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Abstract

We present a new, more constructive proof of von Neumann’s Min-Max Theorem for two-
player zero-sum game — specifically, an algorithm that builds a near-optimal mixed strategy for
the second player from several best-responses of the second player to mixed strategies of the first
player. The algorithm extends previous work of Freund and Schapire (Games and Economic
Behavior ’99) with the advantage that the algorithm runs in poly(n) time even when a pure
strategy for the first player is a distribution chosen from a set of distributions over {0, 1}n.
This extension enables a number of additional applications in cryptography and complexity
theory, often yielding uniform security versions of results that were previously only proved for
nonuniform security (due to use of the non-constructive Min-Max Theorem).

We describe several applications, including: a more modular and improved uniform version
of Impagliazzo’s Hardcore Theorem (FOCS ’95); regularity theorems that provide efficient sim-
ulation of distributions within any sufficiently nice convex set (extending a result of Trevisan,
Tulsiani and Vadhan (CCC ’09)); an improved version of the Weak Regularity Lemma of Frieze
and Kannan; a Dense Model Theorem for uniform algorithms; and showing impossibility of
constructing Succinct Non-Interactive Arguments (SNARGs) via black-box reductions under
uniform hardness assumptions (using techniques from Gentry and Wichs (STOC ’11) for the
nonuniform setting).

Keywords: Min-Max Theorem, multiplicative weights, KL projection, indistinguishability, Hard-
core Theorem, Succinct Non-Interactive Argument, efficient simulation
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1 Introduction

Von Neumann’s Min-Max Theorem (or Linear Programming Duality, finite-dimensional Hahn-
Banach Theorem) has proved to be an extremely useful tool in theoretical computer science.
Consider a zero-sum game between two players where for every mixed strategy V for Player 1
(as a distribution over his strategy space V), Player 2 has a response W ∈ W that guarantees

E [F (V,W )] ≥ 0, where F (payoff) can be an arbitrary function. The Min-Max Theorem says that
there must exist a Player 2’s mixed strategy W ∗ (as a distribution over his strategy space W) that
guarantees E [F (V,W ∗)] ≥ 0 for all strategies V ∈ V of Player 1.

The Min-Max Theorem gives rise to a number of results in cryptography and complexity theory
such as Impagliazzo’s Hardcore Theorem [Imp], equivalence of different notions of computational
entropy [BSW], the Dense Model Theorem [RTTV], leakage-resilient cryptography [DP2, FR],
efficient simulation of high entropy distributions [TTV], impossibility of constructing succinct non-
interactive arguments (SNARGs) via black-box reductions [GW], and simple construction of pseu-
dorandom generators from one-way functions [VZ]. In a typical application like these, Player 1
chooses V from a convex set V of distributions over {0, 1}n, and Player 2 chooses W from a setW of
(possibly randomized) boolean functions {0, 1}n → {0, 1} and receives payoff F (V,W ) = E [W (V )]
i.e. function W ’s expected output when input is drawn from the distribution V . For example, V
contains all high entropy distributions over {0, 1}n and W contains all boolean functions of small
circuit size.

A limitation of the Min-Max Theorem is that it is highly non-constructive; it only asserts
the existence of the optimal strategy W ∗ but does not say how it can be found (algorithmically).
Consequently, applications of the Min-Max Theorem only give rise to results about nonuniform
boolean circuits, rather than uniform algorithms (e.g. we set cryptographic protocols based on
nonuniform hardness rather than uniform hardness assumptions).

To overcome this, we consider the natural algorithmic task of constructing such an optimal
strategy W ∗ for Player 2, given an efficient algorithm for F . When the sizes of strategy spaces
V and W are small (e.g. polynomial) this can be done by linear programming, for which efficient
algorithms are well-known. However, applications in cryptography and complexity theory such as
ones just mentioned involve exponentially large strategy spaces, and an optimal strategy W ∗ cannot
be found in polynomial time in general. Thus we also require that, given any mixed strategy V for
Player 1, not only does there exist a strategy W ∈ W for Player 2 with E [F (V,W )] ≥ 0, but such
response W can be obtained efficiently by an oracle (or an efficient uniform algorithm).

Assuming such an oracle, Freund and Schapire [FS] show how to find an approximately optimal
W ∗ for Player 2 in polynomial time and by making O((log |V|)/ϵ2) adaptive oracle queries, using
the idea of multiplicative weight updates. However, their algorithm still falls short in some of
aforementioned applications where V is a set of distributions over {0, 1}n, and thus V can have
doubly-exponentially many vertices. For example, consider the set of distributions on {0, 1}n of
min-entropy at least k; the vertices of V are uniform distributions on a subset of size 2k, and there
are

(
2n

2k

)
such subsets.

We present a Uniform Min-Max Theorem that efficiently finds an approximately optimal strat-
egy W ∗ for Player 2, given an oracle that for any of Player 1’s mixed strategy V ∈ V returns some
Player 2’s strategy that guarantees reasonable payoff, even when V is a (sufficiently nice) set of
distributions over {0, 1}n. Our theorem is inspired by the proof of Uniform Hardcore Theorem of
Barak, Hardt, and Kale [BHK]. Like [BHK], the underlying algorithm uses “relative entropy (KL)
projections” together with multiplicative weight updates (a technique originally due to Herbster
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and Warmuth [HW]). Our contribution is providing the right abstraction: formulating this algo-
rithm as providing a Uniform Min-Max Theorem. An advantage of this formulation is that it is
more modular, and not specific to the Hardcore Theorem. Consequently, it immediately enables
a number of applications, including (but not limited to) deriving uniform versions of many of the
aforementioned results, where we now deal with algorithms rather than nonuniform boolean cir-
cuits. Even for the Hardcore Theorem, where the uniform version was already known [Hol1, BHK],
there are several advantages to deducing it using the Uniform Min-Max Theorem. Furthermore,
even in nonuniform settings, replacing the use of standard Min-Max Theorem with the Uniform
Min-Max Theorem can often lead to improved, optimal parameters.

Uniform Hardcore Theorem. Impagliazzo’s Hardcore Theorem ([Imp] and later strengthened
in [KS, Hol1, BHK]) is a fundamental result in complexity theory that says if a boolean function f
is somewhat hard on average, then there must be a subset of inputs (the hardcore) on which f is
extremely hard, and outside of which f is easy. There are two approaches to proving the theorem.
One is constructive [Imp, KS, Hol1, BHK] and leads to a Uniform Hardcore Theorem where hardness
of f is measured against uniform algorithms, rather than nonuniform boolean circuits, and has found
several applications in cryptography [KS, Hol1, Hol2, HHR, HRV]. However, the existing proofs
turn out to be adhoc and do not achieve all of the optimal parameters simultaneously for a Uniform
Hardcore Theorem. Another approach due to Nisan [Imp] (and strengthened in [Hol1]) uses the
(non-constructive) Min-Max Theorem and has the advantage of simplicity, but is restricted to the
nonuniform measure of hardness.

In Section 4, we show that by replacing the use of Min-Max Theorem in the proof of Nisan [Imp]
or Holenstein [Hol1] with our Uniform Min-Max Theorem, we obtain a new proof of the Uniform
Hardcore Theorem with the advantages of (i) optimal hardcore density; (ii) optimal complexity
blow-up; and (iii) modularity and simplicity.

Construction of Pseudorandom Generators from One-Way Functions. Recently, we [VZ]
obtained a simplified and more efficient construction of pseudorandom generators from arbitrary
one-way functions, building on the work of Haitner, Reingold, and Vadhan [HRV]. Key to the
simplification is a new characterization of a computational analogue of Shannon entropy, whose
proof in the nonuniform setting involves the Min-Max Theorem. Using the Uniform Min-Max
Theorem instead, we proved our characterization of pseudoentropy in the uniform setting, and
hence obtain (simpler) pseudorandom generator from arbitrary one-way functions that are secure
against efficient algorithms. See Section 5 for a more detailed discussion.

Regularity Theorems for Distributions Restricted to a Convex Set We apply the Uni-
form Min-Max Theorem to show a generalization and quantitative improvement to the “regularity
theorem” of Trevisan, Tulsiani, and Vadhan [TTV] which (informally) says that any high min-
entropy distribution X is indistinguishable from some high min-entropy, low complexity distribu-
tion Y . The result of [TTV] is itself a quantitative improvement of regularity and “decomposition”
theorems in additive combinatorics [GT, TZ]. It is shown in [TTV] that such results can be used
to deduce the Dense Model Theorem [TZ, RTTV, Gow], Impagliazzo’s Hardcore Theorem [Imp],
and other results, by replacing any unknown distribution X with an “equivalent” distribution Y
that can be efficiently analyzed and manipulated.
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Our result is more general than [TTV] in the sense that we are no longer restricted to distri-
butions of high min-entropy. We show that for any sufficiently nice convex set of distributions V,
every distribution X ∈ V is indistinguishable from some distribution Y ∈ V where Y has “low
complexity”, for various notions of complexity and indistinguishability. In the case of min-entropy
distributions, we obtain a high min-entropy Y with lower complexity than [TTV]. This also yields
an improved and optimal Weak Regularity Lemma for graphs of density o(1) (Section 6.2).

Average-case versions of our regularity theorems can be used to deduce “low complexity” ver-
sions of a technical lemma of [GW]. We note that our average-case regularity theorem for circuit
complexity is a strengthening of a recent result of Pietrzak and Jetchev [PJ], with a simpler proof.
The low circuit complexity version of the [GW] lemma (with slightly weaker parameters) was ini-
tially proved by Pietrzak and Jetchev [PJ], and an interactive extension was proved by Chung, Lui,
and Pass [CLP] for applications in the context of distributional zero-knowledge.

Uniform Dense Model Theorem. A celebrated result of Green and Tao [GT] shows that there
exist arbitrarily long arithmetic progressions of prime numbers. A key new component of their proof
is the Dense Model Theorem which, in the generalized form of Tao and Ziegler [TZ], says if X is
a pseudorandom distribution and D is a distribution dense in X, then D is indistinguishable to a
distribution M that is dense in the uniform distribution. Using the Min-Max Theorem, Reingold
et al. [RTTV] provided another proof of Dense Model Theorem where the indistinguishability and
complexity blow-ups are polynomial (rather than exponential); a similar proof was given by Gowers
[Gow]. The polynomial blow-ups are crucial for applications in leakage-resilient cryptography [DP2,
DP1, FOR], and for connections to computational differential privacy [MPRV]. Using the Uniform
Min-Max Theorem, we show how to obtain a Dense Model Theorem where the distinguishers are
efficient (uniform) algorithms, with polynomial blow-ups in running time and indistinguishability.

Impossibility of Black-Box Construction of Succinct Non-interactive Argument. A
result of Gentry and Wichs [GW] shows that there is no black-box construction of succinct non-
interactive arguments (SNARGs) from any natural cryptographic assumption. Their result relies
on the (mild) assumption that there exist hard subset membership problems, which is equivalent
to the existence of subexponentially hard one-way functions. One limitation is that they need to
assume nonuniformly secure one-way functions, in part due to their use of the non-constructive
Min-Max theorem (in [GW] Lemma 3.1).

In Section 8, we show how to obtain the analogous result in the uniform setting by using the
Uniform Min-Max Theorem. More specifically, assuming that there exist subexponentially hard
one-way functions that are secure against uniform algorithms, we show that there is no construction
of SNARGs whose security can be reduced in a black-box way to a cryptographic assumption against
uniform algorithms (unless the assumption is already false).

1.1 Paper Organization

Basic notions from information theory including KL projection are defined in Section 2. In Section
3 we state and prove the Uniform Min-Max Theorem, and show that it also implies the standard
Min-Max Theorem. In Section 4, 5, 6, 7, 8, we describe a number of applications of the Uniform
Min-Max Theorem.
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2 Preliminaries

Notations. For a natural number n, [n] denotes the set {1, . . . , n}, Un denotes the uniform
distribution on binary strings of length n. For a finite set Σ, UΣ denotes the uniform distribution
on Σ. For a distribution X, supp(X) denotes the support of X, and x← X means x is a random
sample drawn from distribution X. We write Avga≤i≤b as a shorthand for the average over all
i ∈ {a, . . . , b}. Conv(·) denotes the convex hull.

For more background on entropy and proofs of the lemmas stated below, see [CT].

Definition 2.1 (Entropy). For a distribution X, the (Shannon) entropy of X is defined to be

H(X) = E
x←X

[
log

1

Pr[X = x]

]
.

The min-entropy of X is defined to be

H∞(X) = min
x∈supp(X)

(
log

1

Pr[X = x]

)
.

The notion of KL divergence from distribution A to distribution B is closely related to Shannon
entropy; intuitively it measures how dense A is within B, on average (with 0 divergence representing
maximum density, i.e. A = B, and large divergence meaning that A is concentrated in a small
portion of B).

Definition 2.2 (KL divergence). For distributions A and B, the KL divergence from A to B is
defined to be

KL(A ∥ B) = E
a←A

[
log

Pr[A = a]

Pr[B = a]

]
,

or conventionally +∞ if supp(A) ̸⊆ supp(B).

While the KL divergence is not a metric (it is not symmetric and does not satisfy the triangle
inequality), it does satisfy nonnegativity, and equals zero only if the distributions are identical:

Proposition 2.3 (Nonnegativity of KL divergence). For all distributions A and B, KL(A ∥ B) ≥ 0.
In particular, KL(A ∥ B) = 0 if and only if A = B.

Definition 2.4 (Conditional KL divergence). For joint distributions (X,A) and (Y,B), the con-
ditional KL divergence from A|X to B|Y is defined to be

KL((A|X) ∥ (B|Y )) = E
(x,a)←(X,A)

[
log

Pr[A = a|X = x]

Pr[B = a|Y = x]

]
.

Thus, conditional KL divergence captures the expected KL divergence from A|X=x to B|Y=x,
over x← X. Like Shannon entropy, KL divergence has a chain rule:

Proposition 2.5 (Chain rule for KL divergence). KL(X,A ∥ Y,B) = KL(X ∥ Y ) + KL((A|X) ∥
(B|Y )).

Definition 2.6 (KL projection). Let X be a distribution on Σ, and V be a non-empty closed
convex set of distributions on Σ. Y ∗ ∈ V is called a KL projection of X on V if

Y ∗ = argmin
Y ∈V

KL(Y ∥ X).
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A nice property of KL projection is the following geometric structure (see [CT], Chap 11, Section
6):

Theorem 2.7 (Pythagorean Theorem). Let V be a non-empty closed convex set of distributions
on Σ. Let Y ∗ be a KL projection of X on V. Then for all Y ∈ V,

KL(Y ∥ Y ∗) + KL(Y ∗ ∥ X) ≤ KL(Y ∥ X).

In particular,
KL(Y ∥ Y ∗) ≤ KL(Y ∥ X).

Assuming KL(Y ∗ ∥ X) is finite, then the Pythagorean Theorem implies that the KL projection
is unique:

Lemma 2.8. The KL projection is unique.

Proof. Suppose Y ∗ and Y are both KL projections of X on V. Then by the Pythagorean Theorem
(Theorem 2.7) KL(Y ∥ Y ∗) = 0, which implies Y = Y ∗ by Proposition 2.3.

Finding the exact KL projection is often computationally infeasible, so we consider approximate
KL projection:

Definition 2.9 (Approximate KL projection). We say Y ∗ is a σ-approximate KL projection of X
on V, if Y ∗ ∈ V and for all Y ∈ V,

KL(Y ∥ Y ∗) ≤ KL(Y ∥ X) + σ.

3 A Uniform Min-Max Theorem

Consider a zero-sum game between two players, where the space of pure strategies for Player 1 is
V, the space of pure strategies for Player 2 is W, and V is an arbitrary subset of distributions over
[N ]. In this section we present a Uniform Min-Max Theorem that efficiently finds an approximately
optimal strategy W ∗ ∈ Conv(W) for Player 2, given an oracle which, when fed any of Player 1’s
mixed strategies V ∈ Conv(V), returns a strategy for Player 2 that guarantees good payoff. Our
algorithm is inspired by the proof of Uniform Hardcore Theorem of Barak, Hardt, and Kale [BHK].
Like [BHK], our algorithm uses “relative entropy (KL) projections” together with multiplicative
weight updates (a technique originally due to Herbster and Warmuth [HW]).

