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Abstract

We prove explicit approximation hardness results for the Graphic TSP on cubic and
subcubic graphs as well as the new inapproximability bounds for the corresponding
instances of the (1,2)-TSP. The proof technique uses new modular constructions of
simulating gadgets for the restricted cubic and subcubic instances. The modular con-
structions used in the paper could be also of independent interest.

1 Introduction

We study the Traveling Salesman Problem in the shortest path metric completion (Graphic
TSP) of cubic as well as subcubic graphs. These two cases played a crucial role in some re-
cent developments on Graphic TSP (cf. [GLS05], [BSSS11a], [BSSS11b], [MS11], [M12]).
We shed some light on their inapproximability status and prove explicit approximation
hardness bounds of 1153/1152 for the cubic Graphic TSP and 685/684 for the subcubic
case.

We design new 3-regular gadget amplifier construction yielding the above bounds, and
establish also new inapproximability bounds for the cubic and subcubic instances of the
(1,2)-TSP of 1141/1140 and 673/672, respectively.

The inapproximability bounds for the (1,2)-TSP improve over the bounds of 1291/1290
and 787/786 claimed in [CKK02] (see also [EK06]). Our proof method in this paper
depends on improved amplifier construction and two transparent and direct reduction
stages, firstly proving approximation lower bounds for the cubic and subcubic instances of
the (1,2)-TSP, and then connecting it, in a special way, to the cubic and subcubic instances
of the Graphic TSP.

We call an instance of (1,2)-TSP cubic and subcubic if the graph induced by the all
weight 1 edges is cubic and subcubic, respectively.
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2 Organization of the Paper

The paper is organized as follows. In Section 3, we give some basic definitions. In Sec-
tion 4, we review some connections between the approximability of the Graphic TSP and
the (1,2)-TSP. In Section 5, we formulate our main results, whereas in Section 6, we de-
scribe the techniques used in our proofs. In Section 7, we introduce a bounded occurrence
Constraint Satisfaction problem called the Hybrid problem. In Section 8, we describe the
reduction given in [KS13] from the Hybrid problem to the (1,2)-TSP. In Section 9 and 10,
we introduce modular gadget constructions and prove explicit approximation hardness
bounds for the (1,2)-TSP in subcubic and cubic graphs, respectively. The inapproximabil-
ity results for the Graphic TSP in cubic and subcubic graphs are given in Section 11. In
Section 12, we summarize our results.

3 Preliminaries

Given an arbitrary connected undirected graph G = (V,E), we consider the shortest path
metric completion G′ and define the Graphic TSP problem for G as the standard TSP on
the metric instance G′. Equivalently, the Graphic TSP is the problem of finding a smallest
Eulerian spanning multi-subgraph of G. We are interested here in special cases of the
above problem for cubic (3-regular) and subcubic (maximum degree 3). Both cases are
known to be NP-hard in exact setting, as the Hamiltonian cycle problem is NP-hard for
the 3-regular graphs (cf. [GJT76]), it can be reduced to both (1,2)-TSP and Graphic TSP
on cubic graphs.

In order to describe a (1,2)-TSP instance, it is sufficient to specify the edges of weight
one. By constructing a graph G = (V,E), the distance of the vertices u and v is defined to
be 1 if {u, v} ∈ E and 2 otherwise. To compute the cost of a tour, it is enough to consider
the parts of the tour traversing edges of G. We call a vertex, in which the tour leaves or
enters G an endpoint. In addition, a vertex with the property that the tour both enters and
leaves G in that vertex is called double endpoint, and we count it as two endpoints. If n
is the number of vertices and 2 · p is the total number of endpoints, the cost of the tour is
n + p since every edge of weight two corresponds to two endpoints. On the other hand,
every tour with cost n+ p has exactly 2 · p endpoints.

4 Approximability

The Graphic TSP for cubic and subcubic graphs is of special interest because of its connec-
tion to the famous 4/3 conjecture on the integrality gap of the metric TSP (cf. [BSSS11a],
[BSSS11b]). Recently, the first polynomial time approximation algorithms with approx-
imation factor 4/3 for the above problem on cubic and subcubic graphs were designed
[BSSS11b] and [MS11]. There was also a remarkable progress on general Graphic TSP
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([OSS11] ,[MS11], [M12]) leading to the approximation factor 7/5, cf. Sebö and Vy-
gen [SV12].

The (1,2)-TSP can be viewed as a special case of the Graphic TSP. To see this, we
simply augment the subgraph induced by all weight 1 edges in an instance of the (1,2)-
TSP by a new vertex z and add all edges connecting the original vertices with that vertex
z. Thus, the explicit approximation lower bound of 535/534 for general (1,2)-TSP is also
the inapproximabiltity bound for the general Graphic TSP. It is also known that the factor
3/2 of Christofides’ algorithm [C76] for the general metric TSP is tight for the Graphic TSP
on cubic graphs. The best up to now approximation factor for (1,2)-TSP is 8/7 [BK06] (see
also [PY93]).

In this paper, we attack both cubic and subcubic (1,2)-TSP and Graphic TSP, and will
use inherent connections between that problems.

