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Abstract

For a predicate f : {−1, 1}k 7→ {0, 1} with ρ(f) = |f−1(1)|
2k

, we call the predicate strongly
approximation resistant if given a near-satisfiable instance of CSP(f), it is computationally
hard to find an assignment such that the fraction of constraints satisfied is outside the range
[ρ(f)− Ω(1), ρ(f) + Ω(1)].

We present a characterization of strongly approximation resistant predicates under the
Unique Games Conjecture. We also present characterizations in the mixed linear and semi-
definite programming hierarchy and the Sherali-Adams linear programming hierarchy. In the
former case, the characterization coincides with the one based on UGC. Each of the two char-
acterizations is in terms of existence of a probability measure on a natural convex polytope
associated with the predicate.

The predicate is called approximation resistant if given a near-satisfiable instance of CSP(f),
it is computationally hard to find an assignment such that the fraction of constraints satisfied is
at least ρ(f)+Ω(1). When the predicate is odd, i.e. f(−z) = 1−f(z),∀z ∈ {−1, 1}k, it is easily
observed that the notion of approximation resistance coincides with that of strong approximation
resistance. Hence for odd predicates, in all the above settings, our characterization of strong
approximation resistance is also a characterization of approximation resistance.
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1 Introduction

Constraint satisfaction problems (CSPs) are some of the most well-studied NP-hard problems.
Given a predicate f : {−1, 1}k 7→ {0, 1}, an instance of CSP(f) consists of n {−1, 1}-valued1

variables and m constraints where each constraint is the predicate f applied to an ordered subset
of k variables, possibly in negated form. For example, the OR predicate on k variables corresponds
to the k-SAT problem whereas the PARITY predicate (i.e. whether the product of the variables is
+1) on k variables corresponds to the k-LIN problem. The satisfiability problem for CSP(f) asks
whether there is an assignment that satisfies all the constraints. A well-known dichotomy result of
Schaefer [34] shows that for every predicate f , the satisfiability problem for CSP(f) is either in P
or NP-complete and moreover his characterization explicitly gives a (short) list of predicates for
which the problem is in P.

An instance of CSP(f) is called α-satisfiable if there is an assignment that satisfies at least α fraction
of the constraints. The focus of this paper is whether given a (1− o(1))-satisfiable instance, there
is an efficient algorithm with a non-trivial performance.

The density of the predicate ρ(f) = |f−1(1)|
2k

is the probability that a uniformly random assignment
to its variables satisfies the predicate. Given an instance of CSP(f) with m constraints, a naive
algorithm that assigns random {−1, 1} values to its variables yields an assignment such that the
fraction of constraints satisfied is ρ(f) in expectation and with high probability is in the range
[ρ(f)− o(1), ρ(f) + o(1)] if the instance is reasonable (e.g. if every variable appears in at most
o(m) constraints).

With this observation in mind, we consider two notions of a non-trivial algorithm, the first one
being new (though implicit in prior literature especially from hardness side) and the second one
being standard. For both, the instance is promised to be (1−o(1))-satisfiable. In the first notion, an
algorithm is considered non-trivial if it finds an assignment such that the fraction of assignments
satisfied is outside the range [ρ(f) − Ω(1), ρ(f) + Ω(1)], i.e. the algorithm has to do something
more clever than outputting a random assignment. If such an efficient algorithm exists, we call
the predicate weakly approximable and strongly approximation resistant otherwise. In the second
notion, one that is more well-studied, an algorithm is considered non-trivial if it finds an assignment
that satisfies at least ρ(f)+Ω(1) fraction of the constraints. If such an efficient algorithm exists, the
predicate is called approximable and approximation resistant otherwise. Note that an approximable
predicate is also weakly approximable and as a contra-positive, a strongly approximation resistant
predicate is also approximation resistant. Also, it is easily observed that for an odd predicate,
i.e. f(z) = 1 − f(z)∀z ∈ {−1, 1}k, the two notions are equivalent. For an odd predicate, the non-
constant part of its Fourier representation has only odd degree monomials and the constant term (as
always) is ρ(f). Flipping the sign of all variables simultaneously if necessary, a weak approximation
(i.e. deviating from ρ(f)) is easily turned into a standard approximation (i.e. exceeding ρ(f)). At
the risk of jumping ahead a little, we also mention here that all prior works showing approximation
resistance of specific predicates, with possibly one exception, in fact show strong approximation
resistance either implicitly or explicitly.

Towards the study of resistance, it is convenient to define the gap versions of the problem.
GapCSP(f)c,s is a promise problem such that the instance is guaranteed to be either c-satisfiable
or at most s-satisfiable. Thus a predicate is approximation resistant if GapCSP(f)1−o(1), ρ(f)+o(1)

1It is more convenient to work with {−1, 1}-valued variables than {0, 1}-valued ones. Here −1 corresponds to
logical TRUE and +1 to logical FALSE. Multiplication of variables in the {-1,1}-world corresponds to XOR-ing them
in the {0,1}-world.
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is not in P. We define GapCSP(f)1−o(1), ρ(f)±o(1) as the promise problem such that the instance
is guaranteed to be either (1− o(1))-satisfiable or for every assignment, the fraction of constraints
satisfied is in the range [ρ(f)− o(1), ρ(f) + o(1)]. Thus a predicate is strongly approximation re-
sistant if GapCSP(f)1−o(1), ρ(f)±o(1) is not in P. For resistant predicates, one would ideally like to
show that the corresponding gap problem is NP-hard, or as is often the case, settle for a weaker
notion of hardness such as UG-hardness (i.e. NP-hard assuming the Unique Games Conjecture
[24]) or hardness, a.k.a. integrality gap, for a specific family of linear or semidefinite programming
relaxation. We now give an overview of prior works, which concern only with the notion of ap-
proximation resistance, though as we mentioned, the notion of strong approximation resistance is
implicit in the hardness works.

Until early 1990s, very little, if anything, was known regarding whether any interesting predicate
is approximable or approximation resistant. By now we have a much better understanding of this
issue thanks to a sequence of spectacular results. Goemans and Williamson [17, 36] showed that
2SAT and 2LIN are approximable.2 The discovery of the PCP Theorem [15, 2, 1], aided by works
such as [7, 32], eventually led to H̊astad’s result that 3SAT and 3LIN are approximation resistant
and in fact that the appropriate gap versions are NP-hard! Since then, many predicates have been
shown to be approximation resistant (see e.g. [18, 33, 23, 14], all NP-hardness) and most recently,
a remarkable result of Chan [9] shows the approximation resistance of the Hypergraph Linearity
Predicate (he shows NP-hardness whereas UG-hardness was shown earlier in [33]). Also, a general
result of Raghavendra [29] shows that if a predicate is approximable, then it is so via a natural
SDP relaxation of the problem followed by a rounding of the solution (the result is more general
than stated: it applies to every (c, s)-gap).

In this paper, our focus is towards obtaining a complete characterization of (strong) approximation
resistance for all predicates, in the spirit of Schaefer’s theorem. There has been some progress in this
direction that we sketch now. Every predicate of arity 2 is approximable as follows from Goemans
and Williamson’s algorithm [17].3 A complete classification of predicates of arity 3 is known [36, 38]:
a predicate of arity 3 is approximation resistant (NP-hard) if it is implied by PARITY up to
variable negations and approximable otherwise. For predicates of arity 4, Hast [19] gives a partial
classification. Austrin and Mossel [6] show that a predicate is approximation resistant (UG-hard)
if the set f−1(1) of its satisfying assignments supports a pairwise independent distribution (for a
somewhat more general sufficient condition see [4]). Using this sufficient condition, Austrin and
H̊astad [3] show that a vast majority of k-ary predicates for large k are approximation resistant.
Hast [20] shows that a k-ary predicate with at most k − 1 satisfying assignment is approximable.

In spite of all these works, a complete characterization of approximation resistance remains elu-
sive. A recent result of Austrin and Khot [5] gives a complete characterization of approximation
resistance (UGC-based) when the CSP is restricted to be k-partite4 and the predicate is even.5

Given an even predicate f , the authors therein associate with it a convex polytope C(f) consisting
of all vectors of dimension

(
k
2

)
that arise as the second moment vectors (Ez∼ν [zizj ] |1 ≤ i < j ≤ k)

of distributions ν supported on f−1(1). It is shown that the k-partite version of CSP(f) is ap-
proximation resistant (UG-hard) if and only if C(f) supports a distribution (a measure to be more

2The result is more famously known for the MAX-CUT problem, but MAX-CUT is not a CSP in our sense of the
definition as it does not allow variable negations. Once variable negations are allowed, MAX-CUT is same as 2LIN.

3H̊astad [21] shows the same for 2-ary predicates over larger alphabet as well. We restrict to boolean alphabet in
this paper.

4Meaning the set of variables is partitioned into k layers and for every constraint, the ith variable is from the ith

layer.
5Meaning f(−z) = f(z) ∀z ∈ {−1, 1}k.
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precise) with a certain (difficult to state) property. The k-partiteness condition is rather restrictive
and without the evenness condition, one would need to take into account the first moment vector
(Ez∼ν [zi] |1 ≤ i ≤ k) as well and it is not clear how to incorporate this in [5].

Characterizing Strong Approximation Resistance

In this paper, we make a significant (in our opinion) progress on the question of characteriz-
ing (strong) approximation resistance. Our main result is a complete characterization of strong
approximation resistance. As we noted, for odd predicates, this is same as characterizing approx-
imation resistance: one gets strong approximation resistance on the hardness side and standard
approximation on the algorithmic side, i.e. best of both the worlds. One interesting family of odd
predicates is balanced linear threshold functions.

Before stating the characterization, let us first point out that the characterization is not as simple
as one may wish and we do not know whether it is decidable, both these features also shared by
the result in [5]. 6 Therein the authors also argue why a simple characterization might be unlikely
and we share that view as well. Also, while we get only a characterization for strong approximation
resistance and not for the more standard notion of approximation resistance, it should be kept
in mind that almost all known approximation resistance results actually show strong resistance,
either implicitly or explicitly, or by a minor modification or possibly switching from NP-hardness
to UG-hardness. This is typically because the soundness analysis of these constructions shows that
Fourier terms that are potentially responsible for deviating from the threshold ρ(f) are all bounded
by o(1) in magnitude, thus showing that it is hard to not just exceed ρ(f), but even to deviate from
it. The only possible exception we are aware of is an example of an arity 4 predicate in [4], Example
8.7 therein. The authors show that the predicate is approximation resistance by presenting a hard
to round point (this concept is elaborated later). The same point is not good enough to show strong
approximation resistance, but it is possible that there is another one or a probability measure on
points which is good enough (we have not investigated this possibility yet).

Roughly speaking our characterization states that a predicate f : {−1, 1}k 7→ {0, 1} is approxi-
mation resistant (UG-hard) if and only if a convex polytope C(f) associated with it supports a
probability measure with certain symmetry properties.7 Specifically, let C(f) be the convex poly-
tope consisting of all vectors of dimension k+

(
k
2

)
that arise as the first and second moment vectors((

E
z∈ν

[zi] |1 ≤ i ≤ k
)
,
(
E
z∼ν

[zizj ] |1 ≤ i < j ≤ k
))

of distributions ν supported on f−1(1). For a measure Λ on C(f) and a subset S ⊆ [k], let ΛS
denote the projection of Λ onto the co-ordinates in S. For a permutation π : S 7→ S and a choice
of signs b ∈ {−1, 1}S , let ΛS,π,b denote the measure ΛS after permuting the indices in S according
to π and then (possibly) negating the co-ordinates according to multiplication by {bi}i∈S . We are
now ready to state our characterization.

Definition 1.1 Let As be the family of all predicates (of all arities) f : {−1, 1}k 7→ {0, 1} such

6The characterization in [5] is recursively enumerable, i.e. there is a procedure that on a predicate that is
approximable, terminates and declares so. Our characterization is also recursively enumerable though it is not clear
from its statement and one has to work through the proof. We omit this aspect from the current version of the paper.

7The characterization in [5], in hindsight, may also be stated in terms of similar symmetry properties, and we do
so in this paper.
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that there is a probability measure Λ on C(f) such that for every 1 ≤ t ≤ k, the signed measure

Λ(t) := E
|S|=t

E
π:[t]→[t]

E
b∈{−1,1}t

[(
t∏
i=1

bi

)
· f̂(S) · ΛS,π,b

]
(1.1)

vanishes identically. If so, Λ itself is said to vanish.

Much elaboration is in order. In the above expression, the expectation is over a random subset of
[k] of size t, a random permutation π of S and a random choice of signs b on S. The coefficients f̂(S)
are the Fourier coefficients of the predicate f , namely, the coefficients in the Fourier representation:

f(x1, . . . , xk) = ρ(f) +
∑
S 6=∅

f̂(S)
∏
i∈S

xi.

A signed measure is allowed to take negative values as well (as is evident from the possibly negative
sign of f̂(S) and

∏t
i=1 bi in the above expression). An equivalent way to state the condition is that

if one writes the Expression (1.1) as a difference of two non-negative measures Λ(t),1 and Λ(t),2 by
grouping the terms with positive and negative coefficients respectively, then the two non-negative
measures are identical.

Our characterization states that if f ∈ As, then f is strongly approximation resistant (UG-hardness)
and otherwise weakly approximable. In the former case, the vanishing measure Λ is a hard to
round measure (in fact any proposed hard to round measure must be a vanishing measure). In
the latter case, we can in fact conclude that the predicate is weakly approximable via a natural
SDP relaxation followed by a (k + 1)-dimensional rounding algorithm. A (k + 1)-dimensional
rounding algorithm samples a (k + 1)-dimensional rounding function ψ : Rk+1 7→ {−1, 1} from an
appropriate distribution, projects the SDP vectors onto a random (k+1)-dimensional subspace and
then rounds using ψ. We find this conclusion rather surprising. As mentioned earlier, it follows from
Raghavendra [29] that if a predicate is approximable then it is so via (the same) SDP relaxation
followed by a rounding. However his rounding (and/or the one in [30]) is high dimensional in
the sense that one first projects onto a random d-dimensional subspace and then rounds using an
appropriately sampled function ψ : Rd 7→ {−1, 1} and there is no a priori upper bound on the
dimension d required.

It is instructive to check that our characterization generalizes the sufficient condition for approx-
imation resistance due to Austrin and Mossel [6]. Suppose that a predicate supports a pairwise
independent distribution. This amounts to saying that the k+

(
k
2

)
dimensional all-zeroes vector lies

in the polytope C(f). It is immediate that the measure Λ concentrated at this single vector is van-
ishing (the all-zeroes vector and its projections onto subsets S remain unchanged under sign-flips
via b ∈ {−1, 1}S and these terms cancel each other out due to the sign

∏
i∈S bi in the expression)

and hence the predicate is strongly approximation resistant. It is also instructive to check the case
t = 1. In this case, the condition implies, in particular, that

E
ζ∼Λ

[
k∑
i=1

f̂({i}) · ζ(i)

]
= 0.

Here ζ(i) denotes the ith first moment (i.e. bias) in the vector ζ ∈ C(f). For all the predicates
that are known to be approximation resistant so far in literature, there is always a single hard
to round point ζ, i.e. the measure Λ is concentrated at a single point ζ. In that case, the above
condition specializes to

∑k
i=1 f̂({i}) · ζ(i) = 0 and this condition is known to be necessary (as a

5



folklore among the experts at least). This is because otherwise a rounding that simply rounds each
variable according to its bias given by the LP relaxation (and then flipping signs of all variables
simultaneously if necessary) will strictly exceed the threshold ρ(f). The term

∑k
i=1 f̂({i}) · ζ(i)

represents the contribution to the advantage over ρ(f) by the level-1 Fourier coefficients and a
standard trick allows one to ignore the (potentially troublesome) interference from higher order
Fourier levels. The conditions for t ≥ 2 intuitively rule out successively more sophisticated rounding
strategies and taken together for all t ∈ [k] form a complete set of necessary and sufficient conditions
for strong approximation resistance.

It seems appropriate to point out another aspect in which our result differs from [29, 30]. It can be
argued (as also discussed in [5]) that [30] also gives a characterization of approximation resistance
in the following sense. The authors therein propose a brute force search over all instances and
their potential SDP solutions on N = N(ε) variables which determines the hardness threshold up
to an additive ε. Thus if a predicate is approximable with an advantage of say 2ε over the trivial
ρ(f) threshold and if ε were known a priori, then the brute force search will be able to affirm this.
However, there is no a priori lower bound on ε and thus this characterization is not known to be
decidable either. Moreover, it seems somewhat of a stretch to call it a characterization because of
the nature of the search involved. On the other hand, ours is a characterization at least in the sense
that it depends purely on the predicate f and the corresponding polytope C(f). More specifically,
the characterization does not depend on the topology (i.e. the hyper-graph structure) of the CSP
instance. We find this conclusion rather surprising as well. A priori, what might make a predicate
hard is both a hard to round measure over local LP/SDP distributions (i.e. a measure Λ on C(f))
as well as the topology of the constraint hyper-graph (i.e. how the variables and constraints fit
together). Our conclusion is that the latter aspect is not relevant, not in any direct manner at
least. This conclusion may be contrasted against Raghavendra’s result. He shows that any SDP
integrality gap instance can be used as a gadget towards proving a UG-hardness result with the
same gap. The instance here refers to both the variable-constraints topology and the local LP/SDP
distributions and from his result, it is not clear whether one or the other or both the aspects are
required to make the CSP hard.

When CSP instances are restricted to be k-partite as in [5], we are able to obtain a complete
characterization. For the family Ap defined below, if f ∈ Ap then the partite version is strongly
approximation resistant and otherwise the partite version is approximable (i.e. best of both the
worlds).

Definition 1.2 Let Ap be the family of all predicates (of all arities) f : {−1, 1}k 7→ {0, 1} such
that there is a probability measure Λ on C(f) such that for every S ⊆ [k], S 6= ∅, the signed measure

ΛS := f̂(S) · E
b∈{−1,1}S

[(∏
i∈S

bi

)
· ΛS,b

]
(1.2)

vanishes identically.

The difference from Definition 1.1 is that each non-empty set S is considered separately and there
are no permutations of the set. We note that for even predicates, the first k co-ordinates in the
body C(f) corresponding to the first moments (i.e. “biases”) can be assumed to be identically zero
and then the characterization boils down to one in [5] (though there it is stated differently).

We point out some directions left open by the discussion so far (we do not consider these as the
focus of the current paper). Firstly, it would be great to obtain a complete characterization of
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approximation resistance as opposed to that of strong resistance that we obtain and see whether
the two coincide (we wouldn’t venture a guess). Secondly, it would be nice to show that our
characterization is decidable. Thirdly, we are not aware of an approximation resistant predicate
where one needs a combination of more than one hard to round points in C(f). In other words, it
might be the case that for every strongly approximation resistant predicate, there exists a vanishing
measure Λ on C(f) that is concentrated on a single point or on a bounded number of points with
an apriori bound. If this were the case, our characterization will be decidable (we omit the proof).
Finally, it will be interesting to show that for some special classes of predicates our characterization
takes a much simpler form. For instance, [11] asks whether there is a linear threshold predicate
that is approximation resistant. It would be nice if for such predicates our characterization takes a
simpler form and leads to a resolution of the question.

Results for Linear and Semidefinite Relaxations

We now move onto a discussion about our results concerning the notion of (strong) approximation
resistance in the context of linear and/or semi-definite programming relaxations. A CSP instance
can be formulated as an integer program and its variables may be relaxed to assume real values
(in the case of LP relaxation) or vector values (in the case of SDP relaxation). The integrality
gap of a relaxation is the maximum gap between the optimum of the integer program and the
optimum of the relaxed program. An integrality gap instance is a concrete instance of a CSP
whose LP/SDP optimum is high and the integer optimum is low. Constructing such gap instances
is taken as evidence that the LP/SDP based approach will not achieve good approximation to
the CSP. The LP/SDP relaxation may be ad hoc or may be obtained by systematically adding
inequalities, in successive rounds, each additional round yielding a potentially tighter relaxation.
The latter method is referred to as an LP or SDP hierarchy and several such hierarchies have been
proposed and well-studied [12].

In this paper, we focus on one ad hoc relaxation that we call basic relaxation and two hierarchies,
namely the mixed hierarchy and the Sherali-Adams LP hierarchy. We refer to Section 2 for their
formal definitions, but provide a quick sketch here. Consider a CSP(f) instance with a k-ary
predicate f , a set of variables V = {x1, . . . , xn} and constraints C1, . . . , Cm. We think of the
number of rounds r as k or more. The r-round Sherali-Adams LP is required to provide, for every
set S ⊆ V, |S| ≤ r, a local distribution D(S) over assignments to the set S, namely {−1, 1}S .
The local distributions must be consistent in the sense that for any two sets S, T of size at most
r and S ∩ T 6= ∅, the local distributions to S and T have the same marginals on S ∩ T . The
r-round mixed hierarchy, in addition, is supposed to assign unit vectors ui to variables xi such that
the pairwise inner products of these vectors match the second moments of the local distributions:
〈ui,uj〉 = Eσ∼D({i,j}) [σ(i)σ(j)] (this is a somewhat simplified view). The basic relaxation is a
reduced form of the k-round mixed hierarchy where a local distribution over a set S needs to be
specified only if S is a set of k variables of some constraint C`. The only consistency requirements
are that 〈ui,uj〉 = Eσ∼D(S) [σ(i)σ(j)] if variables i, j appear together inside some constraint C` on
set S. Finally, the objective function for all three programs is the same: the probability that an
assignment sampled from the local distribution over a constraint satisfies the predicate (accounting
for variable negations), averaged over all constraints.

A (c, s)-integrality gap for a relaxation is an instance that is at most s-satisfiable, but has a feasible
LP/SDP solution with objective value at least c. A predicate is approximation resistant w.r.t. a
given relaxation if the relaxation has (1 − o(1), ρ(f) + o(1)) integrality gap. The general result of
Raghavendra referred to before shows that for any gap location (c, s), UG-hardness is equivalent to
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integrality gap for the basic relaxation. Moreover, the general results of Raghavendra and Steurer
[31] and Khot and Saket [26] show that the integrality gap for basic relaxation is equivalent to that
for a super-constant number of rounds of the mixed hierarchy.

All our integrality gap constructions achieve strong resistance, namely that the constructed CSP
instance has LP or SDP value 1 − o(1) and for any (integral) assignment to the instance, the
fraction of satisfied constraints is in the range [ρ(f)− o(1), ρ(f) + o(1)]. We call this strong (1 −
o(1), ρ(f) ± o(1)) integrality gap. Our characterization of strong approximation resistance for the
basic relaxation and the mixed hierarchy is the same and coincides with one in Definition 1.1
whereas that for the Sherali-Adams LP is different and presented below.

When f ∈ As as in Definition 1.1, we construct a strong (1− o(1), ρ(f)± o(1)) integrality gap for
the basic relaxation. From the general results [29, 31, 26] mentioned before, integrality gap for basic
relaxation can be translated into the same gap for mixed hierarchy and into UG-hardness. For us,
in the NO case, we need to be more careful since we want to preserve the strong resistance, namely
that every (integral) assignment satisfies between ρ(f) ± o(1) fraction of assignments. Still, these
translations are by now standard and well-understood and are omitted from the current paper.
When f 6∈ As, we know that the predicate is weakly approximable and moreover the algorithm is
a rounding of the basic relaxation. When f ∈ Ap as in Definition 1.2, the UG-hardness as well as
integrality gap constructions can be ensured to be on k-partite instances, as in [5].