We first state the theorem and mention how it implies standard Min-Max Theorem.

Theorem 3.1 (A Uniform Min-Max Theorem). Consider a two-player zero-sum game where the
sets of pure strategies for Player 1 and Player 2 are V ⊆ {distributions over [N ]} and W, and the
payoff to Player 2 is defined to be F (V,W ) = EV [f(V,W )] for some function f : [N ]×W → [−k, k].
Then for every 0 < ϵ ≤ 1 and S, Algorithm 3.1 (Finding Universal Strategy) always outputs a mixed
strategy W ∗ for Player 2 such that

F (V,W ∗) ≥ Avg
1≤i≤S

F (V (i),W (i))−O(kϵ)

for all Player 1 strategies V ∈ V where KL(V ∥ V1) ≤ S · ϵ2. (This holds regardless of the arbitrary
choice of W (i) and V (i+1) in the algorithm.)
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In particular, taking S ≥ (logN −minV ∈V H(V )) /ϵ2 where we set V (1) = U[N ] ∈ Conv(V)
yields that for all V ∈ V,

F (V,W ∗) ≥ Avg
1≤i≤S

F (V (i),W (i))−O(kϵ).

S ← (n−minV ∈V H(V )) /ϵ2

Choose an initial strategy V (1) ∈ Conv(V) for Player 1
for i← 1 to S do

W (i) ← Ŵ (V (i))
Weight Update:
Let V (i)′ be such that Pr[V (i)′ = x] ∝ e−ϵ·f(x,W

(i))/2k · Pr[V (i) = x]
Projection:
V (i+1) ← an arbitrary ϵ2-approximate KL projection of V (i)′ on Conv(V)

end

Let W ∗ be the mixed strategy for Player 2 uniform over W (1), . . . ,W (S)

return W ∗
Algorithm 3.1: Finding Universal Strategy

We now describe how Theorem 3.1 implies the original Min-Max Theorem, which says

max
W∈Conv(W)

min
V ∈V

F (V,W ) = min
V ∈Conv(V)

max
W∈W

F (V,W ).

For each i, takeW (i) to be Player 2’s best response to Player 1’s mixed strategy V (i), i.e. F (V (i),W (i)) =
maxW∈W F (V (i),W ). Theorem 3.1 says for every λ = O(kϵ) > 0, by setting an appropriate V (1)

and sufficiently large S, there exists W ∗ ∈ Conv(W) with

min
V ∈V

F (V,W ∗) ≥ Avg
1≤i≤S

F (V (i),W (i))− λ

= Avg
1≤i≤S

max
W∈W

F
(
V (i),W

)
− λ

≥ min
V ∈Conv(V)

max
W∈W

F (V,W )− λ,

where the last inequality holds because maxW∈W F
(
V (i),W

)
≥ minV ∈Conv(V)maxW∈W F (V,W )

for every i. Thus, for every λ > 0,

max
W∈Conv(W)

min
V ∈V

F (V,W ) ≥ min
V ∈Conv(V)

max
W∈W

F (V,W )− λ

Taking λ→ 0 gives the Min-Max Theorem.

Proof of Theorem 3.1. Consider any V ∈ V such that KL(V ∥ V1) ≤ S · ϵ2. We show in Lemma
A.1 that

KL(V ∥ V (i))−KL(V ∥ V (i)′) ≥ (log e)ϵ

(
F (V (i),W (i))− F (V,W (i))

2k
− ϵ

)
.
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Since V (i+1) is an ϵ2-approximate KL projection of V (i)′ on Conv(V), by definition we have KL(V ∥
V (i+1)) ≤ KL(V ∥ V (i)′) + ϵ2. Therefore

KL(V ∥ V (i))−KL(V ∥ V (i+1)) ≥ (log e)ϵ

(
F (V (i),W (i))− F (V,W (i))

2k
− ϵ

)
− ϵ2.

Summing over i = 1, . . . , S and telescoping, we obtain

KL(V ∥ V (1))−KL(V ∥ V (S+1)) ≥ (log e)ϵ

S∑
i=1

(
F (V (i),W (i))− F (V,W (i))

2k
− ϵ

)
− Sϵ2

= (log e)Sϵ

(
Avg1≤i≤S F (V (i),W (i))− F (V,W ∗)

2k
− ϵ

)
− Sϵ2.

Since KL(V ∥ V (S+1)) ≥ 0 and KL(V ∥ V1) ≤ S · ϵ2, rearranging yields

Avg1≤i≤S F (V (i),W (i))− F (V,W ∗)

2k
≤ KL(V ∥ V (1)) + Sϵ2

(log e)Sϵ
+ ϵ = O(ϵ).

Next we describe an average case variant where the set V of strategies for Player 1 is a set of
distributions of the form (X,C) where C may vary, but the marginal distribution of X is fixed.
This is convenient for a number of applications (e.g. Section 5 and 8) that involve distinguishers
on such joint distributions (X,C).

Theorem 3.2 (Uniform Min-Max Theorem – Average Case). Let V be a subset of distributions
over [N ] × [q] of the form (X,C) where C may vary, but the marginal distribution of X is fixed.
That is, for every (X,C), (X ′, C ′) ∈ V and every x ∈ [N ] we have

∑
c Pr[(X,C) = (x, c)] =∑

c Pr[(X
′, C ′) = (x, c)].

Consider a two-player zero-sum game where the sets of pure strategies for Player 1 and Player
2 are V and W, and the payoff to Player 2 is defined to be F ((X,C),W ) = EX,C [f((X,C),W )]
for some function f : [N ] × [q] ×W → [−k, k]. Then for every 0 < ϵ ≤ 1 and S, Algorithm 3.2
(Finding Universal Strategy – Average Case) always outputs a mixed strategy W ∗ for Player 2 such
that

F ((X,C),W ∗) ≥ Avg
1≤i≤S

F ((X,C(i)),W (i))−O(kϵ)

for all Player 1 strategies (X,C) ∈ V where KL(X,C ∥ X,C(1)) ≤ S · ϵ2. (This holds regardless of
the arbitrary choice of W (i) and C(i+1) in the algorithm.)

In particular, taking S ≥
(
log q −min(X,C)∈V H(C|X)

)
/ϵ2 where we set (X,C(1)) = (X,U[q]) ∈

Conv(V) (U[q] being independent of X) yields that for all (X,C) ∈ V,

F ((X,C),W ∗) ≥ Avg
1≤i≤S

F ((X,C(i)),W (i))−O(kϵ).
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Choose an initial strategy (X,C(1)) ∈ Conv(V) for Player 1
for i← 1 to S do

Obtain an arbitrary strategy W (i) ∈ W for Player 2, in response to (X,C(i))
Weight Update:
Let C(i)′ be such that ∀x, a, Pr[C(i)′ = a|X = x] ∝ e−ϵ·f(x,a,W

(i))/2k · Pr[C(i) = a|X = x]
Projection:
(X,C(i+1))← an arbitrary ϵ2-approximate KL projection of (X,C(i)′) on Conv(V)

end

Let W ∗ be the mixed strategy for Player 2 uniform over W (1), . . . ,W (S)

return W ∗
Algorithm 3.2: Finding Universal Strategy – Average Case

Proof. Note that Algorithm 3.2 is the same as Algorithm 3.1, except for the difference that here
we update C(i) instead of V (i). We show that the combined effect of the update and KL projection
steps is identical in the two algorithms. Note that we can write V (i)′ as (X(i)′ , gi(X

(i)′)) for the

randomized function gi where Pr[gi(x) = a] ∝ eϵ·f(x,a,W
(i))/2k · Pr[C(i) = a|X = x] for every x and

a. For the same function gi, we have (X, gi(X)) = (X,C(i)′). Thus, we can apply the following
lemma.

Lemma 3.3. Let X ′ be a distribution on [N ] with supp(X ′) ⊇ supp(X ′), and let g : [N ]→ [q] be a
randomized function. Then the KL projection of (X ′, g(X ′)) on Conv(V) equals the KL projection
of (X, g(X)) on Conv(V).

Proof. Consider any (X,C) ∈ Conv(V). We have

KL(X,C ∥ X ′, g(X ′))
= KL(X ∥ X ′) + KL((C|X) ∥ (g(X ′)|X ′)) (by the chain rule for KL divergence)

= KL(X ∥ X ′) + KL((C|X) ∥ (g(X)|X)) (by definition of conditional KL divergence)

= KL(X ∥ X ′) + KL(X,C ∥ X, g(X)). (by the chain rule for KL divergence)

Thus the KL projections are the same.

4 Application: Uniform Hardcore Theorem

A fundamental result in complexity theory is Impagliazzo’s Hardcore Theorem [Imp], which, in
the strengthened version due to Klivans and Servedio [KS] and Holenstein [Hol1], says that every
function f : {0, 1}n → {0, 1} that is δ-hard for poly-sized boolean circuits (that is, every poly-sized
circuit fails to compute f on at least δ fraction of inputs) must be extremely hard on a subset
of inputs of density at least 2δ (the hardcore set) (and may be easy elsewhere). In this section,
we provide a simplified proof of a hardcore theorem with optimal parameters, where hardness is
defined with respect to uniform algorithms rather than boolean circuits. Following [Imp], we will
deal with hardcore distributions instead of hardcore sets, which are equivalent up to a negligible
additive difference in density, where density of a distribution is defined as follows:
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Definition 4.1 (Density of distribution). Let X and Y be distributions over some finite set Σ.
We say X is δ-dense in Y if Pr [Y = x] ≥ δ · Pr [X = x] for all x ∈ Σ. We say X is δ-dense if it is
δ-dense in UΣ (equivalently, having min-entropy at least log |Σ|− log(1/δ)). We denote by Cm,δ the
set of all δ-dense distributions on {0, 1}m.

The asymptotically optimal nonuniform Hardcore Theorem is due to [KS], using techniques
from boosting and an idea of iteratively increasing hardcore size due to Wigderson, and can be
stated as follows:

Theorem 4.2 (Hardcore Theorem [KS]). Let (X,B)1 be a joint distribution over {0, 1}n × {0, 1}
and ϵ > 0. Let B be (t, δ)-hard given X, i.e. for every size t circuit P it holds that Pr[P (X) = B] ≤
1− δ. Then there is a joint distribution (X̂, B̂) that is 2δ-dense in (X,B), such that for every size
t′ = t/O(log(1/δ)/ϵ2) circuit A it holds that Pr[A(X̂) = B̂] ≤ (1 + ϵ)/2.

Theorem 4.2 is asymptotically optimal as it achieves optimal hardcore density 2δ, as well as
optimal complexity blow-up O(log(1/δ)/ϵ2), where the lower bound of Ω(log(1/δ)/ϵ2) is due to Lu,
Tsai, and Wu [LTW]2.

The original paper of Impagliazzo [Imp] contains both a non-trivial constructive proof, as well as
a much simpler, yet non-constructive proof due to Nisan that uses the Min-Max Theorem. Nisan’s
proof has an appealing simplicity: Assume for contradiction that there is no hardcore distribution of
high density. Then, by the Min-Max Theorem there is a universal predictor A∗ such that for every

(X̂, B̂) that is dense in (X,B) it holds that Pr
[
A∗(X̂) = B̂

]
> (1 + ϵ)/2. A∗ is a distribution over

circuits of size t, and its prediction probability is taken over this distribution as well as (X̂, B̂). By
subsampling we can assume that A∗ is uniform over a multiset of S = O((1/ϵ2) log(1/ϵδ)) circuits of
size t, while changing the advantage ϵ by at most a constant fraction. Given the universal predictor
A∗, one can build a good predictor for B, contradicting the hardness of B given X, as formalized
in Lemma 4.3:

Lemma 4.3 (From universal circuit to predictor [Imp]). Let (X,B) be a joint distribution on
{0, 1}n×{0, 1}. Let A∗ be the uniform distribution over a multiset of S circuits of size t. Suppose for

every joint distribution (X̂, B̂) that is δ-dense in (X,B) it holds that Pr
[
A∗(X̂) = B̂

]
> (1 + ϵ)/2.

Then there is a circuit P of size O(S · t) such that Pr [P (X) = B] > 1− δ.
Specifically, we can let P (x) = majority{A(x) : A ∈ A∗}. Equivalently, P (x) outputs 1 with

probability
1

2

(
1 + sign

(
Pr[A∗(x) = 1]− 1

2

))
.

Unfortunately, both proofs in [Imp] yield a suboptimal hardcore density of δ. Following Nisan’s
proof using Min-Max Theorem, Holenstein [Hol1] proves the hardcore theorem with optimal hard-
core density of 2δ (Theorem 4.2), by strengthening the above lemma to Lemma 4.4 below (using a
trick from Levin’s proof of the XOR Lemma).

Lemma 4.4 (From universal circuit to optimal predictor [Hol1]). Let (X,B) be a joint distribution
on {0, 1}n×{0, 1}. Let A∗ be the uniform distribution over a multiset of S circuits of size t. Suppose

1The version we state is a slight generalization of the version in [KS], which only allows B to be a deterministic
boolean function of X. However, the more general version follows readily from almost the same proof.

2[LTW] showed a black-box lower bound on the number of t′-sized circuits that a black-box reduction needs to
obtain to construct some P with Pr[P (X) = B] > 1− δ.
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for every joint distribution (X̂, B̂) that is 2δ-dense in (X,B) it holds that Pr
[
A∗(X̂) = B̂

]
>

(1 + ϵ)/2. Then there is a circuit P of size O(S · t) such that Pr [P (X) = B] > 1− (1− ϵ) δ.
Specifically, we can let P (x) output 1 with probability p(x) truncated at 0 and 1 (i.e. min{max{p(x), 0}, 1}),

for

p(x) =
1

2

(
1 +

Pr[A∗(x) = 1]− 1
2

ϕ

)
where ϕ is the least number s.t. PrX,B [PrA∗ [A∗(X) = B] ≤ 1/2 + ϕ] ≥ 2δ. (WLOG ϕ is a multiple
of 1/S.)

One drawback of proofs based on the standard Min-Max Theorem is the suboptimal complex-
ity blow-up (due to suboptimal settings of S from the probabilistic construction of the multiset
defining A∗). By replacing the use of Min-Max Theorem with the Uniform Min-Max Theorem, we
immediately achieve optimal complexity blow-up (by replacing the probabilistic construction of the
multiset with a smarter online learning/boosting algorithm).

Another drawback of proofs based on the standard Min-Max Theorem is that they are non-
constructive. Indeed, a constructive proof such as the one by Impagliazzo [Imp] can be inter-
preted as a hardcore theorem for the uniform setting of hardness, where the hardness is with
respect to efficient algorithms rather than small circuits. (See Theorem 4.5 below for the ex-
act formulation). This Uniform Hardcore Theorem is needed for several important applications
([KS, Hol1, Hol2, HHR, HRV]). Building on the constructive proof in [Imp], Holenstein [Hol1]
also shows a uniform hardcore theorem with optimal hardcore density, but is rather involved and
fails to achieve the optimal complexity blow-up O(log(1/δ)/ϵ2). Subsequently, Barak, Hardt, and
Kale ([BHK]) gave an alternative proof of uniform hardcore theorem achieving optimal complexity
blow-up of O(log(1/δ)/ϵ2) (but without optimal hardcore density), based on ideas of multiplicative
weights and Bregman projection.

As an application of the Uniform Min-Max Theorem (which itself is inspired by [BHK]), we
offer a new proof of the Uniform Hardcore Theorem. Essentially, our proof simply replaces the use
of Min-Max Theorem in Holenstein’s proof (of the non-uniform hardcore theorem, Theorem 4.2)
with the Uniform Min-Max Theorem. Consequently it has the advantages of (i) optimal hardcore
density 2δ; (ii) optimal complexity blow-up O(log(1/δ)/ϵ2); (iii) being simpler (e.g. compared
to Holenstein’s uniform proof [Hol1]), and more modular (e.g. compared to [BHK], as it avoids
adapting the analysis of [HW] to the specific setting of the hardcore theorem).

Notation. For a distribution Z, let OZ denote the oracle that gives a random sample from Z when
queried.