5 Main Results

We prove the following explicit inapproximability results.

Theorem 1. The Subcubic (1,2)-TSP is NP-hard to approximate to within any factor less
than 673/672.

Theorem 2. The Cubic (1,2)-TSP is NP-hard to approximate to within any factor less than
1141/1140.

For subcubic and cubic instances of the Graphic TSP, we prove the following.

Theorem 3. The Graphic TSP on subcubic graphs is NP-hard to approximate to within any
factor less than 685/684.

Theorem 4. The Graphic TSP on cubic graphs is NP-hard to approximate to within any
factor less than 1153/1152.

6 Techniques Used

The method and techniques of the paper use new modular constructions of simulating gad-
gets and are built upon some ideas of [KS12] and [KS13]. The underlying constructions
and their correctness arguments are presented in the subsequent sections.

7 Hybrid Problem

We start with defining the following Hybrid problem (cf. [BK99], see also and [BK03]).
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Definition 1 (Hybrid problem). Given a system of linear equations mod 2 containing n vari-
ables, m2 equations with exactly two variables, and m3 equations with exactly three variables,
find an assignment to the variables that satisfies as many equations as possible.

The following result is due to Berman and Karpinski [BK99].

Theorem 5 ([BK99]). For every constant ε ∈ (0, 1/2) and b ∈ {0, 1}, there exists instances of
the Hybrid problem IH with 42ν variables, 60ν equations with exactly two variables, and 2ν
equations of the form x ⊕ y ⊕ z = b such that: (i) Each variable occurs exactly three times.
(ii) It is NP-hard to decide whether there is an assignment to the variables that leaves at
most ε · ν equations unsatisfied, or else every assignment leaves at least (1 − ε)ν equations
unsatisfied. (iv) An assignment to the variables in IH can be transformed in polynomial time
into an assignment satisfying all 60ν equations with two variables without decreasing the
total number of satisfied equations in IH.

The instances of the Hybrid problem produced in Theorem 5 have an even more special
structure, which we are going to describe. For this, we are going to introduce the MAX-
E3LIN2 problem: Given a systems I of linear equations mod 2 with exactly 3 variables in
each equation, find an assignment that maximizes the number of satisfied equations in I.
For the MAX-E3LIN2 problem, Håstad [H01] gave an optimal inapproximability result
stated below.

Theorem 6 (Håstad [H01]). For every ε ∈ (0, 1/2), there exists a constant Bε and instances
of the MAX-E3LIN2 problem with 2 · ν equations such that:
(i) Each variable in the instance occurs at most Bε number of times.
(ii) It is NP-hard to distinguish whether there is an assignment satisfying all but at most ε · ν
equations, or every assignment leaves at least (1− ε)ν equations unsatisfied.

In the following, we describe briefly the reduction given in [BK99] from the MAX-E3LIN2
problem to the Hybrid problem and give the proof of Theorem 5. For this, let us first recall
some definitions (see also [BK03]).

Let G be a graph and X ⊂ V (G). We say that G is a d-regular amplifier for X if the
following two conditions hold:

(i) All vertices in X have degree (d− 1) and all vertices in V (G)\X have degree d.

(ii) For every non-empty subset U ⊂ V (G), we have the condition that

|E(U, V (G)\U)| ≥ min{|U ∩X|, |(V (G)\U) ∩X|},

where E(U, V (G)\U) = {e ∈ E(G) | |U ∩ e| = 1}.

We call X the set of contact vertices and V (G)\X the set of checker vertices. Amplifier
graphs are used for proving hardness of approximation for Constraint Satisfaction prob-
lems, in which every variable occurs a bounded number of times. Berman and Karpin-
ski [BK99] gave a probabilistic argument on the existence of 3-regular amplifiers. In par-
ticular, they constructed a very special amplifier graph, which they called wheel amplifier.
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A wheel amplifier W with 2n contact vertices is constructed as follows. We first create
a Hamiltonian cycle on 14n vertices with edge set C(W). Then, we number the vertices
1, 2, ..., 14n and select uniformly at random a perfect matching M(W) of the vertices whose
number is not a multiple of 7. The vertices in the matching are our checker vertices and the
remaining vertices are our contacts. The set M(W)∪C(W) defines the edge set ofW. It is
not hard to see that the degree requirements are satisfied. Berman and Karpinski [BK99]
gave a probabilistic argument to prove that with high probability the above construction
indeed produces a 3-regular amplifier graph.

Theorem 7 (Berman and Karpinski [BK99]). With high probability, wheel amplifier are
3-regular amplifier.

Let us proceed and give the proof of Theorem 5.

Proof of Theorem 5. Let ε ∈ (0, 1/2) be a constant and I an instance of the MAX-E3LIN2
problem, in which the number of occurences of each variable is bounded by Bε. For a fixed
b ∈ {0, 1}, we can negate some of the literals such that all equations in the instance I are
of the form x⊕ y ⊕ z = b, where x, y, z are variables or negated variables.

