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Abstract

We prove that any total boolean function of rank r can be computed by a deter-
ministic communication protocol of complexity O(

√
r · log(r)). Equivalently, any graph

whose adjacency matrix has rank r has chromatic number at most 2O(
√
r·log(r)). This

gives a nearly quadratic improvement in the dependence on the rank over previous
results.

1 Introduction

The log-rank conjecture proposed by Lovász and Saks [8] suggests that for any boolean
function f : X × Y → {−1, 1} its deterministic communication complexity CCdet(f) is
polynomially related to the logarithm of the rank of the associated matrix. Validity of this
conjecture is one of the most fundamental open problems in communication complexity.
Very little progress has been made towards resolving it. The best known bounds are

(log rank(f))
log3 6 ≤ CCdet(f) ≤ log(4/3) · rank(f),

where the lower bound is due to Kushilevitz (unpublished, cf. [9]) and the upper bound
is due to Kotlov [3]. A conditional improvement was made by Ben-Sasson et al. [1], who
showed that the polynomial Freiman-Ruzsa conjecture from additive combinatorics implied
CCdet(f) ≤ O(rank(f)/ log rank(f)). Recently, Gavinsky and the author [2] showed that in
order to prove the log-rank conjecture, it suffices to prove it for weaker notions of protocols
(specifically, randomized protocol, low information-cost protocols, or zero-communication
protocols). We build upon their work and achieve a near quadratic improvement in the
dependence on the rank in upper bound.

Theorem 1.1. Let f : X × Y → {−1, 1} be a boolean function with rank(f) = r. Then
CCdet(f) ≤ O(

√
r · log r). Equivlanetly, any graph whose adjacency matrix has rank r has

chromatic number at most 2O(
√
r·log r).
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The proof is based on analyzing the discrepancy of boolean functions. The discrepancy
of f is given by

disc(f) = min
µ

max
R

∣∣∣∣∣∣
∑

(x,y)∈R

f(x, y)µ(x, y)

∣∣∣∣∣∣
where µ ranges over all distributions over X × Y and R ranges over all rectangles, e.g.
R = A × B for A ⊂ X,B ⊂ Y . Discrepancy is a well-studied property in the context of
communication complexity lower bounds, see e.g. [7] for an excellent survey. It is known
that low-rank matrices have noticeable discrepancy.

Theorem 1.2 ([5, 6]). Let f : X × Y → {−1, 1} be a boolean function with rank(f) = r.
Then disc(f) ≥ 1

8
√
r
.

Discrepancy can be used to prove upper bounds as well. Linial et al. [5] showed that
functions of discrepancy δ have randomized (or quantum) protocols of complexity O(1/δ2).
Unfortunately, this does not give any improved bounds in general, as there is always a trivial
protocol using r bits. We show that the combination of high discrepancy and low rank
implies an improved bound. Our main technical theorem is the following.

Theorem 1.3. Let f : X × Y → {−1, 1} be a function with rank(f) = r and disc(f) = δ.
Then f has a monochromatic rectangle R of size

|R| ≥ 2−O(log(r)/δ)|X × Y |.

Setting δ ≥ 1/(8
√
r) we obtain the following corollary.

Corollary 1.4. Let f : X × Y → {−1, 1} be a function with rank(f) = r. Then f has a
monochromatic rectangle R of size

|R| ≥ 2−O(
√
r·log(r))|X × Y |.

Theorem 1.1 follows from Theorem 1.3 combined with the following result of Nisan and
Wigderson [9]. They show that the ability to find large monochromatic rectangles is suffi-
cient in order to establish existence of efficient deterministic protocols. The original proof
of [9] analyzed the case where the monochromatic rectangles guaranteed are of inverse-quasi-
polynomial relative size. Here we extend the analysis to general bounds on the rectangle
size.

Theorem 1.5 ([9]). Assume that for any function f : X×Y → {−1, 1} of rank(f) = r there
exists a monochromatic rectangle of size |R| ≥ 2−c(r)|X × Y |. Then any boolean function of
rank r is computable by a deterministic protocol of complexity O(log2 r +

∑log r
i=0 c(r/2

i)). In
particular, setting c(r) = O(

√
r · log(r)) implies a protocol of complexity O(

√
r · log(r)).

Paper organization. We give preliminary definitions in Section 2. We prove Theorem 1.3
in Section 3. We prove Theorem 1.5 is Section 4. We discuss further research in Section 5.
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2 Preliminaries

For standard definitions in communication complexity we refer the reader to [4]. We give
here only the basic definitions we would require.

Let f : X×Y → {−1, 1} be a total boolean function, where X and Y are finite sets. The

rank of f is the rank of its associated X × Y matrix. The set of rectangles is R def
= {A×B :

A ⊂ X,B ⊂ Y }. A rectangle R is monochromatic if the value of f is constant over R, e.g.
all 1 or all −1. For a rectangle R ∈ R, the average of f over R is defined as

ER[f ]
def
=

1

|R|
∑

(x,y)∈R

f(x, y).