Theorem 4.5 (Uniform Hardcore Theorem). Let n be a security parameter, m = m(n) = poly(n),
δ = δ(n), ϵ′ = ϵ′(n), q = q(n) all computable in poly(n) time, and (X,B) = g(Um) be a joint
distribution where g : {0, 1}m → {0, 1}n × {0, 1} is computable in poly(n) time. Suppose that
(X,B) has no hardcore distribution of density at least 2δ, i.e. there is a t-time oracle algorithm A
such that for infinitely many n and every C ∈ Cm,2δ,

Pr
(x,b)←g(C)

[
AOC (x) = b

]
>

1

2
+ ϵ′.

Then there is a poly(t, n, 1/δ, 1/ϵ′)-time randomized algorithm P such that for infinitely many n,

Pr[P (X) = B] > 1− δ.
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Moreover, P is constructed by making O(log(1/δ)/ϵ′2) calls to A.

For the proof of Uniform Hardcore Theorem (as well as several results in Section 6), we will
need the notion of measures, which are simply [0, 1] bounded, unnormalized mass functions:

Definition 4.6 (Measure). A function M : X → [0, 1] is said to be a measure for X if Pr[X =
x] = M(x)/

∑
x∈X M(x), and we denote this X by ΦM . We say M is δ-dense if its density

µ(M) =
∑

x∈X M(x)/ |X | is at least δ. We denote byMm,δ the set of all δ-dense measures defined
on {0, 1}m. One can verify that if M ∈Mm,δ then ΦM ∈ Cm,δ (but not conversely).

Proof of Theorem 4.5. We will apply Theorem 3.1 (Uniform Min-Max Theorem), with

• V = Cm,2δ;

• W = {(deterministic) circuits of size tm+ poly(t)};

• f(z,W ) = I(W (x) = b), where (x, b) = g(z) and I(·) is the indicator function.

This corresponds to the two-player zero-sum game where Player 1 chooses some distribution
C ∈ Cm,2δ, and Player 2 chooses a tm + poly(t) sized circuit W , with expected payoff F (C,W ) =

E[f(C,W )] = Pr(x,b)←g(C) [W (x) = b] for Player 2. We will use A to show that Algorithm 3.1
(Finding Universal Strategy) with KL projection on the set V = Cm,2δ can be implemented effi-
ciently, such that for infinitely many n, in each iteration we obtain some W with good prediction
probability. This gives us an efficient universal predictor A∗ of B given X, by the Uniform Min-Max
Theorem. From the universal predictor, we then show how to obtain a (1− δ)-predictor of B using
Lemma 4.4.

In Algorithm 3.1, we start with an initial distribution V (1) that is uniform on {0, 1}m. Let
ϵ = ϵ′/c for a sufficiently large constant c, and γ = ϵ/2S. The number of iterations is

S =

(
m− min

C∈Cm,2δ

H(C)

)
/ϵ2 = (m− (m− log(1/2δ)))/ϵ2 = (log(1/δ)− 1)/ϵ2.

In each iteration we represent the distribution V (i) (the current C) by a circuit M (i) computing
a measure for V (i). So we can take M (1)(x) = 1 for all x. We will need the following claim to
implement an iteration.

Claim 4.7. There is a randomized algorithm that, given oracle access to a measure M ∈ Mm,2δ,
w.p. at least 1 − γ outputs a tm + poly(t) sized (deterministic) boolean circuit W such that
Pr(x,b)←g(ΦM )[W (x) = b] > 1/2 + ϵ′ − 4ϵ. The algorithm runs in t+ poly(n, s, t, 1/δ, 1/ϵ′, log(1/γ))
time where s is a bound on the bit length of M(x).

Proof of Claim 4.7. Given oracle access to M , we can generate t random samples of ΦM in time
t′ = t · O((1/δ) log(t/ϵ)) · (s + m) + poly(n) and w.p. at least 1 − ϵ, using rejection sampling
(see Lemma A.2). Thus we can eliminate all A’s oracle queries to OΦM

and obtain some t′ time
randomized algorithm A′ such that Pr(x,b)←g(ΦM )[A

′(x) = b] > 1/2 + ϵ′ − ϵ.
Write A′(x) = A′(x; r) where r is the coin tosses of A′ (which consists of coin tosses for A and

at most t′ random bits for the rejection sampling). For each r we compute an estimate E(r) of
Pr(x,b)←g(ΦM )[A

′(x; r) = b] within ±ϵ error with probability at least γ/2q, for q = O((1/ϵ) log(1/γ)).
By a Chernoff bound, this can be done by testing A′(·; r) on q′ = O((1/ϵ2) log(q/γ)) random samples
of (x, b) ← g(ΦM ) (which we generate with probability at least 1 − Θ(γ/q), again using Lemma
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A.2). We repeat this for q randomly chosen r, and if E(r) > 1/2 + ϵ′ − 3ϵ output a circuit W
computing A′(·; r).

By union bound with probability at least 1−γ/2, all q estimates E(r) are within ϵ error. By the
Markov inequality, w.p. 1−(1−Ω(ϵ))q ≥ 1−γ/2 at least one of the r’s satisfies Pr(x,b)←g(Φ)[A

′(x; r) =
b] > 1/2+ ϵ′−2ϵ so E(r) ≥ 1/2+ ϵ′−3ϵ. Moreover we have Pr(x,b)←g(C)[A(x, r) = b] > 1/2+ ϵ′−4ϵ
whenever E(r) > 1/2+ϵ′−3ϵ. We conclude that w.p. at least 1−γ we output the desired circuit, all
in time q′q · (t′+O((1/δ) log(qq′/γ)) · (s+m)) + poly(n) = poly(n, s, t, 1/δ, 1/ϵ′, log(1/γ)). Finally,
the circuit W is of size tm + poly(t) as it simply runs A using the t fixed samples of ΦM (which
can be stored as tm nonuniform bits).

We now implement the ith iteration as follows. For technical convenience we assume that e−ϵ

has bit-length log(1/ϵ) (if not, we replace ϵ by some ϵ̃ = O(ϵ) such that e−ϵ̃ has bit-length log(1/ϵ)).

1. Obtaining Player 2’s Response W (i): Suppose that we have constructed a ti sized circuit
M (i) computing a measure for V (i), and outputs ofM (i) have bit-length at most O(i·log(1/ϵ)).
Using Claim 4.7, we can obtain a (deterministic) circuit W (i) such that

Pr
(x,b)←g(V (i))

[W (i)(x) = b] >
1

2
+ ϵ′ − 4ϵ,

in time poly(ti, n, t, 1/δ, 1/ϵ, log(1/γ)) and w.p. at least 1−γ. Note, however, that the circuit
size of W (i) is tm+ poly(t), independent of ti.

2. Weight Update: We represent the resulting distribution V (i)′ by the circuit M (i)′(z) =
exp

(
−ϵ · I

(
W (i)(x) = b

))
·M (i)(z), where (x, b) = g(z), which computes a measure for V (i)′ .

Since I
(
W (i)(x) = b

)
∈ {0, 1}, exp

(
−ϵ · I

(
W (i)(x) = b

))
has bit-length log(1/ϵ). M (i)(z) has

bit-length O(i · log(1/ϵ)), thus multiplication takes time poly(i · log(1/ϵ)). Thus M (i)′ has
circuit size t′i = ti+ tm+poly(t)+ i ·polylog(1/ϵ), bit-length at most O(i · log(1/ϵ)+log(1/ϵ)),
and can be constructed in similar time.

3. KL Projection: It is shown in Lemma A.3 (approximating KL projection on high min-
entropy distributions, which is based on Lemma 2.3 of [BHK]) that given M (i)′ , w.p. 1 − γ
one can generate a ti+1 = t′i + polylog(1/ϵ) sized circuit M (i+1) computing a measure for
a distribution V (i+1) that is an ϵ2-approximate KL projection of V (i)′ = ΦM(i)′ on Cm,2δ.

Furthermore, outputs of M (i+1) have bit-length at most O((i+1) log(1/ϵ)). This can be done
in time poly(n, 1/ϵ, log(1/δ), log(1/γ)) · t′i.

By union bound w.p. at least 1−2γS = 1−ϵ all S iterations complete successfully. Since t1 = O(1)
and ti+1 = ti + tm+ poly(t) + i · polylog(1/ϵ), we have ti = poly(n, t, 1/ϵ, log(1/δ)) for all i ∈ [S].
Let A∗ be the uniform distribution over W (1), . . . ,W (S), thus A∗ can be computed in total time
poly(n, t, 1/δ, 1/ϵ). By the Uniform Min-Max Theorem (Theorem 3.1), for all Player 1 strategies
C ∈ Cm,2δ,

Pr
(x,b)←g(C)

[A∗(x) = b] > (1− ϵ)

(
1

2
+ ϵ′ − 4ϵ

)
−O(ϵ) ≥ 1 + ϵ′

2
.

Equivalently, for every joint distribution (X̂, B̂) that is 2δ-dense in (X,B) = g(Um) we have

Pr[A∗(X̂) = B̂] >
1 + ϵ′

2

(since (X̂, B̂) equals g(C) for some C ∈ Cm,2δ).
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From Universal Weak Predictor to (1− δ)-Predictor. Now that we have a universal weak
predictor A∗ as the uniform distribution over S = O(log(1/δ)/ϵ′2) circuits, applying Lemma 4.3
already proves a version of the Uniform Hardcore Theorem with suboptimal hardcore density.

To achieve optimal hardcore density, we apply Lemma 4.4 by guessing the value of ϕ ∈ [0, 1/2],
which is a multiple of 1/S. More concretely, for each λ = 1/S, 2/S, . . . , 1/2, we compute some
estimate Eλ of Pr[Pλ(X) = B], where Pλ denotes the predictor in Lemma 4.4 with ϕ set to λ. Our
final (uniform) predictor P will run Pλ for the λ where the estimate Eλ is the highest.

We compute Eλ by taking O((1/ϵ′2δ2) log(1/ϵ′δ)) samples of (X,B) and coins of Pλ, so that by
a Chernoff bound, for each λ w.p. at least 1 − ϵ′δ/4 we have |Eλ − Pr[Pλ(X) = B]| ≤ ϵ′δ/4. The
probability that either Eϕ or the highest estimate is off by more than ±ϵ′δ/4 is at most ϵ′δ/2 . So
it follows from Lemma 4.4 that

Pr [P (X) = B] ≥ Pr [Pϕ(X) = B]− ϵ′δ/2− ϵ′δ/2 > 1−
(
1− ϵ′

)
δ − ϵ′δ = 1− δ

completing the proof.

5 Application: Construction of Pseudorandom Generator Con-
struction from One-Way Functions

Recently, we [VZ] obtained a simplified and more efficient construction of pseudorandom generator
from arbitrary one-way functions, building on the work of Haitner, Reingold, and Vadhan [HRV].
Key to the simplification is a characterization of conditional pseudoentropy, defined as follows (for
the nonuniform setting):

Definition 5.1 (Nonuniform (conditional) pseudoentropy, informal). Let (X,B) be jointly dis-
tributed random variables. We say that B has nonuniform (conditional) pseudoentropy at least k
given X if there exists a random variable C, jointly distributed with X such that

1. (X,B) is indistinguishable from (X,C) by nonuniform polynomial-time algorithms (i.e. polynomial-
sized boolean circuits).

2. H(C|X) ≥ k, where H(·|·) denotes conditional Shannon entropy.3

In the nonuniform setting, informally, we prove that B has nonuniform pseudoentropy at least
H(B|X) + δ given X if and only if there is no polynomial-time nonuniform algorithm S such that
KL(X,B ∥ X,S(X)) ≤ δ (intuitively, given X it is hard to sample a distribution that is close to
B). Our proof of the “if” direction (which is the one used in our PRG analysis) proceeds as follows.
Assume for contradiction that B does not have nonuniform pseudoentropy given X. Then by the
Min-Max Theorem there is a universal distinguisher D that is a convex combination of polynomial-
time nonuniform algorithms and distinguishes (X,B) from all (X,C) where H(C|X) ≥ H(B|X)+δ.
From such universal distinguisher D we show how to construct an efficient sampler S such that
KL(X,B ∥ X,S(X)) ≤ δ, violating the assumption.

To obtain a pseudorandom generator from a one-way function that is secure against uniform
algorithms, we prove an analogous result in the uniform setting, replacing the use of the Min-Max

3The conditional (Shannon) entropy of random variable Y given random variable Z is defined as H(Y |Z) =

Ez∼Z [H(Y |Z=z)].
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Theorem by the Uniform Min-Max Theorem. To apply the Uniform Min-Max Theorem we show
how to approximately compute the KL projection on the set of distributions of high conditional
Shannon-entropy.

6 Application: Regularity Theorems for Distributions Restricted
to a Convex Set

Another application of the Uniform Min-Max Theorem is to give a generalization and quantita-
tive improvement to the “regularity theorem” of Trevisan, Tulsiani, and Vadhan [TTV] which
(informally) says that any high min-entropy distribution X is indistinguishable from some high
min-entropy, low complexity distribution Y . The result of [TTV] is itself a quantitative improve-
ment of regularity and “decomposition” theorems in additive combinatorics [GT, TZ]. It is shown
in [TTV] that such results can be used to deduce the Dense Model Theorem [TZ, RTTV, Gow],
Impagliazzo’s Hardcore Theorem [Imp], and other results, by replacing any unknown distribution
X with an “equivalent” distribution Y that can be efficiently analyzed and manipulated, thus
translating the problem to a simpler one. It also implies the Weak Regularity Lemma in graph
theory [FK], mostly by a translation of notation.

Our result is more general than [TTV] in the sense that we are no longer restricted to distri-
butions of high min-entropy. We show that for any sufficiently nice convex set of distributions V,
every distribution X ∈ V is indistinguishable from some distribution Y ∈ V where Y has “low
complexity”. In the case of min-entropy distributions, we obtain a high min-entropy Y with lower
complexity than [TTV]. This also yields an improved and optimal Weak Regularity Lemma for
graphs of density o(1) (Section 6.2).

This section is divided into three parts, each proving results for a different notions of “complex-
ity”: Section 6.1 for information-theoretic notion of complexity, Section 6.3 for circuit complexity,
and Section 6.4 for time complexity of uniform algorithms.

In addition, using the Uniform Min-Max Theorem – Average Case (Theorem 3.2) we obtain
average-case variants, which can be used to deduce “low complexity” versions of a technical lemma
of [GW]. We note that the average-case variant for circuits is a strengthening of a recent result of
Pietrzak and Jetchev [PJ], with a simpler proof. The low circuit complexity version of the [GW]
lemma (with slightly weaker parameters) was initially proved by Pietrzak and Jetchev [PJ], and an
interactive extension was proved by Chung, Lui, and Pass [CLP] for applications in the context of
distributional zero-knowledge.

6.1 Regularity Theorems for Feature Complexity

Let W be an arbitrary class of functions W : Σ → [0, 1] for some finite set Σ. Two distributions
X and Y on Σ are ϵ-indistinguishable by W if for every W ∈ W, |E[W (X)]− E[W (Y )]| < ϵ. For
starters, we shall consider the setting where the complexity of a distribution Y is purely information-
theoretic: We say Y has feature complexity at most m w.r.t. W if its mass function x 7→ Pr[Y = x]
is a function of W1(x), . . . ,Wm(x), for some W1, . . . ,Wm ∈ W. Notice that we can assumeW to be
closed under negation, i.e. if W ∈ W then we can add 1−W to W without affecting the meaning
of complexity.

In order to obtain a low feature complexity approximation within a convex set V of distributions
on Σ, we require V to be permutation-invariant. That is, for all permutations π : Σ → Σ we have
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X ∈ V ⇐⇒ π(X) ∈ V. Permutation invariance is a natural condition; for example, the set of
high entropy distributions should be permutation-invariant for any reasonable notion of entropy.
However, for a fixed distribution X0, {(X,C) : H(C|X) ≥ k,X = X0} is not permutation-invariant
in general. We will use the following properties of a permutation-invariant convex set:

Lemma 6.1. Let V be a permutation-invariant nonempty convex set of distributions on Σ. Then

1. V contains the uniform distribution on Σ.

2. Let X be a distribution on Σ having feature complexity at most m w.r.t. W. Then the KL
projection of X on V also has feature complexity at most m w.r.t. W.