For a variable xi in I, we denote by di the number of occurences of xi in I1. For each
xi, we create a set of 7 · di = α new variables V ar(i) = {xij}αj=1. In addition, we construct
a wheel amplifier Wi on α vertices with di contacts. Since di is bounded by a constant, it
can be accomplished in constant time. In the remainder, we refer to contact and checker
variables as xil ∈ V ar(i), whose corresponding index l is a contact and checker vertex in
Wi, respectively.

Let us now define the equations of the new instance IH of the Hybrid problem. For each
edge {j, k} ∈M(Wi), we create xij⊕xik = 0 and refer to equations of this form as matching
equations. On the other hand, for each edge {l, t} in C(Wi), we introduce xil ⊕ xit = 0.
Equations of the form xi ⊕ xi+1 = 0 with i ∈ {2, . . . , α− 1} and x1 ⊕ xα = 0 are called cycle
equations, whereas x1 ⊕ x2 = 0 is the cycle border equation. Finally, we replace the j-th
occurrence of xi in I by the contact variable xiλ, where λ = 7 · j. Accordingly, we have 2ν
equations with three variables in IH, 60ν equations with two variables and each variable
appears in exactly 3 equations.

We call an assignment to V ar(i) as consistent if for bi ∈ {0, 1}, we have that xij = bi for
all j ∈ [α]. A consistent assignment to the variables of IH is an assignment that is consistent
for each V ar(i). By using standard arguments and the amplifier constructed in Theorem 7,
we are able to transform an assignment to the variables of IH into a consistent one without
decreasing the number of satisfied equations and the proof of Theorem 5 follows.

8 (1,2)-TSP in Graphs with Maximum Degree 5

In this section, we describe the reduction constructed in [KS13] from the Hybrid prob-
lem to the (1,2)-TSP. In particular, this construction can be used to prove the following
theorem.
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Theorem 8 ([KS13]). The (1,2)-TSP is NP-hard to approximate to within any factor less
than 535/534.

8.1 The Construction of G12
H

In the following, we describe briefly the reduction from the Hybrid problem to the
(1,2)-TSP and refer for more details to [KS13] and [KS12].

Let IH be an instance of the Hybrid problem with n wheels, 60ν equations with two
variables and 2ν equations with two variables. In order to simulate the variables of
IH, we introduce for each variable xli the corresponding parity gadget P l

i displayed in
Figure 1 (a). If we start in vli,l1 or vli,l0, there are two ways to traverse this gadget visiting
every vertex only once. In the following, we refer to those traversals as 0/1-traversals,
which are defined in Figure 1 (b) and (c).

vli,l0 vli,r0

vli,l1 vli,r1

(a) Parity gadget P l
i (b) 1-Traversal (c) 0-Traversal

Figure 1: 0/1-Traversals of the parity gadget P l
i . Traversed edges are displayed by thick

lines.

The idea of the parity gadgets is that any tour in the instance of the (1,2)-TSP can be trans-
formed into a tour, which uses only 0/1-traversals of all parity gadgets that are contained
as a subgraph in G12

H without increasing its cost. The 0/1-traversal of the parity gadget
defines the value that we assign to the variable associated with the parity gadget.

For each equation, we have a specific way to connect the parity gadgets that are
simulating the variables of the underlying equation. Let us start with the construction for
matching equations.

Matching equations: Given a matching equation xli ⊕ xlj = 0 in IH with i < j and
the cycle equations xli ⊕ xli+1 = 0 and xlj ⊕ xlj+1 = 0, we connect the associated parity
gadgets P l

i , P
l
i+1, P

l
{i,j}, P

l
j and P l

j+1 as displayed in Figure 2.
Equations with three variables: For equations with three variables x ⊕ y ⊕ z = 0 = b3c
in IH, we use the graph G3⊕

c displayed in Figure 3. Engebretsen and Karpinski [EK06]
introduced this graph and proved the following statement.

Lemma 1 ([EK06]). There is a simple path from sc to sc+1 in Figure 3 containing the vertices
v1c and v2c if and only if an even number of parity gadgets is traversed.
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P l
i P l

i+1

P l
{i,j}

P l
jP l

j+1

Figure 2: Construction simulating the equations xli⊕xlj = 0, xli⊕xli+1 = 0 and xlj⊕xlj+1 = 0.

We now explain how we connect the parity gadgets for xi and xi+1 withG3⊕
c : Let us assume

that xi ⊕ y ⊕ z = 0 and xi ⊕ xi+1 = 0 are equations in IH. We denote the parity gadgets
that appear in G3⊕

c as P(x,i), Py and Pz.
Then, we connect P l

i and P l
i+1 with P(x,i) via edges {vli,r0, vl(x,i),r1}, {vli+1,l0, v

l
(x,i),l1}. Fur-

thermore, we add {vli,r1, vli+1,l1} to connect P l
i and P l

i+1. If xi appears negated in the equa-
tion with three variables, we create {vli,r1, vl(x,i),r1} and {vli+1,l1, v

l
(x,i),l1} and {vli,r0, vli+1,l0}.

sc sc+1

v1c

v2c

Figure 3: Graph G3⊕
c simulating x⊕ y ⊕ z = 0.

