can be computed by the algorithm in polynomials time.
It remains to prove

Lemma 8. There is a polynomial time algorithm that for every

Λ′ ∈ SpanF{Λi | Λi : Ad → F, Λi(a1, . . . , ad) = λi,1(a1) · · ·λi,d(ad)},

Λ′ 6≡ 0 finds b1, . . . , bd ∈ A such that Λ′(b1, . . . , bd) = 1.

Proof. We will find b1, . . . , bd ∈ A such that λ := Λ′(b1, . . . , bd) 6= 0. Then
Λ′(λ−1b1, b2, . . . , bd) = 1.

So our goal is to find b1, . . . , bd ∈ A such that Λ′(b1, . . . , bd) 6= 0. Let

Λ′ =

ν∑
i=1

βiΛi

where βi ∈ F, i = 1, . . . , ν. Let ω1, . . . , ωt be any basis for A over F.
The algorithm runs in stages. At stage ` the algorithm saves a set of

ν functions Λ(`,j) =
∑ν

i=1 βj,iΛ`,i, j = 1, . . . , ν where Λ`,i(a`+1, . . . , ad) =
λi,`+1(a`+1) · · ·λi,d(ad), i = 1, . . . , ν and βj,i ∈ F. For each Λ(`,j) it also
saves Ω`,j = (ω`,j,1, . . . , ω`,j,`) ∈ {ω1, . . . , ωt}` such that

20

1. Λ(`,j)(a`+1, . . . , ad) = Λ′(Ω`,j , a`+1, . . . , ad).

2. There is j and b`+1, . . . , bd ∈ A such that

Λ′(Ω`,j , b`+1, . . . , bd) = Λ(`,j)(b`+1, . . . , bd) 6= 0.

For ` = 0 we have Λ(0,j) = Λ′ and Ω0,j = () for all j. So (1.) and (2.) are
true for ` = 0.

We now show how the algorithm runs in stage ` + 1 and in polynomial
time generates Λ(`+1,j) and Ω`+1,j , j = 1, . . . , ν, that satisfy conditions (1.)
and (2.). Notice that at stage ` = d, by (2.), we have Λ′(Ωd,j) 6= 0. This
achieves our goal.

For any a`+1 := a`+1,1ω1 + · · ·+ a`+1,tωt, a`+1,j ∈ F and

Λ`+1,i(a`+2, . . . , ad) := λi,`+2(a`+2) · · ·λi,d(ad),

i = 1, . . . , ν, we have

Λ′(Ω`,j , a`+1, . . . , ad) = Λ(`,j)(a`+1, . . . , ad)

=
ν∑
i=1

βj,iΛ`,i(a`+1, . . . , ad)

=
ν∑
i=1

βj,i

t∑
r=1

a`+1,rΛ`,i(ωr, a`+2, . . . , ad)

=

t∑
r=1

a`+1,r

ν∑
i=1

(βj,iλi,`+1(ωr))Λ`+1,i(a`+2, . . . , ad)

for all j = 1, . . . , ν. Consider

Λ(`+1,j,r) =
ν∑
i=1

(βj,iλi,`+1(ωr))Λ`+1,i

for r = 1, . . . , t and j = 1, 2, . . . , ν. Then

Λ′(Ω`,j , a`+1, . . . , ad) =

t∑
r=1

a`+1,rΛ
(`+1,j,r)(a`+2, . . . , ad).

Notice that

Λ′(Ω`,j , ωr, a`+2, . . . , ad) = Λ(`+1,j,r)(a`+2, . . . , ad).

21

Obviously, if Λ′(Ω`,j , b`+1, . . . , bd) 6= 0 for some j = 1, . . . , ν then Λ(`+1,j,r)

(b`+2, . . . , bd) 6= 0 for some r = 1, . . . , t and j = 1, . . . , ν. We now show how
to construct a set L of at most ν functions from Λ(`+1,j,r) that satisfies: if
Λ′(Ω`,j , b`+1, . . . , bd) 6= 0 for some j = 1, . . . , ν then Λ(`+1,j,r) (b`+2, . . . , bd) 6=
0 for some Λ(`+1,j,r) ∈ L.

The algorithm starts with L that contains all Λ(`+1,j,r) and a set V of
vectors that contains

vj,r = (βj,1λ1,`+1(ωr), . . . , βj,νλν,`+1(ωr)) ∈ Fν

for j = 1, . . . , ν and r = 1, . . . , t. If one of the vectors, say vj0,r0 , is lin-
early dependent on the other then if Λ(`+1,j0,r0)(b`+2, . . . , bd) 6= 0 for some
b`+2, . . . , bd then Λ(`+1,j,r)(b`+2, . . . , bd) 6= 0 for some (j, r) 6= (j0, r0). There-
fore the algorithm can remove all the dependent vectors in V and their cor-
responding functions from L. Notice that since the dimension of Span(V)
over F is at most ν the number of vectors that remain in V and functions
that remain in L is at most ν. Let