Proof. 1. For any Y ∈ V, the average of π(Y ) over all permutations π is still in V (by convexity
and permutation-invariance), and is clearly the uniform distribution.

2. Let Y ∗ denote the KL projection of X on V. For all x1, x2 ∈ Σ where Pr[X = x1] = Pr[X =
x2], we must also have Pr[Y ∗ = x1] = Pr[Y ∗ = x2]; otherwise, swapping Pr[Y ∗ = x1] and

Pr[Y ∗ = x2] yields some Ŷ ∗ ∈ V (by permutation-invariance) that is also a KL projection
of X, violating the uniqueness of KL projection (Lemma 2.8). Therefore Pr[Y ∗ = x] is a
function of Pr[X = x], and Y ∗ has feature complexity at most that of X.

We show that every distribution X ∈ V is indistinguishable to some Y ∈ V of low feature
complexity, as long as V is permutation-invariant:

Theorem 6.2 (A regularity theorem for feature complexity). Let Σ be a finite set, W be an
arbitrary class of functions W : Σ→ [0, 1], V be a permutation-invariant convex set of distributions
on Σ, and ϵ > 0. Then for every distribution X ∈ V there exists Y ∈ V such that

1. X and Y are O(ϵ)-indistinguishable by W;

2. Y has feature complexity at most S = (log |Σ| − H(X))/ϵ2 w.r.t. W. That is, there exist
W1, . . . ,WS ∈ W and a function θ : [0, 1]S → [0, 1] such that ∀x,

Pr[Y = x] = θ(W1(x), . . . ,WS(x)).

Remark. The main theorem of [TTV] (when considering feature complexity) is equivalent to The-
orem 6.2 with V being fixed to be the set of distributions of min-entropy at least log |Σ| − log(1/δ),
and has a worse bound on the feature complexity of Y . For a distribution X with H∞(X) =
log |Σ|− log(1/δ), [TTV] obtains a distribution Y with feature complexity at most 1/ϵ2δ2 such that
Y is O(ϵ)-indistinguishable to X and H∞(Y ) ≥ H∞(X), whereas Theorem 6.2 obtains such Y with
feature complexity at most log(1/δ)/ϵ2.

Theorem 6.2 is interesting even if we do not require the low complexity Y to lie in V. As
mentioned in [TTV] (and pointed out by Elad Verbin), it easily follows from a Chernoff bound and
a union bound that the uniform distribution over certain O(log |W| /ϵ2) elements of Σ (which may
not lie in V) is ϵ-indistinguishable from X by W. However, for large W the feature complexity
of O(log |W| /ϵ2) is potentially much higher than S = (log |Σ| − H(X))/ϵ2. Indeed, we do not use
the fact that Y ∈ V when deducing the Weak Regularity Lemma of Frieze and Kannan [FK] from
Theorem 6.2 (see Theorem 6.4 below); as shown in [TTV], the argument of Frieze and Kannan can
be used to obtain a weaker variant of Theorem 6.2 where Y may not lie in V, and the bound on S
is worse.
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Proof of Theorem 6.2. Suppose for contradiction that for every low feature complexity Y ∈ V
there is some W ∈ W such that E [W (X)]− E [W (Y )] ≥ ϵ′ (recall that WLOG W is closed under
negation), where ϵ′ = c · ϵ for a sufficiently large constant c. Consider the zero-sum game where
Player 1 selects some distribution Y ∈ V, Player 2 selects some W ∈ W and receives (expected)
payoff E[W (X)]−E[W (Y )]. Consider Algorithm 3.1 (Finding Universal Strategy) where we set the
initial strategy V (1) for Player 1 to be the uniform distribution on Σ (which lies in V, by Lemma 6.1)
and number of iterations to be S. Note that in each iteration the feature complexity of V (i) increases
by at most one, due to the weight update using W (i), since KL projection on the permutation-
invariant set V does not increase feature complexity (Lemma 6.1). Hence by assumption, in each
iteration there exists W (i) ∈ W such that E

[
W (i)(X)

]
− E

[
W (i)(V (i))

]
≥ ϵ′. By the Uniform

Min-Max Theorem (Theorem 3.1), W ∗ (the uniform distribution over W (1), . . . ,W (S)) satisfies

E [W ∗(X)]− E [W ∗(V )] ≥ ϵ′ −O(ϵ) > 0

for all Player 1 strategies V ∈ V such that H(V ) ≥ H(X). Taking V = X yields a contradiction.

6.2 Improved Weak Regularity Lemma for Graphs of Density o(1)

An information-theoretic application of [TTV] is deducing the Weak Regularity Lemma of Frieze
and Kannan [FK]. Our Theorem 6.2, with the improved bound, implies a Weak Regularity Lemma
with parameters stronger than [FK] for graphs that are o(1)-dense. The Weak Regularity Lemma
says that any graph G = (V,E) is approximated within “cut-distance” σ by some edge-weighted
graph G′ on the vertices {1, . . . , t}, where t depends only on σ (i.e. independent of the size of G),
and each vertex i corresponds to a block Vi ⊆ V in a partition {V1, . . . , Vt} of V . The edge weight
of (i, j) in the approximator G′ is defined to be the edge density between Vi and Vj :

Definition 6.3 (Edge density). The density of a directed graph G = (V,E) equals |E| / |V |2. The
edge density between two sets of vertices V1, V2 of G equals dG(V1, V2) = |(V1 × V2) ∩ E| / |V1 × V2|.

Theorem 6.4 (A Weak Regularity Lemma). For every directed graph G = (V,E) of density
δ = |E| / |V |2 > 0 and σ > 0, there is a partition of V into t = exp(O(δ/σ)2 log(1/δ)) disjoint sets
V1, . . . , Vt, such that for all A, B ⊆ V ,∣∣∣∣∣∣|(A×B) ∩ E| −

∑
i,j

|A ∩ Vi| |B ∩ Vj | · dG(Vi, Vj)

∣∣∣∣∣∣ < σ · |V |2 .

Note that the only interesting setting of parameters is δ > σ, δ > 1/ |V |O(1) (i.e. G has average
degree greater than 1), because if δ ≤ σ then the trivial partition V1 = V would work, and if

σ < δ ≤ 1/ |V |O(1) we could take t = |V | and use the trivial partition into single vertices. As
pointed out to us by Jacob Fox, the number of partitions exp(O(δ/σ)2 log(1/δ)) in Theorem 6.4
(as a function of δ and σ) is optimal up to a constant factor, which can be shown by adapting a
lower bound argument in [CF].

Theorem 6.4 is stronger than Frieze and Kannan [FK] when G has density δ = o(1). For
example, when |V | = N and δ = 2σ = 1/poly(logN), Theorem 6.4 produces a partition of size
poly(logN), whereas [FK] only yields a trivial partition into more than N sets.
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Proof of Theorem 6.4. We apply Theorem 6.2 with Σ = V ×V , W = {χS×T , 1−χS×T : S, T ⊆ V }
(where χS×T denotes the characteristic function of S×T ), V being the set of all δ-dense distributions
on Σ, X = UE ∈ V (the uniform distribution on E), and ϵ = O(σ/δ). By Theorem 6.2 there is
some δ-dense distribution Y where:

1. Y has feature complexity at most m = O((2 log |V |−H(UE))/ϵ
2) = O((δ/σ)2 log(1/δ)). That

is, Pr[Y = e] = ϕ(χS1×T1(e), . . . , χSm×Tm(e)) for a function ϕ and sets S1, T1, . . . , Sm, Tm ⊆ V .

2. UE and Y are ϵ-indistinguishable for W. That is, for every S, T ⊆ V ,

|E [χS×T (UE)]− E [χS×T (Y )]| < ϵ.

The fact that Y has feature complexity at most m yields a partition {V1, . . . , Vt}, t ≤ 22m, such
that Pr[Y = e] has the same value for all e ∈ Vi × Vj . (Specifically, the partition is the overlay
of S1, T1, . . . , Sm, Tm, i.e. formed by taking the intersection of, for each i, either Si or V − Si, and
either Ti or V − Ti.)

Consider any A, B ⊆ V . Taking S = A, T = B in Item 2 yields∣∣∣∣ 1

|E|
|(A×B) ∩ E| − E [χA×B(Y )]

∣∣∣∣ = |E [χA×B(UE)]− E [χA×B(Y )]| < ϵ.

Thus, by triangle inequality it suffices to show that∣∣∣∣∣ 1

|E|
∑

e∈A×B
weight(e)− E [χA×B(Y )]

∣∣∣∣∣ < ϵ.

To do so, we randomly generate a set Ã as follows: For each i, w.p. |Vi ∩A| / |Vi| include all
elements of Vi in Ã, otherwise include none of the elements in Ã. Similarly generate a random B̃.

Note that EY [χA×B(Y )] = EÃ,B̃,Y

[
χ
Ã×B̃(Y )

]
since within every Vi× Vj , Pr[Y = e] is constant for

all e ∈ Vi × Vj , and

1

|E|
∑

e∈A×B
weight(e) =

1

|E|
∑
i,j

|Vi ∩A| · |Vj ∩B| · |(Vi × Vj) ∩ E|
|Vi| · |Vj |

= E
Ã,B̃,UE

[
χ
Ã×B̃(UE)

]
by linearity of expectation. Taking S = Ã, T = B̃ in Item 2 yields the required bound.

6.3 Regularity Theorems for Circuit Complexity

In this section, we extend the notion of complexity to be computational and consider (boolean)
circuit complexity. Let W be the set of functions having low circuit complexity. Indeed, the highly
constructive proof for Theorem 6.2 already provides a Y with low circuit complexity, as long as
there exist approximate KL projections computed by small circuits. Thus we require V to be
KL-projectable:

Definition 6.5. Let V be a convex set of distributions on {0, 1}n. The ϵ-neighborhood of V, denoted
Vϵ, is the set of all distributions X on {0, 1}n such that for some Y ∈ V and for all x ∈ {0, 1}n,

Pr[X = x] ∈ [e−2ϵ, e2ϵ] · Pr[Y = x].

V is said to be KL-projectable if for all ϵ > 0, for every X ∈ Vϵ there exists some Y ∈ V such
that
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1. Y is an ϵ2-approximate KL projection of X on V;

2. If there is a size t circuit computing a measure M for X with outputs M(x) of bit-length
at most m, then there is a size t + poly(m, log(1/ϵ)) circuit M ′ computing a measure for Y
with outputs M ′(x) of bit-length at most m + polylog(1/ϵ). (Recall that measures are [0, 1]
bounded, unnormalized mass functions; see Definition 4.6.)

Many natural convex sets of distributions are KL-projectable. Examples include the set of
distributions with min-entropy at least k (Theorem A.3) and the set of distributions with Shannon
entropy at least k (see [VZ]), for any k > 0.

We show that every distribution X ∈ V is indistinguishable, by all small circuits, to some Y ∈ V
that has low circuit complexity, as long as V is permutation-invariant and KL-projectable:

Theorem 6.6 (A regularity theorem for circuit complexity). Let V be a KL-projectable, permutation-
invariant convex set of distributions on {0, 1}n, t > 0, and ϵ > 0. Then for every distribution X ∈ V
there exists Y ∈ V such that

1. X and Y are O(ϵ)-indistinguishable by size t circuits;

2. Y has low complexity: Y has a measure of circuit size t′ = S · t + poly(S, log(1/ϵ)), for
S = (n−H(X))/ϵ2.

Proof. The proof is essentially the same as Theorem 6.2. Suppose for contradiction that for every
low complexity Y ∈ V there is some size t circuit W such that E [W (X)] − E [W (Y )] ≥ ϵ′, where
ϵ′ = c·ϵ for a sufficiently large constant c. We will apply Theorem 3.1 (Uniform Min-Max Theorem),
with

• V = V;

• W = {(deterministic) circuits of size t};

• f(z,W ) = E[W (X)]−W (z).

This corresponds to the two-player zero-sum game where Player 1 chooses some distribution Y ∈ V,
and Player 2 chooses a t sized circuit W , with expected payoff F (Y,W ) = E[W (X)]−E[W (Y )] for
Player 2. We implement Algorithm 3.1 (Finding Universal Strategy) with KL projection on the set
V as follows. Start with an initial distribution V (1) that is uniform on {0, 1}n (which lies in V, by
Lemma 6.1). In each of the S = (n − H(X))/ϵ2 iterations we represent the distribution V (i) by a
circuit M (i) computing a measure for V (i), where M (i)(x) has bit-length at most i·polylog(1/ϵ). We
implement the ith iteration as follows. For technical convenience we assume that e−ϵ has bit-length
at most log(1/ϵ) (if not, we replace ϵ by some ϵ̃ = O(ϵ) > ϵ such that e−ϵ̃ has bit-length at most
log(1/ϵ)).

1. Obtaining Player 2’s Response W (i): Suppose that we have constructed a ti ≤ t′ sized
circuit M (i) computing a measure for V (i), and M (i)(x) has bit-length at most i ·polylog(1/ϵ).
By assumption, there is a size t circuit W (i) such that

E
[
W (i)(X)

]
− E

[
W (i)(V (i))

]
≥ ϵ′.

18



2. Weight Update: We represent the resulting distribution V (i)′ by the circuit M (i)′(x) =
exp

(
−ϵ · (1−W (i)(x))

)
·M (i)(x) that computes a measure for V (i)′ . Since W (i)(x) ∈ {0, 1},

exp
(
−ϵ · (1−W (i)(x))

)
has bit-length at most log(1/ϵ). M (i)(x) has bit-length at most i ·

polylog(1/ϵ), thus multiplication takes time i · polylog(1/ϵ). Thus M (i)′ has circuit size
t′i = ti + t+ i · polylog(1/ϵ), and bit-length at most i · polylog(1/ϵ) + log(1/ϵ).

3. KL Projection: By KL-projectability of V and the fact that V (i)′ ∈ Vϵ, we have a circuit
M (i+1) computing a measure for V (i+1) of size ti+1 = t′i +poly(i · polylog(1/ϵ), log(1/ϵ)), and
M (i+1)(x) has bit-length at most i·polylog(1/ϵ)+log(1/ϵ)+polylog(1/ϵ) =(i+1)·polylog(1/ϵ).

Note that t1 = O(1) and ti+1 = ti+t+poly(i·polylog(1/ϵ), log(1/ϵ)), thus ti ≤ S·t+poly(S, log(1/ϵ))
and the assumption that ti ≤ t′ is satisfied for all i ∈ [S]. By Theorem 3.1, W ∗ (the uniform
distribution over W (1), . . . ,W (S)) satisfies

E [W ∗(X)]− E [W ∗(V )] ≥ ϵ′ −O(ϵ) > 0.

for all Player 1 strategies V ∈ V such that H(V ) ≥ H(X). Taking V = X yields a contradiction.

Remark. Most of our results in this section (Theorem 6.6, 6.8) hold not just for small circuits,
but for an arbitrary class of distinguishers W (like our Theorem 6.2) with a suitable definition of
“complexity w.r.t. W” (see [TTV] Theorem 1.1 for one such example). However, we avoid stating
results in greater generality since the appropriate definition of “complexity” may vary depending
on the choice of V (to account for the complexity of KL projections) and the application.

The above theorem also has an average-case variant. Rather than stating it in full generality
(which would involve new definitions with the proof being essentially the same), we only state a
special case where the low-complexity approximation is not confined in a convex set V (i.e. V is the
universe). To express nonuniform complexity in the average-case setting, we extend the definition
of measures:

Definition 6.7 (Conditional measure). For a joint distribution (X,C), a function M is a con-
ditional measure for C|X if for all x ∈ supp(X), the function f(y) = M(x, y) is a measure for
C|X=x.

Theorem 6.8 (A regularity theorem for circuit complexity – average case). For every t > 0,
ϵ > 0, and joint distribution (X,B) over {0, 1}n × {0, 1}ℓ, there is a joint distribution (X,C) over
{0, 1}n × {0, 1}ℓ such that

1. (X,B) and (X,C) are O(ϵ)-indistinguishable by size t circuits;

2. C has low complexity given X: C|X has a conditional measure of circuit size S · t + (S ·
log(1/ϵ))2, where S = ℓ/ϵ2.

Proof. The proof is identical to Theorem 6.6, except we use the Uniform Min-Max Theorem –
Average Case (Theorem 3.2), and do not need KL projections (thus the complexity of C|X is lower
compared to Theorem 6.6).

