
The Algebraic Theory of Parikh Automata
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Abstract. The Parikh automaton model equips a finite automaton with
integer registers and imposes a semilinear constraint on the set of their fi-
nal settings. Here the theory of typed monoids is used to characterize the
language classes that arise algebraically. Complexity bounds are derived,
such as containment of the unambiguous Parikh automata languages in
NC1. Noting that DetAPA languages are positive supports of rational
Z-series, DetAPA are further shown stronger than Parikh automata on
unary langages. This suggests unary DetAPA languages as candidates
for separating the two better known variants of uniform NC1.

Introduction

The Parikh automaton model was introduced in [1]. It amounts to a nonde-
terministic finite automaton equipped with registers tallying up the number of
occurrences of each transition along an accepting run. Such a run is then deemed
successful iff the tuple of final register settings falls within a fixed semilinear set.
An affine variant of the model in which transitions further induce an affine
transformation on the registers was considered in [2]. An unambiguous variant
of the model was considered in [3]. Tree Parikh automata and other variants
were considered in [4].

Recall the tight connection between AC0, ACC0 and NC1 and aperiodic
monoids, solvable monoids and nonsolvable monoids respectively [5,6]. This con-
nection was refined and studied in depth (see [7] for a lovely account), but the
class TC0 ⊆ NC1 was left out of the picture because the MAJ gate in circuits
could not be translated into the operation of a finite algebraic structure. Typed
monoids were introduced in [8] as a means of capturing TC0 meaningfully in the
algebraic framework.

In both the classical and the typed monoid framework, a compelling notion
of a natural class of monoids is that of a variety. In both frameworks, different
monoid varieties capture different classes of languages as inverse homomorphic
images of an accepting subset of the monoid [9,10]. The internal structure of
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NC1 hinges on whether different monoid varieties still capture different classes
of languages when the classical notion of a homomorphism is appropriately gen-
eralized to capture as above complexity classes such as ACC0, TC0 and NC1.

Our contribution is an algebraic characterization of the language classes de-
fined by the deterministic and unambiguous variants of the Parikh automaton
(called CA, for “constrained automaton”) and the affine Parikh automaton. We
show:

– the class LDetCA of languages accepted by deterministic CA is the set of
languages recognized by typed monoids from Z+ oM, i.e., by wreath products
of the monoid of integers with some finite monoid; the least typed monoid
variety generated by Z+ oM also captures LDetCA

– the class LUnCA of languages accepted by unambiguous CA is the set of
languages recognized by typed monoids from Z+�M, i.e., by block products
of the monoid of integers with some finite monoid; the least typed monoid
variety generated by Z+�M also captures LUnCA

– the classes LDetAPA and LUnAPA, of languages accepted by deterministic
and by unambiguous affine Parikh automata respectively (where an affine
Parikh generalizes the constrained automaton by allowing each transition
to perform an affine transformation on the automaton registers), are the
Boolean closure of the positive supports of rational series over the integers.

The first two characterizations above add legitimacy to the theory of typed
monoids, and they suggest further relevance of that theory to our understanding
of NC1. It follows from the characterization of LUnCA that LUnCA ⊆ NC1, a
fact which is not immediately obvious from the operation of an unambiguous
constrained automaton.

The Boolean closure of the class of positive supports of rational series over
the integers, hence LDetAPA = LUnAPA, can be viewed as a very tightly uniform
version of the (DLOGTIME-uniform) class PNC1, introduced in [11] as the log
depth analog of the poly time and log space classes PP and PL [12]. Fulfilling
NC1 ⊆ PNC1 ⊆ L, PNC1 is robust, pointedly characterized using iterated prod-
ucts of constant dimension integer matrices, but also characterized using paths in
bounded width graphs, proof trees in log depth circuits, accepting paths in non-
deterministic finite automata or evaluation of a log depth {+,×}-formula [11].
An elaborate structural complexity evolved around PNC1 with the work of [13].
We note that using formal power series as a tool to investigate counting classes
below L was already suggested in [14], but with emphasis there on the com-
plexity of performing operations such as inversion and root extraction on such
series.

1 Preliminaries

Integers, vectors, monoids We write N, Z, Z+, Z−0 for the sets of nonnegative
integers, integers, positive integers, and nonpositive integers respectively. Vectors
in Nd are noted in bold, e.g., v whose elements are v1, v2, . . . , vd. We write



ei ∈ {0, 1}d for the vector having a 1 only in position i and 0 for the all-zero
vector. We view Nd as the additive monoid (Nd,+), with + the component-wise
addition and 0 the identity element. We let MZ(k), for k ≥ 1, be the monoid
of square matrices of dimension k × k with values in Z and with the operation
being the inverted matrix multiplication. We write Ψi for the projection on the
i-th component.

For a monoid M , we write eM for the identity element of M . For S ⊆ M ,
we write S∗ for the monoid generated by S, i.e., the smallest submonoid of M
containing S. A (monoid) morphism from (M, ·) to (N, ◦) is a function h : M →
N such that h(m1 ·m2) = h(m1)◦h(m2), and h(eM ) = eN . Moreover, if M = S∗

for some finite set of symbols S (and this will always be the case), then h need
only be defined on the elements of S. In this case, h is said to be erasing if there
is an s ∈ S such that h(s) = eN . If in addition N = T∗ for some finite set of
symbols T, h is said to be length-preserving if for all s ∈ S, h(s) ∈ T. Also, note
that a morphism h : {a, b}∗ →MZ(k) is such that h(ab) = h(b).h(a) with . the
usual matrix multiplication.

Semilinear sets, Parikh image A subset C of Nd is linear if there exist c ∈ Nd
and a finite P ⊆ Nd such that C = c+P ∗. The subset C is said to be semilinear
if it is equal to a finite union of linear sets: {4n + 56 | n > 0} is semilinear
while {2n | n > 0} is not. We will often use the fact that the semilinear sets are
those sets of natural numbers definable in first-order logic with addition [15].
Let Σ = {a1, a2, . . . , an} be an (ordered) alphabet with ε the empty word.
The Parikh image is the morphism Pkh : Σ∗ → Nn defined by Pkh(ai) = ei,
for 1 ≤ i ≤ n — in particular, we have that Pkh(ε) = 0. For w ∈ Σ∗, with
Pkh(w) = x and a ∈ Σ, we write |w|a for xa. The Parikh image of a language
L is defined as Pkh(L) = {Pkh(w) | w ∈ L}. The name of this morphism stems
from Parikh’s theorem [16], stating that for L context-free, Pkh(L) is semilinear.

Affine Functions A function f : Nd → Nd is a (total and positive) affine function
of dimension d if there exist a matrix M ∈ Nd×d and v ∈ Nd such that for any
x ∈ Nd, f(x) = M.x+v. We abusively write f = (M,v). We let Fd be the monoid
of such functions under the operation � defined by (f�g)(x) = g(f(x)), where the
identity element is the identity function, i.e., (Id ,0) with Id the identity matrix
of dimension d. Let U be a monoid morphism from Σ∗ to Fd. For w ∈ Σ∗,
we write Uw for U(w), so that the application of U(w) to a vector v is written
Uw(v), and Uε is the identity function.