Cycle border equations: For each wheel Wl with l ∈ [n], we introduce three vertices
b1l , b

2
l and b3l , which are connected via b1l − b2l − b3l . Let {xli}αi=1 be the associated set of

variables of Wl. Then, we connect b3l with vl1,l0 and vl2,r1. In addition, we add {b1l+1, v
l
1,l1}

and {b1l+1, v
l
2,r0}.

For the last wheel, we introduce the path b1n+1− b2n+1− s1, where s1 is the starting vertex of
the graph G3⊕

1 simulating an equation with three variables. The graphs corresponding to
equations with three variables are connected via vertices s1, . . . s2ν+1, where s2ν+1 = b11 is
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the first vertex of the path b11 − b21 − b31. This is the whole description of the corresponding
graph G12

H .

8.2 Assignment to Tour

We are going to prove one direction of the reduction and prove the following lemma.

Lemma 2. Let IH be an instance of the Hybrid problem with n wheels, 60ν equations with two
variables and 2ν equations with three variables and φ an assignment that leaves δν equations
in IH unsatisfied for a constant δ ∈ (0, 1). Then, there is a tour in G12

H with cost at most
534ν + 3(n+ 1)− 1 + δν.

Proof. According to Theorem 5, we may assume that all variables associated to a wheel
take the same value under φ. Our tour in G12

H starts in b11 and traverses b11 − b21 − b31. Then,
we use the φ(x11)-traversals of the parity gadgets corresponding to the variables of the
wheelW1 until we enter the vertex b12. For each wheel, we use the corresponding traversal
defined by the assignment. Finally, we get to the vertex s1, which belongs to the graph
G3⊕

1 . We refer to this part of the tour as the inner loop. In the remaining part of the tour,
we are going to traverse the graphs corresponding to equations with three variables. If
an odd number of parity gadgets was visited in the inner loop, we can find a Hamiltonian
path in G3⊕

c . In the other case, we have to introduce two endpoints. In the outer loop of
the tour, we visit all gadgets corresponding to equations with three variables. Accordingly,
our tour has cost at most 8 · 60ν + (3 · 8 + 3) · 2ν + 3(n+ 1)− 1 + δν.

8.3 Tour to Assignment

In the following, we briefly describe the other part of the reduction given in [KS13].

Let us first introduce the notion of consistent tours. We call a (1,2)-tour π in G12
H

consistent if all parity gadgets in G12
H are visited by π using a 0/1-traversal. In order to

ensure that we can restrict ourselves to consistent (1,2)-tours, the following statement
can be proved.

Lemma 3 ([KS13]). Let π be a tour in G12
H . For every parity gadget P in G12

H , it is possible
to convert efficiently π into a tour σ in G12

H , that uses a 0/1-traversal of P , without increasing
the cost.

Due to the following lemma, we can construct efficiently an assignment if we are given
a consistent tour in G12

H .

Lemma 4 ([KS13]). Let π be a consistent tour in G12
H with cost 534ν + 3(n+ 1)− 1 + δν for

some constant δ ∈ (0, 1). Then, it is possible to construct efficiently an assignment that leaves
at most δν equations in IH unsatisfied.

We are ready to give the proof of Theorem 8.
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Proof of Theorem 8. Let I be an instance of the MAX-E3LIN2 problem with n variables and
2γ equations. For all τ > 0, there exists a constant k such that if we create k copies
of each equation, we get an instance Ik with 2ν = k · 2γ equations and n variables with
3(n+1)+1 ≤ ν ·τ . From Ik, we generate an instance IH of the Hybrid problem consisting of
n wheels, 60ν equations with two variables and 2ν equations with three variables. Finally,
we construct the associated instance G12

H of the (1,2)-TSP.
Given an assignment φ to the variables of IH leaving δ · ν equations unsatisfied with

δ ∈ (0, 1), according to Lemma 2, there is a tour with length at most 534ν+3(n+1)−1+δ ·ν.
On the other hand, if we are given a tour σ in G12

H with cost 534ν + 3(n+ 1)− 1 + δ · ν,
it is possible to transform σ in polynomial time into a consistent tour π without increasing
the cost by applying Lemma 3 to each parity gadget in G12

H . Moreover, due to Lemma 4,
we are able to construct efficiently an assignment, which leaves at most δν equations in IH
unsatisfied.

According to Theorem 5, we know that for all ε > 0, it is NP-hard to decide whether
there is a tour with cost at most 534ν + 3(n+ 1)− 1 + ε · ν ≤ 534 · ν + ε′ν or all tours have
cost at least 534 · ν + (1 − ε)ν + 3(n + 1) − 1 ≥ 535 · ν − ε′ · ν, for some ε′ which depends
only on ε and τ . By appropriate choices for ε and τ , the ratio between these two cases can
get arbitrarily close to 535/534

9 (1,2)-TSP in Subcubic Graphs

In this section, we are going to define a new outer loop of the construction from the
previous section in order to obtain an instance of the (1,2)-TSP in subcubic graphs.