Finally we focus on the characterization of approximation resistance in Sherali-Adams LP hierarchy.
Here the situation is fundamentally different at a conceptual level. The difference is illustrated by
the (arguably the simplest) predicate 2LIN. Goemans and Williamson show that 2LIN is approx-
imable via an SDP relaxation, namely the basic relaxation according to our terminology. In fact the
approximation is really close: on an (1−ε)-satisfiable instance, the relaxation finds (1− arccos(1−ε)

π )-
satisfying assignment (which is asymptotically 1 − O(

√
ε)). It is also known that this is precisely

the integrality gap as well as UG-hardness gap [16, 25]. However, the predicate turns out to be
approximation resistant in the Sherali-Adams LP hierarchy as shown by de la Vega and Mathieu
[13]! They show (1− o(1), 1

2 + o(1)) integrality gap for ω(1) rounds of the Sherali-Adams hierarchy,

which is subsequently improved to nΩ(1) rounds in [10].

Even though the approximation resistance in Sherali-Adams LP hierarchy is fundamentally differ-
ent, our characterization of the strong resistance here looks syntactically similar to the ones before,
once we ignore the second moments (which are not available in the LP case).

Definition 1.3 Let Al be the family of all predicates (of all arities) f : {−1, 1}k 7→ {0, 1} such
that there is a probability measure Λ∗ on C∗(f) such that for every 1 ≤ t ≤ k, the signed measure

Λ∗,(t) := E
|S|=t

E
π:[t]→[t]

E
b∈{−1,1}t

[(
t∏
i=1

bi

)
· f̂(S) · Λ∗S,π,b

]
(1.3)

vanishes identically. Here C∗(f) is the projection of the polytope C(f) to the first k co-ordinates
corresponding to the first moments and Λ∗S,π,b are as earlier, but for the projected polytope C∗(f).

We show that if f ∈ Al, then there is a strong (1 − o(1), ρ(f) ± o(1)) integrality gap for a super-
constant number of rounds of Sherali-Adams hierarchy. Otherwise there is a weak approximation
given by k-rounds of the hierarchy. For the class of symmetric k-ary predicates, our characterization
takes a simple form. If f is symmetric then f ∈ Al if and only if there are inputs x, y ∈ {−1, 1}k
such that f(x) = f(y) = 1 and

∑k
i=1 xi ≥ 0,

∑k
i=1 yi ≤ 0.
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For Sherali-Adams hierarchy, we also get a complete characterization of strong approximation
resistance, though not as explicit as in Definition 1.3. Also, if a predicate is weakly approximable
in this hierarchy, then this is so via a generic algorithm that solves a k-round LP and then rounds
every variable using its bias in the LP solution. Thus only the LP biases (and their consistency with
local distributions over constraints) are useful towards algorithmic purpose. As far as we know,
these conclusions were not known before.

1.1 Overview of the Proof Techniques

In this section we give an informal overview of the main ideas and techniques used in our results.
A significant ingredient in our results is the Von Neumann min-max theorem which may have more
applications in future. The theorem was also used by O’Donnell and Wu [28] towards characterizing
the approximability curve for the MAX-CUT problem.

We first focus on the main result in the paper, namely that a predicate f is strongly approximation
resistant if and only if f ∈ As as in Definition 1.1. We make several simplifying assumptions and
use informal mathematically imprecise language as we proceed (for the sake of a cleaner overview
only).

Let f : {−1, 1}k 7→ {0, 1} be the predicate under consideration with ρ(f) = |f−1(1)|
2k

. We make a

simplifying assumption that the predicate f is even, i.e. f(−z) = f(z) ∀z ∈ {−1, 1}k. This allows us
to assume that the first moments (i.e. “biases”) Ez∼ν [zi] are all zero for any distribution ν supported
on f−1(1) and can be safely ignored. 8 Therefore we let the polytope C(f) to be the set of all(
k
2

)
-dimensional second moments vectors ζ(ν) =

(
Ez∼ν [zizj ] | 1 ≤ i < j ≤ k

)
over all distributions

ν supported on f−1(1). Our main concern is whether there is an efficient algorithm for CSP(f)
that achieves a weak approximation, i.e. on an 1− o(1)) satisfiable instance obtains an assignment
such that the fraction of satisfied constraints is outside the range [ρ(f) − Ω(1), ρ(f) + Ω(1)]. We
make the simplifying assumption that the CSP instance is in fact perfectly satisfiable. This implies
that the basic relaxation yields, for every constraint C that depends on variables say x1, . . . , xk, a
distribution ν(C) over the set of satisfying assignments f−1(1) and unit vectors u1, . . . ,uk such that
〈ui,uj〉 = Ez∼ν [zi · zj ]. As noted, ζ(ν(C)) then is a

(
k
2

)
-dimensional vector of the second moments

(which equal 〈ui,uj〉). The uniform distribution over the vectors ζ(ν(C)) over all constraints C
is then a probability measure λ on C(f). We regard the measure λ as essentially representing the
given CSP instance (a priori, we seem to be losing information by ignoring the topology of the
instance, but as we will see this doesn’t matter).

Note that in the relaxed solution, the vector assignment is global in the sense that the vector
assigned to each CSP variable is fixed, independent of the constraint C in which the variable
participates in whereas the distribution ν(C) is local in the sense that it depends on the specific
constraint C.

Our main idea is to propose a family of algorithms based on “d-dimensional roundings” of the SDP
solution for d = k + 1 and to show that either one such algorithm achieves a weak approximation
or else the polytope C(f) supports a probability measure Λ as in Definition 1.1 (note again that we
are ignoring the first moments). In the latter case, the existence and symmetry of Λ leads naturally
to a strong (1 − o(1), ρ(f) ± o(1)) integrality gap for the basic relaxation (and therefore mixed
hierarchy) and a UGC-hardness result for GapCSP(f)1−o(1),ρ(f)±o(1), showing that the predicate is
strongly approximation resistant.

8See [5] for elaboration where the same assumption is used.
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The proposed family of d-dimensional roundings is easy to describe: any function ψ : Rd 7→ {−1, 1}
serves as a candidate rounding algorithm where the SDP vectors {ui} are projected onto a random
d-dimensional subspace inducing ui 7→ yi ∈ Rd and then the ith variable is assigned a boolean
value ψ(yi). From the algorithmic viewpoint, one seeks a rounding function ψ (more generally a
distribution over ψ) such that its “performance” on every instance λ9 significantly deviates from
ρ(f) (in average, if a distribution over ψ is used). From the hardness viewpoint, a natural goal
then would be to come up with a “hard-to-round measure” λ on C(f) such that the “performance”
of every rounding function ψ is within ρ(f)± o(1).

These considerations lead naturally to a two-player zero-sum game between Harry, the “hardness
player” and Alice, the “algorithm player” (we view Harry as the row player and Alice as the column
player). The pure strategies of Harry are the probability measures λ on C(f) to be rounded and
the pure strategies of Alice are the rounding functions ψ : Rd 7→ {−1, 1}. The payoff to Alice when
the two players play (λ, ψ) respectively is the “deviation from ρ(f)” achieved by rounding λ using
ψ. More precisely, consider the scenario where the set of local distributions on CSP constraints is
represented by the measure λ. The local distribution on a randomly selected constraint is a sample
ζ ∼ λ along with vectors u1, . . . ,uk whose pairwise inner products match ζ. During the rounding
process, the vectors u1, . . . ,uk are projected onto a random d-dimensional subspace, generating a
sequence of k points y1, . . . ,yk ∈ Rd that are standard d-dimensional Gaussians with correlations
ζ. The CSP variables are then rounded to boolean values ψ(y1), . . . , ψ(yk). Whether these values
satisfy the constraint or not is determined by plugging them in the Fourier representation of the
predicate f . The “deviation from ρ(f)” is precisely this Fourier expression without the constant
term (which is ρ(f)). Given this intuition, we define the payoff to Alice as the expression:

PayOff(λ, ψ) :=

∣∣∣∣∣∣ Eζ∼λ E
y1,...,yk∼Nd(ζ)

∑
S 6=∅

f̂(S) ·
∏
i∈S

ψ(yi)

∣∣∣∣∣∣ , (1.4)

where Nd(ζ) denotes a sequence of k standard d-dimensional Gaussians with correlations ζ. We
apply Von Neumann’s min-max theorem and conclude that there exists a number L, namely the
“value” of the game, a mixed equilibrium strategy Γ (a distribution over ψ) for Alice and an
equilibrium strategy Λ (a pure one as we will observe!) for Harry. Actually Von Neumann’s
theorem applies only to games where the sets of strategies for both players are finite, but we ignore
this issue for now. Depending on whether the value of the game L is strictly positive or zero (it
is non-negative since the payoff is non-negative), we get the “dichotomy” that the predicate f is
weakly approximable or strongly approximation resistant (modulo UGC).

The conclusion when L > 0 is easy: in this case Alice has a mixed strategy Γ such that her payoff
(expected over Γ) is at least L for every pure strategy λ of Harry. This is same as saying that if
a rounding function ψ ∼ Γ is sampled and then used to round the relaxed solution, it achieves a
deviation L from ρ(f) for every CSP instance λ.

The conclusion when L = 0 is more subtle: in this case in general Harry has a mixed strategy,
say D, such that for every pure strategy ψ of Alice, her expected payoff (expected over λ ∼ D) is
zero. We observe that Harry may replace his mixed strategy D by a pure strategy Λ. Noting that
D is a distribution over measures λ, we let Λ be the single averaged measure informally written as
Λ := Eλ∼D[λ]. Since for every ψ, Expression (1.4) is supposed to be zero averaged over λ ∼ D,
it must also be zero for Λ itself! Thus we conclude that for the measure Λ over C(f), for every

9We recall again that for any CSP instance, λ is the uniform distribution over ζ(ν(C)) over all constraints C and
thus a probability measure on C(f). The measure λ now represents the whole instance.
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ψ : Rd 7→ {−1, 1}:

E
ζ∼Λ

E
y1,...,yk∼Nd(ζ)

∑
S 6=∅

f̂(S) ·
∏
i∈S

ψ(yi)

 = 0. (1.5)

Now we view this expression as a polynomial in (uncountable number of) variables {ψ(y) | y ∈ Rd}.
Since the polynomial is identically zero, we may equate every coefficient of this polynomial to zero.

Fix any 1 ≤ t ≤ k. For every y1, . . . ,yt ∈ Rd, we are interested in the coefficient of the monomial∏t
i=1 ψ(yi). Firstly, this coefficient can arise from precisely the sets S with |S| = t. Secondly, for a

fixed set S, |S| = t, the coefficient is really the joint density of t standard d-dimensional Gaussians
with correlations ζS at the sequence (y1, . . . ,yt), where ζS is same as ζ restricted to indices in
S. Thirdly, for any permutation π : [t] 7→ [t], we must consider all sequences (yπ(1), . . . , yπ(t)) and
add up their coefficients (i.e. Gaussian densities) since they all correspond to the same monomial∏t
i=1 ψ(yi). Finally, we did not mention this so far, but we need to allow only odd rounding

functions ψ, i.e. ψ(−y) = −ψ(y), to account for the issue of variable negations in CSPs. This
has the effect that the monomials

∏t
i=1 ψ(bi · yi) are same as

∏t
i=1 bi ·

∏t
i=1 ψ(yi) for a choice of

signs bi ∈ {−1, 1}, and hence their coefficients (i.e. Gaussian densities) must be added up together.
With all these considerations, the coefficient of the monomial

∏t
i=1 ψ(yi) can be written as:

E
ζ∼Λ

 ∑
S,|S|=t

∑
π:[t] 7→[t]

∑
b∈{−1,1}t

f̂(S) ·

(
t∏
i=1

bi

)
γt,d
(
(y1, . . . ,yt), ζS,π,b

) .
Here ζS,π,b is the sequence of correlations between the indices in S after accounting for the permuta-
tion of indices according to π and the sign-flips according to b ∈ {−1, 1}t. Also γt,d

(
(y1, . . . ,yt), ξ

)
is the joint density of t standard d-dimensional Gaussians with correlations ξ. Defining the “signed
measure” Λ(t) as in Equation (1.1), the conclusion that the above coefficient is zero (for every
(y1, . . . ,yt)), can be written as:

∀y1, . . . ,yt ∈ Rd,
∫
γt,d
(
(y1, . . . ,yt), ξ

)
dΛ(t)(ξ) = 0.

In words, w.r.t. the signed measure Λ(t) on [−1, 1](
t
2) (corresponding to all possible correlation vec-

tors between t standard 1-dimensional Gaussians), the integral of every function γt,d((y1, . . . ,yt), ·)
vanishes (there is one such function for every fixed choice of (y1, . . . ,yt)). The class of these func-
tions is rich enough that we are able to conclude that the signed measure Λ(t) itself must identically
vanish.

This proves the existence of the measure Λ as in Definition 1.1. After this, the construction of
the strong (1 − o(1), ρ(f) + ±o(1)) integrality gap for the CSP is obtained by generalizing the
construction for MAX-CUT due to Feige and Schechtman [16]. We describe the construction in the
continuous setting and ignore the discretization step. The variables in the CSP instance correspond
to points in RN for a high enough dimension N and the variables for y and −y are designated
as negations of each other. The constraints of the CSP are defined by sampling ζ ∼ Λ and then
sampling k Gaussian points y1, . . . ,yk ∈ RN with correlations ζ and placing a constraint on these
variables. For the completeness part, one observes that for large N the space RN with the Gaussian
measure is (up to o(1) errors) same as the unit sphere SN−1 towards our purpose and we may assume
that all the CSP variables lie on the unit sphere. Each point on the sphere is assigned a vector
that is itself and for every constraint, the local distribution equals ν if ζ = ζ(ν) is used towards
that constraint. For the soundness part, an assignment to the CSP corresponds to a function
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ψ : RN 7→ {−1, 1} and the “deviation from ρ(f)” is precisely the expression in Equation (1.4), if
y1, . . . , yk were chosen from RN instead of Rd (d = k+1 therein). The symmetry property of Λ (i.e.
that the signed measure Λ(t) vanishes for every 1 ≤ t ≤ k) ensures that this expression vanishes
identically and hence no CSP assignment can deviate from ρ(f). We would like to emphasize here
that the existence of Λ was deduced only assuming that no (k + 1)-dimensional rounding deviates
from ρ(f), but once existence of Λ is established, it automatically implies that no higher dimensional
rounding deviates from ρ(f) either!

Once the integrality gap is established, the UGC-hardness of GapCSP(f)(1−o(1),ρ(f)±o(1)) follows
almost automatically from the general result of Raghavendra and the same integrality gap for a
super-constant number of rounds of the mixed hierarchy follows almost automatically from the
general results of Raghavendra and Steurer [31], and Khot and Saket [26] (some care is required).

As we said, this is a simplified and informal view and we actually need to work around all the
simplifying assumptions we made, formalize all the arguments, and address many issues that we
hid under the carpet, e.g. setting d = k + 1 and the reason say d = 1 does not work, handling the
first moments, handling the possibility that a Gaussian density is degenerate, etc. Also, we cannot
apply Von Neumann’s min-max theorem to infinite games. In principle, one might be able to use
min-max theorems for infinite games such as Glicksberg’s theorem, but then one has to ensure
that the strategy spaces are compact. Instead, we find it easier to work with a sequence of finite
approximations to the infinite game and then use limiting arguments everywhere (this is easier said
than done and this is where much of the work lies in).

We briefly state why we get a characterization of only strong approximation resistance and not
approximation resistance itself. If we were to apply the same technique towards approximation
resistance, we would define the payoff function in Equation (1.4) without the absolute value and
then in Equation (1.5) we would conclude that the expression is upper bounded by zero (instead
of concluding that its absolute value is zero and hence it is equal to zero). But then we would
be stuck since if a polynomial in [−1, 1]-valued variables stays upper bounded by zero, we cannot
necessarily conclude that it is identically zero, e.g. consider the polynomial −x2. The conclusion
however holds if the polynomial is multi-linear (which we leave as an exercise) or has only odd
degree monomials (since flipping the sign of all variables flips the sign of the polynomial)10. We
note that the polynomial in Equation (1.5) appears to be multi-linear in the following sense. The
monomial

∏t
i=1 ψ(yi) fails to be multi-linear only when yi = yj for some i 6= j which is a measure

zero event. However when one formalizes the argument via discretization, say by dividing Rd into
tiny cells, one always has a non-zero probability that yi,yj , i 6= j fall into the same cell. At first
sight, one might consider this issue minor and avoidable, but quite possibly it is indeed a serious
issue and in the end, the characterization for approximation resistance is different from that of
strong resistance. We leave this as an exciting open question.

Strong Approximation Resistance for LP Hierarchies

Now we give an overview of the characterization of strong approximation resistance (i.e. Definition
1.3) for a super-constant number of rounds of Sherali-Adams LP. We proceed along a similar line
as earlier with one difference: we work with a different body C̃(f) instead of C(f).

In the LP case, the second moments are not available at all and the first moments are all one has.
We will nevertheless pretend that the second moments are available by using their dummy setting.

10 This is consistent with the earlier observation that for odd predicates, the notions of approximation resistance
and strong approximation resistance are equivalent.
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For any distribution ν supported on f−1(1), let the vector ζ = ζ(ν) consist of the k first moments
ζ(i) = Ez∼ν [zi] and in addition, dummy second moments corresponding to those of k independent
unit `2-norm Gaussians g1, . . . , gk with the given first moments, i.e. E[gi] = ζ(i) and E[g2

i ] = 1. The
body C̃(f) is defined as the set of all vectors ζ(ν) over all distributions ν supported on f−1(1). Note
that C̃(f) is different than the polytope C(f) and not necessarily convex (we never used convexity),
but its projection onto the first k co-ordinates is the same as that of C(f), namely C∗(f) as in
Definition 1.3.

Once the polytope C(f) is replaced by the body C̃(f), our argument proceeds as before. Note
that since the second moments reflect independent Gaussians, our rounding is really using only
the first moments, as ought to be the case with LPs. We conclude that either the predicate is
weakly approximable or there is a probability measure Λ on C̃(f) that satisfies characterization in
Definition 1.1. Projecting Λ onto the first k co-ordinates gives a measure Λ∗ on C∗(f) satisfying
the characterization in Definition 1.3.

Once the existence of Λ∗ is established, we proceed to constructing the strong (1−o(1), ρ(f)±o(1))
integrality gap in the Sherali-Adams hierarchy. This step however turns out to be more involved
than before since general results as in [29, 31, 26] are not available in the LP setting. Instead, we
are able to rework the MAX-CUT construction of de la Vega and Kenyon [13] for any predicate
f ∈ Al.
An intuitive way of looking at the construction is as follows. The variables of the CSP are points
in the interval [−1, 1] and the variables for x and −x are negations of each other (called fold-
ing). Constraints are defined by sampling ζ ∼ Λ∗ and then placing the constraint on variables
(ζ(1), . . . , ζ(k)). The local distribution for this constraint is ν such that ζ = ζ(ν). The LP-bias
of a variable x is x itself. The vanishing condition in Definition 1.3 implies that any (measurable)
{−1, 1}-assignment to this CSP instance satisfies exactly ρ(f) fraction (measure) of the constraints.
This conclusion also holds for [−1, 1]-valued assignments appropriately interpreted.

This continuous instance only has a basic LP solution, i.e. the local distributions are defined only
for constraints. We now construct the actual instance as follows. We discretize the interval [−1, 1]
by picking equally spaced points x1, . . . , xs with fine enough granularity (and ensuring that a point
and its negation are both included and are folded). Each variable xi is now blown up into a block
of n/s variables for a large n (so the total number of variables is n). Whenever a constraint is
generated in the continuous setting by sampling ζ ∼ Λ∗, we first round ζ(j) to nearest xij and
then the constraint is actually placed on randomly chosen variables from blocks corresponding to
xi1 , . . . , xik respectively. This is the way one constraint is randomly introduced and the process
is repeated independently m times for m � n. This defines the CSP instance as a k-uniform
hyper-graph. By deleting a small fraction of the constraints, one ensures that the hyper-graph has
super-constant girth. Finally, de la Vega and Kenyon [13] construction is reworked to construct local
distributions for all r-sets of variables, i.e. for the r-round Sherali-Adams LP. Our presentation is
somewhat different than that in [13]: we find it easier to first construct a nearly correct LP solution
and then correct it as in [31, 26].

One interesting and novel feature of our construction is how the CSP instance is constructed and
how the “soundness” is proved as opposed to a standard construction of random CSPs.

A standard construction, in one step, generates a constraint by uniformly selecting a k-subset of
variables and then randomly selecting the polarities (i.e. whether a variable occurs in a negated
form or not). This step is then repeated independently to generate m � n constraints. Since the
polarities are randomly chosen in each step, for any fixed global assignment, the probability that
the assignment satisfies the constraint is precisely ρ(f), and then one uses the Chernoff bound and
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the union bound to conclude that w.h.p. every global assignment to the instance satisfies between
ρ(f)± o(1) fraction of the constraints.

In our case, the one step of generating a constraint is different. In particular, the k-subset of
variables chosen is not necessarily uniformly random (it depends on Λ∗ since ζ ∼ Λ∗) and the
polarities are not necessarily random either (they depend on signs of ζ(1), . . . , ζ(k) due to folding).
However it is still true that for any fixed global assignment, the probability that the assignment
satisfies the constraint is precisely ρ(f) (up to o(1) errors introduced by discretization)! This
property is simply inherited from the continuous setting by viewing the global assignment as a
function ψ : {x1, . . . , xs} 7→ [−1, 1] where ψ(xi) is the average of the global values to variables in
block xi! This concludes our overview.

2 Preliminaries and Our Results

In this section, we present formal definitions and statements of our results and a preliminary
background on mathematical tools used.

2.1 Constraint Satisfaction Problems

Definition 2.1 For a predicate f : {−1, 1}k → {0, 1}, an instance Φ of CSP(f) consists of a set
of variables {x1, . . . , xn} and a set of constraints C1, . . . , Cm where each constraint Ci is over a
k-tuple of variables {xi1 , . . . , xik} and is of the form

Ci ≡ f(xi1 · bi1 , . . . , xik · bik)

for some bi1 , . . . , bik ∈ {−1, 1}. For an assignment A : {x1, . . . , xn} 7→ {−1, 1}, let sat(A) denote
the fraction of constraints satisfied by A. The instance is called α-satisfiable if there exists an as-
signment A such that sat(A) ≥ α. The maximum fraction of constraints that can be simultaneously
satisfied is denoted by OPT(Φ), i.e.

OPT(Φ) = max
A:{x1,...,xn}7→{−1,1}

sat(A).

The density of the predicate is ρ(f) = |f−1(1)|
2k

.

For a constraint C of the above form, we use xC to denote the tuple of variables (xi1 , . . . , xik) and
bC to denote the tuple of bits (bi1 , . . . , bik). We then write the constraint as f(xC · bC). We also
denote by SC the set of indices {i1, . . . , ik} of the variables participating in the constraint C.

Definition 2.2 A predicate f : {−1, 1}k → {0, 1} is called approximable if there exists a constant
ε > 0 and a polynomial time algorithm, possibly randomized, that given an (1−ε)-satisfiable instance
of CSP(f), outputs an assignment A such that EA [ sat(A) ] ≥ ρ(f)+ε. Here the expectation is over
the randomness used by the algorithm. The predicate is called weakly approximable if the output of
the algorithm deviates from ρ(f) in expectation, i.e. EA [ |sat(A)− ρ(f)| ] ≥ ε.

We define the notions of approximation resistance and strong approximation resistance. Towards
this, it is convenient to define gap versions of the CSP. Though the gap versions can be defined
w.r.t. any gap location, we do so only for the location that is of interest to us, namely 1 − o(1)
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versus ρ(f)±o(1). We say that a decision problem is UG-hard if there is polynomial time reduction
from the Unique Games Problem [24] to the problem under consideration (we will not be directly
concerned with the Unique Games Problem and the Conjecture; hence their discussion is deferred
to the end of the preliminaries section).