Automata An automaton is a quintuple A = (Q,Σ, δ, q0, F ) where Q is a finite
set of states, Σ is an alphabet, δ ⊆ Q×Σ×Q is a set of transitions, q0 ∈ Q is the
initial state, and F ⊆ Q is a set of final states. For a transition t = (q, a, q′) ∈
δ, we write t = q a q′ and define From(t) = q and To(t) = q′. We define
µA : δ∗ → Σ∗ as the length-preserving morphism given by µA(t) = a, with, in
particular, µA(ε) = ε, and write µ when A is clear from the context. The set
of accepting paths of A, i.e., the set of words over δ describing paths starting
from q0 and ending in F , is written Run(A). The language of the automaton is



L(A) = µA(Run(A)). An automaton is unambiguous if for all w ∈ L(A) there is
a unique π ∈ Run(A) with µ(π) = w.

A constrained automaton (CA) [2] is a pair (A,C) where A is an automaton
with d transitions and C ⊆ Nd is semilinear. Its language is L(A,C) = µA({π ∈
Run(A) | Pkh(π) ∈ C}). The CA is said to be deterministic (DetCA) if A is
deterministic, and unambiguous (UnCA) if A is unambiguous. We write LCA,
LDetCA, and LUnCA for the classes of languages recognized by CA, DetCA, and
UnCA, respectively.

An affine Parikh automaton (APA) of dimension d is a triple (A,U,C) where
A is an automaton with transition set δ, U : δ∗ → Fd is a morphism, and C ⊆ Nd
is semilinear. Its language is L(A,U,C) = µA({π ∈ Run(A) | Uπ(0) ∈ C}). The
APA is said to be deterministic (DetAPA) if A is deterministic, and unambiguous
(UnAPA) if A is unambiguous. We write LAPA, LDetAPA, and LUnAPA for the
classes of languages recognized by APA, DetAPA, and UnAPA, respectively.

Transition monoid Let A = (Q,Σ, δ, q0, F ) be a complete deterministic automa-
ton. For a ∈ Σ, define fa : Q → Q by fa(q) = q′ iff q a q′ ∈ δ. The transition
monoid M of A is the closure under composition of the set {fa | a ∈ Σ}. The
monoid M acts on Q naturally by qm = m(q), m ∈M , q ∈ Q. Write η : Σ∗ →M
for the canonical surjective morphism associated, that is, the morphism defined
by η(a) = fa, a ∈ Σ. Then qη(w) is the state reached by reading w ∈ Σ∗ from
the state q ∈ Q.

2 Normal forms of CA and APA

We present several technical lemmata on CA and APA, that will help us in
devising concise proofs for the algebraic characterizations that follow. Their main
purpose is to simplify the constraint set, so that only sign checks on linear
combinations of variables are performed.

Recall (e.g., [17]) that for any semilinear set C ⊆ Zd, there is a Boolean
combination of expressions of the form:

∑
1≤i≤d αixi > c and

∑
1≤i≤d αixi ≡p c,

with αi, c ∈ Z and p > 1, which is true iff (x1, x2, . . . , xd) ∈ C. Note that the αi
may be zero. We define two notions which refine this point of view:

Definition 1. We say that a semilinear set C is modulo-free if it can be ex-
pressed as a Boolean combination of expressions of the form

∑
i αixi > c, for

αi ∈ Z. We say that C is basic if it can further be expressed as a positive Boolean
combination of expressions of the form

∑
i αixi > 0.

The first normal form concerns DetCA and UnCA:

Lemma 1. Every DetCA (resp. UnCA) has the same language L ⊆ Σ+ as
another DetCA (resp. UnCA) (A,C) with L(A) = Σ∗ and C a basic set.

We also note the following simple fact:



Lemma 2. For (A,C1 ∩ C2) a DetCA or an UnCA it holds that:

L(A,C1 ∩ C2) = L(A,C1) ∩ L(A,C2) .

The same holds for ∪.

We show more in the context of APA to allow the forthcoming proofs of
characterization to translate smoothly from CA to APA. In the following, we
consider that a matrix M ∈ MZ(k) is in a set C ⊆ Zk2 if the vector consisting
of the columns of M is in C.

Lemma 3. Let L ⊆ Σ+ be in LDetAPA. There is a morphism h : Σ∗ →MZ(k),

for some k, and a set Z ⊆ Zk2 expressible as a Boolean combination of expres-
sions xi > 0, such that L = h−1(Z).

Similarly, let L ⊆ Σ+ be in LAPA (resp. in LUnAPA). There is an automaton
(resp. unambiguous automaton) A with transition set δ, a morphism h : δ∗ →
MZ(k), for some k, and a set Z ⊆ Zk2 expressible as a Boolean combination of
expressions xi > 0, such that L = µA(h−1(Z) ∩ Run(A)).

3 Capturing Parikh automata classes algebraically

3.1 Typed monoids

In this section we characterize DetCA, UnCA, DetAPA, and UnAPA using the
theory of (finitely) typed monoids [8].

Definition 2 (Typed monoid [8]). A typed monoid is a pair (S,S) where
S is a finitely generated monoid and S is a finite Boolean algebra of subsets of
S whose elements are called types. We write (S, {S1,S2, . . . ,Sn}) for the typed
monoid (S,S) where S is generated by the Si’s. If n = 1, we simply write
(S,S1). For two typed monoids (M,M), (N,N), their direct product (S,S) =
(M,M)×(N,N) is defined by S = M×N , and S is the Boolean algebra generated
by {M×N | M ∈M ∧ N ∈ N}. A typed monoid (S,S) recognizes a language
L if there are a morphism h : Σ∗ → S and a type S ∈ S such that L = h−1(S).
We write L((S,S)) for the class of languages, over any alphabet, recognized by
(S,S) and extend this notation naturally to classes of typed monoids.

We view a finite monoid M as the typed monoid (M, 2M ), and write M
for the class of typed finite monoids; note that the usual notion of language
recognition then coincides with the one given here.

We use the vocabulary of [10] related to typed monoids and recall the main
notions in the appendix for completeness.

The appropriateness of typed monoids in the study of the algebraic properties
of nonregular languages is witnessed by the following Eilenberg-like theorem of
Behle, Krebs, and Reifferscheid:



Theorem 1 ([10]). Varieties of typed monoids and varieties of languages are
in a one-to-one correspondence, i.e., (1) Let V be a variety of languages and V
the smallest variety of typed monoids that recognizes all languages in V, then
L(V) = V; (2) Let V be a variety of typed monoids and W be the smallest
variety that recognizes all languages of L(V), then V = W.

Similar to the untyped algebraic theory of languages, if a typed monoid recog-
nizes a language, it also recognizes its complement. This implies that LCA, which
is not closed under complement, does not accept a typed monoid characteriza-
tion. We will thus focus on characterizing the deterministic and unambiguous
classes. Note that we will frequently focus on languages which do not contain
the empty word. This is a technical simplification which introduces no loss of
generality, as all our typed monoid classes recognize {ε} and are closed under
union.