We shorthand E[f ]
def
= EX×Y [f ] for the average of f .

The discrepancy of f with respect to a distribution µ on X × Y is the maximal bias
achieved by a rectangle,

discµ(f)
def
= max

R∈R

∣∣∣∣∣∣
∑

(x,y)∈R

µ(x, y)f(x, y)

∣∣∣∣∣∣ .
The discrepancy of f is the minimal discrepancy possible over all possible distributions µ,

disc(f)
def
= min

µ
discµ(f).

Note that discrepancy is an hereditary property. That is, if R is a rectangle then the
discrepancy of f restricted to R is at least the original discrepancy of f . Similarly, low rank
is a hereditary property, as ranks of sub-matrices cannot exceed the rank of the original
matrix.

3 Obtaining a monochromatic rectangle

We prove the following formal version of Theorem 1.3 from in the introduction.

Theorem 3.1. Let f : X × Y → {−1, 1} be a function with disc(f) = δ. Then f has a
monochromatic rectangle R of size

|R| ≥ (1/8) · 2−6·log(4r)/δ|X × Y |.

We prove Theorem 3.1 in a sequence of lemmas. First, we show we can find a rectangle
which is slightly more biased than the full matrix.

Lemma 3.2. Let f : X × Y → {−1, 1} be a function with E[f ] = α ≥ 0 and disc(f) = 3δ.
Then there exists a rectangle R such that

ER[f ] ≥ α + δ(1− α2)
|X × Y |
|R|

.
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Proof. Let F+ = {(x, y) ∈ X × Y : f(x, y) = 1} and F− = {(x, y) ∈ X × Y : f(x, y) = −1}
be the subset of elements mapped to either 1 or −1 by f . Let N = |X×Y |. By assumption,
|F+| = 1+α

2
N and |F−| = 1−α

2
N .

Let µ be a distribution over X×Y giving equal weight to elements in each set, such that
the total probability of each of F+ and F− is 1/2. That is,

µ(x, y) =

{ 1
(1+α)N

if (x, y) ∈ F+
1

(1−α)N if (x, y) ∈ F−

Note that by construction,
∑

x∈X,y∈Y µ(x, y)f(x, y) = 0.
Since discµ(f) ≥ disc(f) = 3δ, there exists a rectangle R1 = A×B such that∣∣∣∣∣ ∑

x∈A,y∈B

µ(x, y)f(x, y)

∣∣∣∣∣ ≥ 3δ. (1)

Let A′ = X \A and B′ = Y \B be the complements of A,B, and consider the four rectangles

R1 = A×B,R2 = A′ ×B,R3 = A×B′, R4 = A′ ×B′.

We will show that for one of the rectangles R1, . . . , R4 satisfies the requirements of the lemma.
Since

4∑
i=1

∑
(x,y)∈Ri

µ(x, y)f(x, y) =
∑

x∈X,y∈Y

µ(x, y)f(x, y) = 0,

there must be R ∈ {R1, . . . , R4} such that∑
(x,y)∈R

µ(x, y)f(x, y) ≥ δ. (2)

Note that for the rectangle R we have

N ·
∑

(x,y)∈R

µ(x, y)f(x, y) =
|F+ ∩R|

1 + α
− |F− ∩R|

1− α
=

1

1− α2

∑
(x,y)∈R

f(x, y)− α

1− α2
|R|.

Hence, ∑
(x,y)∈R

f(x, y) = α|R|+N(1− α2)
∑

(x,y)∈R

µ(x, y)f(x, y) ≥ α|R|+N(1− α2)δ.

The lemma follows by dividing both sides by |R|.

We next apply Lemma 3.2 iteratively. It will be more convenient to denote momentarily
E[f ] = 1− β for 0 ≤ β ≤ 1. We will need the following simple technical claim.

Claim 3.3. Let x1, . . . , xn ≥ 0 be positive numbers such that
∑
xi ≤ r. Then

∏
xi ≤ 2r.
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Proof. The arithmetic-geometric mean inequality implies that

n∏
i=1

xi ≤ (r/n)n ≤ ((r/n)n/r)r.

One can verify that y1/y ≤ 2 for all y ≥ 0 and the claim follows.

Lemma 3.4. Let f : X×Y → {−1, 1} be a function with E[f ] = 1−β ≥ 0 and disc(f) = 3δ.
Then there exists a rectangle R such that

|ER[f ]| ≥ 1− β/2

and
|X × Y |
|R|

≤ 22/δ.

Proof. We apply Lemma 3.2 iteratively until we reach the required rectangle. Let R0
def
=

X × Y , and for i ≥ 1 define Ri iteratively by applying Lemma 3.2 to f restricted to Ri−1.
We stop at the first iteration t for which ERt [f ] ≥ 1− β/2. We need to lower bound the size
of Rt when this occurs.