Definition 2.3 Let ε > 0 be a constant.

Let GapCSP(f)1−ε, ρ(f)+ε denote the promise version of CSP(f) where the given instance Φ is
promised to have either OPT(Φ) ≥ 1 − ε or OPT(Φ) ≤ ρ(f) + ε. The predicate is called
approximation resistant if for every ε > 0, GapCSP(f)1−ε, ρ(f)+ε is UG-hard.

Let GapCSP(f)1−ε, ρ(f)±ε denote the promise version of CSP(f) where the given instance Φ is
promised to have either OPT(Φ) ≥ 1 − ε or that for every assignment A, |sat(A)− ρ(f)| ≤ ε.
The predicate is called strongly approximation resistant if for every ε > 0, GapCSP(f)1−ε, ρ(f)±ε is
UG-hard.

2.2 The LP and SDP Relaxations for Constraint Satisfaction Problems

Below we present three LP and SDP relaxations for the CSP(f) problem that are relevant in this
paper: the Sherali-Adams LP relaxation, mixed LP/SDP relaxation and finally the basic relaxation.

We start with the r-round Sherali-Adams relaxation. The intuition behind it is the following. Note
that an integer solution to the problem can be given by an assignment A : [n] → {−1, 1}. Using
this, we can define {0, 1}-valued variables x(S,α) for each S ⊆ [n], 1 ≤ |S| ≤ r and α ∈ {−1, 1}S ,
with the intended solution x(S,α) = 1 if A(S) = α and 0 otherwise. We also introduce a variable
x(∅,∅), which equals 1. We relax the integer program and allow variables to take real values in [0, 1].
Now the variables {x(S,α)}α∈{−1,1}k give a probability distribution over assignments to S. We can
enforce consistency between these local distributions by requiring that for T ⊆ S, the distribution
over assignments to S, when marginalized to T , is precisely the distribution over assignments to T .
The relaxation is shown in Figure 1.

maximize E
C∈Φ

 ∑
α∈{−1,1}k

f(α · bC) · x(SC ,α)


subject to∑

α∈{−1,1}S
α|T=β

x(S,α) = x(T,β) ∀T ⊆ S ⊆ [n], |S| ≤ r, ∀β ∈ {−1, 1}T

x(S,α) ≥ 0 ∀S ⊆ [n], |S| ≤ r, ∀α ∈ {−1, 1}S

x(∅,∅) = 1

Figure 1: r-round Sherali-Adams LP for CSP(f)

We can further strengthen the integer program by adding the quadratic constraints

x({i1,i2},(b1,b2)) = x({i1},b1) · x({i2},b2) .

As solving quadratic programs is NP-hard we then relax these quadratic constraints to the existence
of vectors v(i,b) and a unit vector v(∅,∅), and impose the above constraints on inner products of the
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corresponding vectors. Adding these SDP variables and constraints to the r-round Sherali-Adams
LP as above yields the r-round mixed relaxation as in Figure 2.

maximize E
C∈Φ

 ∑
α∈{−1,1}k

f(α · bC) · x(SC ,α)


subject to〈

v(i,1),v(i,−1)

〉
= 0 ∀i ∈ [n]

v(i,1) + v(i,−1) = v(∅,∅) ∀i ∈ [n]

x({i1,i2},(b1,b2)) =
〈
v(i1,b1),v(i2,b2)

〉
∀i1 6= i2 ∈ [n], b1, b2 ∈ {−1, 1}∑

α∈{−1,1}S
α|T=β

x(S,α) = x(T,β) ∀T ⊆ S ⊆ [n], |S| ≤ r, ∀β ∈ {−1, 1}T

x(S,α) ≥ 0 ∀S ⊆ [n], |S| ≤ r, ∀α ∈ {−1, 1}S∥∥v(∅,∅)
∥∥2

= x(∅,∅) = 1

Figure 2: r-round Mixed Relaxation for CSP(f)

Finally, the basic relaxation is a reduced form of the above mixed relaxation where only those
variables x(S,α) are included for which S = SC is the set of CSP variables for some constraint C.
The consistency constraints between pairs of vectors are included only for those pairs that occur
inside some constraint. The relaxation (after a minor rewriting) is shown in Figure 3.

maximize E
C∈Φ

 ∑
α∈{−1,1}k

f(α · bC) · x(SC ,α)


subject to〈

v(i,1),v(i,−1)

〉
= 0 ∀i ∈ [n]

v(i,1) + v(i,−1) = v(∅,∅) ∀i ∈ [n]∥∥v(∅,∅)
∥∥2

= 1∑
α∈{−1,1}SC

α(i1)=b1,α(i2)=b2

x(SC ,α) =
〈
v(i1,b1),v(i2,b2)

〉
∀C ∈ Φ, i1 6= i2 ∈ SC , b1, b2 ∈ {−1, 1}

x(SC ,α) ≥ 0 ∀C ∈ Φ, ∀α ∈ {−1, 1}SC

Figure 3: Basic Relaxation for CSP(f)

For an LP/SDP relaxation of CSP, and for a given instance Φ of the problem, we denote by FRAC(Φ)
the LP/SDP (fractional) optimum. For the particular instance Φ, the integrality gap is defined
as FRAC(Φ)/OPT(Φ). The integrality gap of the relaxation is the supremum of integrality gaps
over all instances. The integrality gap thus defined is in terms of a ratio whereas we are concerned
with the specific gap location 1− o(1) versus ρ(f) + o(1) and also with the strong integrality gap as
defined below.

Definition 2.4 Let ε > 0 be a constant.
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A relaxation is said to have a (1− ε, ρ(f) + ε)-integrality gap if there exists a CSP instance Φ such
that FRAC(Φ) ≥ 1− ε and OPT(Φ) ≤ ρ(f) + ε.

The relaxation is said to have a strong (1−ε, ρ(f)±ε)-integrality gap if there exists a CSP instance
Φ such that FRAC(Φ) ≥ 1− ε and for every assignment A to the instance, |sat(A)− ρ(f)| ≤ ε.

We will use known results showing that the integrality gap for the basic relaxation as in Figure 3
implies a UG-hardness result as well as integrality gap for the mixed relaxation as in Figure 2 for a
super-constant number of rounds, while essentially preserving the gap. The first implication is by
Raghavendra [29] and the second by Raghavendra and Steurer [31] and Khot and Saket [26]. We
state these results in a form suitable for our purpose (in particular making an additional observation
that the results also apply in our setting of the strong integrality gap).

Theorem 2.5 [29] Let ε > 0 be an arbitrarily small constant.

If the basic relaxation as in Figure 3 has a (1−ε, ρ(f)+ε)-integrality gap, then GapCSP(f)1−2ε,ρ(f)+2ε

is UG-hard. Moreover, if the gap is a strong (1 − ε, ρ(f) ± ε)-gap, then GapCSP(f)1−2ε,ρ(f)±2ε is
UG-hard.

Theorem 2.6 [31, 26] Let ε > 0 be an arbitrarily small constant.

If the basic relaxation as in Figure 3 has a (1−ε, ρ(f)+ε)-integrality gap, then the mixed relaxation
as in Figure 2 has a (1− 2ε, ρ(f) + 2ε)-integrality gap for a super-constant number of rounds. The
same holds for a strong (1− ε, ρ(f)± ε)-integrality gap.

2.3 Measure Theory and Probability

We provide a basic background on relevant tools from measure theory and probability. For further
reference, please see [37, 27].

Measures, Weak∗ Convergence and Signed Measures

Definition 2.7 Given a set X along with a σ-algebra F (i.e. a non-empty collection of subsets
of X that is closed under complementation and countable union), a measure on X is a function
m : F → [0,∞] satisfying:

• m(∅) = 0.

• If {Rj}∞j=1 ⊆ F is a countable collection of disjoint sets, then m
(
∪∞j=1Rj

)
=
∑∞

j=1m(Rj).

We will consider only finite measures, i.e. those with m(X) <∞. In particular, we will be interested
in probability measures, i.e. those with m(X) = 1. The class of all probability measures on X is
denoted as Prob(X).

We note that the Borel σ-algebra B on Rn is the smallest σ-algebra that contains all open balls
w.r.t. the standard Euclidean metric (and the sets in B are called measurable). It can be restricted
to X ⊆ Rn leading to the induced σ-algebra on X, which will be the σ-algebra under consideration
below. We note also that for subsets of Rn, being compact is same as being closed and bounded
via the Heine-Borel Theorem. It is also equivalent to being sequentially compact (existence of a
convergent subsequene for every infinite sequence) by the Bolzano-Weierstrass Theorem.

We state the main measure-theoretic result that we need in a form convenient to us:
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Theorem 2.8 Let X ⊆ Rn be a compact set and {Λi}∞i=1 be a sequence of probability measures on
X. Then there exists a sub-sequence {Λij}∞j=1 and a probability measure Λ on X such that for any
continuous function h : X 7→ R,

lim
j→∞

∫
h dΛij =

∫
h dΛ. (2.1)

This statement follows from the theorem stated below:

Theorem 2.9 (Corollary 13.9 in [37]) Let X be a compact metric space. Then the class of
probability measures Prob(X) is compact and metrizable in the weak∗ topology.

In words, the class Prob(X) can be endowed with a suitable metric so that the metric topology
coincides with the weak∗ topology. Since Prob(X) is compact and metrizable, it is also sequentially
compact, i.e. every sequence has a convergent subsequence. The convergence is w.r.t. the metric
defined on Prob(X) and as mentioned, this is same as the convergence in the so-called weak∗

topology. The latter, by definition, is precisely the statement that Equation (2.1) holds for every
continuous function h : X 7→ R.

Let X ⊆ Rn, X ′ ⊆ Rn
′

be compact, Λ be a measure on X and ϕ : X 7→ X ′ be continuous. The
measure ϕ(Λ) on X ′ is defined in a natural way as ϕ(Λ)(A′) = Λ(ϕ−1(A′)). We will use this
observation in two settings: (1) when ϕ is a projection of X onto a subset of co-ordinates S ⊆ [n],
the measure on R|S| so obtained will be denoted as ΛS and refereed to as the projected measure.
(2) when ϕ is a bijection, we can pass back and forth between Λ and ϕ(Λ), regarding them as
essentially the same.

Sometimes we will describe the construction of the measure ϕ(Λ) as above by informally saying
“sample x ∼ Λ and take (or apply) ϕ(x)”. When h : X 7→ R is a real valued function, we will
informally write Ex∈Λ [h(x)], the “expectation of h(x) when x is sampled from Λ”, to denote

∫
h dΛ.

We will also need the notion of a signed measure, which is a generalization of the usual (non-
negative) measure.

Definition 2.10 Given a set X along with a σ-algebra F , a signed measure on X is a function
m : F → [−∞,∞] allowed to take at most one of the values in {−∞,+∞} and satisfying:

• m(∅) = 0.

• If {Rj}∞j=1 ⊆ F is a countable collection of disjoint sets, then m
(
∪∞j=1Rj

)
=
∑∞

j=1m(Rj) as

long as the series
∑∞

j=1m(Rj) is absolutely convergent.

Let {Λi}qi=1 be a finite set of probability measures on X with underlying σ-algebra F and {αi}qi=1

be (possibly negative) reals. Then Λ =
∑q

i=1 αiΛi is a signed measure. Formally, for any A ∈
F , Λ(A) =

∑q
i=1 αiΛi(A). We will consider only such signed measures, arising as finite linear

combinations of probability measures. Such a signed measure may identically vanish, i.e. Λ(A) =
0 ∀A ∈ F . This is same as saying that if one writes Λ = Λ′−Λ′′ as a difference of two non-negative
measures (by grouping all Λi with positive and negative coefficients respectively), then Λ′ and Λ′′

are identical.
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Gaussian Measures

Let Σ be an invertible, symmetric t × t matrix and µ be a t-dimensional vector. The Gaussian
measure of a (measurable) set A ⊆ Rt w.r.t. means µ = (µ1, . . . , µt) and the covariance matrix Σ
is defined as ∫

A
γt(y = (y1, . . . , yt), (Σ, µ)) dy1dy2 . . . dyt,

where γt(·, (Σ, µ)) is the Gaussian density function

γt(y, (Σ, µ)) =
1√

(2π)tDet(Σ)
e−

1
2
·(y−µ)TΣ−1(y−µ).

The random variables y1, . . . , yt then satisfy E[yi] = µi and Σij = E[yiyj ]− µiµj .
With Σ, µ as above, one can also define a Gaussian measure on (Rd)t that is a product measure
with the measure on each of the d co-ordinates as above. Formally, if y = (y1, . . . ,yt) with yi ∈ Rd
and one denotes y(`) ∈ Rt as the vector of `th co-ordinates of y1, . . . ,yt respectively for ` ∈ [d],
then the measure is given by a density γt,d(y, (Σ, µ)) defined as:

γt,d(y, (Σ, µ)) =
d∏
`=1

1√
(2π)tDet(Σ)

e−
1
2
·(y(`)−µ)TΣ−1(y(`)−µ).

2.4 Our Results

In this section we present formal statements of our results. Given a predicate f : {−1, 1}k → {0, 1},
let D(f) denote the set of all probability distributions over f−1(1).

Definition 2.11 For ν ∈ D(f), we let ζ(ν) denote the (k+ 1)× (k+ 1) symmetric moment matrix
for ν such that:

∀i ∈ {0} ∪ [k] : ζ(i, i) = 1 ,

∀i ∈ [k] : ζ(0, i) = E
x∼ν

[xi] ,

∀i, j ∈ [k], i 6= j : ζ(i, j) = E
x∼ν

[xixj ] .

Also, let C(f) ⊆ R(k+1)×(k+1) denote the compact, convex set of all moment matrices:

C(f) := {ζ(ν) : ν ∈ D(f)}.

Note that the definition of the polytope C(f) defers somewhat from that in the introduction of the

paper (it is now a (k + 1) × (k + 1) matrix as opposed to
(
k +

(
k
2

))
-dimensional vector), but this

difference is inconsequential.

For S ⊆ [k], let ζS denote ζ restricted to the rows and columns of indices in S ∪ {0}. For a
permutation π : S → S we use ζS,π to denote a permutation of the submatrix ζS with the coordinates
of S permuted according to π. Also, for a |S|-dimensional vector of signs b ∈ {−1, 1}|S|, let
ζS,π,b = ζS,π ◦ ((1 b)(1 b)T ) i.e., the matrix obtained by taking the Hadamard product (entrywise
product) of the matrices ζS,π and (1 b)(1 b)T .
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Definition 2.12 Let Λ be a probability measure supported on C(f). Then, for S ⊆ [k], let ΛS
denote the measure on (|S| + 1) × (|S| + 1) matrices obtained by sampling ζ ∼ Λ and taking the
matrix ζS. Let π : S → S be any permutation and let b ∈ {−1, 1}|S| be a vector of signs. We denote
by ΛS,π,b the measure on (|S|+ 1)× (|S|+ 1) matrices obtained by sampling ζ ∼ Λ and taking the
matrix ζS,π,b.

We define a generic family of algorithms based on d-dimensional rounding of the vector solution to
the basic relaxation, Figure 3. We choose to state an informal definition here as the exact rounding
process is a but cumbersome, formally described in Subsection 3.2.

Definition 2.13 (Informal) A d-dimensional rounding algorithm is a polynomial time algorithm
based on an odd measurable function ψ : Rd → [−1, 1]. The algorithm solves the basic relaxation
for CSP(f), projects the SDP vectors onto a random d-dimensional subspace and then rounds them
to {−1, 1} values according to (biases given by) ψ. The algorithm may draw the function ψ itself
from a certain (pre-determined) distribution.

Our main result appears below. It states that a predicate either admits a weak approximation
based on a (k + 1)-dimensional rounding algorithm or is strongly approximation resistant. This
“dichotomy” is characterized precisely by the existence of a measure Λ on C(f) as in Definition 1.1.

Theorem 2.14 Given f : {−1, 1}k → {0, 1}, the following “dichotomy” holds:

• Either there is a constant ε > 0 and a (k+1)-dimensional rounding algorithm that given a (1−
ε)-satisfiable instance of CSP(f), outputs an assignment A such that EA [|sat(A)− ρ(f)|] ≥ ε
(i.e. achieves a weak approximation),

• Or there exists a probability measure Λ on C(f), such that for all t ∈ [k], and a uniformly
random choice of S with |S| = t, π : S → S and b ∈ {±1}|S|, the following signed measure on
(t+ 1)× (t+ 1) matrices:

Λ(t) := E
|S|=t

E
π:S→S

E
b∈{−1,1}|S|

[(∏
i∈S

bi

)
· f̂(S) · ΛS,π,b

]
(2.2)

is identically zero. In this case for every ε > 0, the predicate has a strong (1 − ε, ρ(f) ± ε)
integrality gap for the basic relaxation and (hence) for the mixed relaxation with a super-
constant number of rounds and is strongly approximation resistant, i.e. GapCSP(f)1−ε,ρ(f)±ε
is UG-hard.

Similarly, we obtain a “dichotomy” for the integrality gap in the Sherali-Adams LP hierarchy. The
characterization is syntactically similar once the polytope C(f) is replaced by the polytope C∗(f)
consisting of only the first moment vectors of distributions supported on f−1(1) (and is therefore
the same as the convex hull of f−1(1)). For a measure Λ∗ on C∗(f) and a subset S ⊆ [k], the
projected measure Λ∗S and the measure Λ∗S,π,b for a permutation π : S 7→ S and signs b ∈ {−1, 1}S
are defined in an analogous manner. The family of generic algorithms is now defined w.r.t. only
the first moments, i.e. the algorithm can “use” only the biases computed by the LP relaxation.

Definition 2.15 For ν ∈ D(f), we let ζ(ν) denote the k-dimensional vector such that:

∀i ∈ [k] : ζ(i) := E
x∼ν

[xi] .
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Let C∗(f) ⊆ Rk denote the convex, compact set:

C∗(f) := {ζ(ν) : ν ∈ D(f)}.

Definition 2.16 (Informal) A k-round LP rounding algorithm is a polynomial time algorithm based
on an odd measurable function ψ : [−1, 1] → [−1, 1]. The algorithm solves the k-round Sherali-
Adams relaxation for CSP(f) and then a CSP variable with bias p (as computed by the LP re-
laxation) is rounded to a {−1, 1} value with bias ψ(p), independently for different variables. The
algorithm may draw the function ψ itself from a certain (pre-determined) distribution.

Theorem 2.17 Given f : {−1, 1}k → {0, 1}, the following “dichotomy” holds:

• Either there is a constant ε > 0 and a k-round LP rounding algorithm that given a (1 − ε)-
satisfiable instance of CSP(f), outputs an assignment A such that EA [|sat(A)− ρ(f)|] ≥ ε
(i.e. achieves a weak approximation),

• Or there exists a probability measure Λ∗ on C∗(f), such that for all t ∈ [k], and a uniformly
random choice of S with |S| = t, π : S → S and b ∈ {±1}|S|, the following signed measure on
t-dimensional vectors:

Λ∗,(t) := E
|S|=t

E
π:S→S

E
b∈{−1,1}|S|

[(∏
i∈S

bi

)
· f̂(S) · Λ∗S,π,b

]
(2.3)

is identically zero. In this case for every ε > 0, the predicate has a strong (1 − ε, ρ(f) ± ε)
integrality gap for a super-constant number of rounds of the Sherali-Adams LP relaxation.

As described in the introduction, we obtain additional interesting observations and results (e.g.
approximation resistance for odd predicates and k-partite version of CSPs). We skip their formal
statements and proofs from the current version of the paper. The proofs of our main results, namely
Theorem 2.14 and Theorem 2.17, appear in Section 3 and Section 4 respectively.

2.5 The Unique Games Conjecture

We present the definitions of the Unique Games problem and UG-hardness.

Definition 2.18 A Unique Games instance L(G(V,E), [L], {πv,w}(v,w)∈E) consists of a graph
G(V,E), a set of labels [L] and a set of permutations πv,w : [L] 7→ [L], one for each edge of
the graph (the edges have an implicit direction). A labeling is an assignment A : V 7→ [L]. The
labeling satisfies an edge (v, w) if πv,w(A(v)) = A(w). OPT(L) is the maximum fraction of edges
satisfied by any labeling.

Let GapUG1−δ,δ denote the gap version of the Unique Games problem where the instance L is
promised to have either OPT(L) ≥ 1 − δ or OPT(L) ≤ δ. Khot [24] conjectures that for an
arbitrarily small constant δ > 0, GapUG1−δ,δ is NP-hard on instances with L labels where L = L(δ)
may depend on δ.

Definition 2.19 A decision problem is said to be UG-hard if for a sufficiently small constant δ > 0,
there is a polynomial time reduction from GapUG1−δ,δ (with the number of labels L = L(δ)) to the
problem under consideration.
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3 Proof of the SDP Dichotomy Theorem

In this section we present the proof of Theorem 2.14. We begin by developing the game theory
formalism that we will need. This formalism is mostly common to both dichotomy theorems but
we state it first with the SDPs in mind.

3.1 Game-Theoretic Formulation

We have two players: Alice, the player trying to design an algorithm, and Harry, the player trying
to prove a hardness result. Intuitively, Alice wants to show that any CSP(f) admits a non-trivial
efficient approximation via rounding the natural SDP relaxation. For this, Alice will try to maximize
the pay-off in the (zero-sum) game, which we shall define soon. On the other hand, Harry intends to
minimize the pay-off. Intuitively, Harry wants to show that there exist CSP(f) instances for which
the integrality gap is high.

The pure strategies of Harry will correspond to distributions over moment matrices. Recall that
C(f) was the set of (k + 1) × (k + 1) moment matrices for distributions in D(f). To ensure that
our moment matrices are non-singular, we will actually need to work with a slightly modified body
Cδ(f) defined as

Cδ(f) := {(1− δ) · ζ + δ · Ik+1 : ζ ∈ C(f)} ,

for a constant δ ∈ (0, 1). Here, Ik+1 denotes the (k + 1) × (k + 1) identity matrix. Let Ri, such
that R1 ⊆ R2 . . . ⊆ Rp ⊆ ... denote a fixed sequence of finite subsets of Cδ(f). We assume that
the above sequence is dense in Cδ(f) in the limit. Let Rp denote the class of distributions over Rp,
such that all the probabilities are integral multiples of 1/2p.

Let {Pq}q∈N denote a sequence of partitions, where Pq partitions [−1, 1]d into 2(q+1)d boxes of
equal size. We will choose d = k + 1 for reasons that will become clear later. Note that for each
q, Pq+1 is a refinement of Pq inside. Let Vk denote the set of values

{
r
k : r ∈ Z,−k ≤ r ≤ k

}
and

let ψq : Rd → Vk denote an odd function which takes values in Vk in [−1, 1]d and 0 outside. We
further assume that ψq is constant on each cell of Pq. This can be ensured since the partitions Pq
are symmetric with respect to 0.