3.2 Capturing DetCA and UnCA

Let Z+ be the set of typed monoids {(Z,Z+)k | k ≥ 1}.
Theorem 2. L(Z+ oM) = LDetCA, where o denotes the wreath product.

Proof. (LDetCA ⊆ L(Z+ oM)) We first show that L(Z+ oM) is closed under
union and intersection. Let L1, L2 ∈ L(Z+ oM) be two languages over Σ, that is,
for i = 1, 2, there exist a finite monoid Mi, an integer ki, a morphism hi : Σ

∗ →
Zki oMi, and a type Ti of (Z,Z+)ki such that Li = h−1i (Ti).

Consider the typed monoid (Z,Z+)k1+k2 o (M1×M2) ∈ Z+ oM. This monoid
recognizes both the intersection and union of L1 and L2 as follows. Define
h : Σ∗ → Zk1+k2 o (M1×M2) by h(a) = (fa, (Ψ2(h1(a)), Ψ2(h2(a)))) where a ∈ Σ
and fa((m1,m2)) = ([Ψ1(h1(a))](m1), [Ψ1(h2(a))](m2)) ∈ Zk1+k2 . This function
is type-respecting. Now let � ∈ {∪,∩}. We define T� = (T1×Zk2)� (Zk1 ×T2),
and thus h−1(T�) = L1 � L2.

Now let (A,C) be a DetCA with A = (Q,Σ, δ, q0, F ), and suppose (by
Lemma 1) that F = Q and that the constraint set is expressed by a positive
Boolean combination of clauses of the form

∑
t∈δ αtxt > 0. Closure of L(Z+ oM)

under ∪ and ∩ together with Lemma 2 imply that it is enough to argue the case
in which C is defined by a single such clause.

Let M be the transition monoid of A, η : Σ∗ → M the canonical morphism
associated, and for m ∈ M , write qm for the action of m on q (i.e., qη(w) is the
state reached reading w from the state q in A). We now define h : Σ∗ → Z oM
as follows. Let τ : M ×Σ → δ be defined by τ(m, a) = qm0 a q

mη(a)
0 . Then:

h(a) = (fa, η(a)), where fa(m) = ατ(m,a) .

Now for w = w1w2 · · ·wn ∈ Σ∗ and π = π1π2 · · ·πn the unique accepting path
in A from q0 labeled w, we have:

h(w) = (fw1 + η(w1) · fw2 + · · ·+ η(w1w2 · · ·wn−1) · fwn , η(w))

[Ψ1(h(w))](η(ε)) = ατ(η(ε),w1) +

n∑
i=2

ατ(η(w1···wi−1),wi) ,



note that q
η(w1···wi−1)
0 is From(πi−1) and thus τ(η(w1 · · ·wi−1), wi) = πi, hence:

[Ψ1(h(w))](η(ε)) =

n∑
i=1

απi =
∑
t∈δ

|π|t × αt .

Thus, Pkh(π) ∈ C iff [Ψ1(h(w))](η(ε)) > 0. Hence with the type T = {(f,m) ∈
(Z,Z+) oM | f(η(ε)) > 0}, which is indeed a type of (Z,Z+) oM , we have that
h−1(T ) = L(A,C).

(L(Z+ oM) ⊆ LDetCA) Let L ⊆ Σ∗ be recognized by (Z,Z+)k oM using
a type T and a morphism h : Σ∗ → (Zk)M × M , and write for convenience
hi(w) = Ψi(h(w)), i = 1, 2. Let A be the automaton (M,Σ, δ, eM ,M), where:

δ = {m a m′ | m ∈M ∧ a ∈ Σ ∧m′ = m.h2(a)} .

Now as LDetCA is closed under union and intersection, we may suppose that the
type T is of the following form:

T =

k∏
i=1

{(f,m) | f(eM ) ∈ Ti} ,

where each Ti ∈ {∅,Z−0 ,Z+,Z}. Define T = T1×T2×· · ·×Tk, and the semilinear
set C consisting of elements:

(xt1 , xt2 , . . . , xt|δ|) s.t.
∑
t∈δ

xt × [h1(µ(t))](From(t)) ∈ T .

We claim that the language of the DetCA (A,C) is L. Let w = w1w2 · · ·wn ∈ Σ∗.
There is an (accepting) path in A labeled w going through the states eM =
h2(ε), h2(w1), h2(w1w2), . . . , h2(w1w2 · · ·wn). Thus the sum computed by the
semilinear set is h1(w1) +h2(w1) ·h1(w2) + · · ·+h2(w1w2 · · ·wn) ·h1(wn), taken
at the point eM . This is precisely [h1(w)](eM ), and thus checking whether it
belongs to T is equivalent to checking whether h(w) ∈ T . Hence L = L(A,C).

ut

Now LDetCA is a variety of languages and we may naturally ask whether
the smallest variety containing Z+ oM, which recognizes only the languages of
LDetCA by Theorem 1, is closed under iterated wreath product. We note this is
not the case. Let U1 = ({0, 1},×), then:

Theorem 3. There is a language L /∈ LCA recognized by3 U1 o (Z,Z+) and by
(Z,Z+) o (Z,Z+).

Theorem 4. L(Z+�M) = LUnCA, where � denotes the block product.

3 The wreath product of two infinite monoids is ill-defined; however Theorem 3 stays
true with an adequate definition mimicking that of [8].



Proof. (LUnCA ⊆ L(Z+�M)) We first note that L(Z+�M) is closed under
union and intersection; this is the same proof as in Theorem 2 except that fa is
now defined as:

fa((m1,m2), (m′1,m
′
2)) = ([Ψ1(h1(a))](m1,m

′
1), [Ψ1(h2(a))](m2,m

′
2)) .

Next consider an UnCA (A,C) with A = (Q,Σ, δ, q0, F ), and suppose (using
Lemma 1) that L(A) = Σ∗ and that the constraint set is expressed by a positive
Boolean combination of clauses of the form

∑
t∈δ αtxt > 0. Closure of L(Z+�M)

under ∪ and ∩ together with Lemma 2 imply that it is enough to argue the case
in which C is defined by a single such clause.

Let M be the transition monoid of the deterministic version of A, obtained
using the powerset construction. Let A′ be defined as A with all transitions
inverted (i.e., p a q is in A iff q a p is in A′). Let M ′ be the transition monoid
of the deterministic version of A′, using again the powerset construction, and let
M c be the monoid defined on the same elements as M ′ but with the operation
reversed (i.e., m1 ◦M ′ m2 in M ′ is m2 ◦Mc m1 in M c; this is still a monoid as
◦Mc is still associative). We will show that L(A,C) is recognized by (S,S) =
(Z,Z+)�(M ×M c).

Write η and ηc for the canonical morphisms associated with M and M c; for
m ∈M and R ⊆ Q, write Rm for the action of m on R, and likewise for M c. We
first note that for w ∈ Σ∗, {q0}η(w) is the set of states of A that can be reached
in A reading w from q0, and, likewise, that F η

c(w) is the set of states in A from
which reading w leads to a final state.