Let αi
def
= ERi

[f ] and γi
def
= |Ri−1|/|Ri| ≥ 1. Note that |X × Y |/|Rt| =

∏t
i=1 γi is the

quantity we need to upper bound. We have by Lemma 3.2 that

αi ≥ αi−1 + δ(1− α2
i−1)γi. (3)

Recall that we stop the process when αt ≥ 1− β/2, hence for i < t we have

1− α2
i−1 ≥ 1− (1− β/2)2 = β − β2/4 ≥ β/2.

Hence, for all i ≤ t we have
αi ≥ αi−1 + δ · (β/2) · γi. (4)

We will apply (4) to bound
∏t

i=1 γi. We have

β ≥ αt − α0 ≥ δ · (β/2) ·
t∑
i=1

γi.

This implies that
∑t

i=1 γi ≤ 2/δ. Applying Claim 3.3 we conclude that

|X × Y |
|R|

=
t∏
i=1

γi ≤ 22/δ.
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Corollary 3.5. Let f : X × Y → {−1, 1} be a function with disc(f) = 3δ. Then for any
ε > 0 there exists a rectangle R such that

|ER[f ]| ≥ 1− ε

and
|X × Y |
|R|

≤ 22·log(2/ε)/δ.

Proof. We can assume without loss of generality that E[f ] ≥ 0 as otherwise we apply the
theorem to −f . Let k be minimal such that ε ≥ 2−k. Apply Lemma 3.4 iteratively k ≤
log(2/ε) times.

We will also need the following lemma from [2].

Lemma 3.6 ([2]). Let f : X×Y → {−1, 1} be a function with rank(f) = r and E[f ] ≥ 1−ε
for ε ≤ 1/2r. Then f has a monochromatic rectangle R size |R| ≥ |X × Y |/8.

We include for completeness its proof.

Proof. Since f is a sign matrix, the condition E[f ] ≥ 1− 1/2r implies that f(x, y) = −1 for
at most 1/4r fraction of the inputs. Let A ⊂ X be the set of rows for which at most 1/2r
fraction of the elements are −1,

A =
{
x ∈ X : |{y ∈ Y : f(x, y) = −1}| ≤ |Y |/2r

}
.

By Markov inequality, |A| ≥ |X|/2. Let x1, . . . , xr ∈ A be indices so that their rows span
A× Y . Let

B = {y ∈ Y : f(x1, y) = . . . = f(xr, y) = 1}.
Since each of the rows x1, . . . , xr contain at most 1/2r fraction of elements which are −1 we
have |B| ≥ |Y |/2. Now, this implies that all rows in A×B are either the all one or all minus
one. Choosing the largest half gives the required rectangle.

The proof of Theorem 3.1 follows immediately from Corollary 3.5 and Lemma 3.6.

Proof of Theorem 3.1. Apply Corollary 3.5 with ε = 1/2r, followed by Lemma 3.6.

4 From monochromatic rectangles to protocols

We prove Theorem 1.5 in this section. The proof follows the original proof of [9] except that
we analyze the case of general bounds for the monochromatic rectangles.

To recall, we assume that for any function f : X × Y → {−1, 1} of rank(f) = r there
exists a monochromatic rectangle of size |R| ≥ 2−c(r)|X × Y |. Let f be such a function, and
consider the partition of its corresponding matrix as(

R S
P Q

)
6



As R is monochromatic, rank(R) = 1. Hence, rank(S) + rank(P ) ≤ r + 1. Assume w.l.o.g
that rank(S) ≤ r/2 + 1 (otherwise, exchange the role of the rows and columns player). The
row player sends one bit, indicating whether their input x is in the top or bottom half of the
matrix. If it is in the top half the rank decreases to ≤ r/2 + 1. If it is in the bottom half,
the size of the matrix reduces to at most (1− 2−c(r))|X ×Y |. Iterating this process defines a
protocol tree. We next bound the number of leaves of the protocol. By standard techniques,
any protocol tree can be balanced so that the communication complexity is logarithmic in
the number of leaves (cf. [4, Chapter 2, Lemma 2.8]).

Consider the protocol which stops once the rank drops to r/2. The protocol tree in this
case has at most O(2c(r) · log(m)) leaves, and hence can be simulated by a protocol sending
only O(c(r) + log log(m)) bits. Note that since we can assume f has no repeated rows or
columns, m ≤ 22r and hence log log(m) ≤ log(r) + 1. Next, consider the phase where the
protocol continues until the rank drops to r/4. Again, this protocol can be simulated by
O(c(r/2) + log(r)) bits of communication. Summing over r/2i for i = 0, . . . , log(r) gives the
bound.

5 Further research

We provide a bound on the communication complexity that is near to linear in the discrep-
ancy. This seem to be tight for our proof technique. One possible approach to improve
the result is to improve the dependency of the discrepancy on the rank. Another interesting
direction is to combine our current approach with the additive combinatorics approach of [1].

Acknowledgements I thank Dmitry Gavinsky and Russell Impagliazzo on helpful discus-
sions.
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