For every fixed p, q above, we will define a zero-sum game Gp,q. A pure strategy for Harry corresponds
to a distribution λ ∈ Rp, and a mixed strategy is a probability distribution Λp over Rp. The pure
strategies for Alice are given by all possible functions ψq, and a mixed strategy is a probability
distribution Γq over these. For λ ∈ Rp and ψ defined over Rd as described above, the payoff of the
(pure strategy) game Gp,q is given by:

PayOff(λ, ψ) :=

∣∣∣∣∣∣ Eζ∼λ E
y1,...,yk∼Nd(ζ)

∑
S 6=∅

f̂(S) ·
∏
i∈S

ψ(yi)

∣∣∣∣∣∣ , (3.1)

where {yi}i∈[k] are points in Rd sampled from a Gaussian process Nd(ζ) different coordinates being
independent and for each coordinate l ∈ [d], E [(yi)l] = ζ(0, i) and E [(yi)l(yj)l] = ζ(i, j) ∀i, j ∈ [k].
Note that this corresponds to the deviation from a random assignment that would be obtained by
the rounding algorithm corresponding to ψ, if the SDP vectors corresponding to variables in each
constraint had correlations given by ζ. We shall also use the notation PayOff(λ, ψ) to denote the
above expression, for an arbitrary distribution λ over Cδ(f) and any function ψ : Rd → Vk. For a
matrix ζ, we use PayOff(ζ, ψ) to denote PayOff(λ, ψ) for a distribution λ concentrated on a single
point corresponding to ζ.
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For mixed strategies Λp and Γq the payoff is given by:

PayOff(Λp,Γq) := E
λ∼Λp

E
ψ∼Γq

∣∣∣∣∣∣ Eζ∼λ E
y1,...,yk∼Nd(ζ)

∑
S 6=∅

f̂(S) ·
∏
i∈S

ψ(yi)

∣∣∣∣∣∣ . (3.2)

Alice plays to maximize the above payoff and Harry plays to minimize the same. By Von Neumann’s
min-max theorem there exists a unique value for the above game Gp,q, for every p and q. Our next
task will be to relate the value of this game (in the limit) to the hardness of the predicate f .

The following simple fact about the pay-off function will be used repeatedly.

Claim 3.1 For any λ and ψ : Rd → [−1, 1], PayOff(λ, ψ) ≤ 1.

Proof: Since the pay-off function is

PayOff(λ, ψ) :=

∣∣∣∣∣∣ Eζ∼λ E
y1,...,yk∼Nd(ζ)

∑
S 6=∅

f̂(S) ·
∏
i∈S

ψ(yi)

∣∣∣∣∣∣ ,
it suffices to show that for any k values ψ(y1), . . . , ψ(yk) ∈ Vk, we have

∣∣∣∑S 6=∅ f̂(S) ·
∏
i∈S ψ(yi)

∣∣∣ ≤
1. This is immediate if all the values are ±1, since we can write the expression inside the absolute
value as f(ψ(y1), . . . , ψ(yk))− f̂(∅), which only takes values −f̂(∅) and 1− f̂(∅) since f is Boolean.
If a value, say ψ(yi) is in (−1, 1), we can view the expression as an expectation over the cases where
we choose the ith input variable of f to be 1 with probability (1+ψ(yi))/2 and −1 with probability
(1− ψ(yi)/2), which shows that it is always between −f̂(∅) and 1− f̂(∅).

We will also need another simple fact about a matrix ζ ∈ Cδ(f). Recall that for a matrix ζ, for
S ⊆ [k], π : S → S and b ∈ {−1, 1}S , we define the matrix ζS,π,b by considering the submatrix
given by rows and columns in S (and the first row and first column), permuting them according
to π and multiplying each row i by bi and each column j by bj (thus, the (i, j) entry is multiplied
by bi · bj). Also, for each matrix ζ ′ = ζS,π,b, we can define a covariance matrix Σ, with Σij =
ζ ′(i, j)− ζ ′(0, i) · ζ ′(0, j). Then we shall use the following fact repeatedly.

Claim 3.2 Let ζ ∈ Cδ(f) and let ζS,π,b be as defined above for an arbitrary choice of S, π and b.
Let Σ be the covariance matrix corresponding to ζS,π,b. Then Σ is a positive semidefinite matrix
with all eigenvalues at least δ.

Proof: Note that it is sufficient to prove the claim with π being the identity permutation and
b = 1k, since permuting the rows and columns, or multiplying them with a sign does not affect
the eigenvalues. Let us first consider the case when S = [k] and b = 1k (and thus ζS,π,b = ζ).
For ζ ∈ Cδ(f), there is a distribution ν on f−1(1), and in particular on {−1, 1}k, so that ζ =
(1− δ) · ζ(ν) + δ · Ik+1. Let ζ̃ denote ζ(ν). If Σ(ζ) denotes the covariance matrix corresponding to
ζ, then we can write

Σ(ζ) = (1− δ) · Σ(ζ̃) + δ · (1− δ) ·M + δ · Ik ,

where M is a positive semidefinite (PSD) matrix with Mij = ζ̃(0, i) · ζ̃(0, j). Also, note that Σ(ζ̃)
is a covariance matrix corresponding to a distribution ν on {−1, 1}k and is hence PSD. Thus, all
eigenvalues for Σ(ζ) are at least δ. Similarly, when |S| = t for some t ≤ k, we can consider νS , the
projection of ν to {−1, 1}S . We can again write ζS = (1 − δ) · ζ(νS) + δ · I|S|+1. The rest of the
proof is same as above.
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Let V denote the (infinite) matrix over reals such that: V(p, q) := val(Gp,q) (the equilibrium value
for the game Gp,q).

Lemma 3.3 The limit L defined below exists and it is finite.

L := lim
p,q→∞

V(p, q) . (3.3)

Moreover, every row p has a limit rp as q →∞ and every column q has a limit cq as p→∞.

Proof: First, observe that the entries in V are all non-negative and bounded above by 1 (using
Claim 3.1). Also, for any fixed q, V(p, q) is non-increasing as p increases sinceRp ⊆ Rp+1. Similarly,
for any fixed p, V(p, q) is non-decreasing as q increases. This follows from the fact that Pq+1 is a
refinement of Pq and thus each strategy ψq can also be implemented by a function ψq+1.

Therefore, by the monotone convergence theorem every row (resp. column) in G has a limit, say
rp (resp. cq). Moreover, rp is non-increasing as p increases and cq is non-decreasing as q increases.
Therefore, again by the monotone convergence theorem both these sequences have to converge.
Also, the limits must coincide since for sufficiently large p, q, V(p, q) must come arbitrarily close to
both the limits. This common limit is denoted by L in our statement.

We shall also need the following lemma.

Lemma 3.4 If ζ, ζ ′ ∈ Cδ(f) are such that ‖ζ − ζ ′‖∞ ≤ ε, then for any function ψ : Rd → Vk, we
have∣∣∣∣∣∣ E

y1,...,yk∼Nd(ζ)

∑
S 6=∅

f̂(S) ·
∏
i∈S

ψ(yi)

− E
y1,...,yk∼Nd(ζ′)

∑
S 6=∅

f̂(S) ·
∏
i∈S

ψ(yi)

∣∣∣∣∣∣ = Ok,d,δ(ε) .

Hence, the function PayOff(ζ, ψ) is Ok,d,δ(1)-Lipschitz in the argument ζ.

Proof: Let g(y1, . . . ,yk) denote the expression
∑

S 6=∅ f̂(S) ·
∏
i∈S ψ(yi). We first note that

proving the bound claimed above is also sufficient to show that PayOff(ζ, ψ) is Ok,d,δ(1)-Lipschitz
in the argument ζ, since PayOff(ζ, ψ) =

∣∣Ey1,...,yk∼Nd(ζ) [g(y1, . . . ,yk)]
∣∣ and hence,

∣∣PayOff(ζ, ψ)− PayOff(ζ ′, ψ)
∣∣ ≤ ∣∣∣∣ E

y1,...,yk∼Nd(ζ)
[g(y1, . . . ,yk)]− E

y1,...,yk∼Nd(ζ′)
[g(y1, . . . ,yk)]

∣∣∣∣ .
By Claim 3.1, we have that |g(y1, . . . ,yk)| ≤ 1. Hence, we can bound the above expression as∣∣∣∣ E

y1,...,yk∼Nd(ζ)
[g(y1, . . . ,yk)]− E

y1,...,yk∼Nd(ζ′)
[g(y1, . . . ,yk)]

∣∣∣∣ ≤ 2 ·
∥∥Nd(ζ)−Nd(ζ ′)

∥∥
1
,

where ‖Nd(ζ)−Nd(ζ ′)‖1 denotes the total variation distance between the two distributions. This
can be bounded by Ok,d,δ(ε) as below.

By Pinsker’s inequality one can bound the total variation distance by the Kullback-Leibler (KL)
divergence, denoted D(Nd(ζ)||Nd(ζ ′)), as follows.∥∥Nd(ζ)−Nd(ζ ′)

∥∥2

1
≤ 1

2
·
[
D(Nd(ζ)‖Nd(ζ ′)) +D(Nd(ζ ′)‖Nd(ζ))

]
=

d

2
·
[
D(N (ζ)‖N (ζ ′)) +D(N (ζ ′)‖N (ζ))

]
,
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where the equality uses the fact that Nd(ζ) and Nd(ζ ′) are product distributions of d k-dimensional
Gaussians and D((P1, P2)‖(Q1, Q2)) = D(P1‖Q1) + D(P2‖Q2) for product distributions (P1, P2)
and (Q1, Q2). The sum on the right can now be bounded by Ok,d,δ(ε

2).

Let Σ and Σ′ denote the covariance matrices for ζ and ζ ′. Let µ and µ′ denote the vector of
means for ζ and ζ ′. For a multivariate normal distribution in k dimensions the sum of the two KL
divergences, as above, can be written as follows (for eg. see chapter 15 in [22])

D(N (ζ)‖N (ζ ′))+D(N (ζ ′)‖N (ζ)) = (µ−µ′)T
(

Σ−1 + Σ′−1

2

)
(µ−µ′)− 1

2
·(Σ−Σ′)•(Σ−1−Σ′−1) .

Since ‖µ− µ′‖∞ ≤ ‖ζ − ζ ′‖∞ ≤ ε and all eigenvalues of Σ−1 and Σ′−1 are at most 1/δ, the first
term is bounded by Ok,δ(ε

2). For bounding Frobenius product in the second term, note that

‖Σ− Σ′‖∞ = O(ε). For the term, Σ−1 − Σ′−1, using the fact that Σ−1 = Adj(Σ)
|Σ| , we can write

Σ−1 − Σ′−1 =
Adj(Σ) · |Σ′| −Adj(Σ) · |Σ′|

|Σ| · |Σ′|
.

Since all eigenvalues of Σ and Σ′ are at least δ, the determinants |Σ| and |Σ′| are at least δk. Each
entry of the matrices in the numerator can be viewed as a difference between two multivariate
degree-2k polynomials with Ok(1) terms. The two polynomials are identical, except that each has
been perturbed by at most ε in its variables. Hence, their difference can be at most Ok(ε).

Thus, we obtain that
∥∥Σ−1 − Σ′−1

∥∥
∞ = Ok,δ(ε) and hence (Σ − Σ′) • (Σ−1 − Σ′−1) = Ok,δ(ε

2),
which gives the required bound on ‖Nd(ζ)−Nd(ζ ′)‖1.

3.2 A Rounding Scheme for Predicates when L > 0

We can now prove that if the value of the above games has a positive limit, then the predicate
f admits a non-trivial weak approximation. For an instance Φ of CSP(f) and a d-dimensional
rounding function ψ : Rd → Vk, let ROUNDψ(Φ) denote the expected fraction of constraints
satisfied by the rounding algorithm using the function ψ. Recall that a d-dimensional rounding
algorithm is a distribution over functions ψ. We will show that if the value of the game is positive,
then there is a rounding scheme such that Eψ |ROUNDψ − ρ(f)| is Ω(1).

Theorem 3.5 If L > 0, then there exists a (k + 1)-dimensional rounding algorithm for the basic
SDP relaxation of CSP(f), such that given an instance Φ with FRAC(Φ) ≥ 1 − ε (for sufficiently
small ε > 0), we have Eψ |ROUNDψ(Φ)− ρ(f)| ≥ L/2.

Proof: Since limp,q→∞ val(Gp,q) = L > 0, for every β > 0 there exists a q ∈ N, such that for all
p ∈ N, val(Gp,q) ≥ L−β. This means that for all p ∈ N, there exists a distribution Γq over functions
ψq, such that for all λ ∈ Rp

PayOff(λ,Γq) ≥ L− β .

We will fix a sufficiently large p later. We will use the corresponding Γq to design a d-dimensional
rounding strategy (recall that we choose d = k+ 1). Given an instance Φ of CSP(f) and a solution
to the SDP in Figure 3, we proceed as follows:
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- For all i ∈ [n], define vectors:

u∅ = v(∅,∅)

ũi = v(i,1) − v(i,−1)

ui =
√

1− δ · ũi +
√
δ · ei ,

where {ei}i∈[n] form an orthonormal basis, orthogonal to all the vectors
{
v(i,b)

}
i∈[n],b∈{−1,1}.

- Sample vectors {gl}l∈[d] such that each coordinate of each gl is a standard normal variable.

Define the vectors y′1, . . . ,y
′
n ∈ Rd such that for each l ∈ [d],

(y′i)l = 〈(ui − 〈ui,u∅〉 · u∅) ,gl〉+ 〈ui,u∅〉

- Sample ψ ∼ Γq. For each i ∈ [n], assign the variable xi as 1 with probability (1 + ψ(y′i))/2
and −1 with probability (1− ψ(y′i))/2.

For a constraint C, let FRAC(C) ∈ [0, 1] denote the contribution of the constraint C to the SDP
objective function. For the given instance Φ, we have FRAC(Φ) = EC∈Φ [FRAC(C)] ≥ 1−ε and hence
PC∈Φ [FRAC(C) ≥ 1−

√
ε] ≥ 1−

√
ε. Let C be a constraint such that FRAC(C) ≥ 1−

√
ε. Without

loss of generality, we can take C to be on the variables x1, . . . , xk and of the form f(x1 ·b1, . . . , xk ·bk)
for b1, . . . , bk ∈ {−1, 1}.
The probability that C is satisfied by the assignment produced by a rounding function ψ, chosen
by our rounding scheme is given by

ROUNDψ(C) = ρ(f) + E
y′1,...,y

′
k

∑
S⊆[k]
S 6=∅

(∏
i∈S

bi

)
· f̂(S) ·

(∏
i∈S

ψ(y′i)

)
= ρ(f) + E

y′1,...,y
′
k

∑
S⊆[k]
S 6=∅

f̂(S) ·

(∏
i∈S

ψ(bi · y′i)

) ,
where bi · y′i denotes a vector with each coordinate multiplied by bi, and the second equality used
the fact that the functions ψ are odd.

Let ζC ∈ R(k+1)×(k+1) be the symmetric moment matrix with ζ(0, i) = 〈bi · ui,u∅〉 and ζ(i, j) =
〈bi · ui, bj · uj〉. Then the variables (y1, . . . ,yk) = (b1 · y′1, . . . , bk · y′k) are distributed according to
the Gaussian process Nd(ζC). Thus, we can write

ROUNDψ(C) = ρ(f) + E
y1,...,yk∼Nd(ζC)

∑
S⊆[k]
S 6=∅

f̂(S) ·

(∏
i∈S

ψ(yi)

) .
The variables x([k],α) define a probability distribution, say ν0 on {−1, 1}k. Let ν be the distribution

on {−1, 1}k such that for any x ∈ {−1, 1}k,

ν(x1, . . . , xk) = ν0(b1 · x1, . . . , bk · xk) .
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Then Px∼ν [f(x) = 1] ≥ 1−
√
ε and for the corresponding moment matrix ζ(ν), we have ζ(ν)(i, j) =

〈bi · ũi, bj · ũj〉 and ζ(ν)(0, i) = 〈bi · ũi,u∅〉 for all i, j ∈ [k]. From the definition of the vectors ui
and the matrix ζC above, we have that

ζC = (1− δ) · ζ(ν) + δ · I .

However, ζC does not lie in the body Cδ(f) since ν is not entirely supported on f−1(1). We thus,
consider the distribution ν ′, which is ν conditioned on the output being in f−1(1). Also, we define
the matrix ζ ′C ∈ Cδ(f) as

ζ ′C := (1− δ) · ζ(ν ′) + δ · I .

Since ν satisfies C with probability at least 1 −
√
ε, we have ‖ν − ν ′‖1 = O(

√
ε). Also, this gives

that ‖ζC − ζ ′C‖∞ ≤
√
ε. By Lemma 3.4, we have for ζC and ζ ′C as above∣∣∣∣∣∣∣ E

y1,...,yk∼Nd(ζC)

∑
S⊆[k]
S 6=∅

f̂(S) ·

(∏
i∈S

ψ(yi)

)− E
y1,...,yk∼Nd(ζ′C)

∑
S⊆[k]
S 6=∅

f̂(S) ·

(∏
i∈S

ψ(yi)

)
∣∣∣∣∣∣∣ = Ok,d,δ(

√
ε) .

We now analyze ROUNDψ(Φ) = EC∈Φ [ROUNDψ(C)]. Let Φ′ denote the instance restricted to the
constraints C such that FRAC(C) ≥ 1 −

√
ε. Since PC∈Φ [FRAC(C) ≥ 1−

√
ε] ≥ 1 −

√
ε, we have

that ∣∣ROUNDψ(Φ)− ROUNDψ(Φ′)
∣∣ = O(

√
ε) .

Finally, to relate the above to the value of one of the games Gp,q, we let λ be the distribution on
Cδ(f) obtained by sampling a random C ∈ Φ′ and taking the matrix ζ ′C . Using the above, we get
that

E
ψ∼Γq

|ROUNDψ(Φ)− ρ(f)| ≥ E
ψ∼Γq

∣∣ROUNDψ(Φ′)− ρ(f)
∣∣−O(

√
ε)

= E
ψ∼Γq

∣∣∣∣∣∣∣ E
C∼Φ′

E
y1,...,yk∼Nd(ζC)

∑
S⊆[k]
S 6=∅

f̂(S) ·

(∏
i∈S

ψ(yi)

)
∣∣∣∣∣∣∣−O(

√
ε)

≥ E
ψ∼Γq

∣∣∣∣∣∣∣ E
C∼Φ′

E
y1,...,yk∼Nd(ζ′C)

∑
S⊆[k]
S 6=∅

f̂(S) ·

(∏
i∈S

ψ(yi)

)
∣∣∣∣∣∣∣−Ok,d,δ(

√
ε)

= E
ψ∼Γq

∣∣∣∣∣∣∣ Eζ∼λ E
y1,...,yk∼Nd(ζ)

∑
S⊆[k]
S 6=∅

f̂(S) ·

(∏
i∈S

ψ(yi)

)
∣∣∣∣∣∣∣−Ok,d,δ(

√
ε)

= PayOff(λ,Γq)−Ok,d,δ(
√
ε) .

The above almost looks like the pay-off for our game, except for the fact that the distribution λ may
not belong to the set of distributions Rp for any p ∈ N. However, the sets Rp get arbitrarily dense
in Cδ(f) as p increases. Also the probabilities for distributions in Rp are allowed to be multiples of
1/2p, which gets arbitrarily small as p increases. Since λ is supported on finitely many ζ ∈ Cδ(f),
for any β0 > 0, it is possible to find a large enough p ∈ N and a distribution λp ∈ Rp such that:

- There exists a bijection between the supports of λ and λp.
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- For each ζ in the support of λ, let ζ ′ denote its image according to the above map. Then
‖ζ − ζ ′‖∞ ≤ β0 and the probabilities λ(ζ) and λp(ζ

′) differ by at most β0.

Also, since by Lemma 3.4 the function PayOff(ζ, ψq) is Ok,d,δ(1)-Lipschitz in the argument ζ, we
have that there exists a p ∈ N and a distribution λp ∈ Rp such that

|PayOff(λ,Γq)− PayOff(λp,Γq)| ≤ β .

Finally, by definition of Γq, we have that

PayOff(λp,Γq) ≥ val(Gp,q) ≥ L− β .

Combining all the above inequalities, we have that

E
ψ
|ROUNDψ(Φ)− ρ(f)| ≥ PayOff(λp,Γq)− β −Ok,d,δ(

√
ε) ≥ L− 2β −Ok,d,δ(

√
ε) .

Choosing β ≤ L/8 and ε = ok,d,δ(L
2) gives that Eψ |ROUNDψ(Φ)− ρ(f)| ≥ L/2 as claimed.

3.3 A Characterization of Predicates with L = 0

We are now left with the case: L = 0 (since we always have that L ≥ 0). We will show that the
condition L = 0 implies the existence of a probability measure Λ on C(f) satisfying Equation 2.2
in Theorem 2.14. We next prove the following.

Theorem 3.6 If L = 0, then there exists a probability measure Λ on C(f) such that for all t ∈ [k],
and a uniformly random choice of S with |S| = t, π : S → S and b ∈ {−1, 1}S, the following signed
measure on (t+ 1)× (t+ 1) matrices:

Λ(t) := E
|S|=t

E
π:S→S

E
b∈{−1,1}|S|

[
f̂(S) ·

(∏
i∈S

bi

)
· ΛS,π,b

]

is identically zero.

We refer to a measure Λ which satisfies the above condition, as a vanishing measure. We will obtain
this measure by considering limits of the various strategies for Harry in the games Gp,q. We first
consider the limit for each p as q →∞.

Lemma 3.7 For each p ∈ N, there exists a limiting distribution Λp over Rp such that for every q
and Γq,

PayOff(Λp,Γq) ≤ rp ,

where rp = limq→∞ V(p, q).

Proof: For any row p we have a sequence of distributions {Λp,q}q∈N such that for all q and Γq,

PayOff(Λp,q,Γq) ≤ V(p, q) ≤ rp

where the second inequality used the fact that the numbers V(p, q) are non-decreasing in q (see
Lemma 3.3). Also, for a fixed p, each Λp,q can be viewed as a vector in [0, 1]|Rp| where Rp is
the class of distributions over Rp with probabilities being integer multiples of 1/2p (and thus
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|Rp| ≤ (2p + 1)|Rp|). Hence by the Bolzano-Weierstrass Theorem, the sequence {Λp,q}q∈N has a
convergent subsequence with a limit point, which we take to be Λp. Since each strategy Γq can also
be viewed as a strategy Γq′ for any q′ ≥ q, we have that PayOff(Λp,q′ ,Γq) ≤ rp. Taking the limit as
q′ →∞ according to the above convergent subsequence, we have that for all q and Γq,

PayOff(Λp,Γq) = lim
q′→∞

PayOff(Λp,q′ ,Γq) ≤ rp .

For the remainder of this section, we will consider the expression of the pay-off function without
the absolute value. For Λ which is a distribution over distributions on Cδ(f) and for Γ which is a
distribution over functions ψ : Rd → Vk, we define Eval(Λ,Γ) as the pay-off expression without the
absolute values.

Eval(Λ,Γ) := E
λ∼Λ

E
ψ∼Γ

E
ζ∼λ

E
y1,...,yk∼Nd(ζ)

∑
S 6=∅

f̂(S) ·
∏
i∈S

ψ(yi)

 .
As before, for a fixed function ψ, we use Eval(Λ, ψ) to denote the expression where we omit the
outer expectation over Γ. The expression Eval(ζ, ψ) is defined similarly for a fixed ζ ∈ Cδ(f). Note
that for Λp as given by Lemma 3.7 and any Γq, we have that

|Eval(Λp,Γq)| ≤ E
λ∼Λp

E
ψ∼Γq

∣∣∣∣∣∣ Eζ∼λ E
y1,...,yk∼Nd(ζ)

∑
S 6=∅

f̂(S) ·
∏
i∈S

ψ(yi)

∣∣∣∣∣∣ ≤ rp .

Since for the purpose of computing Eval(Λp,Γq), we can merge the expectations over λ ∼ Λ and
ζ ∼ λ, we will now simply consider each Λp to be a probability measure over Rp ⊆ Cδ(f). We
will obtain the desired probability measure Λ by taking a limit of the measures Λp obtained above.
However, since the measures Λp are supported on sets Rp with growing size, we will need to be
somewhat careful in taking the limit and will use the weak* topology to do so.