The gadgets simulating equation with three variables in the construction given in
[KS13] contain vertices with degree 5. We are going to replace these gadgets by cubic
graphs which we will specify later on. In order to understand the cubic gadgets, we first
describe a reduction from the MAX-E3LIN2 problem to the MAX-2in3SAT problem. The
reduction is straightforward: Given an equation of the form x⊕ y⊕ z = 0, we create three
clauses (x∨ a1 ∨ a2), (y∨ a2 ∨ a3) and (z ∨ a1 ∨ a3). Note that if we are given an assignment
to x, y and z that satisfies the equation mod 2, then, it is possible to find an assignment
to a1, a2 and a3 that satisfies all three corresponding clauses. In the other case, we find
assignments to a1, a2 and a3 that make at most two clauses satisfied.

In the next step, we are going to design a gadget that simulates the predicate 2in3SAT.
This gadget is displayed in Figure 4 (a). The boxes can be viewed as modules, which
will be replaced with a parity gadget or a graph with similar properties (see Figure 8).
Any graph with less vertices and the properties of a parity gadget will lead to improved
inapproximability factors for the corresponding problems. Note that the graph in Figure 4
(b) has degree at most 3.

We are going to prove the following lemma.

Lemma 5. There is a Hamiltonian path from s∨ to e∨ in the graph displayed in Figure 4 (a)
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smid

c1

c2

c3

s∨
e∨

y

x

z

c2

smid
e∨s∨

c1

c3

(a) Modular view of the graph G3
∨ (b) Detailed view of G3

∨

Figure 4: The graph G3
∨ corresponding to (x ∨ y ∨ z).

if and only if 2 edges with modules are traversed.

Proof. There are three possibilities to enter the vertex smid. Therefore, a Hamiltonian path
in G3

∨ contains (i) c1 − smid − c2, (ii) c1 − smid − e∨ or (iii) c2 − smid − e∨. In the case (i),
we are forced to use {c3, e∨} and then, either {s∨, c1} and {c3, c2} or {s∨, c2} and {c3, c1}.
In the case (ii), we first note that we cannot use {e∨, c3}. Due to the degree condition, we
have to use c2 − c3 − c1. The only remaining vertex with degree one is c2 and has to be
connected to s∨. In case (iii), we may argue similarly to case (ii).

As for the next step, we introduce a gadget that simulates a11 ⊕ a21 = 0 displayed in
Figure 5. We see that in order to get from the vertex s1 to e1, we simply use the edge
{s1, e1} or the three edges which are connecting the two parity gadgets.

s= e=

a11 a21

s= e=

(a) Modular view of the graph G= (b) Detailed view of G=

Figure 5: Graph G= corresponding to a11 ⊕ a21 = 0.

We are ready to describe the construction that simulates the equation x ⊕ y ⊕ z = 0:
We create three copies of the gadget G3

∨, denoted by G31
∨ , G32

∨ and G33
∨ , to simulate (x ∨
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a11 ∨ a12), (y ∨ a22 ∨ a13) and (z ∨ a21 ∨ a23). For each i ∈ [3], the vertex set of G3i
∨ is defined by

{si∨, ci1, ci1, ci2, ci3, ei∨, simid}. In order to connect those three copies, we add the edge {ei∨, si+1
∨ }

for each i ∈ [2]. In the next step, we create three copies of the gadget G=, denoted by G1
=,

G2
= and G3

=, to simulate a11 ⊕ a21 = 0, a12 ⊕ a22 = 0 and a13 ⊕ a23 = 0. For each i ∈ [3], the
vertex set of Gi

= is defined by {si=, ei=}. Again, we connect those three copies by adding
{ei=, si+1

= } for each i ∈ [2] and we also create {e3∨, s1=} in order to connect G3
∨ with G1

=. The
whole construction is illustrated in Figure 6.

s1mid

c12

e1∨

s2∨

a11

x

s2mid
s3mid

c21

c32

e3∨

s1=
s1∨

a12

y

a22
a13

a21

a23

z

e3∨ e1= e2=

s3=

e3=

s1= a11 a21 s2= a12 a22 a13 a23

c11 c13

c22

c23

e2∨

c31 c33

s3∨

Figure 6: Modular view of the construction simulating x⊕ y ⊕ z = 0.

Finally, we connect the graphs that we introduced by parity gadgets as follows: For each
graph Gi

=, we create two parity gadgets and connect them to the graph G3j
∨ corresponding

the clause, in which the variable aki with k ∈ {1, 2} appear (See Figure 7 for a detailed
view). The parity gadgets, which are associated to the variables x, y and z, are attached
to G3j

∨ with j ∈ {1, 2, 3} similarly as in the construction described in Section 8.1 for the
graph G3⊕

c . Hence, the parity gadget is also connected to the graph which is associated to
the wheelWα, where α ∈ {x, y, z}.

Given an instance IH of the Hybrid problem, we refer to the corresponding instance of
the (1,2)-TSP in subcubic graphs as G12

SC .

9.1 Tour From Assignment

We are going now to construct a tour from a given assignment and prove the following
lemma.