Now for m1 ∈ M , a ∈ Σ, and m2 ∈ M c, let τ(m1, a,m2) be the unique
transition in A from a state in {q0}m1 to a state in Fm2 labeled a. We show
that τ is well-defined. Let w1, w2 such that η(w1) = m1 and ηc(w2) = m2; this
means that there are w1-labeled paths in A from q0 to any state in {q0}m1 ,
and, likewise, w2-labeled paths in A from any state in Fm2 to a final state.
(Existence): as w1aw2 is in Σ∗ = L(A), there is a transition in A from a state
in {q0}m1 to a state in Fm2 labeled a. (Uniqueness): if two transitions p a p′

and q a q′ are such that p, q ∈ {q0}m1 and p′, q′ ∈ Fm2 , this means that there
are multiple accepting paths in A labeled w1aw2, contradicting the unambiguity
of A.

We now define h : Σ∗ → S by:

h(a) = (fa, (η(a), ηc(a))), where

fa((m1,m2), (m′1,m
′
2)) = ατ(m1,a,m′2)

.

Now let w = w1w2 · · ·wi ∈ Σ∗ and π be the unique path in A from q0 to a final
state labeled w. Then:

π = π1π2 · · ·πn where

πi = τ(η(w1w2 · · ·wi−1), wi, η
c(wi+1wi+2 · · ·wn)) ,

and thus:
[Ψ1(h(w))]((η(ε), ηc(ε))) =

∑
t∈δ

|π|t × αt .



Thus Pkh(π) ∈ C iff [Ψ1(h(w))]((η(ε), ηc(ε))) > 0. Hence with the type S =
{(f,m) ∈ S | f((η(ε), ηc(ε))) ∈ Z+}, which is indeed a type in S as Z+ is a type
of (Z,Z+), we have that h−1(S) = L(A,C).

(L(Z+�M) ⊆ LUnCA) Let L ⊆ Σ∗ be recognized by (Z,Z+)k�M using a
type T and a morphism h = (h1, h2) with h1 : Σ∗ → ZM×M and h2 : Σ∗ → M .
Let A(s1, s2) be the automaton (M ×M,Σ, δ, (s1, s2),M × {eM}) where:

δ ={(m1,m2) a (m′1,m
′
2) |

m′1 = m1.h2(a) ∧ h2(a).m′2 = m2 ∈M ∧ a ∈ Σ} .

Note that w ∈ L(A(s1, s2)) implies h2(w) = s2. We argue that A(s1, s2) is
unambiguous for any s1, s2 ∈ M . It is clear that if w = ε, every A(s1, s2) has
at most one accepting path labeled w. Now let w = a · v for v ∈ Σ∗. Suppose
w ∈ L(A(s1, s2)). This implies that h2(w) = s2. The states that can be reached
from (s1, h2(w)) reading a are all of the form (s1.h2(a),m), m ∈ M . Now v
should be accepted by the automaton A where the initial state is set to one of
these states; thus there is only one state fitting, (s1.h2(a), h2(v)). By induction
hypothesis, there is only one path in A(s1.h2(a), h2(v)) recognizing v, thus there
is only one path in A(s1, h2(w)) recognizing w. This shows that for any s1, s2,
A(s1, s2) is unambiguous.

Now, with e = (eM , eM ), and as LUnCA is closed under union and intersec-
tion, we may suppose that the type T is of the following form:

T =

k∏
i=1

{(f,m) | f(e, e) ∈ Ti} ,

where each Ti ∈ {∅,Z−0 ,Z+,Z}. Define T = T1×T2×· · ·×Tk, and the semilinear
set C consisting of elements:

(xt1 , xt2 , . . . , xt|δ|) s.t.
∑
t∈δ

xt × [h1(µ(t))](Ψ1(From(t)), Ψ2(To(t))) ∈ T .

We show that
⋃
m∈M L(A(eM ,m), C) is L. Let w = w1w2 · · ·wn ∈ Σ∗. There

is a unique accepting path in A(eM , h2(w)) (and in no other A(eM ,m)) labeled
w, and it is going successively through the states (h2(ε), h2(w)) = (eM , h2(w)),
(h2(w1), h2(w2 · · ·wn)), . . . , (h2(w), eM ) = (h2(w), h2(ε)). For this path, the
sum computed by the semilinear set is:

n∑
i=1

h2(w1 · · ·wi−1) · h1(wi) · h2(wi+1 · · ·wn) ,

at the point (eM , eM ). This is precisely [h1(w)](eM , eM ), and checking whether it
is in T amounts to checking whether h(w) ∈ T , thus L =

⋃
m∈M L(A(eM ,m), C).

ut

We derive an interesting property of the logical characterization and circuit
complexity of UnCA. Let MSO[<] be the monadic second-order logic with < as



the unique numerical predicate, and FO+G[<] be the first-order logic with group
quantifiers and < as the unique numerical predicate. Both logics express exactly
the regular languages (these are respectively the classical results of Büchi [18]
and Barrington, Immerman, Straubing [19]). Now define the extended majority

quantifier M̂aj, introduced in [20], as: w |= M̂aj x 〈ϕi〉i=1,...,m iff
∑|w|
x=1 |{i | w |=

ϕi(x)}| − |{i | w 2 ϕi(x)}| > 0. Then:

Corollary 1. A language is in LUnCA iff it can be expressed as a Boolean com-
bination of formulas of the form:

M̂aj x 〈ϕi〉i=1,...,m

where each ϕi is an MSO[<] formula or an FO+G[<] formula. Hence, LUnCA (
NC1.

Proof. We first show that the languages recognized by (Z,Z+) are those ex-

pressible as a formula of the form (or negation of) M̂aj x 〈QAix〉i=1,...,m where
Ai ⊆ Σ, and QAix is short for

∨
a∈Ai Qax.

Let L ∈ L((Z,Z+)), i.e., let h : Σ∗ → Z be a morphism and suppose L =
h−1(Z+) (if L = h−1(Z−0 ), then the negation of the formula we obtain here will
describe L). We suppose moreover, w.l.o.g., that each h(a), a ∈ Σ, is even. Now
let m be max{|h(a)| | a ∈ Σ} and define, for 1 ≤ i ≤ m:

Ai = {a ∈ Σ | m+ h(a) ≥ 2× i} .

Now let w ∈ Σ∗ be a word and 1 ≤ x ≤ |w|. Then it holds that:

h(wx) = |{i | wx ∈ Ai}|︸ ︷︷ ︸
(m+h(a))/2

− |{i | wx /∈ Ai}|︸ ︷︷ ︸
m−(m+h(a))/2

.

Thus for w ∈ Σ∗, h(w) > 0 iff w |= M̂aj x 〈QAix〉i=1,...,m, thus the language
expressed by this latter formula is h−1(Z+) = L.