Since limp→∞ rp = L = 0, the function limp→∞ Eval(Λp,Γq) = 0 for any Γq. In particular,
limp→∞ Eval(Λp, ψq) = 0 for any q ∈ N and function ψq : Rd → Vk which is constant on the
cells of the partition Pq and is 0 outside the box [−1, 1]d. We use this to prove the following lemma
11.

Lemma 3.8 There exits a probability measure Λ on Cδ(f) such that for all q ∈ N and all functions
ψq, we have Eval(Λ, ψq) = 0.

Proof: Note that Cδ(f) is a closed and bounded subset of R(k+1)2
and is hence compact by the

Heine-Borel Theorem. Also, by Theorem 2.9, we have that the space of probability measures on
Cδ(f) is compact and metrizable in the weak* topology.

From the compactness, we obtain that the infinite sequence {Λp}p∈N (viewed as a sequence of
probability measures on Cδ(f)) has a convergent subsequence with a limit point, say Λ. By the

11We remark that Lemma 3.8 is the main reason why we need to have an absolute value in the pay-off of our games
(and hence restrict ourselves to strong approximation resistance). Without the absolute value, we can only prove
Eval(Λ, ψq) ≤ 0 for all ψq, which does not suffice for our purpose.
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definition of weak* topology, we have that for any continuous function h : Cδ(f) → R, taking a
limit over the above subsequence, we get

lim
p→∞

∫
h(ζ)dΛp(ζ) =

∫
h(ζ)dΛ(ζ) .

Also, note that by Lemma 3.4 the function Eval(ζ, ψ) is Ok,d,δ(1)-Lipschitz continuous, when viewed
as a function of ζ. Hence, taking limits according to the above subsequence, we get that for all
q ∈ N and functions ψq

0 = lim
p→∞

E
ζ∼Λp

[Eval(ζ, ψq)] = E
ζ∼Λ

[Eval(ζ, ψq)] = Eval(Λ, ψq)

as claimed.

To show that this implies the properties claimed in Theorem 3.6 for the limiting measure Λ, we
think of the function Eval(Λ, ψ) defined as

Eval(Λ, ψ) = E
ζ∼Λ

E
y1,...,yk∼Nd(ζ)

∑
S 6=∅

f̂(S) ·
∏
i∈S

ψ(yi)

 ,
as a degree-k “polynomial” in the (infinite set of) variables ψ(y) for all y ∈ Rd. The intuition is that
since the polynomial takes the value 0 for all “assignments” ψ to the variables, all its “coefficients”
must be zero.

Of course, the above is not a formal argument since the number of variables is infinite. To for-
malize this, we define the following quantity, which plays the role of the “coefficient” for the term∏t
i=1 ψ(yi) for t ≤ k. Note that in the expression for Eval(Λ, ψ), the term

∏t
i=1 ψ(yi) can arise for

any S ⊆ [k] with |S| = t i.e., (y1, . . . ,yt) can be any ordering of any subset of size t for the points
z1, . . . , zk which we sample for computing the pay-off. Also, we can also get a term involving ψ(yi)
if yi = −zj for some j ∈ [k], since we have the constraints ψ(−z) = −ψ(z). Taking these into
account, we define the following.

Definition 3.9 We define θ(t) : (Rd)t → R on formal variables {y1, ...,yt} as follows:

θ(t)(y1, . . . ,yt) :=
∑
|S|=t

E
π:[t]→[t]

E
b∈{−1,1}t

E
ζ∼Λ

[
f̂(S) ·

(
t∏
i=1

bi

)
· γt,d ((y1, . . . ,yt), ζS,π,b)

]
, (3.4)

where γt,d (·, ζS,π,b) is the joint density of t correlated Gaussians in Rd, with different coordinates
being independent and the moments for each coordinate given by the appropriate submatrix ζS of ζ
permuted according to π and modified according to the signs specified by b. Also, Λ is the limiting
measure as above.

The following properties follow easily from the definition of the function θ(t).

Claim 3.10 For all t ∈ [k] and for all (y1, . . . ,yt) ∈ (Rd)t, we have that

- For all permutations π′ : [t]→ [t], θ(t)(π′(y1, . . . ,yt)) = θ(t)(y1, . . . ,yt).

- For all b′ ∈ {−1, 1}t, θ(t)(b′1y1, . . . , b
′
tyt) =

(∏t
i=1 b

′
i

)
· θ(t)(y1, . . . ,yt)
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Proof: By definition of ζS,π,b, we have γt,d ((y1, . . . ,yt), ζS,π,b) = γt,d (π(b1y1, . . . , btyt), ζS). We
can then write

θ(t)(y1, . . . ,yt) =
∑
|S|=t

E
π:[t]→[t]

E
b∈{−1,1}t

E
ζ∼Λ

[
f̂(S) ·

(
t∏
i=1

bi

)
· γt,d (π(b1y1, . . . , btyt), ζS)

]
.

Since the expression already involves expectation over all permutations π of each tuple, replacing
(y1, . . . ,yt) by π(y1, . . . ,yt) does not change the value of the function. Similarly, for any b′ ∈
{−1, 1}t, we get

θ(t)(b′1y1, . . . , b
′
tyt) =

∑
|S|=t

E
π:[t]→[t]

E
b∈{−1,1}t

E
ζ∼Λ

[
f̂(S) ·

(
t∏
i=1

bi

)
· γt,d

(
π(b1b

′
1y1, . . . , btb

′
tyt), ζS

)]

=
∑
|S|=t

E
π:[t]→[t]

E
b∈{−1,1}t

E
ζ∼Λ

[
f̂(S) ·

(
t∏
i=1

bib
′
i

)
· γt,d (π(b1y1, . . . , btyt), ζS)

]
,

which equals
(∏t

i=1 b
′
i

)
· θ(t)(y1, . . . ,yt) as claimed.

The next claim shows that the functions θ(t) indeed provide the right notion of “coefficients” when
we think of the function Eval(Λ, ψ) as a polynomial in the values ψ(z).

Claim 3.11 Let Λ be the measure as above and let ψ : Rd → Vk be a measurable odd function.
Then,

Eval(Λ, ψ) =
k∑
t=1

∫
(Rd)t

θ(t)(y1, . . . ,yt) ·

(
t∏
i=1

ψ(yi)

)
dy1 . . . dyt .

Proof: Since ψ is assumed to be measurable and the integral above is bounded, we will freely
switch the order of integrals in the argument below. We have

Eval(Λ, ψ)

= E
ζ∼Λ

E
z1,...,zk∼Nd(ζ)

∑
S 6=∅

f̂(S) ·
∏
i∈S

ψ(zi)


=

k∑
t=1

∑
|S|=t

f̂(S) · E
ζ∼Λ

E
y1,...,yt∼Nd(ζS)

[
t∏
i=1

ψ(yi)

]

=

k∑
t=1

∑
|S|=t

f̂(S) · E
ζ∼Λ

∫
(Rd)t

γt,d ((y1, . . . ,yt), ζS) ·

(
t∏
i=1

ψ(yi)

)
dy1 . . . dyt

=

k∑
t=1

∑
|S|=t

f̂(S) · E
b∈{−1,1}t

E
ζ∼Λ

∫
(Rd)t

γt,d ((b1y1, . . . , btyt), ζS) ·

(
t∏
i=1

ψ(biyi)

)
dy1 . . . dyt

=

k∑
t=1

∑
|S|=t

f̂(S) · E
b∈{−1,1}t

E
ζ∼Λ

∫
(Rd)t

γt,d ((b1y1, . . . , btyt), ζS) ·

(
t∏
i=1

bi

)
·

(
t∏
i=1

ψ(yi)

)
dy1 . . . dyt ,

31



where the last equality used the fact that ψ is odd. Finally, we note that the term
∏t
i=1 ψ(yi) can

arise from any permutation of the tuple (y1, . . . ,yt). We thus re-write the expression above as

Eval(Λ, ψ)

=

k∑
t=1

∫
(Rd)t

∑
|S|=t

E
π:[t]→[t]

b∈{−1,1}t

E
ζ∼Λ

[
f̂(S) ·

(
t∏
i=1

bi

)
· γt,d (π(b1y1, . . . , btyt), ζS)

]
·

(
t∏
i=1

ψ(yi)

)
dy1 . . . dyt

=
k∑
t=1

∫
(Rd)t

∑
|S|=t

E
π:S→S

b∈{−1,1}S

E
ζ∼Λ

[
f̂(S) ·

(∏
i∈S

bi

)
· γt,d ((y1, . . . ,yt), ζS,π,b)

]
·

(
t∏
i=1

ψ(yi)

)
dy1 . . . dyt

=
k∑
t=1

∫
(Rd)t

θ(t)(y1, . . . ,yt) ·

(
t∏
i=1

ψ(yi)

)
dy1 . . . dyt ,

as claimed.

We next show that θ(t) is a “nice” function. For this we shall need to use the fact that Λ is a
measure over Cδ(f), and that matrices in Cδ(f) have each eigenvalue at least δ.

Lemma 3.12 For all t ∈ [k], θ(t) is bounded i.e.,
∥∥θ(t)

∥∥
∞ ≤ Ok,d,δ(1), and it is Ok,d,δ(1)-Lipschitz.

Proof: We first argue that θ(t) is bounded. The Gaussian density γt,d (·, ζS,π,b) is at most
1

(2π)td/2|Σ|d/2
where Σ is the covariance matrix associated with ζS,π,b with Σij = ζS,π,b(i, j) −

ζS,π,b(0, i) · ζS,π,b(0, j), and |Σ| denotes the determinant. Since ζ ∈ Cδ(f), all the eigenvalues of

Σ are at least δ and hence |Σ| ≥ δt. Also, since
∣∣∣f̂(S)

∣∣∣ ≤ 1, we get∥∥∥θ(t)
∥∥∥ ≤ (

k

t

)
· 1

(2π)td/2 · δtd/2
≤ 1

δkd/2
.

Let Σ be the covariance matrix as above and µ be the vector of means with µi = ζS,π,b(0, i). Also,
for l ∈ [d], let y(l) ∈ Rt denote the vector ((y1)l, . . . , (yt)l) obtained by taking the lth coordinates
of y1, . . . ,yt. The Gaussian density γt,d ((y1, . . . ,yt), ζS,π,b) can then be written as

γt,d ((y1, . . . ,yt), ζS,π,b) =

d∏
l=1

(
1

(2π)t/2 |Σ|1/2
· exp

(
−1

2
· (y(l) − µ)TΣ−1(y(l) − µ)

))
.

The density is a function on Rdt. The gradient on the coordinates corresponding to y(l) can be
written as

[∇ (γt,d (y, ζS,π,b))]l =
1

(2π)td/2 · |Σ|d/2
·
(
−Σ−1(y(l) − µ)

)
·
d∏
l=1

exp

(
−1

2
· (y(l) − µ)TΣ−1(y(l) − µ)

)
.

Since Σ−1 is positive semidefinite, we can define a matrix Σ−1/2. Also, since Σ has eigenvalues at
least δ, we have

∥∥Σ−1(y(l) − µ)
∥∥ ≤ 1√

δ
·
∥∥Σ−1/2(y(l) − µ)

∥∥. Using this, we can bound the norm of

gradient in the coordinates corresponding to y(l) as∥∥[∇ (γt,d (y, ζS,π,b))]l
∥∥ =

1

(2π)td/2 · |Σ|d/2
·
∥∥∥Σ−1(y(l) − µ)

∥∥∥ · d∏
l=1

exp

(
−1

2
·
∥∥∥Σ−1/2(y(l) − µ)

∥∥∥2
)

≤
∥∥Σ−1/2(y(l) − µ)

∥∥
(2π)td/2 · |Σ|d/2 ·

√
δ
· exp

(
−1

2
·

d∑
l=1

∥∥∥Σ−1/2(y(l) − µ)
∥∥∥2
)
.
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This bounds the norm of the gradient as

‖∇ (γt,d (y, ζS,π,b))‖2 ≤
∑d

l=1

∥∥Σ−1/2(y(l) − µ)
∥∥2

(2π)td · |Σ|d · δ
· exp

(
−

d∑
l=1

∥∥∥Σ−1/2(y(l) − µ)
∥∥∥2
)

≤ 1

(2π)td · |Σ|d · δ
,

where we used the fact that the function x · exp(−x) is bounded above by 1. Using the above, we
obtain a bound on the gradient of θ(t) as∥∥∥∇θ(t)

∥∥∥ ≤ (
k

t

)
· 1

(2π)td/2 · δ(td+1)/2
≤ 1

δ(kd+1)/2
.

Hence, θ(t) is C-Lipschitz, with C ≤ (1/δ)(kd+1)/2.

Using the above properties and the fact that Eval(Λ, ψq) = 0 for all q ∈ N and all functions ψq, we
can in fact show that the functions θ(t) must in fact be identically zero on the entire box ([−1, 1]d)t.

Lemma 3.13 For all t ∈ [k] and all y1, . . . ,yt ∈ [−1, 1]d, we have θ(t)(y1, . . . ,yt) = 0.

Proof: Let H denote the space [0, 1] × [−1, 1]d−1. By Claim 3.10, we only need to show
θ(t)(y1, . . . ,yt) = 0 for all y1, . . . ,yt ∈ H, since changing the sign of any input yi only changes
the sign of θ(t). Also, by Claim 3.11, we have that for any odd function ψq : Rd → Vk, which is 0
outside [−1, 1]d,

Eval(Λ, ψq) =

k∑
t=1

∫
(Rd)t

θ(t)(y1, . . . ,yt) ·

(
t∏
i=1

ψq(yi)

)
dy1 . . . dyt

=
k∑
t=1

∫
([−1,1]d)t

θ(t)(y1, . . . ,yt) ·

(
t∏
i=1

ψq(yi)

)
dy1 . . . dyt

=
k∑
t=1

2t ·
∫
Ht

θ(t)(y1, . . . ,yt) ·

(
t∏
i=1

ψq(yi)

)
dy1 . . . dyt .

The second equality above used the fact that ψq is 0 outside [−1, 1]d. The last equality used that
by Claim 3.10 and the fact that ψq is odd, we have for any b ∈ {−1, 1}t

θ(t)(b1y1, . . . , btyt) ·

(
t∏
i=1

ψq(biyi)

)
= θ(t)(y1, . . . ,yt) ·

(
t∏
i=1

ψq(yi)

)
.

Recall that for each q ∈ N the functions ψq are constant on the cells of the partition Pq which
divides [−1, 1]d in 2(q+1)d equal-sized boxes. By the above expression for Eval(Λ, ψq) and Lemma
3.8, we have that for any such function ψq

k∑
t=1

2t ·
∫
Ht

θ(t)(y1, . . . ,yt) ·

(
t∏
i=1

ψq(yi)

)
dy1 . . . dyt = 0 .
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The partition Pq induces a partition P(t) on Ht such that
∏t
i=1 ψq(yi) is constant on each cell of

the partition P(t). We will use w ∈ P(t) to denote a cell of this partition. Also, note that the cell
w can be written as (w1, . . . , wt), where each wi denotes a cell in Pq.

We define the function θ
(t)

, which is θ(t) averaged over each cell of P(t) (which has volume 2−qdt)

θ
(t)

(w) := (2qd)t ·
∫
y′∈w

θ(t)(y′1, . . . ,y
′
t)dy

′
1 . . . dy

′
t .

Also, since
∏t
i=1 ψq(yi) is constant on each w, we will use

∏t
i=1 ψq(wi) to denote its value over the

cell w. Using the above, we get

Eval(Λ, ψq) =
k∑
t=1

2t ·
∑

w∈P(t)

2−qdt · θ(t)
(w1, . . . , wt) ·

(
t∏
i=1

ψq(wi)

)
= 0 ,

for all functions ψq. Since each ψq is defined by 2(q+1)d/2 values, corresponding to the cells of
Pq in H, the above can be viewed as a degree-k polynomial in 2(q+1)d/2 variables. Note that∏t
i=1 ψq(wi) can arise from any permutation of the tuple (w1, . . . , wt). Since θ(t) is invariant under

the permutation of its inputs by Claim 3.10, the coefficient of
∏t
i=1 ψq(wi) is

2t · 2−qdt · Ct,w · θ
(t)

(w1, . . . , wt) ,

where Ct,w is the number of permutations of the tuple (w1, . . . , wt).

We have that the above polynomial over R is zero for all assignments to its variables from the set
Vk = { rk : − k ≤ r ≤ k}. However, from the Schwartz-Zippel lemma, we know that a non-zero

degree-k polynomial must only take the value 0 with probability k
|Vk| <

1
2 , over a random assignment

to its variables from the set Vk. This means that the polynomial above must be identically zero
and hence

∀t ∈ [k], ∀(w1, . . . , wt) ∈ P(t) θ
(t)

(w1, . . . , wt) = 0 .

Each cell of the partition P(t) is a box in Rdt with each side having length 2−q. Since θ
(t)

(w1, . . . , wt)
is the average of θ(t) over the box corresponding to (w1, . . . , wt) and θ(t) is Ok,d,δ(1)-Lipschitz by
Lemma 3.12, we have that for some constant Ck,d,δ

∀t ∈ [k], ∀(y1, . . . ,yt) ∈ Ht
∣∣∣θ(t)(y1, . . . ,yt)

∣∣∣ ≤ Ck,d,δ
2q

.

However, since the above holds for all q ∈ N, we must have that θ(t)(y1, . . . ,yt) = 0 for all
(y1, . . . ,yt) ∈ Ht and hence for all (y1, . . . ,yt) ∈ ([−1, 1]d)t.

For a set S with |S| = t, permutation π : [t]→ [t] and b ∈ {−1, 1}t, let ΛS,π,b denote the projection
of Λ to (t + 1) × (t + 1) matrices as defined in Section 2. We define the following signed measure
on space of (t+ 1)× (t+ 1) matrices

Λ(t) := E
|S|=t

E
π:[t]→[t]

E
b∈{−1,1}t

[
f̂(S) ·

(
t∏
i=1

bi

)
· ΛS,π,b

]

Lemma 3.13 immediately gives the following. Note that the integration below is over ζ ′ ∼ Λ(t) and
the tuple y1, . . . ,yt is fixed.
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Claim 3.14 For all t ∈ [k] and for all y1, . . . ,yt ∈ [−1, 1]d, we have∫
γt,d

(
(y1, . . . ,yt), ζ

′) dΛ(t)(ζ ′) = 0 .

Proof: We start by expanding the expression for θ(t).

θ(t)(y1, . . . ,yt) =

(
k

t

)
· E
|S|=t

E
π:[t]→[t]

E
b∈{−1,1}t

∫
f̂(S) ·

(
t∏
i=1

bi

)
· γt,d ((y1, . . . ,yt), ζS,π,b) dΛ(ζ)

=

(
k

t

)
· E
|S|=t

E
π:[t]→[t]

E
b∈{−1,1}t

∫
f̂(S) ·

(
t∏
i=1

bi

)
· γt,d

(
(y1, . . . ,yt), ζ

′) dΛS,π,b(ζ
′)

=

(
k

t

)
·
∫
γt,d

(
(y1, . . . ,yt), ζ

′) dΛ(t)(ζ ′) .

The claim follows by using that θ(t)(y1, . . . ,yt) = 0 for all y1, . . . ,yt ∈ [−1, 1]d by Lemma 3.13.

From the claim we get that the integral of γt,d ((y1, . . . ,yt), ζ
′) with respect to the signed measure

Λ(t) is zero for all y1, . . . ,yt ∈ [−1, 1]d. We will use it to show that the integral of all continuous
functions must be zero with respect to Λ(t) and hence Λ(t) must itself be identically zero. However,
we will need to modify Λ(t) a little to prove this.

We begin by considering the expression for γt,d ((y1, . . . ,yt), ζ
′). We note that there is a bijection

between the matrices ζ ′ and the pairs (Σ, µ), where µ ∈ Rt is a vector of means with µi = ζ ′(0, i) and
Σ is the t×t covariance matrix with Σij = ζ ′(i, j)−µi ·µj . Also, since ζ ′ = ζS,π,b for some ζ ∈ Cδ(f),
we have that Σ is an invertible matrix with each eigenvalue at least δ. We shall use M to denote
the matrix Σ−1 which has all eigenvalues at most 1/δ. Also, as before, for vectors y1, . . . ,yt ∈ Rd,
and for l ∈ [d], we use y(l) ∈ Rt to denote the vector consisting of the lth coordinates of y1, . . . ,yt.
We can then write

γt,d
(
(y1, . . . ,yt), ζ

′)
=

1

(2π)td/2 · |Σ|d/2
· exp

(
−1

2
·

d∑
l=1

(y(l) − µ)TM(y(l) − µ)

)

=
1

(2π)td/2 · |Σ|d/2
· exp

−1

2

t∑
i,j=1

Mij 〈yi,yj〉 −
d

2

t∑
i,j=1

Mijµiµj +
t∑

i,j=1

Mijµj 〈yi,1〉


= γt,d

(
(0, . . . ,0), ζ ′

)
· exp

−1

2

t∑
i,j=1

Mij 〈yi,yj〉+

t∑
i,j=1

Mijµj 〈yi,1〉

 ,

where 1 ∈ Rd denotes the vector (1, . . . , 1) and 0 ∈ Rd denotes the vector (0, . . . , 0).

We will try to argue that for d ≥ k+1, the values {〈yi,yj〉}i,j∈[t] and {〈yi,1〉}i∈[t] are “independent

enough” so that if the integral of γt,d ((y1, . . . ,yt), ζ
′) with respect to Λ(t) vanishes for all y1, . . . ,yt ∈

[−1, 1]d, then Λ(t) vanishes. However, the values {〈yi,yj〉}i,j∈[t] and {〈yi,1〉}i∈[t] cannot vary
completely independently, since they are required to form a positive semidefinite matrix. To handle
this, we define the variables (for β > 0 to be chosen later)

Xij =

{
〈yi,yj〉 if i 6= j
〈yi,yi〉 − β if i = j

and Zi = 〈yi,1〉 . (3.5)
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Let N denote the vector Σ−1µ = Mµ. We can then write

γt,d
(
(y1, . . . ,yt), ζ

′) = γt,d
(
(0, . . . ,0), ζ ′

)
· exp

(
−β

2
· Tr(M)

)
· exp

(
−1

2
(M •X) + 〈N,Z〉

)
,

where M •X denotes the Frobenius inner product of the two matrices.

Note that there is a bijection between the pairs (M,N) and the pairs (Σ, µ), and hence also
between the pairs (M,N) and the matrices ζ ′. We can then view the expression γt,d ((0, . . . ,0), ζ ′) ·
exp

(
−β

2 · Tr(M)
)

as a function of the pair (M,N), say g
(t)
β (M,N). Also viewing the Gaussian

density as a function of the pair (M,N), we can write

γt,d ((y1, . . . ,yt), (M,N)) = g
(t)
β (M,N) · exp

(
−1

2
(M •X) + 〈N,Z〉

)
.

Finally, note that the bijection from the pairs (Σ, µ) to the pairs (M,N) is a continuous map, since
both the maps Σ 7→ Σ−1 and µ 7→ Σ−1µ are continuous on the space of matrices Σ with each
eigenvalue at least δ. Also, the bijection from matrices ζ ′ to the pairs (Σ, µ) is continuous. Thus,
the bijection from matrices ζ ′ to the pairs (M,N) is continuous and hence maps measurable sets
to measurable sets. Hence, we can also view the signed measure Λ(t) as a signed measure on the
pairs (M,N).

We say that a pair (X,Z) for X ∈ Rt×t and Z ∈ Rt is (β, d)-realizable if there exist y1, . . . ,yt ∈
[−1, 1]d such that the values Xij and Zi satisfy the relation in Equation 3.5. From the above
discussion and Claim 3.14, we have that for all (β, d)-realizable pairs (X,Z)∫

g
(t)
β (M,N) · exp

(
−1

2
(M •X) + 〈N,Z〉

)
dΛ(t)(M,N) = 0 .