L =
{

Λ(`+1,1,r1), . . . ,Λ(`+1,ν,rν)
}
⊂ {Λ(`+1,j,r) | j = 1, . . . , ν, r = 1, . . . , t}

be the function that remains in L.
Denote Λ(`+1,j) = Λ(`+1,j,rj) and Ω`+1,j = (Ω`,j , ωrj), j = 1, . . . , ν. Then

Λ(`+1,j)(a`+1, . . . , ad) = Λ(`+1,j,rj)(a`+1, . . . , ad)

= Λ′(Ω`,j , ωrj , a`+2, . . . , ad)

= Λ′(Ω`+1,j , a`+2, . . . , ad)

and (1.) follows for `+ 1.
By the above argument if Λ′(Ω`,j , b`+1, . . . , bd) 6= 0 for some j = 1, . . . , ν

then
Λ(`+1,j)(b`+2, . . . , bd) = Λ(`+1,j,rj)(b`+2, . . . , bd) 6= 0

for some j = 1, . . . , ν. Since by (2.) there is j = 1, . . . , ν and b`+1, . . . , bd ∈ A
such that

Λ′(Ω`,j , b`+1, . . . , bd) = Λ(`,j)(b`+1, . . . , bd) 6= 0

there is j = 1, . . . , ν and b`+2, . . . , bd such that Λ(`+1,j)(b`+2, . . . , bd) 6= 0.
Then

Λ′(Ω`+1,j , b`+2, . . . , bd) = Λ(`+1,j)(b`+2, . . . , bd) 6= 0.

This implies (2.) for `+ 1.

22

5 Symmetric Multilinear Complexity

In this section we prove the following

Theorem 2. Let A be a commutative F-algebra and M = HP(F, n, d) be a
class of homogeneous multivariate polynomials of degree d. Then

1. νHPF (d,A) = µsF(d,A).

2. Given a set of polynomial time computable maps L that is (M,A,F)-
tester of size ν one can in polynomial time construct a symmetric
multilinear algorithm for the multiplication of d elements in A with
multilinear complexity ν.

3. Given a symmetric multilinear algorithm for the multiplication of d
elements in A with multilinear complexity ν one can in polynomial
time construct a set of polynomial time computable maps L that is
(M,A,F)-tester of size ν.

4. Given a set of polynomial time computable maps L that is (M,A,F)-
tester of size ν one can in polynomial time construct a linear symmet-
ric (M,A,F)-tester of size ν.

Again here the proof is for homogeneous multivariate polynomials of
degree 2 (which are also called quadratic forms). The generalization to
homogeneous multivariate polynomials of any degree d is straightforward.

Let x = (x1, x2, . . . , xn)T be a (column) vector of distinct indetermi-
nates. Let Q = P(F, n, 2) = {xTAx | A ∈ Fn×n} ⊂ F[x] be the set of
quadratic forms.

Theorem 2 follows from the following three Lemmas

Lemma 9. Let L = {l1, . . . , lν} be a set of maps An → Fn. The set L is a
(Q,A,F)-tester if and only if for every a ∈ An we have

a⊗ a ∈ SpanA{li(a)⊗ li(a)}νi=1. (10)

Proof. By the definition of tester, L is a (Q,A,F)-tester if for every A ∈
Fn×n and a ∈ An

(∀i) li(a)TA li(a) =⇒ aTAa = 0.

Suppose (10) is true. Then for any A ∈ Fn×n we have

aTAa = (a⊗ a)T · vec(A)

∈ SpanA{(li(a)⊗ li(a))T · vec(A)}νi=1

= SpanA{li(a)TA li(a)}νi=1.

23

Therefore there are γi ∈ A, i = 1, . . . , ν, such that

aTAa =
ν∑
i=1

γi · li,1(a)TA li,2(a).

Now if li(a)TA li(a) = 0 for all i then aTAa = 0. Therefore L is a (Q,A,F)-
tester.

Now suppose L is a (Q,A,F)-tester and assume for the contrary that (10)
is not true. Therefore there is a ∈ An such that for M := {li(a)⊗ li(a)}νi=1

a ⊗ a 6∈ M. Notice that M ⊆ Fn2
. As in the proof of Theorem 1, we may

assume w.l.o.g that M is linearly independent over F.
Since

a⊗ a =

(
n∑
i=1

aiei

)
⊗

 n∑
j=1

ajej

=

∑
1≤i<j≤n

aiaj ((ei + ej)⊗ (ei + ej))

+
∑

a2i (ei ⊗ ei)

−
∑

1≤i<j≤n
aiaj((ei ⊗ ei) + (ej ⊗ ej)),

we have a⊗ a ∈ SpanA(E) where

E = {ei ⊗ ei}i∈[n] ∪ {(ei + ej)⊗ (ei + ej)}i,j∈[n].