Conversely, consider a formula M̂aj x 〈QAix〉i=1,...,m. Then let h : Σ∗ → Z
be the morphism defined by h(a) = |{i | a ∈ Ai}| − |{i | a /∈ Ai}|, for a ∈ Σ. We
have that for w ∈ Σ∗, h(w) > 0 iff the formula under consideration holds true,
implying that the language recognized by the formula is h−1(Z+).

It follows that the languages recognized by Z+ are the Boolean combinations
of languages expressible as such formulas. Now the languages (with one free vari-
able) recognized by finite monoids are those recognized by MSO[<] or FO+G[<]
formulas. Thus the block product principle [21, Theorem 3.40] implies that the
languages of LUnCA = L(Z+�M) are those expressible as Boolean combinations
of formulas of the form of the statement of the lemma. Similarly, the regular lan-
guages (with one free variable) are recognized by NC1 circuits, and a formula or

negation of a formula of the form M̂aj x 〈QAix〉i=1,...,m can be expressed by a
threshold circuit. Now [21, Lemma 4.29] implies that LUnCA ⊆ NC1. Strictness
is implied by Theorem 3. ut



3.3 Capturing DetAPA and UnAPA

Write Z+(k) for the type set of (Z,Z+)k, that is, the sets expressible as a Boolean
combination of expressions of the form xi > 0. Let ZMat+ be the set of typed
monoids {(MZ(k),Z+(k × k)) | k ≥ 1}, then:

Theorem 5. L(ZMat+) = LDetAPA.

Proof. (LDetAPA ⊆ L(ZMat+)) This is a direct consequence of Lemma 3.
(L(ZMat+) ⊆ LDetAPA) Given k ≥ 1, a type Z of (Z,Z+)k×k, and a

morphism h : Σ∗ → MZ(k), we build a two-state DetAPA of dimension k2 for
h−1(Z). First, let h′ : Σ∗ →MZ(k2) be such that h′(a) is the Kronecker product
of the identity matrix of dimension k and h(a). Define e = (e1, e2, . . . , ek) where
each ei is of dimension k. Then for any word w, h(w) ∈ Z iff h′(w).e ∈ Z. Now
let A = ({r, s}, Σ, δ, r, {s}), with δ = {r, s}×Σ×{s}. Then let U : δ∗ → Fk2 for

q ∈ {r, s}, a ∈ Σ, and x ∈ Zk2 be defined by:

Uq a s(x) =

{
h′(a).e if q = r,

h′(a).x otherwise.

This implies that for w ∈ Σ+ and π its unique accepting path in A, it holds that
Uπ(0) = h′(w).e. Thus L(A,U,Z) = h−1(Z). ut

Theorem 6. L(ZMat+�M) = LUnAPA.

Proof. LUnAPA ⊆ L(ZMat+�M) is the same as LUnCA ⊆ L(Z+�M) in Theo-
rem 4, thanks to Lemma 3.
L(ZMat+�M) ⊆ LUnAPA is the same as L(Z+�M) ⊆ LUnCA in Theorem 4

for the automaton part, and the same as Theorem 5 for the constraint set and
affine function parts. ut

Now, applying the same arguments as in [22, Lemma 5], we have that DetAPA
can simulate unambiguity, and thus LUnAPA = LDetAPA. This translates nicely
in the algebraic framework thanks to Theorem 1:

Theorem 7. The smallest variety containing ZMat+�M is equal to that con-
taining ZMat+.

4 Formal power series

In this section, we show that the languages of DetAPA are those expressible as a
Boolean combination of positive supports of Z-valued rational series. This helps
us derive a separation over the unary languages between LCA and LDetAPA —
the separation was known ([2, Proposition 28]), but not over unary languages.

Definition 3 (e.g., [23]). Functions from Σ∗ into Z are called (Z)-series. For
such a series r, it is customary to write (r, w) for r(w). We write supp+(r) for
the positive support of r, i.e., {w | (r, w) > 0}.



A linear representation of dimension k ≥ 1 is a triple (s, h,g) such that
s ∈ Zk is a row vector, g ∈ Zk is a column vector, and h : Σ∗ → (Zk×k, .) is
a monoid morphism, where . is the usual matrix multiplication. It defines the
series r = ||(s, h,g)|| with (r, w) = s.h(w).g.

A series is said to be rational if it is defined by a linear representation. We
write Zrat〈〈Σ∗〉〉 for the set of rational series.

For a class C of languages, write BC(C) for the Boolean closure of C. Argu-
ments similar to those used in proving Theorem 5 allow us to show:

Theorem 8. Over any alphabet Σ, LDetAPA = BC(supp+(Zrat〈〈Σ∗〉〉)).

Proof. (LDetAPA ⊆ BC(supp+(Zrat〈〈Σ∗〉〉))) First note that there is a rational
series r such that supp+(r) = {ε}. Let L be in LDetAPA; we may thus suppose
that ε /∈ L. By the same token as in the proof of Theorem 5, there is a morphism
h : Σ∗ → MZ(k), for some k, a vector v ∈ {0, 1}k, and a type Z of (Z,Z+)k

such that:
L = {w | h(w).v ∈ Z} .

Further, similar to Lemma 2, L(A,U,C1 � C2) = L(A,U,C1) � L(A,U,C2),
for � ∈ {∪,∩} and any DetAPA (A,U,C1 � C2). Moreover, L(A,U,C) =
L(A,U,C)∩L(A). We may thus suppose that Z is reduced to Zi−1×Z+×Zk−i
for some i.

Now let h′ be the morphism from Σ∗ to (Zk×k, .), with . the usual matrix

multiplication, where h′(a) = (h(a))
T

, with a ∈ Σ and MT the transpose of M .

Note that h(a1a2) = h(a2).h(a1) = ((h(a1))
T
.(h(a2))

T
)
T

, which is (h′(a1a2))
T

;

more generally, h(w) = (h′(w))
T

. Thus we have that vT.h′(w) = (h(w).v)
T

.
Hence with s = vT and g the column vector ei, s.h′(w).g > 0 iff h(w).v ∈ Z.

Now the triple (s, h′,g) is a linear representation of a rational series which
associates w to s.h′(w).g, and this concludes the proof.

(BC(supp+(Zrat〈〈Σ∗〉〉)) ⊆ LDetAPA) As LDetAPA is closed under union, com-
plement, and intersection, we need only show that supp+(Zrat〈〈Σ∗〉〉) ⊆ LDetAPA.

Let (s, h,g) be a linear representation of dimension k of a rational series r

over the alphabet Σ. Define h′ : Σ∗ → MZ(k) by letting h′(a) = (h(a))
T

, for

a ∈ Σ. Then for w ∈ Σ∗, h(w) = (h′(w))
T

. Now the rest of the proof is similar
to that of Theorem 5: define A = ({r, t}, Σ, δ, r, {r, t}), with δ = {r, t}×Σ×{t}.
Then let U : δ∗ → Fk for q ∈ {r, t}, a ∈ Σ, and x ∈ Zk, be defined by:

Uq a t(x) =

{
h′(a).s if q = r,

h′(a).x otherwise.