Note that g
(t)
β (M,N) is a positive valued function of the pair (M,N). Using this we define the

signed measure Λ̃(t) as

Λ̃(t) := Λ(t) · g(t)
β .

Formally, for every set A (of pairs (M,N)) in the underlying σ-algebra, we define

Λ̃(t)(A) :=

∫
1{A}(M,N) · g(t)

β (M,N) dΛ(t)(M,N)

This operation indeed defines a new signed measure if g
(t)
β is a continuous non-negative function

(see Exercise 7 in Chapter 3 of [37] for example). The required conditions on g
(t)
β are easily proved.

Claim 3.15 The function g
(t)
β is a positive and continuous function of the pairs (M,N), and is

bounded above by a constant Ck,d,δ.

Proof: Let ζ ′(M,N) denote the moment matrix corresponding to (M,N). Recall that the

function g
(t)
β was defined as

g
(t)
β (M,N) = γt,d

(
(0, . . . ,0), ζ ′(M,N)

)
· exp

{
−β

2
· Tr(M)

}
.
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Note that the Gaussian density γt,d ((0, . . . ,0), ζ ′(M,N)) is a continuous function of the matrix ζ ′

and hence also of the pair (M,N). Also, it is positive and bounded above by 1
(2π)td/2

· |M |d/2 ≤

(1/δ)td/2. Also, exp
{
−β

2 · Tr(M)
}

is a positive and continuous function of M and is bounded

above by 1. Hence, their product g
(t)
β is also positive, continuous and bounded as claimed.

From the definition of Λ̃(t), we have that for all (β, d)-realizable pairs (X,Z)∫
exp

(
−1

2
(M •X) + 〈N,Z〉

)
dΛ̃(t)(M,N) = 0 .

The following claim shows that the class of (β, d)-realizable pairs is sufficiently rich.

Claim 3.16 Let X ∈ Rt×t be a matrix and Z ∈ Rt be a vector such that

∀i, j ∈ [t] |Xij | ≤
β

t+ 1
and ∀i ∈ [t] |Zi| ≤

β

t+ 1
.

Then the pair (X,Z) is (β, d)-realizable for d ≥ k + 1 and β ≤ 1/2.

Proof: Consider the (t+1)×(t+1) matrix Y defined as Y00 = d, Y0i = Yi0 = Zi and Yii = Xii+β
for i ≥ 1, and Yij = Xij for i 6= j when i, j ≥ 1. The matrix is diagonally dominant and is hence
positive semidefinite, when X and Z are as above.

Thus, there exist vectors y0,y1, . . . ,yt ∈ Rd when d ≥ t + 1, such that Yij = 〈yi,yj〉. Also, we
have ‖y0‖2 = Y00 = d and hence we can assume (by applying a rotation if necessary) that y0 = 1.
Finally, we also have

‖yi‖2 = Yii = Xii + β ≤ β

t+ 1
+ β ≤ 1

when β ≤ 1/2. Thus, all the vectors yi have ‖yi‖ ≤ 1 and lie in [−1, 1]d. By definition of the
matrix Y , the pair (X,Z) satisfies the relation in Equation 3.5 and is hence (β, d)-realizable.

Hence, all the variables Xij and Zi are allowed to vary in a radius of β/(t + 1) and the above
integral is zero for all values of these variables. We can expand the integral as a power series in
these variables, and then argue that all its coefficients must be zero within the radius of conver-
gence. However, it will be convenient to re-write the function exp

{
−1

2(M •X) + 〈N,Z〉
}

slightly
differently, before expanding it as a power series.

Note that since the matrices M and X are symmetric, the variable Xij actually appears twice in
X when i 6= j, and thus it’s coefficient in −1

2(M •X) is −Mij when i 6= j and −Mii/2 when i = j.
We re-write the K =

(
t
2

)
+ 2t variables corresponding to (X,Z) as the vector w = (w1, . . . , wK)

and their coefficients as a = (a1, . . . , aK). As before, the map from (M,N) is a continuous bijection
and thus, we can view Λ̃(t) as a measure on the coefficient vectors a. From Claim 3.16, we have∫

exp(〈a,w〉) dΛ̃(t)(a) = 0 ∀w ∈
[
− β

t+ 1
,
β

t+ 1

]K
. (3.6)

The following bound on the coefficients will be useful.

Claim 3.17 Let a = (a1, . . . , aK) be as above. Then |ai| ≤ t
δ for each i ∈ [K].
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Proof: The coefficients for the variables Xij are −Mij = −Σ−1
ij when i 6= j. Let ei denote the

ith unit vector in the standard basis for Rt. Then∣∣∣Σ−1
ij

∣∣∣ =
〈
ei,Σ

−1ej
〉
≤
∥∥Σ−1ej

∥∥ ≤ 1

δ
.

Similarly, the coefficient for Xii, which equals −Σ−1
ii /2 is bounded in absolute value by 1

2δ . Finally,
the coefficient for Zi equals Ni =

(
Σ−1µ

)
i

and is bounded as

∣∣(Σ−1µ
)
i

∣∣ ≤ ∥∥Σ−1µ
∥∥ ≤ 1

δ
· ‖µ‖ ≤ t

δ
,

where the bound on ‖µ‖ uses that its each coordinate µi is in [−1, 1].

We shall expand the function exp(〈a,w〉) as a power series and integrate each term separately
to obtain a formal series S(w). To write the series, it will be convenient to use the multi-index
notation. Let r = (r1, . . . , rK) ∈ (Z+)K denote a multi-index. Let ar denote the term

∏K
i=1 a

ri
i and

define wr similarly. Let |r| denote
∑K

i=1 ri and let (r)! denote
∏K
i=1(ri!). Then we can write

exp(〈a,w〉) =
∞∑
r=0

(〈a,w〉)r

r!
=

∑
r∈ZK+

wr · ar

(r)!
.

We define the series

S(w) =
∑
r∈ZK+

wr

(r)!
·
∫

ar dΛ̃(t)(a) .

We next show that this formal series converges everywhere. Using the convergence, we can equate
it to the integral in Equation 3.6. The fact that the integral is zero in a box around the origin will
then yield the desired conclusion.

Claim 3.18 Let the vectors a = (a1, . . . , aK) and the measure Λ̃(t) be as above. Then the series

S(w) =
∑
r∈ZK+

wr

(r)!
·
∫

ar dΛ̃(t)(a)

is absolutely convergent for all w ∈ RK .

Proof: We bound the absolute value of the integral
∫

ar dΛ̃(t)(a) for each r ∈ ZK+ . By claim
3.17, |ai| ≤ t

δ for each coordinate ai of a. We then have∣∣∣∣∫ ar dΛ̃(t)(a)

∣∣∣∣ =

∣∣∣∣∫ ar · g(t)
β (a) dΛ(t)(a)

∣∣∣∣ ≤ sup
a

(
|ar| · g(t)

β (a)
)
·
∫
d|Λ(t)|(a) .

Note that here we have used notation |Λ(t)|, which is used to refer to a positive measure corre-
sponding to Λ(t), which is given by the Hahn decomposition theorem for signed measures. By the
decomposition theorem, any signed measure ν can be written as ν+ − ν−, where ν+ and ν− are
positive measures supported on disjoint measurable sets, say P and N respectively. Then |ν| is
used to refer to the measure (ν+ + ν−). The inequality above follows immediately by considering
this decomposition.
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Also, if Λ0 is a finite linear combination of positive measures i.e., Λ0 =
∑

i ciΛi, then using the above
decomposition, we can say that |Λ0| ≤

∑
i |ci|Λi. By the definition of Λ(t) as a linear combination

of positive measures, we can now bound the integral as∫
d|Λ(t)|(a) ≤ E

|S|=t
E

π:[t]→[t]
E

b∈{−1,1}t

[∣∣∣f̂(S)
∣∣∣ · ∣∣∣∣∣

t∏
i=1

bi

∣∣∣∣∣ ·
∫
dΛS,π,b(a)

]
≤ 1 ,

since each ΛS,π,b is a probability measure. Using the bound on the coefficients ai, we have that

|ar| ≤ (t/δ)|r|. Also, by Claim 3.15, we have that g
(t)
β ≤ Ck,d,δ. Thus, we get∣∣∣∣∫ ar dΛ̃(t)(a)

∣∣∣∣ ≤ Ck,d,δ ·
(
t

δ

)r

.

For w = (w1, . . . , wK) ∈ RK , let w+ = (|w1| , . . . , |wK |) be the vector of absolute values of all the
entries of w. To show that S(w) is absolutely convergent, we need to show that the series S ′(w),
obtained by replacing each term of S(w) by its absolute value, is convergent. We can write

S ′(w) =
∑
r∈ZK+

∣∣∣∣wr

(r)!

∣∣∣∣ · ∣∣∣∣∫ ar dΛ̃(t)(a)

∣∣∣∣ =
∑
r∈ZK+

wr
+

(r)!
·
∣∣∣∣∫ ar dΛ̃(t)(a)

∣∣∣∣
≤

∑
r∈ZK+

wr
+

(r)!
· Ck,d,δ ·

(
t

δ

)|r|

= Ck,d,δ · exp

(
t

δ
·
K∑
i=1

|wi|

)
.

The last equality above used the fact that for all x ∈ RK , the series
∑

r∈ZK+
xr

(r)! converges to

exp
(∑K

i=1 xi

)
.

Thus, we know that for w ∈
[
− β
t+1 ,

β
t+1

]K
, the series S(w) always converges to zero. We shall

use this to show that all the coefficients of the series must be zero, which in turn implies that the
signed measure Λ̃(t) must be identically zero. The following lemma finishes the proof.

Lemma 3.19 Let Λ̃ be a signed measure on vectors a = (a1, . . . , aK) contained in a compact set
X ⊆ RK , such that the series

S(w) =
∑
r∈ZK+

wr

(r)!
·
∫

ar dΛ̃(a)

in the variables w1, . . . , wK converges and is identically zero for |wi| ≤ τ . Then Λ̃ = 0.

Proof: Since the series converges for all w ∈ [−τ, τ ]K , S(w) defines a real analytic function for all
w ∈ [−τ, τ ]K . Since the function is identically zero in [−τ, τ ]K , all its derivatives at w = (0, . . . , 0)
must be zero. By comparing coefficients of the above series with the Taylor expansion, we get that∫

ar dΛ̃(a) = 0 ∀r ∈ ZK+ .
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Thus, for all polynomials P in the variables (a1, . . . , aK), we have that
∫
P (a) dΛ̃(a) = 0. By the

the Stone-Weierstrass theorem, we know that for any continuous function h : X → R, there is a
sequence of polynomials {Pr}r∈N, which converges to h. By the dominated convergence theorem
for integrals over signed measures, we have that∫

h(a) dΛ̃(a) = lim
r→∞

∫
Pr(a) dΛ̃(a) = 0 .

Finally, we use the (uniqueness part of) Riesz Representation Theorem (see Chapter 13 in [37]),
which says for a compact metric space X and two signed measures Λ1 and Λ2 defined on X, if∫
h(a) dΛ1(a) =

∫
h(a) dΛ2(a) for all continuous functions h : X → R, then Λ1 = Λ2. Using this

theorem, we conclude that Λ̃ = 0.

The above lemma gives that the signed measure Λ̃(t) must be identically zero. Note that to apply
the lemma, we use the fact that the space of the vectors a is compact. This follows from the fact
that the space of the matrices ζ ′ is compact and a continuous map preserves compactness.

However, we are interested in the measure Λ(t), and we have Λ̃(t) = g
(t)
β ·Λ

(t). The following lemma

shows that then we must in fact have that Λ(t) = 0.

Lemma 3.20 Let Λ1 and Λ2 be two signed measures on a compact metric space X such that
Λ2 = g ·Λ1 for a strictly positive and bounded continuous function g. Then if Λ2 is identically zero,
so is Λ1.

Proof: We consider the integral of any continuous function h : X → R with respect to Λ1.
Note that since g is strictly positive and X is compact, g is also bounded below by some absolute
constant. Using the fact that g is positive and bounded, we can write∫

h dΛ1 =

∫
h

g
· g dΛ1 =

∫
h

g
dΛ2 .

Since h and g are both continuous and g is positive, the function h
g is continuous and hence

measurable. Thus, we obtain that for every continuous function h,∫
h dΛ1 =

∫
h

g
dΛ2 = 0 .

Again, by the (uniqueness aspect of) Riesz Representation Theorem as in the proof of Lemma 3.19,
this implies that Λ1 = 0.

Since the function g
(t)
β is strictly positive, bounded and continuous by Claim 3.15, the previous

claim implies that the measure Λ on Cδ(f) is such that for each t ∈ [k], the signed measure

Λ(t) = E
|S|=t

E
π:[t]→[t]

E
b∈{−1,1}t

[
f̂(S) ·

(
t∏
i=1

bi

)
· ΛS,π,b

]

is identically zero i.e., Λ is a vanishing measure. However, we need to establish the existence of a
vanishing measure on C(f). The following claim shows that the existence of such measures on C(f)
and Cδ(f) are equivalent.
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Claim 3.21 There exists a vanishing probability measure Λ on Cδ(f) if and only if there exists a
vanishing probability measure Λ′ on C(f).

Proof: By definition of the body Cδ(f), we have that for every ζ ∈ Cδ(f), the matrix

ζ ′ =
ζ − δ · Ik+1

1− δ

is in C(f), where Ik+1 denotes the (k + 1) × (k + 1) identity matrix. The above map defines a
continuous bijection from Cδ(f) to C(f), and thus maps measurable sets to measurable sets. Thus,
we can define a measure Λ′ on C(f) where for any measurable set A′ ⊆ C(f), we take Λ′(A′) = Λ(A)
for A which is the inverse image of A′ under the above map. Note that if ζ ′ ∈ C(f) is the image of
ζ ∈ Cδ(f) under the above map, then we also have for any S, π and b that

ζ ′S,π,b =
ζS,π,b − δ · I|S|

1− δ
.

Thus, we also have that for every measurable set A of (|S|+ 1)× (|S|+ 1) matrices, and its image
A′ that ΛS,π,b(A) = Λ′S,π,b(A

′). Since Λ(t) is a linear combination of the measures ΛS,π,b for |S| = t,

and Λ′(t) is an identical linear combination of measures Λ′S,π,b, Λ(t) being identically zero implies

that Λ′(t) must also be identically zero.

For the reverse direction, we consider the inverse map ζ = (1−δ)·ζ ′+δ ·Ik, which is also continuous.
The rest of the argument is the same as above.

3.4 The Integrality Gap Instances

We now show that for a predicate f , if there exists a vanishing probability measure Λ on C(f), then
there exists an infinite family of CSP(f) instances such that the SDP has optimum value 1− o(1),
while the value of any integer assignment lies in [ρ(f)− o(1), ρ(f) + o(1)].

First, we give a description of our instance family in the continuous setting and then sketch how
to discretize it. The advantage of this description is that the soundness and completeness of the
instance are far easier to analyze than in the discrete setting, while continuity properties ensure that
the results translate to the discrete setting as well. To ensure the continuity of various functions
defined on the matrices ζ, we will instead work with a vanishing measure Λ defined on Cδ(f) (for
some small δ > 0) instead of C(f). By Claim 3.21, the existence of vanishing measures on C(f) and
Cδ(f) are equivalent.

Our set of literals will be the set of all points in Rd, where the variable represented by the point −y
is treated as the negation of the variable represented by the point y ∈ Rd. The set of constraints
will be given by all k-tuples of points in Rd. We think of the constraints being generated as follows:
we pick a ζ according to Λ, choose a k-tuple of points (y1, . . . ,yk) according to Nd(ζ), and impose
the constraint f(y1, . . . ,yk). Thus, given a k-tuple (y1, . . . ,yk), the “weight” of the constraint
f(y1, . . . ,yk) is Eζ∼Λ [γk,d ((y1, . . . ,yk), ζ)].

We remark that while it is convenient to think of the instance as above, the set of variables in fact
only corresponds to y ∈ H, where H is an arbitrary half-space of Rd, say H = R+ × Rd−1. This
is because the variable −y is supposed to be the negation of the variable y. This means that any
“assignment” to the variables, must be an odd function on Rd. Also, we will need to be careful of
the above while constructing the SDP solution.
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Soundness

Let ψ : Rd → {±1} be an odd function, which forms an assignment to the variables of our continuous
CSP(f) instance. In the continuous setting ψ may not even be measurable but such technical issues
do not occur in a discrete setting, which is our goal, and so we will ignore them for the analysis
below. We show that the fraction of constraints satisfied by any such assignment is ρ(f).

Lemma 3.22 Let Φ be the instance as described above and let ψ : Rd → {−1, 1} be any measurable
odd function. Then the fraction of constraints satisfied by ψ, denoted by sat(ψ), is equal to ρ(f).

Proof: The objective value is given by:

sat(ψ) = E
ζ∼Λ

E
y1,...,yk∼Nd(ζ)

[f(y1, . . . ,yk)]

= ρ(f) + E
ζ∼Λ

E
y1,...,yk∼Nd(ζ)

∑
S⊆[k]
S 6=∅

f̂(S) ·
∏
i∈S

ψ(yi)


= ρ(f) + Eval(Λ, ψ) (3.7)

By Claim 3.11, we can write Eval(Λ, ψ) as

Eval(Λ, ψ) =
k∑
t=1

∫
(Rd)t

θ(t)(y1, . . . ,yt) ·

(
t∏
i=1

ψ(yi)

)
dy1 . . . dyt ,

where the function θ(t) is defined as

θ(t)(y1, . . . ,yt) :=
∑
|S|=t

E
π:[t]→[t]

E
b∈{−1,1}t

E
ζ∼Λ

[
f̂(S) ·

(
t∏
i=1

bi

)
· γt,d ((y1, . . . ,yt), ζS,π,b)

]
.

However, since Λ is a vanishing measure, it is easy to see that θ(t) must be identically zero for each
t. This follows from writing θ(t) as

θ(t)(y1, . . . ,yt) =
∑
|S|=t

E
π:[t]→[t]

E
b∈{−1,1}t

E
ζ′∼ΛS,π,b

[
f̂(S) ·

(
t∏
i=1

bi

)
· γt,d

(
(y1, . . . ,yt), ζ

′)]

=
∑
|S|=t

E
π:[t]→[t]

E
b∈{−1,1}t

∫
f̂(S) ·

(
t∏
i=1

bi

)
· γt,d

(
(y1, . . . ,yt), ζ

′) dΛS,π,b(ζ
′)

=

∫
γt,d

(
(y1, . . . ,yt), ζ

′) dΛ(t)(ζ ′)

= 0 .

Hence, sat(ψ) = ρ(f) for every measurable and odd assignment ψ to our continuous instance.

Completeness

We now demonstrate an SDP solution for the continuous instance, for which the value of the
objective is 1. However, it is not a valid solution to the relaxation in Figure 3, as some of the
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SDP constraints will not be satisfied for each tuple of variables involved in a constraint, but only
in expectation over these variables (which is also the case with the continuous Gaussian version
of the Feige-Schechtman instance for MAX-CUT). However, as we discretize the instance, these
constraints will be satisfied upto a small error, with high probability over the participating tuple
of variables. We will be able to correct these errors later, without significantly affecting the value
of the SDP solution.

To construct the SDP solution, we need to specify a vector v(∅,∅), a vector v(y,b) for each y ∈ Rd

and b ∈ {−1, 1}, and a variable x((y1,...,yk),α) for all y1, . . . ,yk ∈ Rd and α ∈ {−1, 1}k, satisfying

the conditions in Figure 3. We take the vector v(∅,∅) = 1√
d
· 1. We shall also define the vector

u∅ = v(∅,∅) for the calculations below. For each y ∈ Rd, we first define the following vectors.

uy =
1√
d
· y, v(y,1) =

1

2
· (u∅ + uy) and v(y,−1) =

1

2
· (u∅ − uy) .

Note that v(−y,b) = v(y,−b) for any y ∈ Rd and b ∈ {−1, 1}, since −y is simply the negation of the
variable y.

Before describing the values of the variables x((y1,...,yk),α), we mention a subtle issue. Note that
we need to produce one such set of variables for every constraint in the CSP instance, and not
just for every k-tuple of variables. This means that if for some y1, . . . ,yk ∈ H, there are two
constraints of the form f(y1, . . . ,yk) and f(−y1, . . . ,yk), then we will produce two different sets of
variables,

{
x((y1,...,yk),α)

}
α∈{−1,1}k and

{
x((−y1,...,yk),α)

}
α∈{−1,1}k , corresponding to the same tuple

(y1, . . . ,yk) of CSP variables. Similarly for constraints where the tuple (y1, . . . ,yk) is generated
according to two different matrices ζ and ζ ′ in the support of Λ. The only consistency conditions
are the ones imposed through the inner products of the corresponding vectors.

Since every constraint is uniquely described by a tuple (y1, . . . ,yk) ∈ Rd and ζ ∈ Λ, we have a

different set of variables
{
x

(ζ)
((y1,...,yk),α)

}
α∈{−1,1}k

for each ζ and y1, . . . ,yk ∈ Rd. We now describe

the value of the variable x
(ζ)
((y1,...,yk),α) for all y1, . . . ,yk ∈ Rd and α ∈ {−1, 1}k and ζ ∈ Cδ(f). Since

the only “actual variables” correspond to y ∈ H, some of the elements yi might be negations of

actual variables −yi ∈ H. In that case we interpret x
(ζ)
((y1,...,yi,...,yk),α) as x

(ζ)
((y1,...,−yi,...,yk),α′) (for the

constraint corresponding to (y1, . . . ,yk) and ζ), where α′ is α with the ith bit negated.

Recall that for each ζ ∈ Cδ(f), there exists a distribution ν supported on f−1(1), such that ζ =
(1− δ) · ζ(ν) + δ · Ik+1. Consider a distribution ν, which is ν with probability 1− δ and uniform on
{−1, 1}k with probability δ. Then, we have

ζ = (1− δ) · ζ(ν) + δ · Ik+1 = ζ(ν) .

We refer to (an arbitrary choice of) this distribution ν for a given ζ ∈ Cδ(f) as νζ . For a constraint

f(y1, . . . ,yk), the variable x
(ζ)
((y1,...,yk),α) is then defined as

x
(ζ)
((y1,...,yk),α) = νζ(α) ,

where νζ(α) is the probability assigned to α by νζ . We now show that this assignment has SDP
value (1− δ) and satisfies the SDP constraints in expectation over the tuples (y1, . . . ,yk).

Lemma 3.23 Let Φ be the continuous instance of CSP(f) as described above. Then the SDP

solution given by the vectors v(y,b) and the variables x
(ζ)
((y1,...,yk),α) defined as above has an objective

value of 1− δ. Also, we have
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- For all i ∈ [k] and all ζ in the support of Λ, Ey1,...,yk∼Nd(ζ)

[〈
v(yi,1),v(yi,−1)

〉]
= 0.

- For all i, j ∈ [k] with i 6= j, all b, b′ ∈ {−1, 1}, and all ζ in the support of Λ,

E
y1,...,yk∼Nd(ζ)

[〈
v(yi,b),v(yj ,b′)

〉]
= E

y1,...,yk∼Nd(ζ)

 ∑
α∈{−1,1}t

α(i)=b,α(j)=b′

x
(ζ)
((y1,...,yk),α)

 .
The remaining SDP conditions are satisfied for each constraint corresponding to a tuple (y1, . . . ,yk)
and matrix ζ.

Proof: We first verify the SDP constraints. It is immediate from the definitions that we have∥∥v(∅,∅)
∥∥ = 1, v(y,1) + v(y,−1) = v(∅,∅) for all y ∈ Rd, and x

(ζ)
((y1,...,yk),α) ≥ 0 for all y1, . . . ,yk ∈ Rd

and all α ∈ {−1, 1}k. The remaining two constraints will only be satisfied in expectation over the
tuple (y1, . . . ,yk).