Let E′ ⊂ E be of minimal size such that a ⊗ a ∈ SpanA(M ∪ E′). Such
E′ exists since a ⊗ a ∈ SpanA(E). Again as before, M ∪ E′ is linearly
independent and E′ is not empty. Since a ⊗ a ∈ SpanA(M ∪ E′) and
a⊗ a 6∈ SpanA(M) we have

a⊗ a =
∑

v∈M∪E′

δvv

where δv ∈ A and δv0 6= 0 for some v0 ∈ E′
Consider a vector c ∈ Fn2

such that cTv0 = 1 and cTv = 0 for all
v ∈ (M ∪ E′)\{v0}. Let A ∈ Fn×n be the matrix such that vec(A) = c.
Then for every i

li(a)TAli(a) = (li(a)⊗ li(a))T vec(A)

= (li(a)⊗ li(a))Tc = 0

24

and

aTAa = (a⊗ a)T vec(A)

=
∑

v∈M∪E′

δvv
Tc

= δv0 6= 0.

Which is a contradiction to the fact that L is a (Q,A,F)-tester.

Now the following result with Lemma 9 show that Tester for quadratic
forms gives symmetric bilinear algorithm for the multiplication of two ele-
ments in the algebra of bilinear complexity that is equal to the tester size.

Lemma 10. Let n ≥ dimA. Let L = {l1, . . . , lν} be a set of maps An → Fn.
If for every a ∈ An we have

a⊗ a ∈ SpanA{li(a)⊗ li(a)}νi=1 (11)

then there are λi ∈ A∗ and γi ∈ A, i = 1, . . . , ν such that for every two
elements a1, a2 in A we have

a1a2 =

ν∑
i=1

γiλi(a1)λi(a2).

That is, (11) implies that there is a symmetric bilinear algorithm for the
multiplication of two elements in A of bilinear complexity ν.

Proof. Suppose (11) is true. Consider a basis ω1, ω2, . . . , ωt for A over F.
Consider the vector ω = (ω1, . . . , ωt, 0, . . . , 0)T ∈ An. Then

ω ⊗ ω ∈ SpanA{li(ω)⊗ li(ω)}νi=1.

Therefore there are γ1, . . . , γν ∈ A such that

ω ⊗ ω =
ν∑
i=1

γi · li(ω)⊗ li(ω).

Let a1 = a1,1ω1 + · · · + a1,tωt and a2 = a2,1ω1 + · · · + a2,tωt be two
elements in A where ai,j ∈ F, i = 1, 2 and j = 1, . . . , t. Let a1 =

25

(a1,1, a1,2, . . . , a1,t, 0, . . . , 0)T and a2 = (a2,1, a2,2, . . . , a2,t, 0, . . . , 0)T in Fn.
Then

a1a2 = (aT1 ω)(aT2 ω)

= (a1 ⊗ a2)T (ω ⊗ ω)

=
ν∑
i=1

γi · (a1 ⊗ a2)T (li(ω)⊗ li(ω))

=

ν∑
i=1

γi · (aT1 li(ω))(aT2 li(ω))

=

ν∑
i=1

γiλi(a1)λi(a2)

where λi(a1) = aT1 li(ω), λi(a2) = aT2 li(ω) and λi ∈ A∗.

The following result shows that symmetric bilinear algorithm for the
multiplication of two elements in the algebra of bilinear complexity µ gives
a Tester for quadratic forms of size µ

Lemma 11. If there are λi ∈ A∗ and γi ∈ A, i = 1, . . . , µ, such that for
every two elements α1, α2 in A we have

α1α2 =

µ∑
i=1

γiλi(α1)λi(α2)

then the set of maps L = {l1, . . . , lµ} where

li(a) = (λi(a1), . . . , λi(an))

i = 1, . . . , µ is a (Q,A,F)-tester.

Proof. We have

aTAa =
n∑
i=1

n∑
j=1

Ai,jaiaj

=
n∑
i=1

n∑
j=1

Ai,j

µ∑
k=1

γkλk(ai)λk(aj)

=

µ∑
k=1

γk

n∑
i=1

n∑
j=1

Ai,jλk(ai)λk(aj)

=

µ∑
k=1

γk · lk(a)TAlk(a).

26

Therefore if lk(a)TAlk(a) = 0 for all k = 1, . . . , µ then aTAa = 0 and L is
a (Q,A,F)-tester.

In Section 7 we show that symmetric multilinear algorithms for the mul-
tiplication of d elements in an |F|-algebra A exist if and only if either |F| ≥ d
or |F| < d and a|F| = a for all a ∈ A.

6 Simulators

In this section prove the results for simulators. We start with the proof of

Theorem 3. we have the following

1. Given a reducible symmetric multilinear algorithm for the multiplica-
tion of d elements in an F-algebra A with multilinear complexity ν one
can in polynomial time construct a polynomial time simulator for the
class of polynomials of degree d and A of simulation complexity ν.

In particular,
σPF (d,A) ≤ µrsF (d,A).

2. From any polynomial time simulator for the set of all multivariate
polynomials of degree d and an F-algebra A of simulation complexity
ν one can construct in polynomial time a symmetric multilinear algo-
rithm for the product of d elements in A of multilinear complexity ν.