Lemma 6. Let IH be an instance of the Hybrid problem with n wheels, 60ν equation with
two variables, 2ν equations with three variables and φ an assignment that leaves at most δν
equations unsatisfied. Then, there is a tour in G12

SC with cost at most 672ν +3(n+1)− 1+ δν
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Proof. Given the assignment φ, we define the inner loop of the tour in G12
SC in the same way

as in Lemma 2. This means that some of the parity gadgets which are connected to gadgets
simulating equations with three variables may have been traversed in the inner loop of the
tour. In the outer loop of the tour, if the assignment satisfies the underlying equation
x ⊕ y ⊕ z = 0, then there is a Hamiltonian path traversing all graphs corresponding to
(x ∨ a11 ∨ a12), (y ∨ a22 ∨ a13), (z ∨ a21 ∨ a23), a11 ⊕ a21 = 0, a12 ⊕ a22 = 0 and a13 ⊕ a23 = 0.
For each satisfied equation with three variables, we associate the cost 3(6 + 3 · 8 + 2). If
the underlying equation is not satisfied, we have to introduce two endpoints. Thus, we
associate the cost 3(6 + 3 · 8 + 2) + 1. Summing up, we obtain a tour in G12

SC with cost at
most 8 · 60ν + 3 · (6 + 3 · 8 + 2) · 2ν + 3(n+ 1)− 1 + δν = 672ν + 3(n+ 1)− 1 + δν.

9.2 Assignment From Tour

Given a tour in G12
SC , we are going to construct an assignment to the variables of the

corresponding instance IH of the Hybrid problem and prove the following lemma.

Lemma 7. Let IH be an instance of the Hybrid problem with n wheels, 60ν equations with
two variables, 2ν equations with three variables and π a tour in G12

SC with cost 672ν + 3(n +
1) − 1 + δν. Then, it is possible to construct efficiently an assignment that leaves at most δν
equations in IH unsatisfied.

Proof. In the first step, we convert the underlying tour inG12
SC into a consistent one without

increasing its cost. This is done by applying Lemma 3 to each parity gadget in G12
SC . In the

second step, we use the same 0/1-traversals of the parity gadgets in the inner loop of the
tour which enables us to construct a tour in the corresponding instance G12

H with cost at
most

672ν + 3(n+ 1)− 1 + δν − 3 · (6 + 3 · 8 + 2) · 2ν + (3 · 8 + 3) · 2ν = 534ν + 3(n+ 1)− 1 + δν.

Finally, we apply Lemma 4 and compute efficiently an assignment that leaves at most δν
equations in IH unsatisfied.

We are ready to give the proof of Theorem 1.

Proof of Theorem 1. Given IH an instance of the Hybrid problem consisting of n wheels,
60ν equations with two variables and 2ν equations with three variables, we construct in
polynomial time the associated instance G12

SC of the (1,2)-TSP.
Given an assignment φ to the variables of IH leaving δ · ν equations unsatisfied with

δ ∈ (0, 1), then, according to Lemma 6, it is possible to find a tour with cost at most
672ν + 3(n+ 1)− 1 + δ · ν.

On the other hand, if we are given a tour σ in G12
SC with cost 672ν +3(n+1)− 1+ δ · ν,

due to Lemma 7, we are able to construct efficiently an assignment to the variables of IH,
which leaves at most δν equations in IH unsatisfied.

Similarly to the proof of Theorem 8, for a constant τ > 0, we may assume that (3n +
4)/ν ≤ τ holds. According to Theorem 5, we know that for all ε > 0, it is NP-hard to
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decide whether there is a tour with cost at most 672ν + 3(n + 1)− 1 + ε · ν ≤ 672 · ν + ε′ν
or all tours have cost at least 672 · ν + (1− ε)ν + 3(n+ 1)− 1 ≥ 673 · ν − ε′ · ν, for some ε′

that depends only on ε and τ . By appropriate choices for ε and τ , the ratio between these
two cases can get arbitrarily close to 673/672.

s2= e2=

s1∨

c12

s1mid

c11

c13

c21

s2∨

c23

e1∨ e2∨

c22

s2mid

Figure 7: Detailed view of the gadget for (x ∨ a11 ∨ a12), (y ∨ a22 ∨ a13) and a12 ⊕ a22 = 0.

10 (1,2)-TSP in Cubic Graphs

This section is devoted to the proof of Theorem 2.

10.1 The Construction of the Graph G12
CU

Given an instance IH of the Hybrid problem with n wheels, 60ν equations with two vari-
ables and 2ν equations with three variables, we construct the corresponding graph G12

SC .
In order to convert the instance G12

SC of the (1,2)-TSP in subcubic graphs into an instance
G12
CU of the (1,2)-TSP in cubic graphs, we replace all vertices with degree exactly two by

a path in which all vertices will have degree exactly three. Let us describe this in detail:
Let w be a vertex with degree two in G12

SC , which is connected to x and y. Replace w with
the path pw = v1w − v2w − v3w − v4w. In addition, we add edges {v1w, v3w}, {v2w, v4w}, {x, v1w} and
{y, v4w}. By applying this modification to each vertex of degree exactly two, we create a
cubic graph and refer to it as G12

CU .