This implies that for w ∈ Σ∗ and π its unique accepting path in A, it holds that
Uπ(0) = s.h(w). Thus letting C = {x | x.g > 0}, with x a row vector and g a
column vector, we have that L(A,U,C) = supp+(r). ut

Remark 1. The class of positive supports of Z-rational series is the class of
Q-stochastic languages (see, e.g., [24]). As we are interested in showing that



LDetAPA is not closed under concatenation, it is worth noting that Q-stochastic
languages are not closed under concatenation. We mention three proofs of this
fact. Two proofs [25,24] show that Q-stochastic languages are not closed un-
der concatenation with a finite language; such a concatenation is expressible
as a finite union of Q-stochastic languages, and is thus not directly applica-
ble to our case. A third proof [26] shows that the Q-stochastic language L =
{ai#(a+#)∗#ai | i ∈ N} is such that L ·{a,#}∗ is not Q-stochastic. We conjec-
ture that L · {a,#}∗ is neither in LDetAPA, but the proof given in [26] does not
apply directly to our case. Finally, we note that the fact that unary Q-stochastic
languages are not closed under union [24] implies, as any regular language is
Q-stochastic, that there are nonregular unary languages in LDetAPA. We give a
simple proof of this latter fact:

Corollary 2. There is a nonregular unary language in LDetAPA.

Proof. For Σ = {a}, and a series r over Σ, write cn = (r, an).
Suppose the sign of cn depends only on the sign of sin(nx) for some real

number x. Suppose supp+(r) is regular, there is a set E = {k1 + t.k2 | t ∈ N},
with k1 ∈ N, k2 ∈ N+, such that for any e ∈ E, ce > 0. Now this means that
sin(k1x + t × k2x) should be positive for any t ∈ N. Let z ∈ N, then note that
for any real v:

sin(k1x+
v − k1x+ 2πz

k2x
× k2x) = sin(v) .

Thus, for any z ∈ N, any integer t in the range:]
−π − k1x+ 2πz

k2x
,
−k1x+ 2πz

k2x

[
,

is such that sin(k1x+ t× k2x) < 0.
Suppose moreover that x/π is irrational. We reach a contradiction by showing

that one such range contains an integer. Indeed, write A = 2π
k2x

, B = −π−k1x
k2x

,
and C = π

k2x
; we are searching for a z ∈ N such that there is an integer in

[z.A+B, z.A+B+C]. Now, as A is irrational, for any real interval [a, b] ⊆ [0, 1]
there is an integer z such that the fractional part of z.A is in [a, b] (see, e.g., [27,
Th. 3.2]). Thus we can find a z such that there is an integer t with the property
that z.A+B ∈ [t−C/2−C/4, t−C/2 +C/4]. This implies that z.A+B < t <
z.A+B + C, proving the claim.

Thus if cn depends only on the sign of sin(nx) for some irrational number x,
then supp+(r) is nonregular. We give an example of one such r. Recall that r is
rational iff the sequence of cn’s satisfies a linear recurrence relation [23]. Let r
be specified by the linear recurrence relation and initial values:

cn = 2× cn−1 − 5× cn−2, c0 = 0, c1 = 1 .

Then cn = 1
4 i((1− 2i)n− (1 + 2i)n) = 1

25n/2 sin(n tan−1(2)). Then x = tan−1(2)
is such that x/π is not a rational number: this is a consequence of Niven’s
theorem [28, Cor. 3.12], asserting that if x/π is rational, then the only rational
values of tan(x) are 0 and ±1. ut



Let #NC1 be the class of functions computed by DLOGTIME-uniform arith-
metic circuits of polynomial size and logarithmic depth and PNC1 be the class
of languages expressible as {w | f(w) > 0} for f ∈ #NC1 (see [11]). Note that
this class is included in L. As iterated matrix multiplication can be done in
#NC1 and PNC1 is closed under the Boolean operations, it is readily seen from
Theorem 8 that:

Corollary 3. LDetAPA ⊆ PNC1.

Conclusion

Connections between variants of the Parikh automaton and complexity classes
were investigated. In particular, natural characterizations of the language classes
defined by deterministic and unambiguous constrained automata, in the theory
of typed monoids, were obtained. We hope that these characterizations will sug-
gest refinements that may help to better understand classes such as PNC1 and
NC1.

We note in conclusion that the unary languages in LDetAPA, and indeed the
bounded languages in LDetAPA, can be shown to belong to the DLOGTIME-
DCL-uniform variant of NC1. Recall that the latter is not known to equal
what is commonly referred to as DLOGTIME-uniform NC1 (see [30, P. 162]), or
ALOGTIME. Yet we were unable to show that the unary languages in LDetAPA

belong to the latter. Do they?



Additional preliminaries and proofs

1 Preliminaries

We first present some key concepts of algebraic language theory.

Varieties We say that a monoid M divides a monoid N if M is the morphic
image of a submonoid of N . A class of languages is said to be a variety of
languages if it is closed under the Boolean operations, inverse morphisms, and
quotient by a word. A class of monoids is said to be a (pseudo)variety of monoids
if it is closed under division and direct products. Eilenberg’s theorem [9] states
that the varieties of regular languages and of finite monoids are in one-to-one
correspondence.

Bilateral semidirect product, wreath and block products Let M and N be finite
monoids. To distinguish the operation of M and N , we denote the operation of
M as + and its identity element as 0 (although this operation is not necessarily
commutative) and the operation of N implicitly and its identity element as 1. A
left action of N on M is a function mapping pairs (n,m) ∈ N ×M to nm ∈M
and satisfying n(m1 + m2) = nm1 + nm2, n1(n2m) = (n1n2)m, n0 = 0 and
1m = m. Right actions are defined symmetrically. If we have both a right and
a left action of N on M that further satisfy n1(mn2) = (n1m)n2, we define the
bilateral semidirect product M ∗∗ N as the monoid with elements in M × N
and multiplication defined as (m1, n1)(m2, n2) = (m1n2 + n1m2, n1n2). This
operation is associative and (0, 1) acts as an identity for it. Given only a left
action, the unilateral semidirect productM∗N is the bilateral semidirect product
M ∗∗N where the right action on M is trivial (mn = m).

Let M,N be two monoids. The wreath product of M and N , written M oN , is
defined as the unilateral semidirect product of MN and N , where the left action
of N on MN is given by (n · f)(n′) = f(n′n), for f : N →M and n, n′ ∈ N . The
block product of M and N , written M�N , is defined as the bilateral semidirect
product of MN×N and N , where the right (resp. left) action of N on MN×N

is given by (f · n)(n1, n2) = f(n1, nn2) (resp. (n · f)(n1, n2) = f(n1n, n2)), for
f : N ×N →M and n, n1, n2 ∈ N . Note the following property of multiplication
in the block product. Let M and N be monoids, and (fi, ni) ∈ M�N , i =
1, . . . , k:

k∏
i=1

(fi, ni) =

(
k∑
i=1

(n1 · · ·ni−1) · fi · (ni+1 · · ·nk), n1n2 · · ·nk

)
.

where the sum of two functions is their pointwise product over M . A similar
property holds for the wreath product, without the right action by (ni+1 · · ·nk).
Also, we define the wreath product (resp. block product) of two sets of monoids
in the natural way.