In particular,
µsF(d,A) ≤ σPF (d,A).

Proof. We first prove 1. Let

a1a2 · · · ad =

µ∑
i=1

γi

d∏
j=1

λi(aj)

be a reducible symmetric multilinear algorithm for the multiplication of d
elements in the F-algebra A. Then λi(1A) = 1 for all i = 1, . . . , µ.

Now for any d′ ≤ d we have

a1a2 · · · ad′ = a1a2 · · · ad′1A
d−d′· · · 1A

=

µ∑
i=1

γi

d′∏
j=1

λi(aj)

d∏
j=d′+1

λi(1A)

=

µ∑
i=1

γi

d′∏
j=1

λi(aj).

27

Therefore for any monomial M of degree at most d and any a ∈ An we have

M(a1, . . . , an) =

µ∑
i=1

γiM(λi(a1), . . . , λi(an)).

Let f =
∑t

j=1 βjMj ∈ F[x1, . . . , xn] be any multivariate polynomial of de-
gree at most d where each Mi is a monomial of degree at most d and βj ∈ F
for j = 1, . . . , t. Then

f(a1, . . . , an) =
t∑

j=1

βjMj(a1, . . . , an)

=
t∑

j=1

βj

µ∑
i=1

γiMj(λi(a1), . . . , λi(an))

=

µ∑
i=1

γi

t∑
j=1

βjMj(λi(a1), . . . , λi(an))

=

µ∑
i=1

γif(λi(a1), . . . , λi(an)) (12)

Now the simulator for multivariate polynomials of degree d andA runs as fol-
lows: For a ∈ An, it generates the assignments λi(a) := (λi(a1), . . . , λi(an)) ∈
Fn and asks the assignment queries λi(a) for i = 1, 2, . . . , µ. Then from
f(λi(a)) finds f(a) with (12).

We now prove 2 in Theorem 3. Let S be a simulator algorithm for the
set of all polynomials of degree d and A. Suppose for a ∈ An the algorithm
generates a1, . . . ,aµ ∈ Fn. If f(a) 6= 0 and f(ai) = 0 for all i then the
algorithm cannot know the value of f(a). This is because the zero function
z also satisfies z(ai) = 0 for all i and z(a) = 0 6= f(a). Therefore, if
f(a) 6= 0 then one of the values f(ai) is not equal to zero. This shows that
the simulator is a tester for the class of multivariate polynomials of degree
d and A. Now by Theorem 2 the result follows.

We now prove

Theorem 4. we have the following

1. Given a symmetric multilinear algorithm for the multiplication of d+1
elements in an F-algebra A with multilinear complexity ν one can in
polynomial time construct a reducible symmetric multilinear algorithm

28

for the multiplication of d elements in A with multilinear complexity ν.
In particular

µrsF (d,A) ≤ µsF(d+ 1,A)

and

1 ≤
σPF (d,A)

µsF(d,A)
≤
µsF(d+ 1,A)

µsF(d,A)
.

2. If |F| ≥ d + 1 then given a symmetric multilinear algorithm for the
multiplication of d elements in an F-algebra A with multilinear com-
plexity ν one can in polynomial time construct a reducible symmetric
multilinear algorithm for the multiplication of d elements in A with
multilinear complexity (d+ 1)ν. In particular, if |F| ≥ d+ 1 then

µrsF (d,A) ≤ (d+ 1) · µsF(d,A)− d · µrsF (d− 1,A)

and

1 ≤
σPF (d,A)

µsF(d,A)
≤ d+ 1.

3. If |F| =∞ (or large enough) then given a symmetric multilinear algo-
rithm for the multiplication of d elements in an F-algebra A with mul-
tilinear complexity ν one can in polynomial time construct a reducible
symmetric multilinear algorithm for the multiplication of d elements
in A with multilinear complexity ν. In particular, if |F| =∞ then

σPF (d,A) = µrsF (d,A) = µsF(d,A).

Proof. We first prove 1 in Theorem 4. Let

a1a2 · · · adad+1 =

µ∑
i=1

γi

d+1∏
j=1

λi(aj)

be a multilinear algorithm for the multiplication of d+ 1 elements in the F-
algebra A. Suppose without less of generality λi(1A) = 1 for i = 1, 2, . . . , µ′

29

and λi(1A) = 0 for i = µ′ + 1, . . . , µ. Then

a1a2 · · · ad = a1a2 · · · ad1A

=

µ∑
i=1

(γiλi(1A))
d∏
j=1

λi(aj)

=

µ′∑
i=1

(γiλi(1A))
d∏
j=1

λi(aj)

=

µ′∑
i=1

γi

d∏
j=1

λi(aj).

Since λi(1A) = 1 for i = 1, 2, . . . , µ′ the above is a reducible symmetric
multilinear algorithm for the multiplication of d elements in A of multilinear
complexity µ. This completes the proof.