Theorem 6.8 is a slight strengthening of a recent result of Pietrzak and Jetchev [PJ], with a
simpler proof. In [PJ] they obtain an (X,C) where given x, C|X=x is samplable by a circuit of

size O
((

2ℓ · ℓ · (1/ϵ)2 log(1/ϵ)
)2 · t). Theorem 6.8 provides an (X,C) where given x, C|X=x can
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be sampled by a circuit of size O
(
2ℓ ·

(
ℓ · (1/ϵ)2 · t+

(
ℓ · (1/ϵ)2log(1/ϵ)

)2))
by computing M(x, y)

for all y ∈ {0, 1}ℓ and sampling C|X=x using its mass function.
Finally, we show an application of Theorem 6.8: deducing a technical lemma of [GW], which

says if X and U are indistinguishable then for any short B jointly distributed with X, there is
some C (the “auxilliary information”) jointly distributed with U such that (X,B) and (U,C) are
indistinguishable. Not only is our proof simpler, but also it guarantees that C has low circuit
complexity given U . This “low complexity” version (with slightly weaker parameters) was initially
proved by Pietrzak and Jetchev [PJ], and an interactive extension was proved by Chung, Lui, and
Pass [CLP] for applications in the context of distributional zero-knowledge.

Lemma 6.9 (Low circuit complexity version of [GW] Lemma 3.1). Let X and U be distributions
over {0, 1}n, and B be a distribution over {0, 1}ℓ jointly distributed with X. Suppose X and U are
ϵ-indistinguishable by circuits of size t. Then there exists some C ∈ {0, 1}ℓ jointly distributed with
U such that:

1. (X,B) and (U,C) are 2ϵ-indistinguishable by circuits of size s = t/(2ℓ · ℓ · (1/ϵ)2) − ℓ ·
((1/ϵ)log(1/ϵ))2.

2. C has low complexity given U : C|U has a conditional measure of circuit size ℓ · (1/ϵ)2 · s +
(ℓ · (1/ϵ)2log(1/ϵ))2.

Proof. We first apply Theorem 6.8 to obtain a distribution (X,P (X)) such that (X,B) and
(X,P (X)) are ϵ-indistinguishable by size s circuits, where P is a randomized function, and there
is a size ℓ · (1/ϵ)2 · s+ (ℓ · (1/ϵ)2log(1/ϵ))2 circuit M computing a conditional measure for P (X)|X.

Thus, given x, P (x) can be sampled in time s′ = O
(
2ℓ ·

(
ℓ · (1/ϵ)2 · s+

(
ℓ · (1/ϵ)2log(1/ϵ)

)2))
by

computing M(x, y) for all y ∈ {0, 1}ℓ and sampling P (x) from its mass function.
Let C = P (U). Since P is efficient, indistinguishability of X and U implies that (X,P (X)) and

(U,P (U)) are ϵ-indistinguishable by circuits of size s. (Otherwise, given an s-sized ϵ-distinguisher
D for (X,P (X)) and (U,P (U)) we get an ϵ-distinguisher T (x) = D(x, P (x)) for X and U , of
circuit size O(s + s′) ≤ t.) By triangle inequality, (X,B) and (U,P (U)) = (U,C) must be 2ϵ-
indistinguishable by circuits of size s.

6.4 Regularity Theorems for Time Complexity

In this section, we use the full strength of the Uniform Min-Max Theorem to obtain a low complexity
approximation where complexity is measured using uniform algorithms. For simplicity, we only
prove an average-case variant (Theorem 6.10) where no KL-projection is needed, which is the
uniform analogue of Theorem 6.8. As an immediate corollary, we provide a “sampling” version of it
(Theorem 6.11), which is cleaner and convenient for several applications, but involves exponential
dependence on ℓ.

Theorem 6.10 (A regularity theorem for time complexity – average case). Let n be a security
parameter, ℓ = ℓ(n), t = t(n) ≥ n, ϵ = ϵ(n) > 0 all computable in poly(n) time. Let (X,B) =
(X,B)(n) be a joint distribution on {0, 1}n×{0, 1}ℓ. Let A be a t-time randomized oracle algorithm.
Then there is a t′ = poly(t, 1/ϵ)-time randomized algorithm R such that w.p. Ω(ϵ2/ℓ) over M ←
R(1n) and W ← AM (1n), if we interpret M as a deterministic circuit computing a conditional
measure for C|X and W as a randomized circuit W : {0, 1}n × {0, 1}ℓ → [0, 1], we have:

E[W (X,B)]− E[W (X,C)] < ϵ.
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Proof. We will let R be an implementation of Algorithm 3.2 (Finding Universal Strategy – Average
Case), using A as a subroutine. We then show R satisfies the desired properties by applying
Theorem 3.2 (Uniform Min-Max Theorem – Average Case), with

• V being the set of all joint distributions (X,C) on {0, 1}n × {0, 1}ℓ (where the marginal
distribution of X is fixed, and C may vary);

• W = {randomized circuits of size t};

• f((x, y),W ) = E[W (X,B)]− E[W (x, y)].

This corresponds to the two-player zero-sum game where Player 1 selects a distribution (X,C) ∈ V,
Player 2 selects a size t circuit W and receives expected payoff F ((X,C),W ) = E[W (X,B)] −
E[W (X,C)].

Our implementation of Algorithm 3.2 using A is as follows. We set the ϵ in Algorithm 3.2 to be
ϵ′ = ϵ/c for a sufficiently large constant c, and start with an initial distribution (X,C(1)) = (X,Uℓ)
(where Uℓ is independent of X). In each of the S = O(ℓ/ϵ2) iterations we represent C(i) by a circuit
M (i) computing a conditional measure for C(i)|X, i.e. M (i)(x, y) ∝ Pr[C(i) = y|X = x]. So we can
take M (1)(x, y) = 1 for all x, y. We implement the ith iteration as follows, with γ = 1/3S:

1. Obtaining Player 2’s Response W (i): Suppose that we have constructed a ti-size circuit
M (i) where M (i)(x, y) has bit-length i · polylog(1/ϵ). There are two steps.

(a) We run AM(i)
(1n) to obtain a t-size randomized circuit Ŵ (i), and convert it into a

O(tm)-size deterministic circuit W̃ (i) by hardwiring m = O((1/ϵ2) log(1/γ)) samples of

the coins of Ŵ (i), so that w.p. at least 1− γ,

E
[
W̃ (i)(X,B)

]
− E

[
W̃ (i)(X,C(i))

]
≥ E

[
Ŵ (i)(X,B)

]
− E

[
Ŵ (i)(X,C(i))

]
− ϵ′.

(b) Our choice ofW (i) is the following approximation to W̃ (i), so that exp
(
−ϵ′ · (1−W (i)(x, y))

)
can be computed precisely and efficiently. First, we use Newton’s method to com-

pute a polylog(1/ϵ)-bit approximation E(x, y) ∈ (0, 1] of exp
(
−ϵ′ · (1− W̃ (i)(x, y))

)
within ±ϵ′2 error, in time O(tm) + polylog(1/ϵ). We define W (i) to be such that

exp
(
−ϵ′ · (1−W (i)(x, y))

)
= E(x, y). Thus

∣∣∣W (i)(x, y)− W̃ (i)(x, y)
∣∣∣ ≤ ϵ′, and

E[W (i)(X,B)]− E[W (i)(X,C(i))] ≥ E[W̃ (i)(X,B)]− E[W̃ (i)(X,C(i))]− 2ϵ′.

2. Weight Update: We represent the resulting distribution C(i+1) by the circuitM (i+1)(x, y) =
exp

(
−ϵ′ · (1−W (i)(x, y))

)
·M (i)(x, y) computing a conditional measure for C(i+1)|X. Since

exp
(
−ϵ′ · (1−W (i)(x, y))

)
= E(x, y) has bit-length polylog(1/ϵ) andM (i)(x, y) has bit-length

i · polylog(1/ϵ), multiplication takes time i · polylog(1/ϵ). Thus M (i+1) has circuit size ti+1 =
ti + O(tm) + i · polylog(1/ϵ) and bit-length (i + 1) · polylog(1/ϵ), and can be constructed in
similar time.

3. KL projection: Do nothing as Player 1 strategies can be arbitrary conditional distributions
C(i)|X=x.
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Now let R be the algorithm that chooses a random i ← [S], runs the above implementation of
Algorithm 3.2 for i − 1 iterations to construct and output M (i). Since t1 = O(1), we have ti =
O(1)+S ·(O(tm)+S ·polylog(1/ϵ)) for all i ∈ [S]. Thus R runs in total time poly(t, S,m, log(1/ϵ)) ≤
t′.

Suppose for contradiction that w.p. at least 1− γ over coins of R used to generate M (i) and A,
AM(i)

(1n) outputs a randomized circuit Ŵ (i) s.t. E[Ŵ (i)(X,B)] − E[Ŵ (i)(X,C(i))] ≥ ϵ. By union
bound w.p. at least 1− 2γ · S = 1/3, in all iterations we have

E[W (i)(X,B)]− E[W (i)(X,C(i))] ≥ E[Ŵ (i)(X,B)]− E[Ŵ (i)(X,C(i))]− 3ϵ′ ≥ ϵ− 3ϵ′.

Let W ∗ be the uniform distribution over W (1), . . . ,W (S). By the Uniform Min-Max Theorem –
Average Case (Theorem 3.2), w.p. at least 1/3, W ∗ satisfies

E [W ∗(X,B)]− E [W ∗(X,C)] ≥ ϵ− 3ϵ′ −O(ϵ′) > 0

for all Player 1 strategies (X,C) ∈ V. Taking (X,C) = (X,B) yields a contradiction.

As an immediate corollary, we obtain a “sampling” version, which is cleaner, and convenient
for several applications. Recall that for a distribution Z, we denote by OZ the sampling oracle of
Z, i.e. on each query OZ returns a random sample of Z.

Theorem 6.11 (A regularity theorem for time complexity – average case (sampling version)). Let
n be a security parameter, ℓ = ℓ(n), t = t(n) ≥ n, ϵ = ϵ(n) > 0 all computable in poly(n) time. Let
(X,B) = (X,B)(n) be a joint distribution on {0, 1}n × {0, 1}ℓ, and Q = Q(n) be any poly(n)-time
samplable distribution on {0, 1}n. Let A be a t-time randomized oracle algorithm. Then there is a
t′ = poly(2ℓ, t, 1/ϵ)-time randomized algorithm R that w.p. at least Ω(ϵ2/ℓ) outputs a randomized
circuit P of size at most t′ satisfying:

E[AOQ,P (Q)(X,B)]− E[AOQ,P (Q)(X,P (X))] < ϵ.

Proof. Given a t-time randomized oracle algorithm A, we define a 2ℓ ·poly(t, 1/ϵ)-time randomized
oracle algorithm A′ to which we apply Theorem 6.10, as follows. First define the randomized
function Â(x, y; a) to equal A(x, y) where we fix the outputs of the sampling oracle to be a ∈(
{0, 1}n × {0, 1}ℓ

)t
. For every M : {0, 1}n × {0, 1}ℓ → [0, 1], let A′M (1n) generate a(1), . . . , a(m) as

m = O((1/ϵ2) · log(cℓ/ϵ2)) random samples of (Q,PM (Q))t, where PM is the randomized function
such that M is a conditional measure for PM (Q)|Q, and c is a constant to be determined later.
Recall that Q is poly(n)-time samplable by assumption, and we can construct from M a circuit
that samples (Q,PM (Q)) by computing M(x, y) for all y ∈ {0, 1}ℓ. We then let A′M (1n) output a
randomized circuit W (x, y) computing the average of Â(x, y; a(i)) over all i. By a Chernoff bound,
w.p. at least ϵ2/cℓ over W ← A′M (1n) we have

E [W (X,B)]− E [W (X,PM (X))] ≥ E
[
AOQ,PM (Q)(X,B)

]
− E

[
AOQ,PM (Q)(X,PM (X))

]
− ϵ/2.

By applying Theorem 6.10 to A′, there is a poly(2ℓ, t, 1/ϵ)-algorithm R such that w.p. Ω(ϵ2/ℓ) over
M ← R(1n) and W ← A′M (1n) we have

E[W (X,B)]− E[W (X,C)] < ϵ/2.
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Thus w.p. at least Ω(ϵ2/ℓ)− ϵ2/cℓ = Ω(ϵ2/ℓ) (for a sufficiently large c) over M ← R(1n),

E[AOQ,PM (Q)(X,B)]− E[AOQ,PM (Q)(X,PM (X))] < ϵ.

We now apply Theorem 6.11 to show Theorem 6.12, the uniform analogue of Theorem 6.9
(which in turn is the low circuit complexity version of [GW] Lemma 3.1). We do so mainly because
it is convenient for applications, including (i) deriving a uniform Dense Model Theorem (see Sec-
tion 7, Theorem 7.3); (ii) showing impossibility of constructing succinct non-interactive arguments
(SNARGs) via black-box reductions under uniform hardness assumptions (see Section 8, Theorem
8.7).

Theorem 6.12 (Low time complexity version of [GW] Lemma 3.1). Let n be a security parameter,
ℓ = ℓ(n), s = s(n) ≥ n, ϵ = ϵ(n) > 0 all computable in poly(n) time. Let X = X(n) and
U = U(n) be poly(n)-time samplable distributions on {0, 1}n that are ϵ-indistinguishable for s-time
randomized algorithms. Let B = B(n) be a distribution on {0, 1}ℓ jointly distributed with X, and
let Q = Q(n) be any poly(n)-time samplable distribution on {0, 1}n. Let A be a t-time randomized
oracle algorithm, for t = sΩ(1)/poly(2ℓ, 1/ϵ). Then there is a t′ = poly(2ℓ, t, 1/ϵ)-time randomized
algorithm R such that w.p. at least Ω(ϵ2/ℓ), R outputs a randomized circuit P satisfying

E[AOQ,P (Q)(X,B)]− E[AOQ,P (Q)(U,P (U))] < 2ϵ.

Proof. By Theorem 6.11, there is a t′-time algorithm R that w.p. at least γ = Ω(ϵ2/ℓ) outputs a
randomized circuit P satisfying

E[AOQ,P (Q)(X,B)]− E[AOQ,P (Q)(X,P (X))] < 0.9ϵ.

Since P is efficient, ϵ-indistinguishability of X and U implies that with probability at least 1− γ/2
over P ,

E[AOQ,P (Q)(X,P (X))]− E[AOQ,P (Q)(U,P (U))] < 1.1ϵ.

Indeed, suppose that AQ,P (Q) achieves distinguishing advantage at least 1.1ϵ w.p. at least γ/2 over
P , then we could obtain an ϵ-distinguisher for X and U by running R for O((1/γ) log(1/ϵ)) times,
each time testing the distinguisher T (x) = AQ,P ′(Q)(x, P ′(x)) where P ′ is the randomized circuit
output by R (by running on O((1/ϵ2) log(1/ϵ)) random samples ofX, U and (Q,P ′(Q))), and finally
taking the best one. This yields an ϵ-distinguisher for X and U that runs in time O((1/ϵ2) log(1/ϵ))·
(poly(n) + (1/γ) log(1/ϵ) · (t+ poly(t′))) ≤ s, violating their indistinguishability.

Combining the two inequalities, we get with probability at least γ/2 over P ← R,

E[AOQ,P (Q)(X,B)]− E[AOQ,P (Q)(U,P (U))] < 2ϵ.

7 Application: Dense Model Theorem

A celebrated result of Green and Tao [GT] shows that there exist arbitrarily long arithmetic pro-
gressions of prime numbers. A key new component of their proof is the Dense Model Theorem
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which, in the generalized form of Tao and Ziegler [TZ], says if X is a pseudorandom distribution
and D is a distribution dense in X, then D is indistinguishable to a distribution M that is dense
in the uniform distribution. Like our results in Section 6.1, notions of indistinguishability and
pseudorandomness in the Dense Model Theorem can be defined with respect to an arbitrary class
of distinguishers W, and are not restricted to classes of circuit distinguishers.