We now turn to the theory of typed monoids.



Definition 4 (Typed morphism [10]). Let (S,S), (T,T) be typed monoids.
A typed morphism h : (S,S) → (T,T) is a pair (hS , hS) with hS : S → T a
monoid morphism, hS : S→ T a morphism of Boolean algebras, and:

∀S ∈ S, hS(S) = hS(S) ∩ hS(S) .

This compatibility condition allows us to omit the indices of the morphisms. The
typed morphism is injective if both hS and hS are.

Definition 5 (Typed submonoids, varieties [10]). A typed monoid (T,T)
is a typed submonoid of (S,S) if T is a submonoid of S and there is an injective
morphism from (T,T) to (S,S). A typed monoid (T,T) divides a typed monoid
(S,S) if (T,T) is a morphic image of a typed submonoid of (S,S).

A variety of typed monoids is a class of typed monoids closed under di-
vision, direct product, and shifting, that is the operation mapping (S,S) to
(S, {λ−1Sρ−1 | S ∈ S}), for some λ, ρ ∈ S, where λ−1Sρ−1 = {s | λsρ ∈ S}.

The usual wreath product (resp. block product) of M and N , i.e., the unilat-
eral (resp. bilateral) semidirect product of MN (resp. MN×N ) and N , results,
in the infinite monoid case, in monoids with uncountably many elements, failing
to fall within the definition of typed monoid. Thus these products are restricted,
in [8], to type-respecting functions, that is, functions that only depend on the type
of their arguments (multiplied by some constants). Here, we are not concerned
with this technicality as all our monoids N will be finite. Hence we define:

Definition 6 (Block product [8]). Let (M,M), (N,N) be typed monoids. The
block product of (M,M) and (N,N), written (M,M)�(N,N), is (M�N,S)
with S = {SM | M ∈M} where:

SM = {(f, n) ∈ S | f(eN , eN ) ∈M} .

The primary focus of the theory of typed monoid was the algebraic char-
acterization of classes of circuit complexity, which are naturally closed under
reversal. We need a finer notion of product to characterize classes which are not
closed under reversal. In the classical untyped theory, the appropriate algebraic
construction for such classes relies on the wreath product, and we naturally derive
the following definition in the typed case:

Definition 7 (Wreath product). Let (M,M), (N,N) be typed monoids. The
wreath product of (M,M) and (N,N), written (M,M) o (N,N), is (M o N,S)
with S = {SM | M ∈M} where:

SM = {(f, n) ∈ S | f(eN ) ∈M} .

2 Normal forms of CA and APA

Lemma 4. If C ⊆ Zd is modulo-free, then for all 1 ≤ d′ < d there is a basic set
B ⊆ Zd such that for all x ∈ Zd′ and 1 ≤ i ≤ d− d′:

(x, ei) ∈ B ⇔ (x, ei) ∈ C .



Proof. Let C be expressed as a Boolean combination of expressions of the form∑
i αixi > c. Let the negations be pushed to the lowest level of the Boolean

combination, now:

¬

(∑
t

αtxt > c

)
∼
∑
i

αixi < c+ 1 ∼
∑
i

(−αi)xi > −(c+ 1) ,

thus we may suppose that C is a positive Boolean combination. Now replace each
expression

∑
i αixi > c by

∑
i α
′
ixi > c where α′i = αi if i ≤ d′ and α′i = αi − c

otherwise. Thus let x ∈ Zd′ × {ei | 1 ≤ i ≤ d− d′}. It holds that
∑
i αixi > c iff∑

i α
′
ixi > 0, thus the set resulting from the replacement is a basic set with the

property of the statement of the lemma. ut

Lemma 4. Every DetCA (resp. UnCA) has the same language L ⊆ Σ+ as
another DetCA (resp. UnCA) (A,C) with L(A) = Σ∗ and C a basic set.

Proof. Let (A,C) be a CA. Let C be expressed as a Boolean combination of ex-
pressions that use the relation symbols <, ≡p, function symbol +, and constants
from N. We first remove the ≡p relation symbols. Consider an expression in the
definition of C of the form

∑
t αt × xt ≡p c, for αt ∈ Z, where the sum ranges

over all transitions. Then define A′ to be p copies A0, A1, . . . , Ap−1 of A, the
initial state being that of A0, and the final states being the final states of all
the Ai’s. On taking a transition t of A in the copy Ai, the automaton A′ jumps
to the copy Ai+αt (mod p). Thus A′ ends its computation in the copy Ac iff the
numbers xt of times each transition t of A has been taken in any copy are such
that

∑
t αt × xt ≡p c. Now, given Pkh(π) for a path π, a basic set can check

in which state π ended (this is the only state entered more often than exited,
see, e.g., [3, Claim 1]), thus the expression under consideration can be replaced
by an expression checking whether the path ended in Ac. The other expressions
are simply adjusted to be oblivious to the copies. By induction, we may suppose
that C is thus defined without the relations ≡p, i.e., that C is modulo-free.

Thus let (A,C) be a CA with C modulo-free. We rely on Lemma 4 to turn C
into a basic set. Write A = (Q,Σ, δ, q0, F ), then define A′ = (Q∪{s}, Σ, δ′, s, F )
where s /∈ Q, δ′ = δ ∪ T with T = {s a q | q0 a q ∈ δ}. Order δ′ so that the
transitions of T appear last. Now define C ′ as being C where each expression∑
t∈δ αtxt > c is replaced by

∑
t∈δ′ αtxt > 0 where αt for t = s a q ∈ T is

αq0 a q. Clearly L(A,C) = L(A′, C ′). Now exactly one of the transitions in T will
be taken in a nonempty run in A′, thus L(A′, C ′) = L(A,C ′∩{ei | 1 ≤ i ≤ |T |}),
and by Lemma 4, there is a basic set B such that L(A′, C ′) = L(A′, B).

Note that all the operations made on the automaton part of the CA do not
change whether it is deterministic or unambiguous. We now make sure that the
language of the underlying automaton is Σ∗.

Let (A,C) be a DetCA with C basic. Following Karianto [4], we can set all
the states of A to be final if we tweak C to check that the ending state of the
path is final in A. This is equivalent to checking which state was entered more
often than exited, which is expressed, for a state q different from the initial state



as
∑
t∈q− xt −

∑
t∈q+ xt > 0, where q− (resp. q+) is the set of transitions going

to (resp. leaving) the state q. Thus the set K of Parikh images of accepting paths
in A is basic, and we can replace C by C ∩K, a basic set.

For the UnCA case, this is shown in [3, Proposition 1]. Note that the modi-
fication made to C (which is essentially to replace it with C×Z+) preserves the
fact that the constraint set is basic. ut

Lemma 4. For (A,C1 ∩ C2) a DetCA or an UnCA it holds that:

L(A,C1 ∩ C2) = L(A,C1) ∩ L(A,C2) .

The same holds for ∪.