We now prove 2 in Theorem 4. Suppose |F| ≥ d+ 1. Let

a1a2 · · · ad =

µ∑
i=1

γi

d∏
j=1

λi(aj)

be a multilinear algorithm for the multiplication of d elements in the F-
algebra A. Suppose without less of generality λi(1A) = 1 for i = 1, 2, . . . , µ′

and λi(1A) = 0 for i = µ′ + 1, . . . , µ. By the above argument

µ′ ≥ µrsF (d− 1,A).

Consider any linear map λ : A → F such that λ(1A) = 1. Let F =
{β1, . . . , βd+1} ⊆ F be a set of size d+1. Consider d+1 variables x, y1, . . . , yd
and the polynomial

Pr(x) =

d∏
i=1

(xλr(yi) + λ(yi))

where r = µ′ + 1, µ′ + 2, . . . , µ. Since Pr(x) is a polynomial of degree d in x
(with d+ 1 coefficient) the coefficient xd of Pr(x) (which is

∏d
i=1 λr(yi)) can

be computed by interpolation from {Pr(β)}β∈F . Therefore there are αj ∈ F,
j = 1, . . . , d such that

d∏
i=1

λr(yi) =
d+1∑
j=1

αj

d∏
i=1

(βjλr(yi) + λ(yi)) (13)

30

for r = µ′ + 1, . . . , µ. Notice also that βjλr(1A) + λ(1A) = 1.
We now replace the last µ−µ′ terms in the algorithm with the terms in

(13) and get a reducible symmetric multilinear algorithm of complexity

µ′ + (d+ 1)(µ− µ′) ≤ (d+ 1) · µsF(d,A)− d · µrsF (d− 1,A).

A slightly better bound can be obtain if we take

Pr(x) =

d∏
i=1

(xλr(yi) + λs(yi))

where s ≤ µ′. Then
∏d
i=1 λr(yi) and

∏d
i=1 λr(yi) can be computed from

{Pr(β)}β∈F using interpolation. This gives the bound

µ′ + (d+ 1)(µ− µ′)−min(µ′, µ− µ′) ≤

(d+1)·µsF(d,A)−d·µrsF (d−1,A)−min(µrsF (d−1,A) , µsF(d,A)−µrsF (d−1,A)).

We now prove 3 in Theorem 4. Let

a1a2 · · · ad =

µ∑
i=1

γi

d∏
j=1

λi(aj)

be a symmetric multilinear algorithm for the multiplication of d elements in
the F-algebra A. The idea of the proof is to find a unit (invertible) element
u ∈ A such that λi(u) 6= 0 for all i = 1, . . . , µ. Then

a1a2 · · · ad = u−d(ua1)(ua2) · · · (uad)

=

µ∑
i=1

(u−dγi)

d∏
j=1

λi(uaj)

=

µ∑
i=1

γ′i

d∏
j=1

λ′i(aj)

where γ′i = (λi(u)−1u)−dγi and λ′i(x) = λi(ux)/λi(u). Since λ′i(1A) =
λi(u1A)/λi(u) = 1 for all i the symmetric multilinear algorithm is reducible.

It remains to find a unit element u ∈ A such that λi(u) 6= 0 for all
i = 1, . . . , µ. We first show how to find an element (not necessary unit)
v ∈ A such that λi(v) 6= 0 for all i. Let ω1, . . . , ωt be a basis for A. Since λi

31

is not the zero function there is ji such that λi(ωji) 6= 0. Now suppose we
have an element β ∈ A such that λ1(β) 6= 0, . . . , λr−1(β) 6= 0 and λr(β) = 0.
Let δ 6∈ ∆ := {−λi(ωjr)/λi(β) | i = 1, . . . , r − 1}. Consider the element
β′ = δβ + ωjr . For i = 1, . . . , r − 1 we have λi(β

′) = δλi(β) + λi(ωjr) 6= 0
since δ 6∈ ∆. We also have λr(β

′) = δλr(β) + λr(ωjr) = λr(ωjr) 6= 0.
Repeating the above gives an element v ∈ A such that λi(v) 6= 0 for all
i = 1, . . . , µ.

Now consider the element u = δv + 1A such that

δ 6∈ ∆′ := {−λi(1A)/λi(v) | i = 1, . . . , µ}∪{−1/π | π is an eigenvalue of v}.

Then λi(u) = λi(δv + 1A) = δλi(v) + λi(1A) 6= 0 and u = δ(v + (1/δ)1A) is
unit because −1/δ is not an eigenvalue of v. This completes the proof.

7 Classification

In this section we give a classification of all algebras that have symmetric
multilinear algorithm, reducible symmetric multilinear algorithm and simu-
lators.

We first prove

Theorem 5. Let A be F-algebra. There is a symmetric multilinear algo-
rithm for the multiplication of d elements in A if and only if A is commu-
tative and one of the following conditions is true

1. |F| ≥ d

2. |F| < d and for every element a ∈ A, we have a|F| = a.