In the original proof, the indistinguishability (i.e. the bound on distinguishing probability)
between D and M is exponentially larger than the indistinguishability between X and the uniform
distribution, making it inapplicable for the typical complexity-theoretic or cryptographic settings
of parameters. Using the Min-Max Theorem, Reingold et al. [RTTV] provided another proof where
the indistinguishability and complexity blow-ups are only polynomial; a similar proof was given
by Gowers [Gow]. These requirements are crucial for applications in leakage-resilient cryptography
[DP2, DP1, FOR], and for connections to computational differential privacy [MPRV].

We now state a Dense Model Theorem due to Zhang [Zha], where the complexity blow-up
O((δ/ϵ)2 log(1/δ)) is asymptotically optimal.4

Recall from Definition 4.1 that for distributions X and Y on Σ, we say X is δ-dense in Y
if Pr [Y = x] ≥ δ · Pr [X = x] for all x ∈ Σ, and say X is δ-dense if it is δ-dense in UΣ. It will
be convenient to denote by Tht(x) the boolean threshold function i.e. Tht(x) = 1 if x ≥ t and
Tht(x) = 0 if x < t.

Theorem 7.1 (Dense Model Theorem [Zha]). Let Σ be a finite set, W be an arbitrary class of
functions W : Σ→ [0, 1], ϵ > 0, δ > 0. Then the following holds for some S = O((δ/ϵ)2 log(1/δ)).

Let W ′ be the set of all functions W ′ : Σ → {0, 1} defined by W ′(x) = Tht

(∑S
i=1Wi(x)/S

)
,

for some W1, . . . ,WS ∈ W and t ∈ [0, 1]. Let X be a distribution on Σ that is ϵ-indistinguishable
from UΣ by W ′. Let D be a distribution δ-dense in X. Then there is a δ-dense distribution M such
that D and M are O(ϵ/δ)-indistinguishable by W.

A Min-Max Theorem based proof with a suboptimal blow-up of S = O((δ/ϵ)2 log(1/ϵ)) proceeds
as follows. (Note that we may assume δ > ϵ, else the conclusion of O(ϵ/δ)-indistinguishability is
trivial.) Assume for contradiction that for every δ-dense M there is a distinguisher W ∈ W . By the
Min-Max Theorem there is a universal distinguisherW ∗ such that E [W ∗(D)]−E [W ∗(M)] ≥ O(ϵ/δ)
for every δ-dense M . By subsampling we can assume that W ∗ is the average over a multiset of
O((δ/ϵ)2 log(1/ϵ)) elements ofW, while changing the distinguishing advantage by at most a constant
fraction. Given such universal distinguisher W ∗ we can construct an ϵ-distinguisher in W ′ between
X and UΣ, as formalized in Lemma 7.2:

Lemma 7.2 (Implicit in [RTTV]). Let Σ be a finite set, ϵ > 0, δ > 0. Let X, D be distributions
on Σ, and D is δ-dense in X. Let W ∗ : Σ → [0, 1] be a function such that for every δ-dense
distribution M we have

E [W ∗(D)]− E [W ∗(M)] ≥ O(ϵ/δ).

Then for some t as a multiple of O(ϵ/δ), we have

E [Tht(W
∗(X))]− E [Tht(W

∗(UΣ))] ≥ ϵ.

4Zhang [Zha] shows optimality by proving a black-box lower bound on the number of elements of W that a
black-box reduction needs to obtain to construct a distinguisher between X and the uniform distribution.
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This proves a Dense Model Theorem, but with a suboptimal complexity blow-up ofO((δ/ϵ)2 log(1/ϵ))
(due to the probabilistic construction of the multiset defining W ∗). Zhang [Zha] achieved optimal
blow-up in Theorem 7.1 by adapting the technique of multiplicative weights with KL projection
from Barak, Hardt, and Kale [BHK].

Replacing the use of the Min-Max Theorem in the above argument by our Uniform Min-Max
Theorem (Theorem 3.1), we immediate obtain a simple proof of Theorem 7.1, with an optimal
complexity blow-up that comes from the setting of

S =
(log |Σ| −minM∈V H(M))

Ω(ϵ/δ)2
= O

(
log(1/δ)

(ϵ/δ)2

)
in Theorem 3.1, with V being the set of δ-dense distribution on Σ. Compared to [Zha], the proof
using the Uniform Min-Max Theorem is more modular, and avoids adapting the analysis of [HW]
and [BHK] to the specific setting of the Dense Model Theorem.

In the rest of the section, we prove a Uniform Dense Model Theorem where the distinguishers
are (uniform) algorithms rather than (nonuniform) [0, 1]-valued functions. Rather than directly
applying the Uniform Min-Max Theorem and using Lemma 7.2, we follow [TTV] and deduce the
Dense Model Theorem from a regularity theorem. Specifically, [TTV] shows how to deduce the
nonuniform Dense Model Theorem from a nonuniform regularity theorem like Theorem 6.6; we
prove our uniform Dense Model Theorem using a uniform regularity theorem (Theorem 6.12).

We begin with an overview of the proof of the nonuniform Dense Model Theorem in [TTV]. The
distributionD being δ-dense inX means that there is a (possibly inefficient) binary random variable
B jointly distributed with X such that D = X|B=1, and Pr[B = 1] ≥ δ. By a regularity theorem,
there is an efficient randomized function P such that (X,B) and (X,P (X)) are indistinguishable.
Since P is efficient, indistinguishability of X and Un implies that (X,P (X)) and (Un, P (Un)) are
also indistinguishable. So we can take M = Un|P (Un)=1. M is δ-dense because Pr[P (Un) = 1] ≈
Pr[P (X) = 1], again by indistinguishability of X and Un. (Note that we use indistinguishability
of X and Un twice. In the uniform setting, the uniform distinguisher will have to determine which
case to use, by testing whether Pr[P (Un) = 1] ≈ Pr[P (X) = 1] or not.)

Theorem 7.3 (Uniform Dense Model Theorem). Let n be a security parameter, ϵ = ϵ(n), δ = δ(n),
s = s(n) ≥ n all computable in poly(n) time. Let X = X(n) and U = U(n) be poly-time samplable
distributions on {0, 1}n such that X and U are ϵ-indistinguishable for s-time randomized algorithms.
Let D = D(n) be a distribution with density δ in X. Then for some t = sΩ(1)/poly(1/ϵ, 1/δ) and all
t-time randomized oracle algorithms A, there is a distribution M = M(n) that is (δ −O(ϵ))-dense
in U such that for all n,

E
[
AOM (D)

]
− E

[
AOM (M)

]
≤ O(ϵ/δ).

Moreover, M is constructive: M = U |P (U)=1 for some randomized circuit P such that some
poly(t, 1/ϵ)-time randomized algorithm R outputs P w.p. at least Ω(1/ϵ2).

Proof. WLOG we assume 1 > δ > cϵ for a sufficiently large constant c. D having density δ in
X means that there is a (possibly inefficient) binary random variable B jointly distributed with
X such that D = X|B=1, and δB = Pr[B = 1] = δ. Consider any t-time randomized oracle
algorithm A. Let A′ be the randomized oracle algorithm where for every joint distribution (U,C)
over {0, 1}n × {0, 1}, A′OU,C on input (x, y) does the following:
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1. Compute an estimate δ̂C of δC = Pr[C = 1] such that
∣∣∣δ̂C − δC

∣∣∣ ≤ ϵ w.p. at least 1− ϵ. To do

so we take O((1/ϵ2) log(1/ϵ)) random samples of (U,C) and let δ̂C be the fraction on which
C equals 1.

2. If δ̂C < δB − 5ϵ then return y; if δ̂C > δB + 5ϵ then return 1− y.

3. Otherwise,
∣∣∣δ̂C − δB

∣∣∣ ≤ 5ϵ, and

(a) If y = 0 then return zero.

(b) If y = 1 then simulate AON (x) for the distribution N = U |C=1, and return the output.
To simulate AON (x), we obtain t random samples of N w.p. at least 1 − ϵ, where each
sample is generated using rejection sampling from OU,C for O((1/δC) log(t/ϵ)) times,
where δC ≥ δB − 4ϵ ≥ δ/2.

A′ runs in time t′ = t + O((1/ϵ2) log(1/ϵ)) · poly(n) + O((1/δ) log(t/ϵ)) · t · poly(n). By Theo-
rem 6.12, there is a poly(t′, 1/ϵ)-time randomized algorithm R that w.p. at least Ω(ϵ2) outputs a
randomized circuit P satisfying

2ϵ > E
[
A′OU,P (U)(X,B)

]
− E

[
A′OU,P (U)(U,P (U))

]
≥ Pr

δ̂C

[
δ̂C − δB > 5ϵ

]
· (δC − δB) + Pr

δ̂C

[
δ̂C − δB < −5ϵ

]
· (δB − δC)

+ Pr
δ̂C

[∣∣∣δ̂C − δB

∣∣∣ ≤ 5ϵ
]
·
(
δB · E[AOM (D)]− δC · E[AOM (M)]− ϵ

)
. (1)

Take (U,C) = (U,P (U)) andM = U |C=1. We claim that δC ≥ δB−6ϵ, i.e. M is (δ−O(ϵ))-dense
in U . Indeed, if δC < δB − 6ϵ then a Chernoff bound implies

Pr
δ̂C

[
δ̂C − δB > 5ϵ

]
· (δC − δB) + Pr

δ̂C

[
δ̂C − δB < −5ϵ

]
· (δB − δC) > 5ϵ

violating Eq. 1. By symmetry, we must have δC ∈ [δB − 6ϵ, δB + 6ϵ].
We now show that D and M are indistinguishable by AOM . Suppose that δC ∈ [δB, δB + 6ϵ]

(the case δC ∈ [δB − 6ϵ, δB] is similar). Then Prδ̂C

[
δ̂C − δB < −5ϵ

]
≤ ϵ and Eq. 1 implies

2ϵ ≥

(
1− ϵ− Pr

δ̂C

[∣∣∣δ̂C − δB

∣∣∣ ≤ 5ϵ
])
· (δC − δB)− ϵ

+ Pr
δ̂C

[∣∣∣δ̂C − δB

∣∣∣ ≤ 5ϵ
]
·
(
δB
(
E[AOM (D)]− E[AOM (M)]

)
− (δC − δB)− ϵ

)
which simplifies to

δB ·
(
E[AOM (D)]− E[AOM (M)]

)
<

3ϵ− (1− ϵ) (δC − δB)

Pr
[∣∣∣δ̂C − δB

∣∣∣ ≤ 5ϵ
] + 2 (δC − δB) + ϵ. (2)

Consider these cases:
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• If 0 ≤ δC − δB < 4ϵ, then Pr
[∣∣∣δ̂C − δB

∣∣∣ ≤ 5ϵ
]
≥ 1 − ϵ hence RHS of Eq. 2 is at most

3ϵ/(1− ϵ) + (2− (1− ϵ)/(1− ϵ)) (δC − δB) + ϵ ≤ O(ϵ).

• If 4ϵ ≤ δC − δB ≤ 6ϵ, then RHS of Eq. 2 is at most 2 (δC − δB) + ϵ ≤ O(ϵ).

Thus we conclude that E[AOM (D)]− E[AOM (M)] ≤ O(ϵ)/δB ≤ O(ϵ/δ).

8 Application: Impossibility of Black-Box Construction of Suc-
cinct Non-Interactive Argument

A result of Gentry and Wichs [GW] shows that there is no black-box construction of succinct
non-interactive arguments (SNARGs) from any natural cryptographic assumption (formally, they
consider falsifiable cryptographic assumptions: ones that are defined by a polynomial-time secu-
rity game). Their result relies on the (mild) assumption that there exist hard subset membership
problems, which is equivalent to the existence of subexponentially hard one-way functions. One
limitation is that they need to work in the non-uniform setting, in part due to their use of the Min-
Max Theorem (in [GW] Lemma 3.1). In this section we show how to obtain the analogous result
in the uniform setting by using the Uniform Min-Max Theorem. More specifically, assuming that
there exist subexponentially hard one-way functions that are secure against uniform algorithms,
we show that there is no black-box construction of SNARGs based on cryptographic assumptions
where security is measured against uniform algorithms (unless the assumption is already false).

A succinct non-interactive argument (SNARG) is a non-interactive argument system where the
proof size is bounded by a fixed polynomial, for all instances and witnesses whose size can be an
arbitrarily large polynomial. Formally,

Definition 8.1 (SNARG). Let L be an NP language associated with relation R. We say that
a tuple (G,P, V ) of probabilistic polynomial-time (PPT) algorithms is a succinct non-interactive
argument for R if the following properties hold:

• Completeness: For all (x,w) ∈ R, if we choose (CRS,PRIV) ← G(1n),Π ← P (CRS, x, w),
then

Pr [V (PRIV, x,Π) = 0] = negl(n).

• Soundness: For every PPT algorithm (efficient adversary) A, if we choose (CRS,PRIV) ←
G(1n), (X,Π)← A(1n,CRS), then

Pr [V (PRIV, X,Π) = 1 ∧X /∈ L] = negl(n).

• Succinctness: For all (x,w) ∈ supp(X,W ) and crs ∈ supp(CRS), the length of the proof
π = P (crs, x, w) is |π| = poly(n)(|x|+|w|)o(1). We also consider a weaker variant called slightly
succinct, where we require the length of a proof to be |π| = poly(n)(|x|+ |w|)α + o(|x|+ |w|)
for some constant α < 1.5

5Earlier versions of [GW] contained a minor bug in the definition of slight succinctness. We use the corrected
definition from the current version of their paper.
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Our notion of a falsifiable cryptographic assumption is analogous to [GW], except that the
adversary A is a uniform algorithm instead of circuit:

Definition 8.2 (Falsifiable assumption). Given an interactive PPT algorithm Chal (the chal-
lenger), the uniform falsifiable (cryptographic) assumption (associated with) Chal states that for
all (uniform) PPT algorithms H, the probability that Chal(1n) outputs a special symbol win after
interacting with H(1n) is at most negl(n) for all sufficiently large n.

For any randomized (possibly inefficient) function H, we let BreakH(n) denote the above prob-
ability and say that H breaks the assumption if BreakH(n) ≥ 1/poly(n) for infinitely many n.

Remark. An alternative definition of falsifiable assumption allows specifying a constant β, and
says that the probability Chal(1n) outputs win is at most β + negl(n). However, it turns out that
setting β = 0, i.e. our definition above, is without loss of generality [HH]. We adopt the simpler
definition because it is convenient for our proof.

Next we define black-box reductions:

Definition 8.3 (Adversary and reduction). For a randomized function A and a constant c ∈ N,
we say (A, c) is a (G,P, V )-adversary if |A(1n, crs)| ≤ nc and A violates the soundness condition
infinitely often, i.e. if we choose (CRS,PRIV)← G(1n), (X,Π)← A(1n,CRS), then

Pr [V (PRIV, X,Π) = 1 ∧X /∈ L] ≥ n−c

for infinitely many n. We say (A, c) is an a.e. (G,P, V )-adversary if A violates soundness for all
sufficiently large n.

A uniform black-box reduction showing the soundness of (G,P, V ) based on a falsifiable assump-
tion Chal is a family of (uniform) probabilistic oracle algorithms {Redc} (one for each c ∈ N)
such that for every (G,P, V )-adversary (A, c), RedAc (1

n) breaks the assumption and runs in time
polyc(n) (i.e. a polynomial that depends on c).

For a probabilistic oracle algorithm Red, we say a query (1m, crs) of Red(1n) has length m. In
general, Red(1n) may make queries of various lengths. We say Red is length-mapping if for all n, all
queries of Red(1n) are of the same length m = m(n) and m is computable in time poly(n); denote
this m by queryRed(n). Most reductions in cryptography set m = n i.e. preserve length; that is,
the security parameter of (G,P, V ) is equal to that of the assumption.

Following [GW], our results assume the existence of hard subset membership problem.

Definition 8.4 (Uniformly hard subset membership problem). Let n be a security parameter, L
be an NP language associated with relation R. We say ((X,W ), U) is a subset membership problem
for R if (X,W ) = (X,W )(n) is a poly(n)-time samplable joint distribution whose support lies in
R, and U = U(n) a poly(n)-time samplable distribution with Pr[U /∈ L] ≥ n−O(1).