Proof. For ∪, this is true of DetCA, UnCA, and CA. For ∩, the inclusion from
right to left holds for the three models; the converse inclusion only holds for
DetCA and UnCA. Let w ∈ L(A,C1)∩L(A,C2) for A a deterministic or unam-
biguous automaton. Then there is only one accepting path π in A with label w,
and thus Pkh(π) ∈ C1 ∩ C2, and in turn w ∈ L(A,C1 ∩ C2). ut

Lemma 4. Let L ⊆ Σ+ be in LDetAPA. There is a morphism h : Σ∗ →MZ(k),

for some k, and a set Z ⊆ Zk2 expressible as a Boolean combination of expres-
sions xi > 0, such that L = h−1(Z).

Similarly, let L ⊆ Σ+ be in LAPA (resp. in LUnAPA). There is an automaton
(resp. unambiguous automaton) A with transition set δ, a morphism h : δ∗ →
MZ(k), for some k, and a set Z ⊆ Zk2 expressible as a Boolean combination of
expressions xi > 0, such that L = µA(h−1(Z) ∩ Run(A)).

Proof. Using [2, Lemma 23], then [2, Remark 35], we obtain that for any L ⊆ Σ+

in LDetAPA, there is a morphism g : Σ∗ →MZ(n), for some n, a vector s ∈ Zk,
and a modulo-free set C such that:

L = {w | g(w).s ∈ C} .

Similarly, using [2, Lemma 24], then [2, Lemma 23], we obtain that for any
L ⊆ Σ+ in LAPA (resp. LUnAPA), there is an automaton (resp. unambiguous
automaton) A with transition set δ, a morphism g : δ∗ →MZ(n), for some n, a
vector s ∈ Zk, and a modulo-free set C such that:

L = µA({π ∈ Run(A) | g(π).s ∈ C}) .

The rest of this proof will focus on reaching the statement of the lemma for
DetAPA; the proof is identical for UnAPA and APA, as A is left unchanged.

We first show that we can turn C into a basic set using Lemma 4. Extend g
to a morphism g′ : Σ∗ →MZ(n+ 1) defined by:

g′(a) =

 0
g(a) ...

0 · · · 1

 ,



and let s′ be the vector (s, 1). Then for any nonempty path π in A, g′(π).s′ =
(g(π).s, 1). Moreover, by Lemma 4, there is a basic set B such that B∩Zn×{1} =
C × {1}. Thus g(π).s ∈ C iff g′(π).s′ ∈ B.

Thus we suppose that C is a basic set. We show that we can turn C into a
set of dimension n′ expressible as a Boolean combination of expressions xi > 0.
Suppose

∑
i αixi > 0 appears in the expression defining C. We extend g so that

this sum is computed by the matrices. For a ∈ Σ, write the lines of g(a) as
L1, L2, . . . , Ln. Then define g′ : Σ∗ →MZ(n+ 1) as the morphism mapping a ∈
Σ to the matrix consisting of lines (L1, 0), (L2, 0), . . . , (Ln, 0), (

∑
i≤n αiLi, 0).

This is such that, for w ∈ Σ∗, the last component of g(w).(s, 0) is indeed the
sum under consideration. Thus the formula

∑
i αixi > 0 can be replaced by

xn+1 > 0. Proceeding inductively results in a set C ⊆ Zn′ expressible as a
Boolean combination of expressions of the form xi > 0.

Thus we suppose that C is expressible as a Boolean combination of ex-
pressions xi > 0. We show that the product g(w).s can be computed within
the matrices. For a ∈ Σ, write the lines of g(a) as L1, L2, . . . , Ln, and define
h : Σ∗ → MZ(n + 1) as the morphism mapping a ∈ Σ to the matrix con-
sisting of lines (L1, L1.s), (L2, L2.s), . . . , (Ln, Ln.s),0. Then for w ∈ Σ+, we
have that h(w).en+1 = (g(w).s, 0). Thus let Z ⊆ Z(n+1)×(n+1) be defined as
Z = Zn×(n+1) × C × Z. Then g(w).s ∈ C iff h(w) ∈ Z, proving the lemma. ut

3 Capturing Parikh automata classes algebraically

Theorem 8. There is a language L /∈ LCA recognized by4 U1 o (Z,Z+) and by
(Z,Z+) o (Z,Z+).

Proof. We treat the case (Z,Z+) o (Z,Z+), this is similar for U1 o (Z,Z+). We
consider the language:

P1 = {w = w1w2 · · ·wk ∈ {<,=}∗ | (∀i)[|w1w2 · · ·wi|< ≥ |w1w2 · · ·wi|=]} ,

which is not in LCA [3, Proposition 5]. Define h : {<,=}∗ → Z o Z by:

h(<) = (f,−1)

h(=) = (f, 1)

f(n) =

{
0 if n ≤ 0 ,

1 otherwise.

Note that f is indeed type-respecting in the sense of [8], as its value depends
only on whether its argument is in the type Z+ of the typed monoid (Z,Z+).
Now h(w) = (f, |w|= − |w|<) and f(0) is zero or less iff for all i it holds that
|w1w2 · · ·wi|< ≥ |w1w2 · · ·wi|=. Thus:

P1 = h−1({(f, n) | f(0) ∈ Z−0 }) ,

4 The wreath product of two infinite monoids is ill-defined; however Theorem 3 stays
true with an adequate definition mimicking that of [8].



and hence P1 ∈ L((Z,Z+) o (Z,Z+)). ut

Remark 2. The characterization of LUnCA by means of block products allows for
an alternative algebra-based proof that LUnCA is closed under reversal (the proof
of [3, Proposition 3], is automata-based). Let L ∈ LUnCA, there is a finite monoid
M , an integer k, a type T of (Z,Z+)k�M , and a morphism h : Σ∗ → Zk�M
such that L = h−1(T ). Define M c as M where the operation is reversed, and
hc : Σ∗ → Zk�M c by:

hc(a) = (f ca, Ψ2(h(a))) where

f ca(m1,m2) = [Ψ1(h(a))](m2,m1) .

Then the reversal of L is (hc)−1(T ) and, as M c is also a finite monoid, it is in
L(Z+�M) = LUnCA.

Similarly:

Corollary 4. LDetAPA is closed under reversal.

Proof. For a matrix M , write MT for the transpose of M . We extend this nota-
tion to types in Z+(k) naturally. Let L ∈ L(ZMat+), there are h : Σ∗ →MZ(k)
and Z ∈ Z+(k × k) such that L = h−1(Z). Define h′ : Σ∗ → MZ(k) by

h′(a) = (h(a))
T

. Then for a word w, h(w) = (h′(wR))
T

, and thus h′(w) ∈ ZT

iff h(wR) ∈ Z, where wR is the reversal of w. Hence the reversal of L is
(h′)−1(ZT) ∈ L(ZMat+). ut
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6. D. A. M. Barrington and D. Thérien, “Finite monoids and the fine structure of
NC1,” Journal of the Association of Computing Machinery, vol. 35, pp. 941–952,
1988.

7. H. Straubing, Finite Automata, Formal Logic, and Circuit Complexity. Boston:
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