Proof. (⇒). Let

a1a2 · · · ad =

µ∑
i=1

γi

d∏
j=1

λi(aj) (14)

be a symmetric multilinear algorithm for the multiplication of d elements
in A. By (14) we have a1a2 = a1a21

d−2
A = a2a11

d−2
A = a2a1 and therefore

A is commutative algebra. Let |F| = q. We now show that when q < d
then aq = a for all the elements a ∈ A. Since λi(1A) ∈ {0, 1}, λi(a) ∈ F,

32

λi(a)q = λi(a) and q < d we have

aq = aq1d−qA =

µ∑
i=1

γiλi(a)qλi(1A)d−q

=

µ∑
i=1

γiλi(a)λi(1A)d−1 = a · 1d−1A = a.

(⇐). We now show that if A is commutative F-algebra and one of the
conditions is true then there is a symmetric multilinear algorithm for the
multiplication of d elements in A. We consider three cases
Case I. |F| ≥ d+ 1.

Let ω1, . . . , ωn be any basis for A over F. Consider the multivariate
polynomial

f =
d∏
i=1

(xi,1y1 + · · ·+ xi,nyn)

where xi,j and yj are distinct indeterminates. Let F ⊂ F be any set of size
d+ 1. For r = (r1, . . . , rn) ∈ [d]n, r1 + · · ·+ rn = d, let Ar ∈ F[{xi,j}i,j] be
the coefficient of yr11 y

r2
2 · · · yrnn in f . By Lemma 12 in the next subsection

we have

Ar ∈ SpanF

{
d∏
i=1

(xi,1z1 + · · ·+ xi,nzn)

∣∣∣∣∣ z ∈ Fn
}
.

Therefore
d∏
i=1

(xi,1ω1 + · · ·+ xi,nωn) =
∑

r∈[d]n
Arω

r1
1 · · ·ω

rn
n

∈ SpanA

{
d∏
i=1

(xi,1z1 + · · ·+ xi,nzn)

∣∣∣∣∣ z ∈ Fn
}
.

Thus, for each z ∈ Fn there is γz ∈ A such that

d∏
i=1

(xi,1ω1 + · · ·+ xi,nωn) =

∑
z∈Fn

γz

d∏
i=1

(xi,1z1 + · · ·+ xi,nzn). (15)

33

Now for any d elements ai = ai,1ω1 + · · · + ai,nωn ∈ A, i = 1, . . . , d and
ai,j ∈ F substituting xi,j = ai,j in (15) implies the result.
Case II. |F| = d.

In this case we consider the function

g =
d∏
i=1

(xi,1y1 + · · ·+ xi,nyn)−
n∑
k=1

(
d∏
i=1

xi,k

)
ydk.

Now the degree of each variable yi in g is at most d− 1 and by Lemma 12,
the interpolation of the coefficients of yr11 · · · yrnn in f where ri ≤ d−1 for all
i is possible with the d elements of the field. We now proceed as in case I
and get

d∏
i=1

(xi,1ω1 + · · ·+ xi,nωn)−
n∑
k=1

(
d∏
i=1

xi,k

)
ωdk =

∑
z∈Fn

γz

(
d∏
i=1

(xi,1z1 + · · ·+ xi,nzn)−
n∑
k=1

(
d∏
i=1

xi,k

)
zdk

)
.

Then
d∏
i=1

(xi,1ω1 + · · ·+ xi,nωn) =

∑
z∈Fn

γz

d∏
i=1

(xi,1z1 + · · ·+ xi,nzn)−
n∑
k=1

((∑
z∈Fn

γzz
d
k

)
+ ωdk

)(
d∏
i=1

xi,k

)
.

and as in Case I this gives a symmetric multilinear algorithm.
Case III. q := |F| < d and aq = a for all a ∈ A.

For integers r ≥ 0 and q ≥ 2 we denote by r mod0(q − 1) the integer
0 ≤ r′ ≤ q − 1 such that xr ≡ xr

′
mod xq − x. For an integer vectors

r = (r1, . . . , rn) we denote r mod0(q−1) = (r1 mod0(q−1), . . . , rn mod0(q−
1)). This is equivalent to say that the monomial yr11 · · · yrnn is equal to the

monomial y
r′1
1 · · · y

r′n
n in F[y]/(yq1 − y1, . . . , y

q
n − yn).

Let ω1, . . . , ωn be any basis for A over F. Consider the multivariate
polynomial

f =
d∏
i=1

(xi,1y1 + · · ·+ xi,nyn)

in F [x][y] where xi,j and yj are distinct indeterminates. For r = (r1, . . . , rn) ∈
{0, 1, . . . , q − 1}n let Ar ∈ F[{xi,j}i,j] be the sum of all the coefficients of

34

y
r′1
1 y

r′2
2 · · · y

r′n
n in f where r = r′ mod0(q − 1). By Lemma 13 in the next

subsection we have

Ar ∈ SpanF

{
d∏
i=1

(xi,1z1 + · · ·+ xi,nzn)

∣∣∣∣∣ z ∈ Fn
}
.