13



A modified parity gadget is displayed in Figure 8 (a). The corresponding traversals are
defined in Figure 8 (b) and (c).

(a) Modified parity gadget (b) 1-traversal (c) 0-traversal

Figure 8: 0/1-Traversals of a modified parity gadget. The traversed edges are pictured by
thick lines.

The following lemma enables us to construct a tour in G12
CU given an assignment φ to

the variables of the corresponding instance IH of the Hybrid problem with a certain cost
that depends on the number on unsatisfied equations in IH by φ.

Lemma 8. Let IH be an instance of the Hybrid problem with n wheels, 60ν equation with two
variables, 2ν equations with three variables and φ an assignment that leaves δ · ν equations
unsatisfied for some δ ∈ (0, 1). Then, it is possible to construct efficiently a tour in G12

CU with
cost at most 1140ν + 6(n+ 1)− 1 + δ · ν

Proof. Basically, we use the same tour as constructed in Lemma 6 for the graph G12
SC with

the difference that instead of traversing a vertex w of degree exactly two in G12
SC , we have

to use the path v1w − v2w − v3w − v4w consisting of 3 more vertices. Thus, if we have given
a tour σ in G12

SC , that was constructed according to Lemma 6, we have to add 6 · 60ν (for
each equation with two variables), 9 · 6 · 2ν (for each equation with three variables), and
3(n+ 1) (for each wheel) to the cost of σ and obtain a tour in G12

CU with cost at most

672ν + 3(n+ 1)− 1 + δ · ν + (6 · 60ν) + 9 · 6 · 2ν + 3(n+ 1) = 1140ν + 6(n+ 1)− 1 + δ · ν

and the proof of Lemma 8 follows.

10.2 Tour to Assignment

We are going to prove the other direction of the reduction and give the proof of the fol-
lowing lemma.

Lemma 9. Let IH be an instance of the Hybrid problem with n wheels, 60ν equation with two
variables, 2ν equations with three variables and π a tour in G12

CU with cost 1140ν+6(n+1)−
1 + δ · ν. Then, it is possible to construct efficiently an assignment that leaves at most δ · ν
equations in IH unsatisfied.

Proof. Let π be a tour in G12
CU with cost 1140ν + 6(n+ 1)− 1 + δ · ν. We are going to show

that we can convert efficiently π into a tour π′ in G12
SC with cost 672ν + 3(n+ 1)− 1 + δ · ν.

14



For this, we consider the path x− v1c − v2c − v3c − v4c − y in G12
CU , where pc = v1c − v2c − v3c − v4c

corresponds to the vertex c of degree exactly two in the instance G12
SC . As we want to

contract the path pc into one vertex, we will ensure that the (1,2)-tour is using either the
path v1c − v2c − v3c − v4c or v1c − v3c − v2c − v4c . Let us assume that either v2c or v3c is an endpoint,
say v2c . Clearly, it implies that there is another endpoint in {v1c , v3c , v4c} or v2c is a double
endpoint. We delete all edges of weight 1 that the tour is using and are incident on v2c and
v3c . Then, we add {v1c , v2c}, {v2c , v3c} and {v3c , v4c} to connect v4c and v1c by edges of weight
1. Note that this transformation decreased the total number of endpoints and the cost
of the (1,2)-tour. By applying this transformation successfully to each such path pc, we
obtain a tour which is using the complete path that corresponds to a vertex of degree 2
in the instance G12

SC without increasing the cost of the tour. By contracting each path pc
into the vertex c, it yields a (1,2)-tour in G12

SC with cost at most 672ν + 3(n+ 1) + 1 + δ · ν.
Finally, we apply lemma 7 and obtain an assignment that leaves at most δ · ν equations in
IH unsatisfied.

Analogously to the proof of Theorem 1, we combine Lemma 8 with Lemma 9 and obtain
Theorem 2.

11 Graphic TSP in Subcubic and Cubic Graphs

In this section, we are going to give the proof of Theorem 3 and Theorem 4.

11.1 The Construction

Let IH be an instance of the Hybrid problem. We first construct the corresponding instances
G12
CU and G12

SC of the (1,2)-TSP in cubic and subcubic graphs, respectively. Each gadget G=

in G12
SC is replaced by the graph Ggr

= displayed in Figure 9. We refer to this construction as
the graph Ggr

SC . In order to obtain an instance of the Graphic TSP on cubic graphs, we use
the modified parity gadgets in Ggr

= and denote this instance as Ggr
CU .

e=

a21

s= c1 c2

a11

e=s= c1 c2

(a) Modular view of the graph Ggr
= (b) Detailed view of Ggr

=

Figure 9: Graph Ggr
= corresponding to a11 ⊕ a21 = 0.

Let us prove one direction of the reductions.

Lemma 10. Let IH be an instance of the Hybrid problem with n wheels, 60ν equation with
two variables, 2ν equations with three variables and φ an assignment that leaves at most δν
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equations unsatisfied. Then, there is a tour in Ggr
SC and in Ggr

CU with cost at most 684ν+3(n+
1)− 1 + δν and 1152ν + 6(n+ 1)− 1 + δν, respectively.