A subset membership problem ((X,W ), U) is a subexponentially hard ifX and U are (2Ω(nδ), 2−Ω(nδ))-
indistinguishable for a constant δ > 0. We say it is exponentially hard if the above occurs and
|x|+ |w| = O(nδ) for every (x,w) ∈ supp(X,W ).

This is a relatively mild assumption; the existence of subexponentially hard subset membership
problems is equivalent to the existence of subexponentially hard one-way functions.
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Remark. Our definition of a hard subset membership problem is a variant of [GW] that is needed
in the uniform setting, but also can be used in the nonuniform setting of [GW]. In [GW], they
require that X is indistinguishable from a (not necessarily samplable) distribution U whose support
is disjoint from L, whereas we require that U is samplable and allow it to hit L with probability
up to 1− nO(1).

We now state the uniform analogue of the main result of [GW]. Compared to [GW], our
Theorem 8.5 makes the weaker assumption of subexponentially hard subset membership problem
with respect to uniform algorithms, with the conclusion that a uniform falsifiable assumption
cannot be broken also being weaker (unless the assumption is false).

Theorem 8.5 (Main theorem). Let L be an NP language associated with relation R that has a
subexponentially hard subset membership problem, and (G,P, V ) be an non-interactive proof system
for R that satisfies the completeness and succinctness properties. Then for every uniform falsifiable
assumption Chal, one of the following must hold:

• The assumption Chal is false, or

• There is no uniform black-box reduction showing the soundness of (G,P, V ) based on Chal.

The same conclusion also holds if we assume an exponentially hard subset membership problem,
and (G,P, V ) is only slightly succinct.

The same conclusion also holds if we require the uniform black-box reduction to work only for
all (G,P, V )-adversary (A, c) where c is sufficiently large.

To prove it in the nonuniform setting, the main idea of [GW] is showing that any SNARG
(G,P, V ) has an inefficient adversary A that can be (efficiently) “simulated” i.e. there exists an effi-
cient algorithm Sim (the simulator) such that RedA(1n) ≈ RedSim(1n) for all PPT oracle algorithms
Red (cf. [GW] Lemma 4.1). Thus, if there were a black-box reduction Red showing the soundness
of (G,P, V ) based on a falsifiable assumption, then RedA would break the falsifiable assumption
(since A is an adversary) and so would RedSim (since RedA(1n) ≈ RedSim(1n)). In other words, the
assumption would be false.

To prove it in the uniform setting, we use a similar approach with several necessary tweaks.
We show that there is an adversary simulator Sim, which is a PPT algorithm that with noticeable
probability outputs a randomized circuit Bn that simulates some An, where An is an (inefficient)
adversary on security parameter n:

Lemma 8.6 (Existence of adversary simulator). Let L be an NP language associated with relation
R that has a subexponentially hard subset membership problem ((X,W ), U), and (G,P, V ) be a non-
interactive proof system for R that satisfies the completeness and succinctness properties. Let n be a
security parameter, ((X,W ), U) = ((X,W ), U)(n), (PRIV,CRS) = G(1n), and Π = P (CRS, X,W ).
Let ℓ = ℓ(n) ≥ n be a polynomial bound on the running time of G(1n) as well as the proof size |Π|,
and c be a constant such that |X|+ |Π| ≤ nc.

Let Red be any length-mapping PPT oracle algorithm where queryRed(k) = ω(1). Then there
is a PPT algorithm Sim such that for all polynomials q(·), for all sufficiently large k, and for
n = queryRed(k), w.p. at least 1/poly(k), Sim(1k) outputs a randomized circuit Bn such that there
is a randomized function An satisfying:

• (An, c) is a (G,P, V )-adversary on the security parameter n;
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• BreakRedAn (k)− BreakRedBn (k) < 1/q(k). (WLOG Bn only takes inputs (1n, ·).)

The same conclusion also holds if we assume an exponentially hard subset membership problem,
and that (G,P, V ) is only slightly succinct.

Note that Lemma 8.6 is only stated for length-mapping reductions (unlike [GW]). We remove
this restriction by a general technique when we prove the main theorem in Section 8.2.

8.1 Proof of Existence of Adversary Simulator (Lemma 8.6)

The proof is set up as follows. Given a subexponentially hard subset membership problem ((X,W ), U),
we can WLOG assume that X and U are (2dℓ, 2−dℓ)-indistinguishable for a sufficiently large
constant d, where ℓ = ℓ(n) is a bound on the length of the proof output by P (crs, x, w) for

(x,w) ∈ supp(X,W ) and crs ∈ supp(CRS). (If X and U are only (2n
δ
, 2−n

δ
)-indistinguishable

for some δ > 0, we simply re-index, replacing X(n) with X((dℓ)1/δ)).) If ((X,W ), U) is expo-
nentially hard, we can also ensure that X and U are (2dℓ, 2−dℓ)-indistinguishable by re-indexing
so that ℓ ≤ poly(n) · (|x| + |w|)α + o(|x| + |w|) = O(|x| + |w|)/d for all (x,w) ∈ supp(X,W ) and
crs ∈ supp(CRS).

Overview of the Proof. Consider the joint distribution (CRS, X,Π) where CRS = CRS(n) is
the distribution of the common reference string, and Π = Π(n) is the ℓ-bit proof produced by P
for the instance/witness pair (X,W ). Using the fact that Π is short (by succinctness), and X and
U are ϵ-indistinguishable for ϵ = 2−O(ℓ), we can apply Theorem 6.12 to conclude that, for every
2O(ℓ)-time oracle algorithm D, there is a poly(2ℓ, 1/ϵ)-time randomized algorithm R that outputs
a randomized circuit Fn such that with probability at least Ω(ϵ2/ℓ) over Fn,

E[DOQ,Fn(Q)(CRS, X,Π)]− E[DOQ,Fn(Q)(CRS, U, Fn(CRS, U))] < 2ϵ (⋆)

where Q can be any poly-time samplable distribution.
An adversary An can be defined to be An(1

n, crs) = (U,Fn(crs, U)) for any Fn where (⋆) holds,
for an appropriate choice of D. (Note that Fn depends on our choice of D.) If we take D to be the
verifier V , then we can show that such An breaks soundness on security parameter n. Indeed, V
accepts (X,Π) with high probability, so by (⋆) it must also accept (U,Fn(CRS, U)) = An(1

n,CRS)
with high probability. (Some extra work is needed to deal with the fact that V can access its private
coins PRIV in addition to CRS.)

Thus we only need to argue that, for an appropriate choice of D, such An is simulated by
some randomized circuit Bn generated by a PPT algorithm Sim; then combining the two choices
of D will yield the desired adversary An. Our choice of Bn is the randomized circuit such that
Bn(1

n,CRS) = (X,Π). If we appropriately construct D from the reduction Red and challenger
Chal, then using (⋆) we can show that

BreakRedAn (k)− BreakRedBn (k) ≤ poly(k) · 2−O(ℓ),

where ℓ = ℓ(n) for n = queryRed(k). (If BreakRedAn (k) − BreakRedBn (k) > poly(k) · 2−O(ℓ), then
we could use Red and Chal to construct a 2−O(ℓ)-distinguisher between (CRS, Bn(1

n,CRS)) =
(CRS, X,Π) and (CRS, An(1

n,CRS)) = (CRS, U, Fn(CRS, U)), violating (⋆).)
This completes the proof provided that 2−O(ℓ) ≤ 1/poly(k), which follows if Red does not

make queries that are too short. If instead 2−O(ℓ) > 1/poly(k), then we construct a simulator
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Bn differently — simply by letting Bn be such that Bn(1
n, crs) = (U,Fn(crs, U))) where Fn is the

random output of R. Then with probability at least Ω(ϵ2/ℓ) ≥ 1/poly(k) over Fn, (⋆) holds for
Fn, hence we can define the adversary An from Fn (defined to be An(1

n, crs) = (U,Fn(crs, U)), as
explained above) to obtain a perfect simulator Bn = An. (Gentry and Wichs [GW] handle short
queries using nonuniformity — by hardcoding the answers to all short queries.)

Lemma 8.7 (Existence of adversary simulator). Let L be an NP language associated with relation
R that has a subset membership problem ((X,W ), U), and (G,P, V ) is a non-interactive proof
system for R that satisfies the completeness property. Let n be a security parameter, ((X,W ), U) =
((X,W ), U)(n), (PRIV,CRS) = G(1n), Π = P (CRS, X,W ). Let ℓ = ℓ(n) ≥ n be a polynomial
bound on the running time of G(1n) as well as the proof size |Π|, and c be a constant such that
|X|+ |Π| ≤ nc.

Suppose X and U are ϵ-indistinguishable for all t-time randomized algorithms, for appropri-
ate ϵ = 2−O(ℓ) and t = 2O(ℓ). Let Red be any length-mapping PPT oracle algorithm where
queryRed(k) = ω(1). Then there is a PPT algorithm Sim such that for all polynomials q(·), for
all sufficiently large k, and for n = queryRed(k), w.p. at least 1/poly(k), Sim(1k) outputs a ran-
domized circuit Bn such that there is a randomized function An satisfying:

• (An, c) is a (G,P, V )-adversary on the security parameter n;

• BreakRedAn (k)− BreakRedBn (k) < 1/q(k). (WLOG Bn only takes inputs (1n, ·).)

Proof. Let S be the PPT algorithm that on input (1n, crs) samples (x,w) ← (X,W ) and outputs
(x, P (crs, x, w)), so that S(1n,CRS) = (X,Π). For technical convenience we assume |CRS| = ℓ/2.
To construct Sim, we shall apply Theorem 6.12 to the following oracle algorithm D:

Claim 8.8. Let Q = (Uℓ/2, U) (where Uℓ/2 is uniform on {0, 1}ℓ/2 and independent from U). There

is a t′ = 2O(ℓ) · poly(1/ϵ)-time oracle algorithm D such that the following holds for all polynomials
q(·), all sufficiently large n, and all randomized functions Fn : supp(Q)→ {0, 1}ℓ satisfying

E[DOQ,Fn(Q)(CRS, X,Π)]− E[DOQ,Fn(Q)(CRS, U, Fn(CRS, U))] < ϵ′ = 2ϵ.

Define

An(1
n, crs) =

{
(U,Fn(crs, U)), crs ∈ supp(CRS)

S(1n, crs), crs /∈ supp(CRS)
.

Then

• An break soundness of (G,P, V ) on security parameter n; and

• For all k ≤ 2ℓ such that queryRed(k) = n,

BreakRedAn (k)− BreakRedS (k) < 1/q(k).

Proof of Claim. We will prove the contrapositive. Suppose that either

Case 1. An does not break soundness of (G,P, V ) on security parameter n, or
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Case 2. For some k ≤ 2ℓ such that queryRed(k) = n,

BreakRedAn (k)− BreakRedS (k) ≥ 1/q(k).

We show how to construct a t′-time oracle algorithm D with

E[DOQ,Fn(Q)(CRS, X,Π)]− E[DOQ,Fn(Q)(CRS, U, Fn(CRS, U))] ≥ ϵ′.

To do so, we will show how to construct D with distinguishing advantage at least 3ϵ′, both in Case 1
and in Case 2 where we assume k is known. This suffices, because then we can test the distinguisher
in Case 1 as well as the distinguisher in Case 2 for all choices of k = 1, . . . , 2ℓ, and output the
best performing one. (More specifically, we run these 1 + 2ℓ distinguishers on O((1/ϵ′2) log(1/ϵ′))
independent samples of (CRS, X,Π) and (CRS, U, Fn(CRS, U)) as well as their coin tosses and oracle
answers, and output the one with the highest average distinguishing advantage, and it follows from
a Chernoff bound that this yields an ϵ′-distinguisher.)
Case 1. An does not break soundness on security parameter n. Recall that soundness says
Pr [V (PRIV, U,Π′) = 1 ∧ U /∈ L] ≤ n−c if we choose (CRS,PRIV) ← G(1n), (U,Π′) ← An(1

n,CRS)
(thus Π′ = Fn(CRS, U)). By union bound,

Pr
[
V
(
PRIV, U,Π′

)
= 1
]
≤
[
V
(
PRIV, U,Π′

)
= 1 ∧ U /∈ L

]
+ Pr[U ∈ L] = 1− n−O(1).

On the other hand, the completeness property says

Pr [V (PRIV, X,Π) = 1] = 1− negl(n).

Thus V is an n−O(1)-distinguisher between (PRIV, X,Π) and (PRIV, U,Π′). Note that conditioned
on CRS = crs for any crs, PRIV is independent of (X,Π), and that PRIV|CRS=crs can be sampled in
2O(ℓ) time given crs (by running G(1n; z) on all sequences z ∈ {0, 1}ℓ of coin tosses). Thus from
V we also get a 2O(ℓ) time n−O(1)-distinguisher D for (CRS, X,Π) and (CRS, U,Π′). Specifically,
D(crs, x, π) samples priv← PRIV|CRS=crs and outputs V (priv, x, π), so

E[D(CRS, X,Π)]− E[D(CRS, U, Fn(CRS, U))] = E[D(CRS, X,Π)]− E[D(CRS, U,Π′)]

= Pr [V (PRIV, X,Π) = 1]− Pr
[
V
(
PRIV, U,Π′

)
= 1
]

= n−O(1) ≥ 3ϵ′.

Case 2. For some k ≤ 2ℓ such that queryRed(k) = n, we have

BreakRedAn (k)− BreakRedS (k) ≥ 1/q(k).

Assuming k is given, we use the hybrid argument to construct a distinguisher D between
(CRS, X,Π) = (CRS, S(1n,CRS)) and (CRS, U, Fn(CRS, U)) = (CRS, An(1

n,CRS)). Suppose Red(1k)
runs in time p(k) for some polynomial p. Let Hi be the stateful oracle that behaves like An for the
first i queries and S for all rest of the queries, so that Hq = An and H0 = S. By the hybrid ar-
gument, E

[
RedHI+1(1k)

]
− E

[
RedHI (1k)

]
≥ 1/p(k)q(k) for a randomly chosen I ∈R {1, . . . , p(k)}.

This immediately gives us a distinguisher D′ for (Z,CRS′, S(1n,CRS′)) and (Z,CRS′, An(1
n,CRS′))

where Z is the internal state of the interaction (RedHI (1k),Chal(1k)) after I ∈R {1, . . . , p(k)}
queries, and CRS′ is the I-th query (which is determined by Z). Specifically: D′(z, crs, x, π) sets
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the internal state of Red(1k) and Chal(1k) to z, runs the interaction (RedS(1k),Chal(1k)) start-
ing from state z using (x, π) as the answer to the I-th query (1n, crs), and finally outputs 0 or 1
depending on whether Chal outputs win. Thus

E
[
D′(Z,CRS′, S(1n,CRS′))

]
− E

[
D′(Z,CRS′, An(1

n,CRS′))
]

≥ E
[
RedHI−1(1k)

]
− E

[
RedHI (1k)

]
≥ 1

p(k)q(k)
= 2−O(ℓ).

To obtain a desired distinguisher D′′ for (CRS, An(1
n,CRS)) and (CRS, S(1n,CRS)), we simply

let D′′ sample (z, crs′)← (Z,CRS′) and output

D′′(crs, x, π) =

{
D′(z,crs,x,π)

2ℓ·Pr[CRS=crs]
, (crs = crs′)

0, (crs ̸= crs′)
.

Note thatD′′ is [0, 1]-bounded since CRS is sampled by G using ℓ coin tosses (so Pr[CRS = crs] ≥ 2−ℓ

for all crs ∈ supp(CRS)). We are dividing by Pr[CRS = crs] in order to “uniformize” CRS, so that

E[D′′(CRS, A(1n,CRS))] =
∑

crs∈supp(CRS)

Pr[CRS = crs] · E
[
D′(Z,CRS′, An(1

n,CRS′))

2ℓ · Pr[CRS = crs]
· I
(
CRS′ = crs

)]
= E

[
D′(Z,CRS′, An(1

n,CRS′)) · I
(
CRS′ ∈ supp(CRS)

)]
· 2−ℓ

(where I(·) is the indicator function), and similarly for S. Thus D′′ has distinguishing advantage

E[D′′(CRS, S(1n,CRS))]− E[D′′(CRS, An(1
n,CRS))]

= E
[
D′(Z,CRS′, S(1n,CRS′)) · I

(
CRS′ ∈ supp(CRS)

)]
· 2−ℓ

− E
[
D′(Z,CRS′, An(1

n,CRS′)) · I
(
CRS′ ∈ supp(CRS)

)]
· 2−ℓ

=
(
E[D′(Z,CRS′, S(1n,CRS′))]− E[D′(Z,CRS′, An(1

n,CRS′))]
)
· 2−ℓ

≥ 2−O(ℓ) · 2−ℓ = 4ϵ′,

where the second equality holds because S(1n,CRS′) and An(1
n,CRS′) are identical whenever

CRS′ /∈ supp(CRS).
To conclude Case 2, it remains to show that D′′ can be implemented in time 2O(ℓ) · poly(1/ϵ).