Since ωqi = ωi in A we have

d∏
i=1

(xi,1ω1 + · · ·+ xi,nωn) =
∑

r∈{0,1,...,q−1}n
Arω

r1
1 · · ·ω

rn
n

∈ SpanA

{
d∏
i=1

(xi,1z1 + · · ·+ xi,nzn)

∣∣∣∣∣ z ∈ Fn
}
.

Thus, there are γz ∈ A for each z ∈ Fn such that

d∏
i=1

(xi,1ω1 + · · ·+ xi,nωn) =

∑
z∈Fn

γz

d∏
i=1

(xi,1z1 + · · ·+ xi,nzn). (16)

Now for any d elements ai = ai,1ω1 + · · · + ai,nωn ∈ A, i = 1, . . . , d and
ai,j ∈ F substituting xi,j = ai,j in (16) implies the result.

The second result we prove in this section is

Theorem 6. Let A be an F-algebra. The following conditions are equivalent

1. There is a simulator algorithm for multivariate polynomials of degree d
and A.

2. A is commutative algebra and one of the following conditions is true

(a) |F| ≥ d+ 1

(b) |F| < d+ 1 and for every element a ∈ A we have a|F| = a.

3. There is a reducible symmetric multilinear algorithm for the multipli-
cation of d elements in A.

35

Proof. (1 ⇒ 2). In Theorem 3 we showed that from a simulator for the
set of all multivariate polynomials of degree d and an F-algebra A of sim-
ulation complexity ν one can construct a symmetric multilinear algorithm
for the product of d elements in A of multilinear complexity ν. Then from
Theorem 5 it follows that A is commutative algebra.

Consider the case where q := |F| < d+1 and let f(x1, . . . , xn) = xq1−x1.
Then f is of degree q ≤ d and for any a ∈ Fn we have f(a) = 0. If for
some a0 ∈ A we have aq0−a0 6= 0 then no simulator can distinguish between
f(a0, 0, . . . , 0) and z(a0, 0, . . . , 0) where z is the zero function. Therefore
when |F| < d+ 1 we must have aq = a for all a ∈ A.

(2 ⇒ 3). If either |F| ≥ d + 1 or |F| < d + 1 and a|F| = a for every
a ∈ A then by Theorem 5 there is a symmetric multilinear algorithm for the
multiplication of d + 1 elements in A. By Theorem 4 there is a reducible
symmetric multilinear algorithm for the multiplication of d elements in A.

(3⇒ 1) Follows from Theorem 3.

7.1 Interpolation

In this section we prove some results for interpolation of multivariate poly-
nomials that were used in previous sections

Lemma 12. (Folklore) Let f(x,y) ∈ F[x][y] be a multivariate polynomial
where x = (x1, x2, . . . , xn) and y = (y1, y2, . . . , ym), each yi is of degree at
most d in f and |F| ≥ d + 1. Let r = (r1, . . . , rm) and Mr = yr11 · · · yrmm
be any monomial where ri ≤ d for every i. Let Ar ∈ F[x1, . . . , xn] be the
coefficient of Mr in f . Let B = {β0, β1, . . . , βd} ⊆ F. Then

Ar ∈ SpanF{f(x, z1, . . . , zm) | zi ∈ {β0, . . . , βd}, i = 1, . . . ,m}.

Proof. Consider the Vandermonde matrix V (β0, . . . , βd) and its inverse U =
(ui,j)i,j∈{0,...,d} such that

d∑
j=0

ui,jβ
k
j = δi,k

where δi,k = 1 if i = k and δi,k = 0 otherwise. Then

Ar =
d∑

j1=0

· · ·
d∑

jm=0

ur1,j1 · · ·urm,jmf(x, βj1 , . . . , βjm)

and the result follows.

36

For integers r ≥ 0 and q ≥ 2 we denote r mod0(q−1) the integer 0 ≤ r′ ≤
q−1 such that xr ≡ xr′ mod xq−x. For an integer vectors r = (r1, . . . , rn)
we denote r mod0(q − 1) = (r1 mod0(q − 1), . . . , rn mod0(q − 1)). This
is equivalent to say that the monomial yr11 · · · yrnn is equal to the monomial

y
r′1
1 · · · y

r′n
n in F[y]/(yq1 − y1, . . . , y

q
n − yn).

Lemma 13. Let f(x,y) ∈ F[x][y] be a multivariate polynomial where x =
(x1, x2, . . . , xn) and y = (y1, y2, . . . , ym). Let r = (r1, . . . , rm) and Mr =
yr11 · · · yrmm be any monomial where ri < |F| for every i. Let Ar ∈ F[x1, . . . , xn]
be the sum of all the coefficients of Mr′ in f where r′ = r mod0(|F| − 1).
Then

Ar ∈ SpanF{f(x, z1, . . . , zm) | zi ∈ F}.

Proof. Consider the Vandermonde matrix V (β0, . . . , βq−1) where F = {β0, . . . ,
βq−1} and q = |F|. Consider its inverse U = (ui,j)i,j∈{0,1,...,q−1} such that

q−1∑
j=0

ui,jβ
k
j = δi,k.