Consider the constraint
〈
v(y,1),v(y,−1)

〉
= 0. With our definition of vectors, we have

〈
v(y,1),v(y,−1)

〉
=

1

4
·
(
‖u∅‖2 − ‖uy‖2

)
=

1

4
·
(

1− 1

d
· ‖y‖2

)
,

which is not always zero. However, for any i ∈ [k], we have

E
y1,...,yk∼Nd(ζ)

[〈
v(yi,1),v(yi,−1)

〉]
= E

y1,...,yk∼Nd(ζ)

[
1

4
·
(

1− 1

d
· ‖yi‖2

)]
=

1

4
· (1− ζ(i, i))

= 0 .

Thus, the constraint is satisfied in expectation over the tuples (y1, . . . ,yk) for each ζ. Similarly,
for any tuple (y1, . . . ,yk), i, j ∈ [k], i 6= j and b, b′ ∈ {−1, 1}, we have the constraint∑

α∈{−1,1}t
α(i)=b,α(j)=b′

x
(ζ)
((y1,...,yk),α) =

〈
v(yi,b),v(yj ,b′)

〉
.

From the definition of the variables x
(ζ)
((y1,...,yk),α), the left hand side equals

P
z∼νζ

[
(zi = b) ∧ (zj = b′)

]
= E

z∼νζ

[(
1 + (−1)b · zi

2

)
·

(
1 + (−1)b

′ · zj
2

)]
=

1

4
·
(

1 + (−1)b · ζ(0, i) + (−1)b
′ · ζ(0, j) + (−1)b+b

′ · ζ(i, j)
)
.

Also, the right hand side equals〈
v(yi,b),v(yj ,b′)

〉
=

〈(
u∅ + (−1)b · uyi

2

)
,

(
u∅ + (−1)b

′ · uyj

2

)〉

=
1

4
·

(
1 +

(−1)b

d
· 〈1,yi〉+

(−1)b
′

d
· 〈1,yj〉+

(−1)b+b
′

d
· 〈yi,yj〉

)
.
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Again, we have in expectation over the tuples (y1, . . . ,yk),

E
y1,...,yk∼Nd(ζ)

[〈
v(yi,b),v(yj ,b′)

〉]
= E

y1,...,yk∼Nd(ζ)

[
1

4
·

(
1 +

(−1)b

d
· 〈1,yi〉+

(−1)b
′

d
· 〈1,yj〉+

(−1)b+b
′

d
· 〈yi,yj〉

)]
=

1

4
·
(

1 + (−1)b · ζ(0, i) + (−1)b
′ · ζ(0, j) + (−1)b+b

′ · ζ(i, j)
)
.

Thus, the SDP constraint is satisfied in expectation over the tuples (y1, . . . ,yk). Finally, we verify
that the above solution has an SDP value of 1−δ. The expression for the SDP value can be written
as

E
ζ∼Λ

E
y1,...,yk∼Nd(ζ)

 ∑
α∈{−1,1}k

f(α) · x(ζ)
((y1,...,yk),α)

 = E
ζ∼Λ

E
y1,...,yk∼Nd(ζ)

[
P

α∼νζ
[f(α) = 1]

]
≥ E

ζ∼Λ
E

y1,...,yk∼Nd(ζ)
[(1− δ)] ,

since νζ is a convex combination of ν with probability 1−δ and uniform on {−1, 1}k with probability
δ, and ν is supported on f−1(1).

Discretization

We now describe how to discretize the continuous instance described above. We first discretize the
body Cδ(f) and replace it by a sufficiently dense set of points. The measure Λ can then be replaced
by a distribution Λ′ over these set of points. Recall that the value of any integer assignment ψ
to the continuous instance generated according to the measure Λ is ρ(f) + Eval(Λ, ψ) as derived
in Equation 3.7. Since the function Eval(·, ψ) is continuous in the matrices ζ (for ζ ∈ Cδ(f)) by
Lemma 3.4, replacing Λ by Λ′ only affects the value of the assignment ψ by o(1). Hence, the value
of each assignment is in [ρ(f)− o(1), ρ(f) + o(1)].

Next we restrict the set of constraints. We say that a constraint on the tuple (y1, . . . ,yk) generated
according to a matrix ζ is ε-good, if for all i, j ∈ [k], we have∣∣∣∣1d · 〈yi,1〉 − ζ(0, i)

∣∣∣∣ ≤ ε and

∣∣∣∣1d · 〈yi,yj〉 − ζ(i, j)

∣∣∣∣ ≤ ε .

We will restrict our set of constraints only to the set of ε-good constraints, for a sufficiently small
ε to be fixed later. Since the tuple (y1, . . . ,yk) is generated according to Nd(ζ), we have that
E
[

1
d · 〈yi,1〉 = ζ(0, i)

]
and E

[
1
d · 〈yi,yj〉

]
= ζ(i, j). Hence for sufficiently large d, the probability

that a randomly generated constraint is not ε-good is o(1) by standard tail estimates on Gaussian
variables. Thus, restricting our instance only to the set of ε-good constraints changes the value
of all assignments only by o(1). Note that it follows from the proof of Lemma 3.23 that for any
ε-good constraint, we will have for all i, j ∈ [k] and b, b′ ∈ {−1, 1}

∣∣〈v(yi,1),v(yi,−1)

〉∣∣ ≤ ε and

∣∣∣∣∣∣∣∣
〈
v(yi,b),v(yj ,b′)

〉
−

∑
α∈{−1,1}t

α(i)=b,α(j)=b′

x
(ζ)
((y1,...,yk),α)

∣∣∣∣∣∣∣∣ ≤ ε .
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Finally, we discretize the set of variables. Since we only consider ε-good constraints, we have that
for all participating tuples (y1, . . . ,yk) and all i ∈ [k],

∣∣1
d · 〈yi,yi〉 − ζ(i, i)

∣∣ ≤ ε and hence ‖yi‖2 ∈
[(1− ε) · d, (1 + ε) · d]. Thus, we can restrict ourselves to a sufficiently dense set of points such that
their squared distance from the origin is between (1− ε) d and (1 + ε) d. For each constraint on a
tuple (y1, . . . ,yk), we collapse each yi to the nearest point in our set, which gives a finite set of
constraints over a finite number of variables. Since an assignment to the collapsed instance can
also be thought of as an assignment to the continuous instance (where ψ is constant over each set
of collapsed points), the value of any assignment still remains in the range [ρ(f)−o(1), ρ(f)+o(1)].

We define the vectors v(y,b) and variables x
(ζ)
((y1,...,yk),α) as before for our new set of variables. Since

the contribution of each constraint to the SDP objective is at least 1 − δ, the SDP value still
remains at least 1 − δ. Also, if the set of points is sufficiently dense, each vector only moves by a
small amount (say o(ε)) and we still have that for every (ε-good) constraint, for all i, j ∈ [k] and
b, b′ ∈ {−1, 1}

∣∣〈v(yi,1),v(yi,−1)

〉∣∣ ≤ O(ε) and

∣∣∣∣∣∣∣∣
〈
v(yi,b),v(yj ,b′)

〉
−

∑
α∈{−1,1}t

α(i)=b,α(j)=b′

x
(ζ)
((y1,...,yk),α)

∣∣∣∣∣∣∣∣ ≤ O(ε) .

Thus, we have an SDP solution with value at least 1 − δ, which satisfies the above inequalities
approximately and the rest of the SDP constraints exactly. At this point we can apply the “surgery”
and “smoothening” procedures of Raghavendra and Steurer [30] (Lemmas 5.1 and 5.2), which
transform an SDP solution satisfying the above constraints approximately, to new solution for the
basic SDP relaxation in Figure 3, while only losing O(

√
ε ·k2) in the SDP value. Note that for an

instance of CSP(f), the variables x(SC ,α) define a distribution on the set SC . Let this be denoted
by νC . The following is a combination of Lemmas 5.1 and 5.2 from [30].

Lemma 3.24 ([30]) Let Φ be an instance of CSP(f) in n (Boolean) variables such that there exist
vectors v(i,b) for all i ∈ [n] and b ∈ {−1, 1}, and distributions νC over {−1, 1}SC for all C ∈ Φ,
satisfying∣∣〈v(i,1),v(i,−1)

〉∣∣ ≤ ε and

∣∣∣∣〈v(i,b),v(j,b′)

〉
− P
x∼νC

[
(xi = b) ∧ (xj = b′)

]∣∣∣∣ ≤ ε ∀C ∈ Φ, i, j ∈ SC .

Then there exist vectors
{
ṽ(i,b)

}
i∈[n],b∈{−1,1} and distributions {ν̃C}C∈Φ such that〈

ṽ(i,1), ṽ(i,−1)

〉
= 0 and

〈
ṽ(i,b), ṽ(j,b′)

〉
= P

x∼ν̃C

[
(xi = b) ∧ (xj = b′)

]
∀C ∈ Φ, i, j ∈ SC .

Also, we have that for all i, b,
∥∥v(i,b) − ṽ(i,b)

∥∥ = O(k2 ·
√
ε) and for all C ∈ Φ, ‖νC − ν̃C‖1 =

O(k2 ·
√
ε).

Choosing ε = O(δ2/k4) and applying the above lemma, we obtain a solution to the SDP in Figure
3 with value at least 1− 2δ.

4 Proof of the LP Dichotomy Theorem

Note that a dichotomy theorem for SDPs need not imply a similar dichotomy theorem for LPs. For
example, 2LIN is approximable (very well) via Goemans-Williamson SDP but the same predicate
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appears approximation resistant to a super-constant number of rounds of the Sherali-Adams LP
[13, 10]. Nevertheless, our characterization in Theorem 2.14 can be used in a more or less black-box
fashion so as to yield a syntactically similar characterization in the LP case. The integrality gap
construction however needs substantial work. The Feige-Schechtman approach is not sufficient to
construct integrality gap instances for the Sherali-Adams LP, which is our focus in this section.
We overcome this difficulty by generalizing the construction of de la Vega and Kenyon [13]. A
noteworthy detail of our construction is that our technique, even though it is probabilistic, requires
a more subtle argument for both completeness and soundness. This is unlike many previous con-
structions, which typically consider a uniformly random instance (or a minor modification of it)
from the family of all possible instances.

Recall that in Definition 2.12, we define a moment matrix ζ consisting of the first and second
moments of a distribution ν supported on f−1(1). The second moments also match with the inner
products of the SDP vectors. In the LP case, the LP solution only gives first moments. Still, we
are able to use a dummy setting for the second moments and reduce the LP case to the SDP case!
The dummy setting ensures that the corresponding covariances are zero and hence the Gaussians
with matching first and second moments are independent.

We describe this trick formally now. Given a predicate f : {−1, 1}k → {0, 1}, recall that D(f) is
the set of all probability distributions over f−1(1). We define a compact body C̃(f) that replaces
the role of the polytope C(f) before.

Definition 4.1 For ν ∈ D(f), we let ζ̃(ν) denote the (k + 1)× (k + 1) symmetric moment matrix:

∀i ∈ {0} ∪ [k] : ζ̃(i, i) = 1 ,

∀i ∈ [k] : ζ̃(0, i) = E
x∼ν

[xi] ,

∀i, j ∈ [k], i 6= j : ζ̃(i, j) = ζ̃(0, i) · ζ̃(0, j) .

Also, let C̃(f) ⊆ R(k+1)×(k+1) denote the compact (but not necessarily convex) set of all such moment
matrices:

C̃(f) := {ζ̃(ν) : ν ∈ D(f)}.

Note that if g1, . . . , gk are correlated Gaussians with E[gi] = ζ̃(0, i), E[g2
i ] = 1 and E[gigj ] =

ζ̃(0, i) · ζ̃(0, j) for i 6= j, then these are independent with given means.

The entire argument in Section 3 can be repeated as is except for two changes: firstly, the body C̃(f)
is now used throughout the argument. Secondly, in Section 3.2, towards designing an algorithm,
the k-round Sherali-Adams LP is solved instead of the basic (SDP) relaxation. The SDP solution
enables us to generate a (global) sequence of correlated Gaussians, one for every CSP variable, so
that for every CSP constraint C, the k Gaussians corresponding to that constraint have first and
second moments given by ζ = ζ(ν(C)), where ν(C) is the local distribution on that constraint. In
the LP case however, we only have access to (globally consistent) first moments (i.e. biases) of the
local distributions ν(C). But we can still generate a (global) sequence of correlated Gaussians as
before whose first and second moments corresponding to the constraint C are ζ̃(ν(C))). These are
simply independent unit `2-norm Gaussians with first moments equal to the biases computed by
the LP!

As before, depending on the value of the limit L, we get a dichotomy, i.e. the following analogs
of Theorems 3.5 and 3.6 respectively. When L > 0, the predicate is weakly approximable via a
k-round Sherali-Adams LP.
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Theorem 4.2 If L > 0, then there exists a k-round LP rounding algorithm such that given an
instance Φ with FRAC(Φ) ≥ 1−ε (for sufficiently small ε > 0), we have Eψ |ROUNDψ(Φ)− ρ(f)| ≥
L/2.

When L = 0, as in Theorem 3.6, we get a measure Λ on the body C̃(f) that is vanishing in the
sense therein. However we note that since the second moments are just dummy, we might as well
restrict everything to the body C∗(f) that is the projection of C̃(f) onto the first moments (and
thus C∗(f) is simply the convex hull of f−1(1)). Denoting the measure on C∗(f) so obtained by Λ∗,
we get:

Theorem 4.3 If L = 0, then there exists a probability measure Λ∗ on C∗(f) such that for all t ∈ [k],
and a uniformly random choice of S with |S| = t, π : [t]→ [t] and b ∈ {−1, 1}t, the following signed
measure on t-dimensional vectors,

Λ∗,(t) := E
|S|=t

E
π:[t]→[t]

E
b∈{−1,1}t

[
f̂(S) ·

(
t∏
i=1

bi

)
· Λ∗S,π,b

]
(4.1)

is identically zero.

In the next section, we show how the existence of the measure Λ∗ leads to a strong (1−o(1), ρ(f)±
o(1)) integrality gap for a super-constant number of rounds of the Sherali-Adams LP.

4.1 The Integrality Gap Instance

The integrality gap construction for the Sherali-Adams LP is rather different from that for SDPs.
One important aspect of our construction is that unlike many previous constructions, e.g. [10, 13,
35, 8], our construction requires a non-trivial proof of both the soundness and completeness parts.
The proof of the soundness part is similar to that in the SDP case and for the completeness part
we generalize the construction in de la Vega and Kenyon [13]. A formal description of our instance
follows.

Let f : {−1, 1}k 7→ {0, 1} be any predicate with a measure Λ∗ as in Theorem 4.3. Note that now
C∗δ (f) is simply the body {(1 − δ) · ζ | ζ ∈ C∗(f)}. Since it’s just a scaling, there is a vanishing
measure over C∗(f) if and only if there is such a measure over C∗δ (f). We will assume Λ∗ is over
C∗δ (f) for reasons similar to the ones in the SDP integrality gap. We will finally need to choose
δ ≥
√
ε, for the constant ε below.

Fix a small enough ε > 0 and let s = d1
εe. Partition the interval [0, 1] into s + 1 disjoint sets

I0, I1, . . . , Is where I0 = {0} and I1, . . . , Is are contiguous equal length intervals that partition
(0, 1], each being open at its left endpoint and closed at the right endpoint. For each interval Ii,
we define a set (layer) of n variables Xi. Thus the total number of variables in the CSP instance
is (s+ 1) · n. Our constraints are generated by the following algorithm.

1. Sample12 ζ ∼ Λ∗.

2. For each j ∈ [k], let ij(ζ) denote the index of the interval that contains |ζ(j)|. Sample
uniformly a variable xij from the set Xij(ζ).

12Strictly speaking, it is not clear how to sample from an arbitrary measure Λ∗. However, as in the case of the
SDP integrality gap instance, we can approximate the body C∗δ (f) by a sufficiently dense set of points, and consider
Λ∗ to be a distribution over a finite set of points.
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3. If ζ(j) < 0 then negate xij . If ζ(j) = 0 then negate xij with probability 1
2 .

4. We have sampled a k-tuple of literals. Introduce a constraint f on these literals.

5. Repeat the above procedure m = ∆(ε) · n times independently (where ∆(ε) is a sufficiently
large constant) and thus generate m constraints.

This completes the description of our CSP(f) instance.

Let ψ be any (global) {−1, 1}-assignment to the above instance. Denoting the fraction of constraints
satisfied by ψ by sat(ψ), we note that E [sat(ψ)] is equal to the the probability that a randomly
chosen constraint as above is satisfied by ψ. We prove that this probability is precisely ρ(f). We
can write E [sat(ψ)], which equals the probability of satisfying a random constraint as above, as:

E [sat(ψ)] = E
ζ∼Λ∗,

xij
∈Xij(ζ)

[f(sign(ζ(1)) · ψ(xi1), ..., sign(ζ(k)) · ψ(xik))] .

Here the function sign(·) is −1 if its argument is strictly negative, +1 if its argument is strictly
positive and sign(0) = 0. Using the Fourier expansion of f ,

E [sat(ψ)] = E
ζ∼Λ∗,

xij
∈Xij(ζ)

∑
S⊆[k]

f̂(S)
∏
j∈S

(
sign(ζ(j)) · ψ(xij )

) .
Since xij is randomly chosen from the layer Xij(ζ), we can move the expectation over the choice of
xij inside and get

E [sat(ψ)] = ρ(f) +

k∑
t=1

E
ζ∼Λ∗

∑
|S|=t

f̂(S)
∏
j∈S

sign(ζ(j)) · E
xij
∈Xij(ζ)

[
ψ(xij )

] .
The expectations inside are the average values of ψ over the respective layers and hence in [−1, 1].
Define a function ψ̃ : [−1, 1] 7→ [−1, 1] that is odd, in particular ψ̃(0) = 0 and for each i ∈ [s], is
constant on the interval Ii where it takes the value Exi∈Xi [ψ(xi)]. Thus the innermost expectation
is really ψ̃(|ζ(j)|) and combining it with sign(ζ(j)) and using the oddness of ψ̃,

E [sat(ψ)] = ρ(f) +
k∑
t=1

E
ζ∼Λ∗

∑
|S|=t

f̂(S)
∏
j∈S

ψ̃(ζ(j))

 . (4.2)

We observe that for every t ∈ [k], the expectation above vanishes. This is because, up to a
multiplicative factor of

(
k
t

)
, the expectation is same as

E
ζ∼Λ∗

 E
|S|=t

E
π:S 7→S

E
b∈{−1,1}S

f̂(S)

∏
j∈S

bj

∏
j∈S

ψ̃(bjζ(π(j)))

 ,
which in turn is same as ∫  t∏

j=1

ψ̃(ζ ′(j))

 dΛ∗,(t)(ζ ′).

This integral vanishes since Λ∗,(t) vanishes identically and we are done.
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Now we prove the soundness property of the CSP instance. Since each constraint is picked inde-
pendently, a Chernoff bound implies that the probability that sat(ψ) is outside [ρ(f)− ε, ρ(f) + ε],
for any fixed {−1, 1} assignment ψ, decays exponentially in m. For large enough ∆(ε), one may
then take a union bound over all 2(s+1)·n assignments and obtain the following claim.

Lemma 4.4 For every ε > 0, there exists a sufficiently large constant ∆(ε) such that w.h.p. over
the choice of the CSP(f) instance, it holds that for every assignment ψ to the instance, sat(ψ) ∈
[ρ(f)− ε, ρ(f) + ε].

Let G denote the natural constraint vs variable bipartite graph of our instance. In other words, G
has a vertex for each constraint and each variable and there is an edge between a constraint and a
variable if and only if the variable occurs in that constraint. Strictly speaking, G is a multi-graph
since in a constraint, the same variable may appear twice or more. We show that after deleting
a small fraction of vertices, G has high girth, in particular eliminating cycles of length two, i.e.
multiple edges.

Lemma 4.5 The constraint vs variable graph G has (k∆)O(g) cycles of length at most g, in expec-
tation.

Proof: Recall that the variable vertices of G correspond to the set [n]× {0, 1, . . . , s}. We think
of these as arranged in an n × (s + 1) array. Suppose we contract the set of s + 1 vertices in jth

row into a single vertex xj for j ∈ [n]. We will get a bipartite multi-graph G′ such that the set of
variables of each of the m constraints is picked uniformly from the set of variables {xj : j ∈ [n]}.
Note that under this operation there exists a unique cycle of length at most g in G′ for every cycle
of length at most g in G. Moreover, the probability of obtaining that cycle in G′ is the at most the
probability of obtaining that cycle in G. Hence, it will suffice to bound the expected number of
cycles of length at most g in G′. We have reduced our problem to obtaining a bound on the girth
of G to the following combinatorial problem.

We have a random bipartite multi-graph H := (U, V ), where the edge set E(H) is selected by
independent sampling (with repetition) of k vertices from V (|V | = n), for each of the m vertices
in U . We need a bound on the expected number of cycles of length at most g.

Consider any cycle C(h) of length 2h in H. Half the vertices in C(h) come from U and half come
from V . The probability that a given vertex in U and given vertex in V have an edge between them
is at most k/n. Therefore, the expected number of cycles of length exactly 2h in H is bounded by:

nh · (∆ · n)h ·
(
k

n

)2h

≤ (k∆)O(h). (4.3)

The above is a geometric progression in h, since k and ∆ are constants. Hence, the expected
number of cycles of length at most 2h in H is also bounded by (k∆)O(h).

For g = c · log n for a sufficiently small constant c depending on k and ∆, we may delete o(n)
constraints from our instance so as to eliminate all cycles of length at most g. This still preserves
the property that for every assignment ψ to the instance sat(ψ) ∈ [ρ(f)− ε, ρ(f) + ε], possibly with
a negligible change in parameter ε that we ignore. Moreover, a union bound implies that with high
probability every vertex in our constraint bigraph G has bounded degree. Therefore, Lemmas 4.4
and 4.5 imply the following lemma.
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Lemma 4.6 For all large enough n and every ε > 0, there exists a CSP(f) instance with n variables
and m = ∆n constraints such that its constraint vs variable graph G has girth Ω(log n), every vertex
in G has bounded degree and every assignment to the instance satisfies between [ρ(f)− ε, ρ(f) + ε]
fraction of the constraints.

Also note that large girth in particular implies that any two constraints in our instance share at
most one variable.

For the remainder of this section, we assume that our CSP(f) instance is given by some fixed
constraint graph G, as in Lemma 4.6. Next, we need to show that the Sherali-Adams LP has
an optimal solution with value 1 − o(1) for instance given by G. Our task is to define locally
consistent distributions over all subsets of variables of size at most r (we will finally be able to
choose r = Ω(log log n)). To this end we will first define distributions which are approximately
consistent, and then use a result by Raghavendra and Steurer [31] to make the distributions exactly
consistent.

Recall that every constraint C in our instance was generated using a ζ(C) ∈ C∗(f). Let ν(C) be a
distribution on f−1(1) such that ζ(C) = ζ(ν(C)). Note that ν(C) is a distribution on the literals
involved in constraint C, with the biases of the literals being (ζ(1), . . . , ζ(k)). If a constraint C is
on variables in layers i1, . . . , ik respectively, then the biases of these variables according to ν(C) are

(|ζ(1)| , . . . , |ζ(k)|) = (pi1 , . . . , pik) .

respectively so that pij ∈ Iij . The biases of the variables are always non-negative since we negate
the jth variable only if ζ(j) < 0 (and with probability 1/2 when ζ(j) = 0).