Proof. Let us start with the description of the tour in Ggr
SC . As for the inner loop, we use the

same tour as in Lemma 6. Note that we traversed only edges with weight 1 in the inner
loop of the tour in G12

SC . In the outer loop, we cannot use the same shortcuts as in the
(1,2)-TSP, since in some cases the weight of an edge can be greater than 2. To ensure that
the cost traversing a gadget corresponding to an equation with three variables increases
only by one if the equation is unsatisfied by the assignment, we will use the following
trick: Consider an equation of the form x ⊕ y ⊕ z = 0 that is simulated by (x ∨ a11 ∨ a12),
(y∨a22∨a13), (z∨a21∨a23), a11⊕a21 = 0, a12⊕a22 = 0 and a13⊕a23 = 0. If we have an assignment
that satisfies x ⊕ y ⊕ z = 0, then there is also an assignment that satisfies all 6 associated
predicates. Furthermore, we see that in the other case, we can find an assignment that
satisfies all predicates except exactly one equation with two variables.

In particular, it implies for a tour traversing the gadget Ggr
= simulating a11⊕a12 = 0 that if

(a11+a
1
2 = 0) and (a11+a

1
2 = 2) holds, we use s=−c2−c1−e= and s=−c2−c1−e=, respectively.

On the other hand, assuming (a11 + a12 = 1), we traverse either s= − c1 − c2 − c1 − e= or
s= − c2 − c1 − c2 − e=. Thus, we use the edge {c1, c2} twice increasing the cost only by 1.

Summarizing, given an assignment leaving δν equations unsatisfied, we find a tour
in G12

SC with cost at most 672ν + 3(n + 1) − 1 + δν and a tour in Ggr
SC with cost at most

684ν + 3(n + 1) − 1 + δν, since we have to take into account the small detour and add
3 · 2 · 2ν to the cost.

Under the same conditions, we find a tour in G12
CU with cost at most 1140ν + 6(n+ 1)−

1 + δν and a tour in Ggr
CU with cost at most 1152ν + 6(n+ 1)− 1 + δν.

11.2 Tour to Assignment

We now give the other direction of the reductions and prove the following lemma.

Lemma 11. Let IH be an instance of the Hybrid problem with n wheels, 60ν equation with two
variables, 2ν equations with three variables, π a tour in Ggr

SC with cost 684ν+3(n+1)−1+δν
and σ a tour in Ggr

CU with cost 1152ν +6(n+1)− 1+ δν. By using either π or σ, it is possible
to construct efficiently an assignment that leaves at most δν equations in IH unsatisfied.

Proof. Let us consider a tour π in Ggr
SC with cost 684ν + 3(n + 1) − 1 + δν. We interpret

π as a (1,2)-tour in Ggr
SC with cost at most 684ν + 3(n + 1) − 1 + δν. In the first step, we

convert the underlying tour in Ggr
SC into a consistent one without increasing its cost by

applying Lemma 3 to each parity gadget in Ggr
SC . In the second step, we use the same 0/1-

traversals of the parity gadgets in the inner loop which enables us to construct a tour in
the corresponding instance G12

SC with cost at most 672ν+3(n+1)−1+δν. Finally, we apply
Lemma 7 and construct an assignment leaving at most δν equations in IH unsatisfied.

Analogously, if we have given a tour in Ggr
SC with cost 1152ν + 6(n + 1) − 1 + δν, we

convert it into a (1,2)-tour without increasing its cost. By applying the contractions defined
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in Lemma 9, we obtain a (1,2)-tour in Ggr
SC with cost at most 684ν + 3(n+ 1)− 1 + δν, for

which we already know how to construct an assignment with the desired properties.

By combining Lemma 10 and Lemma 11, we obtain immediately Theorem 3 and The-
orem 4.

12 Summary of the Inapproximability Results

As mentioned before the explicit inapproximability bound of 535/534 ([KS12],[KS13]) for
the (1,2)-TSP carries through to the Graphic TSP. We summarize here (Table 1) the results
of the paper.

Restriction (1,2)-TSP Graphical TSP

Unrestricted 535/534 535/534

Subcubic 673/672 685/684

Cubic 1141/1140 1153/1152

Table 1: Inapproximability bounds for the instances of (1,2)-TSP and Graphic TSP.

13 Conclusions and Further Research

We provided new explicit inapproximability bounds for cubic and subcubic instances of
(1,2)-TSP and Graphic TSP. The important question is to improve the explicit inapproxima-
bility bounds on those instances significantly. A bottleneck in our constructions, especially
for the cubic case, are the parity gadgets. Using the modularity of the constructions, any
improvement of the costs of the parity gadgets will lead to improved inapproximability
bounds for the corresponding problems.

The current best upper approximation bound for cubic instances of Graphic TSP is 4/3
[BSSS11a]. How about improving that bound for those instances? How about improving
the general upper bound of 8/7 [BK06] for cubic instances of the (1,2)-TSP?
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