First, Pr[CRS = crs] can be computed in time 2O(ℓ) by enumerating coin tosses of G(1n). A query
(1n, crs) to S can be answered in poly(n) time. A query (1n, crs) to An with crs ∈ CRS can be
answered by sampling (Q,Fn(Q)) = (Uℓ/2, U, Fn(Uℓ/2, U)) for up to O(2ℓ · log(1/(ϵ · p(k)))) times
until Uℓ/2 = crs (recall that we assume |crs| = ℓ/2 in the setup of Lemma 8.6). Thus we can sample

(z, crs)← (Z,CRS′) and run D′(z, crs, x, π) in p(k) ·max
(
poly(p(k)), 2O(ℓ)

)
= 2O(ℓ) time. It follows

from a union bound that

E[DOQ,Fn(Q)(CRS, X,Π)]− E[DOQ,Fn(Q)(CRS, U, Fn(CRS, U))] ≥ 3ϵ′.
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Given Claim 8.8, we now apply Theorem 6.12 to the oracle algorithmD we constructed in Claim 8.8.
Since X and U are ϵ-indistinguishable, Theorem 6.12 yields a t′′ = poly(2ℓ, t′, 1/ϵ)-time randomized
algorithm R(1n) that w.p. at least Ω(ϵ2/ℓ) outputs a randomized circuit Fn satisfying

E[DOQ,Fn(Q)(CRS, X,Π)]− E[DOQ,Fn(Q)(CRS, U, Fn(CRS, U))] < 2ϵ. (3)

We define the simulator Sim(1k) to be the following algorithm:

1. Let n = queryRed(k);

2. If ℓ(n) ≥ log k, then output a circuit Bn where Bn(1
n, crs) runs S(1n, crs);

3. Else, ℓ(n) < log k. We run R(1n) to obtain a randomized circuit F ′n, and output the random-
ized circuit Bn where

Bn(1
n, crs) =

{
(U,F ′n(crs, U)), crs ∈ supp(CRS)

S(1n, crs), crs /∈ supp(CRS)
.

Note that Sim is a PPT algorithm since it runs in time 2O(ℓ(n)) = poly(k) if ℓ(n) < log k, and in
time poly(k) if ℓ(n) ≥ log k. To prove that Sim is indeed an adversary simulator, we define the
adversary An (which depends on the coins of Sim) to be

An(1
n, crs) =

{
(U,F ∗n(crs, U)), crs ∈ supp(CRS)

S(1n, crs), crs /∈ supp(CRS)

where F ∗n is defined as follows:

• If ℓ(n) ≥ log k, we let F ∗n be any randomized circuit such that Eq. 3 holds for Fn = F ∗n ;

• If ℓ(n) < log k, we let F ∗n be F ′n generated by R in Step 3 of Sim, so that Eq. 3 holds for
Fn = F ∗n w.p. at least Ω(ϵ(n)2/ℓ(n)) = 2−O(ℓ(n)) ≥ 1/poly(k) over the coins of R (hence coins
of Sim).

We now apply Claim 8.8 to Fn = F ∗n . Note that Claim 8.8 holds “for all sufficiently large n”,
but since queryRed(k) = ω(1) it must also hold for all sufficiently large k and n = queryRed(k).
Thus Claim 8.8 implies that for all polynomials q(·), for all sufficiently large k and n = queryRed(k),
w.p. at least 1/poly(k) over Bn, An satisfies

1. (An, c) is a (G,P, V )-adversary on the security parameter n; and

2. If ℓ(n) ≥ log k, then BreakRedAn (k)− BreakRedS (k) < 1/q(k).

To conclude the proof it remains to show that

BreakRedAn (k)− BreakRedBn (k) < 1/q(k). (4)

Indeed, if ℓ(n) ≥ log k, then Bn runs S, so Eq. 4 follows from Item 2 above. If ℓ(n) < log k, then
Eq. 4 holds because An = Bn (since F ∗n = F ′n) thus BreakRedAn (k) = BreakRedBn (k).
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8.2 Proof of Main Theorem (Theorem 8.5)

The next two lemmas show that we can “convert” a generic black-box reduction into a length-
mapping reduction, which in addition does not make very short queries. To do so, we first convert
a generic black-box reduction into one that does not make very short queries (Lemma 8.9), by
guessing “optimal” oracle answers for these very short queries. We then convert it to a length-
mapping reduction (Lemma 8.10) by a “sparsification” trick, due to Chung, Mahmoody, and Pass
[CMP]. As a consequence of “sparsification” the resulting length-mapping reduction no longer
works with an arbitrary SNARG adversary. However, it still suffices for proving the main theorem
using Lemma 8.6.

Lemma 8.9. Let c ∈ N be a constant. Suppose there is a PPT oracle algorithm Red with the
property that for every randomized function A where (A, c) is a (G,P, V )-adversary, RedA breaks

the falsifiable assumption. Then there is another PPT oracle algorithm R̂ed satisfying the same
property, and in addition every query of R̂ed is of length at least s = s(n) = (log log n)Ω(1).

Proof. Suppose G(1m) outputs a crs of length md and let s = s(n) = (log log n)1/(d+1). We define

R̂ed(1n) as follows:

1. For each m < s, select a random function Bm : {0, 1}md → {0, 1}mc
;

2. Run Red, using Bm(crs) to answer every query (1m, crs) where m < s.

To see that R̂ed satisfies the same property as Red, consider any (G,P, V )-adversary (A, c). By

averaging the coins of A, for each m < s we can fix some (deterministic) function Am : {0, 1}md →
{0, 1}mc

and define

Â(1m, crs) =

{
Am(crs), m < s

A(1m, crs) m ≥ s
,

such that RedÂ breaks the falsifiable assumption. Note that {Bm : m < s} can be encoded as an

s · (sc)s
d

= O(log n) bit string. Thus w.p. at least 1/poly(n), R̂ed
A
(1n) sets Bm = Am for all m < s

and behaves identically to RedÂ. Therefore R̂ed
A
also breaks the falsifiable assumption.

Lemma 8.10 (Chung, Mahmoody, and Pass [CMP]). Let c ∈ N be a constant. Suppose there is a
PPT oracle algorithm Red with the property that for every randomized function A where (A, c) is
a (G,P, V )-adversary, RedA breaks the falsifiable assumption, and every query of Red is of length

at least s(n) = (log log n)Ω(1). Then there is a length-mapping PPT oracle algorithm R̂ed where
query

R̂ed
(n) ≥ s(n), such that for infinitely many n and m = query

R̂ed
(n), for every random-

ized function Am where (Am, c) is a (G,P, V )-adversary on security parameter m (of SNARG),

R̂ed
Am

(1n) breaks the assumption on security parameter n (of the assumption).

Proof. We construct R̂ed from Red as follows. Fix a sparse sequence h1, h2, . . . where h1 = 1 and

hm+1 = 22
2hm

for m ≥ 1. Note that the interval [s(n), poly(n)] contains at most one element of

the sequence h1, h2, . . . , for some nc and all n ≥ nc. Let R̂ed
A
(1n) run RedA(1n), where a query

(1m, crs) is answered as follows:

1. If n < nc or m /∈ {h1, h2, . . . }, then answer the query with a special symbol ⊥;
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2. Otherwise, answer the query using oracle A.

R̂ed is length-mapping, because every query of RedA(1n) has length in the interval [s(n), poly(n)]
(since Red runs in time poly(n)), and for all n ≥ nc, at most one of h1, h2, . . . lies in that interval.

Suppose for contradiction that the R̂ed we construct does not satisfy the desired properties.
That is, for all sufficiently large n and m = query

R̂ed
(n), there exists some randomized function

Am where (Am, c) is a (G,P, V )-adversary on security parameter m, but R̂ed
Am

(1n) does not break
the assumption on security parameter n.

Let A be any randomized function such that A(1m, crs) = Am(1m, crs) where m = query
R̂ed

(n)

and for all sufficiently large n. Thus (A, c) is an a.e. (G,P, V )-adversary. Let Â be a “sparsification”
of A: Â(1m, crs) := A(1m, crs) wheneverm ∈ {h1, h2, . . . } and Â(1m, crs) := ⊥ for all otherm. Thus
(Â, c) is a (G,P, V )-adversary.

Since (Â, c) is a (G,P, V )-adversary RedÂ breaks the falsifiable assumption. On the other hand,

R̂ed
A
(1n) behaves like R̂ed

Am
for all sufficiently large n, hence does not break the assumption. This

yields a contradiction, because by construction R̂ed
A
(1n) = RedÂ(1n) for all n ≥ nc.

Finally, we use Lemma 8.6 to deduce Theorem 8.5. Note that the length-mapping reduction
we obtain from Lemma 8.10 is slightly weaker, as it requires that the adversary break soundness
on a fixed infinite sequence of security parameters (rather than any infinite sequence of security
parameters). However, it suffices because Lemma 8.6 provides adversaries that break soundness on
almost all security parameters.

Proof of Theorem 8.5 (Main Theorem). Suppose there is a generic uniform black-box reduction
showing the soundness of (G,P, V ) based on a uniform falsifiable assumption. We will show that
the falsifiable assumption is already false, by constructing a PPT algorithm that breaks it.

Fix c to be the constant given by Lemma 8.6. By Lemma 8.9 and Lemma 8.10, there is a
length-mapping PPT oracle algorithm Red where queryRed(k) = ω(1), and for infinitely many k,
for n = queryRed(k), and for every randomized function An where (An, c) is a (G,P, V )-adversary
on security parameter n, RedAn(1k) breaks the assumption on security parameter k.

We now apply Lemma 8.6 to Red to obtain a PPT algorithm Sim such that for all polynomi-
als q(·), all sufficiently large k and n = queryRed(k), w.p. at least 1/poly(k), Sim(1k) outputs a
randomized circuit Bn such that there is a randomized function An satisfying:

1. (An, c) is a (G,P, V )-adversary on the security parameter n;

2. BreakRedAn (k)− BreakRedBn (k) < 1/q(k).

By the previous discussion, for infinitely many k, Item 1 implies that RedAn(1k) breaks the
assumption on security parameter k. Thus by Item 2, for infinitely many k, RedBn(1k) also breaks
the assumption on security parameter k. Hence we obtain a PPT algorithm breaking the assumption
for infinitely many k: first generate the circuit Bn by running Sim(1k), then run RedBn(1k).
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A Information-Theoretic Facts, Efficient Approximations, Etc

Lemma A.1 (Multiplicative weight update decreases KL). Let A,B be distributions over [N ] and
f : [N ]→ [0, 1] any function. Define random variable A′ such that

Pr[A′ = x] ∝ eϵ·f(x) Pr[A = x]

for 0 ≤ ϵ ≤ 1. Then KL(B ∥ A′) ≤ KL(B ∥ A)− (log e)ϵ (E[f(B)]− E[f(A)]− ϵ).

Proof. By definition,

KL(B ∥ A)−KL(B ∥ A′) =
∑
x

Pr[B = x]

(
log

Pr[B = x]

Pr[A = x]
− log

Pr[B = x]

Pr[A′ = x]

)
=
∑
x

Pr[B = x] log
Pr[A′ = x]

Pr[A = x]

=
∑
x

Pr[B = x]

(
log

eϵf(x)∑
y e

ϵf(y) Pr[A = y]

)

= (log e)

(
ϵE[f(B)]− ln

(∑
y

eϵf(y) Pr[A = y]

))

Applying the inequalities 1 + z ≤ ez, ez ≤ 1 + z + z2 for 0 ≤ z ≤ 1, and using 0 ≤ f(x) ≤ 1, we
have

KL(B ∥ A)−KL(B ∥ A′) ≥ (log e)

(
ϵE[f(B)]− ln

(∑
y

(
1 + ϵf(y) + ϵ2

)
Pr[A = y]

))
= (log e)

(
ϵE[f(B)]− ln

(
1 + ϵE[f(A)] + ϵ2

))
≥ (log e)

(
ϵE[f(B)]−

(
ϵE[f(A)] + ϵ2

))
= (log e)ϵ (E[f(B)]− E[f(A)]− ϵ)
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Lemma A.2 (Sampling from a high density measure). Let n be a security parameter, δ = δ(n),
σ = σ(n). Then for k = O((1/δ) log(1/σ)), there is a randomized algorithm that, given k and oracle
access to a measure M ∈Mn,δ, w.p. at least 1−σ outputs a random sample of ΦM . The algorithm
runs in O(k(s+n)) time and makes k oracle queries, where s is a bound on the bit length of M(x).

Proof. Use rejection sampling. Select a random z ∈R {0, 1}n and output z w.p. M(z). Repeat up
to k = O((1/δ) log(1/σ)) times until some z is outputted. Thus with all but (1− Ez [M(z)])k =
(1− δ)k ≤ σ probability we output some z ← ΦM .

Lemma A.3 (Approximating KL projection on high min-entropy distributions). Let C be the set of
distributions over {0, 1}n with min-entropy at least n− log(1/δ). Then there is a probabilistic algo-
rithm which, given any n, δ > 0, ϵ > 0, η > 0, achieves the following in poly(n, 1/δ, 1/ϵ, log(1/η))
time. Given oracle access to a measure N with ΦN ∈ Cϵ (where Cϵ denotes the ϵ-neighborhood of
C; see Definition 6.5), the algorithm w.p. at least 1 − η computes a measure M where ΦM is an
ϵ2-approximate KL projection of ΦN on C.

Specifically, M(x) = min(1, c ·N(x)) for some constant c ∈ [1, 1 + eϵ] as a multiple of Ω(ϵ2).

This follows immediately from Lemma 2.3 of Barak et al. [BHK], where they show how to
approximate the KL projection on the set of high density measures (rather than high min-entropy
distributions), which is equivalent to KL projection on high density distributions.

Proof. For measures M and N , we define the KL divergence from M to N to be

KL (M∥N) =
∑
x

(
M(x) log

M(x)

N(x)
−M(x) +N(x)

)
.

Note that

KL (ΦM∥ΦN ) =
KL (M∥N)

|M |
+ 1− |N |

|M |
+ log

|N |
|M |

.

Barak et al. [BHK] show how to compute M̃∗, a σ · (δ2n)-approximate KL projection of N on
the set of high density measures Mδ. Let M∗ be the (exact) KL projection of N on Mδ, with
|M∗| = δ2m (WLOG the KL projection is always on the boundary; see Lemma A.4). Thus by the
above equality, ΦM∗ is the (exact) KL projection of N on Cδ. Furthermore, for every M ∈Mδ,

KL
(
ΦM∥ΦM̃∗

)
−KL (ΦM∥ΦM∗)

=
KL
(
M∥M̃∗

)
−KL (M∥M∗)

|M |
−


∣∣∣M̃∗∣∣∣
|M |

− |M
∗|

|M |

+

log

∣∣∣M̃∗∣∣∣
|M |

− log
|M∗|
|M |


≤

KL
(
M∥M̃∗

)
−KL (M∥M∗)

|M |

where the inequality holds because
∣∣∣M̃∗∣∣∣ ≥ |M∗|. Thus Φ

M̃∗ is a σ-approximate KL projection of

ΦN on Cδ. The parameters follow from Lemma 2.3 of [BHK].

Lemma A.4. The KL projection of any measure N on any convex setM ̸∋ N is on the boundary
ofM.

Proof. Follows since the KL projection minimizes the convex function KL(· ∥ N).

40

 

ECCC                 ISSN 1433-8092 

http://eccc.hpi-web.de 