The local distributions we define on sets of size r will have the property that all variables in the
same layer Xi have the same bias. For each interval Ii with i ∈ {0, . . . , s}, choose an arbitrary
point ti ∈ Ii. We will first modify the distributions ν(C) such such that the all the variables in
layer Xi have bias exactly ti. Since pij ∈ Iij , we have |pij − tij | ≤ ε. Thus we can change the
biases of the variables as desired with a slight perturbation of the distributions ν(C). However
this incurs a slight loss in the completeness parameter: the resulting distribution ν ′(C) is now only
(1− o(1))-supported on f−1(1).

Claim 4.7 Let the distribution ν(C) be as above such that the biases for the literals in C are given
by (ζ(1), . . . , ζ(k)). Also, let ti1 , . . . , tik as above be the desired biases for the variables such that∣∣tij − |ζ(j)|

∣∣ ≤ ε. Then there exists a distribution ν ′(C) on {−1, 1}k such that ‖ν(C)− ν ′(C)‖1 =
O(k ·

√
ε) and

∀j ∈ [k] E
z∼ν′(C)

[zj ] = sign(ζ(j)) · tij .

Thus, the biases for the variables, when the literals are sampled according to ν ′(C) are exactly
(ti1 , . . . , tik) since the jth variable is negated only if sign(ζ(j)) = −1.

Proof: Let rj = sign(ζ(j)) · tij be the desired bias of the jth literal. Then, |ζ(j)− rj | ≤ ε for all
j ∈ [k] We construct a sequence of distributions ν0, . . . , νk such that ν0 = ν(C) and νk = ν ′(C).
In νj , the biases of the literals are (r1, . . . , rj , ζ(j + 1), . . . , ζ(k)).

The biases in ν0 satisfy the above by definition. We think of the distributions over z ∈ {−1, 1}k.
We obtain νj from νj−1 as,

νj = (1− τj) · νj−1 + τj ·Dj ,

where Dj is the distribution in which all bits, except for the jth one, are set independently according
to their biases in νj−1. For the jth bit, we set it to sign(rj − ζ(j)) (if rj − ζ(j) = 0, we can simply
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proceed with νj = νj−1). The biases for all except for the jth bit are unchanged. For the jth bit,
the bias now becomes rj if

rj = (1− τj) · ζ(j) + τj · sign(rj − ζ(j)) =⇒ τj · (sign(rj − ζ(j))− rj) = (1− τj) · (rj − ζ(j)) .

Since ζ ∈ C∗δ (f) for δ ≥
√
ε, we know that |sign(rj − ζ(j))− rj | ≥ O(

√
ε). Also, |rj − ζ(j))| ≤ ε by

assumption. Thus, we can choose τj = O(
√
ε) which gives that ‖νj − νj−1‖1 = O(

√
ε). The final

bound then follows by triangle inequality.

The distribution over the literals of C, given by the above claim also gives a distribution for the
variables in SC . We now refer to the distribution over {−1, 1}SC given by Claim 4.7 as ν(C). We
will need to modify the distributions ν(C) a little further before we use them to define the local
distributions over sets of size r.

Definition 4.8 Given a constraint C and η > 0, let UC denote the following distribution on
{−1, 1}SC

UC := (1− η) · ν(C) + η · Uk .

where Uk denotes the uniform distribution on {−1, 1}k. For α a partial assignment to variables in
C, let UC,α denote the distribution UC conditioned according to α.

Recall that the distributions ν(C) are defined so that the variables in the layer Xi have bias exactly
ti. The following observation will be extremely useful.

Remark 4.9 The bias of a variable in layer Xi is exactly (1− η) · ti, when assigned according to
UC , for any constraint C containing that variable.

Let VG denote the set of variable vertices in the bipartite constraint-variable graph G and let CG
be the set of constraint vertices. Let distG(u, v) denote the shortest path distance in G between
two vertices u and v. Given a set S of variables in G and an even number d ∈ N, we define

B(d)(S) := {u ∈ VG ∪ CG : distG(u, S) ≤ d} .

We will choose d to be sufficiently small so that |B(d)(S)| ≤ girth(G) and hence the set B(d)(S) is
a forest. Also, since d is assumed to be even and S ⊆ VG, the leaves of each component in B(d)(S)
are variable vertices in G. Let B(d)(S) = ∪iB(d)(Si), where each B(d)(Si) is a maximal connected
component in B(d)(S). We now describe a probabilistic process, which will be used to defined a
probability distribution mS on ±1 assignments to the set S. We will use this process to generate
a random assignment to all the variables in B(d)(S), and hence also in S.

First, we fix an arbitrary ordering of all variables in G. This also gives an ordering of all the
constraints in S (depending on the variables involved in each constraint). We generate an assign-
ment for all variables in VG ∩ B(d)(S). The assignment for each component B(d)(Si) is generated
independently of the other components by the following process:

1. Pick the least variable x ∈ S ∩ B(d)(Si). If x belongs to the layer Xj , assign it to be 1 with
probability (1 + (1− η) · tj)/2 and −1 with probability (1− (1− η) · tj)/2, so that the bias is
(1− η) · tj .

2. Traverse B(d)(Si) in a breadth-first manner, starting from the vertex corresponding to the
least variable x (and using the above ordering on variables and constraints).
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- When visiting a vertex corresponding to a constraint C, if α is the partial assignment
to the variables assigned so far, generate an assignment for the remaining variables in C
according to UC,α.

- When visiting a vertex corresponding to a variable, its value is already assigned by its
parent constraint-vertex. We simply proceed to its children, which are new constraint
vertices.

Note that since B(d)(Si) is a tree, when visiting a constraint vertex C we will have at most one
of the variables in C assigned before. We will assign the remaining variables according to UC
conditioned on the value of this one variable.

This process above defines a probability distribution mS on the ±1 assignments to the variables
in B(S), and hence also on {−1, 1}S as long as B(d)(S) is a forest. We can obtain a bound on the
size of such sets S in terms of the girth and the degree of the constraint graph G.

Claim 4.10 Let the girth of the constraint graph G be equal to g and let the degree of every vertex
in G be at most D. Then the distribution mS is well-defined for all sets S with |S| < g/Dd.

Proof: Since the degree of every vertex at most D, we have that∣∣∣B(d)(S)
∣∣∣ ≤ |S| ·Dd < g .

Hence, we have that B(d)(S) is a forest and the distribution mS is well-defined.

We need the following lemma to show that the objective value of our Sherali-Adams LP solution
is close to 1.

Lemma 4.11 For every constraint C supported on variables SC , the distribution mSC , has at least
(1− η −O(k

√
ε))-fraction of its probability mass on the accepting assignments of C.

Proof: Note that for any constraint C at most 1 variable can be fixed by a partial assignment
to some other variables by our process for generating assignments. At this point, we assign all
variables in C according to UC conditioned on the value of this one variable. Hence, the joint
distribution of all the variables in C is always according to UC .

Also, UC is obtained by taking ν(C) with probability 1 − η and uniform with probability η. By
Claim 4.7, ν(C) is O(k

√
ε)-close to a distribution which corresponds to a point in C∗δ (f) and has

mass at least 1− δ over accepting assignments. Thus, UC has mass at least 1− η− δ−O(k
√
ε) on

accepting assignments. Using δ =
√
ε proves the bound.

Note that the definition of mS implicitly depends on the ordering of variables. The following lemma
shows that the distributions in fact do not depend on the ordering.

Lemma 4.12 Given a set S ⊆ VG and an ordering ω of all the variables in VG, let mS,ω denote
the distribution mS when defined according the ordering ω. Then, for any α ∈ {−1, 1}S and any
two orderings ω and ω′, we have that

mS,ω(α) = mS,ω′(α) .
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Proof: Since the distributions in different components of B(d)(S) are independent, it is sufficient
to prove the lemma for the case when B(d)(S) is a tree (instead of a forest). We will, in fact, prove

that the probability for any assignment β ∈ {−1, 1}VG∩B(d)(S) is the same regardless of the ordering
ω. Since S ⊆ VG ∩B(d)(S), this implies the lemma.

Let mS,ω(β) denote the probability of the assignment β ∈ {−1, 1}VG∩B(d)(S). Note that since the
leaves of B(d)(S) must correspond to variables (since d is even), for each constraint C ∈ B(d)(S), we
must have that SC ⊆ VG∩B(d)(S), where SC denotes the set of variables involved in the constraint
C. For C ∈ B(d)(S), let β|C denote β restricted the set SC .

We now compute the probability for the assignment β. Suppose that at some intermediate step
in the breadth first traversal for mS,ω one has fixed an assignment β′ ∈ {±1}R for a set R ⊆
VG ∩B(d)(S), where β|R = β′. Let C be the next constraint-vertex visited by the traversal. Using
β1 ◦ β2 to denote the concatenation of two assignments β1 and β2, we have

mS,ω(β′ ◦ β|C) = mS,ω(β′) · UC,β′(β|C) ,

where UC,β′(β|C) is the probability that constraint C gets an assignment β|C conditioned on the
event that variables in R were assigned according to β′.

Since B(S) is a tree, there is exactly one variable in R, say xj , which is also present in C (this
variable is the parent vertex of C). We can then write the above as

mS,ω(β′ ◦ β|C) = mS,ω(β′) ·
UC(β|C)

UC(β|j)
.

By Remark 4.9, the quantity UC(β|j) is independent of the constraint C and only depends on
the variable xj and the assignment β|j . Denoting the quantity by pj(β), we can write the above
expression as

mS,ω(β′ ◦ β|C) = mS,ω(β′) ·
UC(β|C)

pj(β)
.

We can now inductively simplify the expression for mS,ω(β). Let xj0 be the first variable in S
according to the ordering ω. Since we visit each constraint exactly once, the numerator equals

pj0(β) ·
∏

C∈CG∩B(d)(S)

UC(β|C) .

Also, each variable xj ∈ VG ∩ B(d)(S), except for xj0 , has exactly deg(xj) − 1 children in the
tree (where deg(xj) denotes its degree in the tree B(d)(S)). Thus, the term pj(β) appears exactly
deg(xj)− 1 times in the denominator, for each xj ∈ VG ∩B(d)(S) \ {xj0}. The term pj0(β) appears
deg(xj0) times since all the neighbors of xj0 are its children in the tree. Thus, we get

mS,ω(β) =

∏
C∈CG∩B(d)(S) UC(β|C)∏

xj∈VG∩B(d)(S) (pj(β))deg(xj)−1
,

which is independent of the ordering ω.

We now prove that the distributions mS are locally consistent i.e., for any two sets S1 and S2, the
distributions mS1 and mS2 agree on S1 ∩ S2. It suffices to show that for that for any two sets S
and T , with S ⊆ T , we have for all any α ∈ {−1, 1}S , mS(α) = mT (α). Here mT (α) denotes the

54



probability that the variables in S are assigned according to α in mT when we marginalize over the
variables in T \ S. The distributions mS will only satisfy this approximately i.e., we will be able
to show that |mS(α)−mT (α)| is very small. However, using a result of Raghavendra and Steurer
[31], we will be able to correct the distributions {mS} to a family of distributions {m′S} such that
m′S(α) = m′T (α) for all α. We first prove the following.

Lemma 4.13 (Approximate Local Consistency) There exists a constant c0 such that for any
two sets S ⊆ T ⊆ VG, with |S| ≤ |T | ≤ 2c0·ηd, we have

∀α ∈ {−1, 1}S |mS(α)−mT (α)| = 2−Ω(ηd) ,

when the distributions mS and mT are both well-defined.

Proof: Note that it suffices to prove the above for the case when T = S ∪ {v}, since then by
triangle inequality we will have that for any T , |mS(α)−mT (α)| ≤ |T \ S| · 2−Ω(ηd) = 2−Ω(ηd).

Since mT is well defined, B(d)(T ) must be a forest in the graph G. Also, the distributions in different
components of B(d)(T ) are independent and the components in B(d)(T ) which do not contain v are
identical in B(d)(S). Hence, the distribution over them would be identical according to mS and
mT . Thus, it suffices to consider the case when B(d)(T ) is a tree (i.e., we restrict ourselves to the
component B(d)(Ti) of B(d)(T ) which contains v).

Note that even though B(d)(T ) is assumed to be a tree, we could still have that B(d)(S) is a forest
with more than one components, which get connected in B(d)(T ) = B(d)(S∪{v}). We first consider
a simple special case when B(d)(S) is also a tree.

Case 1: B(d)(T ) is a tree and B(d)(S) is also a tree. In this case, since B(d)(S) ⊆ B(d)(T ),
we must have that any edge (u, v) which is present in B(d)(S) must also be present in B(d)(T ).
Thus, the vertices in B(d)(T ) \ B(d)(S) must form a collection of subtrees of the tree B(d)(S). By
Lemma 4.12, we can assume that the distributions mT and mS are defined with the same starting
vertex in S. Since the distribution mT is defined by a breadth-first traversal of the tree B(d)(T ), the
probability of any assignment to the vertices in B(d)(S) will remain unchanged even if we remove
the subtrees corresponding to the vertices in B(d)(T ) \B(d)(S). Thus, in this case, we have that

∀α ∈ {−1, 1}S mS(α) = mT (α) .

Case 2: B(d)(T ) is a tree but B(d)(S) is a forest with more than one components. In this
case, we might have B(d)(S) = ∪ti=1B

(d)(Si), where the components B(d)(Si) are disconnected in
B(d)(S), but become connected in B(d)(T ). Thus, the distributions over the different components
will be independent according mS but will become correlated when we consider mT .

However, recall that in the distribution UC , with probability η we assign the variables in SC
according to the uniform distribution on {−1, 1}SC . This breaks the correlation between any two
variables in the constraint C. Since for any i 6= j, B(d)(Si) and B(d)(Sj) are disconnected, any
path between Si and Sj in B(d)(T ) must have length at least d. We will use this to show that the
correlation between the variables in Si and Sj must be small since (with high probability) at some
constraint C along the path, we must assign the variables in C uniformly.

However, the above intuition is slightly incorrect since in defining the distributions mS , we do not
assign all the variables of the constraint together, but assign k − 1 variables conditioned on one
variable which is the parent of C in the tree. The following claim shows that even when assigning the
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variables in a constraint C, conditioned on the value of one of its variables, we break the correlation
between the variables with probability at least η/2 i.e., even the conditional distribution can be
viewed as being a convex combination of the uniform distribution and some other distribution.

Claim 4.14 Let C be a constraint and let j ∈ SC be the index of a variable involved in C. Let
β ∈ {−1, 1} be an assignment to xj. Then the distribution UC,β on {−1, 1}SC\{j} can be written as

UC,β =
(

1− η

2

)
·m(β)

C +
(η

2

)
· Uk−1 ,

where m
(β)
C is a distribution on {−1, 1}SC\{j} that depends on β and Uk−1 denotes the uniform

distribution on {−1, 1}SC\{j}.

Proof: Let pβ denote the probability that x is assigned the value β according to the distribution
UC . For any assignment β′ ∈ {−1, 1}SC\{j}, we can write

UC,β(β′) =
UC(β ◦ β′)

pβ
=

(1− η) · νC(β ◦ β′) + η · 2−k

pβ

=
(1− η) · νC(β ◦ β′) + η · 2−k

pβ
− η · 2−k +

(η
2

)
· 2k−1

=
(1− η) · νC(β ◦ β′) + η · (1− pβ) · 2−k

pβ
+
(η

2

)
· Uk−1(β′) .

Let Tβ(β′) to denote the first term above. We can say that Tβ(β′) = (1− η/2) ·m(β)
C (β′) for some

distribution mβ if Tβ(β′) ≥ 0 for all β′ and
∑

β′ Tβ(β′) = 1 − (η/2). The condition Tβ(β′) ≥ 0
follows from observing that both the terms in the numerator of Tβ(β′) are non-negative. The second
condition follows from noting that∑

β′

Tβ(β′) =
∑
β′

(
UC,β(β′)−

(η
2

)
· Uk−1(β′)

)
= 1− η

2
.

This gives a distribution m
(β)
C on {−1, 1}SC\{j} such that UC,β = (1−(η/2)) ·m(β)

C +(η/2) ·Uk−1.

Thus, in the definition of the distributions mS , the process of assigning the remaining k−1 variables
in a constraint C conditioned on an assignment β to one of the variables, can be viewed as assigning

them from the distribution m
(β)
C with probability 1 − (η/2) and from Uk−1 with probability η/2.

We can equivalently view the definition of the distribution mS as first making the choice for every
C ∈ CG ∩ B(d)(S), whether conditioned on the parent of C, the rest of the variables in C will be

assigned according to m
(β)
C (which happens with probability 1− (η/2)) or according to Uk−1 (which

happens with probability η/2).

For S ⊆ VG, we say an edge from a constraint C ∈ CG ∩ B(d)(S) to a variable xj′ ∈ VG ∩ B(d)(S)
is broken in mS , if xj′ is assigned according to Uk−1, conditioned on some other variable xj which
is the parent of C in B(d)(S). Note that conditioned on the event that the edge from C to xj′ is
broken, the distributions of xj and xj′ are independent. This is because for any assignment β to
xj , xj′ is assigned uniformly in {−1, 1}.
We say that a path between two variables xj , xj′ ∈ VG∩B(d)(S) is broken if some edge in the path is
broken. Note that if the length of the path is `, then there `/2 edges going from a constraint vertex
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to a variable vertex, and hence the path is broken with probability at least 1− (1− η/2)`/2. Also,
we have as before that conditioned on the path between xj and xj′ being broken, the distributions
of xj and xj′ are independent.

Recall that we are considering the case when B(d)(S) = ∪ti=1B
(d)(Si) is a forest but B(d)(T ) =

B(d)(S ∪ {v}) is a tree. Note that even though v /∈ S, we can still have v ∈ B(d)(S). We first
present the argument for the case when this does not happen.

- Case 2a: v /∈ B(d)(S). Since v /∈ B(d)(S), any path from v to Si for i ∈ [t] must have length
at least d. To analyze the distribution in this case, we first assume by Lemma 4.12 that
the starting vertex for defining the distribution is v. We define the following event for the
distribution mT

E :=
{
∀i ∈ [t], all paths in B(d)(T ) from v to Si are broken

}
.

Since B(d)(T ) is a tree, there is exactly one path from v to a node in Si. The probability that
the path is not broken is at most (1− η/2)d/2. Hence,

P
[
E
]
≤ |S| · (1− η/2)d/2 ≤ 2−Ω(ηd) ,

for |S| = O(ηd). Also, if mT (α | E) denotes the probability of the assignment α ∈ {−1, 1}S
given than the event E happens, then we can write

mT (α) = P [E ] ·mT (α | E) + P
[
E
]
·mT (α | E)

= mT (α | E) ± 2−Ω(ηd) ,

where we use a = b ± c to denote |a− b| ≤ c. Since the distribution of vertices separated
by a broken path is independent, conditioned on the event E , the distribution for the sets
S1, . . . , Sr must be independent. Let αi denote the restriction of the assignment α to the set
Si. We then have by the independence that

mT (α | E) =
t∏
i=1

(mT (αi | E)) .

Conditioned on the event E , the assignment for the set Si in the distribution mT is defined by
considering a subtree of B(d)(T ) which does not include any vertices from Sj for j 6= i. The
distribution on this subtree will be identical if we instead define the assignment according to
the distribution mSi∪{v} conditioned on all paths from v to Si in B(d)(Si∪{v}) being broken.

Let Ei denote this event. Then, since P [Ei] ≥ 1− 2−Ω(ηd), we have,

mT (αi | E) = mSi∪{v}(αi | Ei) = mSi∪{v}(αi) ± 2−Ω(ηd) .

However, B(d)(Si) is a tree and B(d)(Si ∪ {v}) is also a tree and hence by Case 1 we have
mSi∪{v}(αi) = mSi(αi). Combining the above and using the fact that the components B(d)(Si)

are disconnected in B(d)(S), we get

mT (α) =

t∏
i=1

(mSi(αi)) ± 2−Ω(ηd) = mS(α) ± 2−Ω(ηd) .
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- Case 2b: v ∈ B(d)(S). Without loss of generality, let v ∈ B(d)(S1). The treatment for this
case is almost identical except that we need to treat the set S1 more carefully since the paths
from v to S1 may now be short. We now define the event E as

E :=
{
∀i ∈ {2, . . . , t}, all paths in B(d)(T ) from v to Si are broken

}
.

As before, conditioned on the event E , the distributions on different sets Si are independent
and we can write

mT (α | E) = mT (α | E) ± 2−Ω(ηd) =

t∏
i=1

(mT (αi | E)) ± 2−Ω(ηd) .

Again, we have that conditioned on the event E , the distribution for the assignment αi is
defined by considering a subtree not containing any set Sj for i 6= j. For i ≥ 2, letting Ei
denote the event that all paths between v and Si in B(d)(Si ∪ {v}) are broken, we have

t∏
i=1

(mT (αi | E)) = mS1∪{v}(α1) ·
t∏
i=2

(
mSi∪{v}(αi | Ei)

)
.

As before mSi∪{v}(αi | Ei) = mSi∪{v}(αi) ± 2−Ω(ηd) for all i ≥ 2 and mSi∪{v}(αi) = mSi(αi)
for all i ∈ [t] by Case 1. Combining the above, we again get

mT (α) =
t∏
i=1

(mSi(αi)) ± 2−Ω(ηd) = mS(α) ± 2−Ω(ηd) .

Now that we have a family {mS}|S|≤r of approximately locally consistent probability distributions,

we can use it to define locally consistent distribution {m′S}|S|≤t using a result by Raghavendra and

Steurer [31].

Lemma 4.15 ([31]) Let
{
mS : {−1, 1}S → R+

}
|S|≤r be a family of probability distributions such

that for all S ⊆ T and α ∈ {−1, 1}S:

|mS(α)−mT (α)| ≤ ε0.

Then there exists a family of probability distributions
{
m′S : {−1, 1}S → R+

}
|S|≤r such that for all

S ⊆ T and α ∈ {−1, 1}S:
m′S(α) = m′T (α) ,

and for all S with |S| ≤ r, we have ‖mS −m′S‖1 ≤ O(2r · ε0).

Therefore, using Lemmas 4.13, 4.15, and 4.11, we can now prove the following theorem, which also
completes our proof of Theorem 2.17.

Theorem 4.16 Let f : {−1, 1}k → {0, 1} be a predicate such that there exists a vanishing measure
Λ∗ on C∗(f). Then, for every ε > 0, there is a constant cε > 0, such that for all large enough n,
there exists an instance of CSP(f) on n variables satisfying the following:

- For any integral assignment ψ, the fraction of the constraints satisfied is in the range [ρ(f)−
ε, ρ(f) + ε].
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- The optimum for the linear program obtained by cε · log logn rounds of the Sherali-Adams
hierarchy is at least 1−O(k ·

√
ε).

Proof: The proof follows simply from appropriate choices for the parameters η, d, r and δ. Using
Lemma 4.6 we obtain an instance such that the constraint graph G has girth g = O(log n), degree
D = Oε(1) and such that the fraction of constraints satisfied by any integral assignment ψ is
between ρ(f)− ε and ρ(f) + ε.

Using Claim 4.10, we can define the distributions mS for all sets of size at most r, when r ·Dd ≤ g.
Setting δ =

√
ε and η = k ·

√
ε, we get from Lemma 4.11 that the distributions mS achieve LP

value 1−O(k
√
ε). Taking the error 2−Ω(ηd) from Lemma 4.13 to be ε0 in Lemma 4.15, and r to be

such that 2r · ε0 = O(
√
ε), we get that the LP value achieved by the the distributions m′S is at least

O(1−k
√
ε). Since we only need that r·Dd ≤ g for defining the distributions and 2r ·2−Ω(ηd) = O(

√
ε)

for bounding the error, we can choose both d and r to be Ωε(log g) = Ωε(log log n).
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