Since αq = α for all α ∈ F we also have

q−1∑
j=0

ui,jβ
k
j =

q−1∑
j=0

ui,jβ
k mod0(q−1)
j = δi,k mod0(q−1)

for any non-negative integer k. Then

Ar =

q−1∑
j1=0

· · ·
q−1∑
jm=0

ur1,j1 · · ·urm,jmf(x, βj1 , . . . , βjm)

and the result follows.

8 Conclusion and Open Problems

In this paper we showed that testers for multilinear forms of degree d and
an F-algebra A are equivalent to multilinear algorithms of the product of d
elements in A. Testers are defined with the most general terms possible and
the fact that it is equivalent to a well structured algebraic problem will lead
to a better understanding of testers.

Such algorithms were extensively studied for d = 2. This research open
the way to further study of multilinear algorithms for d > 2 that might

37

contribute to many combinatoric problems. See [2] for many applications of
testers. For example, it is interesting to study the multilinear complexity of
the multiplication of d n× n-matrices.

Using the above we were able to show that for any q there is a polyno-
mial time construction of a bilinear algorithm for the multiplication of two
elements in Fqn with bilinear complexity µ = O(n). All previous multilinear
algorithms were nonconstructive. This solved the open problem in [1, 12, 4].
The constant in the O(n) is less than 24 and it interesting to close the gap
with the lower bound (2 + 1/(q − 1))n [7].

We then study testers for homogeneous multivariate polynomials. We
prove that testers for the class of all homogeneous multivariate polynomials
of degree d and A are equivalent to symmetric multilinear algorithm for
the multiplication of d elements in A. Symmetric testers were studied in
[11] for d = 2. It is shown that for field of characteristic greater than 2
every multilinear algorithm of multilinear complexity µ can be turned into
symmetric multilinear algorithm of multilinear complexity 2µ. This result
can be extended to any dimension d. For field of characteristic greater than
d every multilinear algorithm of multilinear complexity µ can be turned
into symmetric multilinear algorithm of multilinear complexity 2dµ. It is
interesting to find a better bound.

In Section 6 we study simulators and proved that a symmetric multilinear
algorithm for the multiplication of d + 1 elements in an F-algebra A with
multilinear complexity ν gives a simulator for the class of polynomials of
degree d and A of simulation complexity ν. Then we showed that from
any polynomial time simulator for the set of all multivariate polynomials of
degree d and an F-algebra A of simulation complexity ν one can construct
in polynomial time a symmetric multilinear algorithm for the product of
d elements in A of multilinear complexity ν. Assuming µsF(d+ 1,A) =
O(µsF(d,A)) which we believe is true, simulators and symmetric multilinear
algorithms are equivalent. It is interesting to solve this open problem.

References

[1] D. V. Chudnovsky, G. V. Chudnovsky: Algebraic complexities and al-
gebraic curves over finite fields. J. Complexity 4(4): 285-316 (1988)

[2] N. H. Bshouty. Testers and their Applications. Electronic Colloquium
on Computational Complexity (ECCC) 19: 11 (2012).

38

[3] P. Bürgisser, M. Clausen, M. A. Shokrollahi. Algebraic complexity the-
ory. vol. 315, Springer-Verlag, (1997).

[4] S. Ballet. An improvement of the construction of the D.V. and G.V.
Chudnovsky algorithm for multiplication in finite fields. Theor. Comput.
Sci. 352(1-3): 293-305 (2006).

[5] S. Ballet and R. Rolland. On the Bilinear Complexity of the Multipli-
cation in finite fields. Seminaires and Congres, 11, p. 179-188, (2005).

[6] H. F. de Groote. Lectures on the Complexity of Bilinear Problems.
Springer, Feb 23, (1987).

[7] A. Lempel, G. Seroussi and S. Winograd. On the Complexity of Multi-
plication in Finite Fields. Theor. Comput. Sci. 22: 285-296 (1983).

[8] V. Pan. How to multiply matrices faster?. Springer-Verlag, (1984).

[9] R. S. Pierce. Associative Algebras. Graduate texts in mathematics.
Springer-Verlag. 88. (1982).

[10] H. Randriambololona. Bilinear complexity of algebras and the
Chudnovsky-Chudnovsky interpolation method. arXiv:1107.0336v5,
(2011). Journal of Complexity Volume 28, Issue 4,, pp. 489-517, (2012).

[11] G. Seroussi, A. Lempel. On Symmetric Algorithms for Bilinear Forms
over Finite Fields. J. Algorithms 5(3): 327-344 (1984)

[12] I. Shparlinski, M. Tsfasman and S. Vladut. Curves with many points
and multiplication in finite fields, in Coding theory and algebraic geom-
etry (H. Stichtenoth and M. Tsfasrnan, eds.), Lect. Sotes in Math., vol.
1518, Springer-Verlag,, p. 145-169, (1992).

39

ECCC ISSN 1433-8092

http://eccc.hpi-web.de

