
Efficient Multiparty Protocols via
Log-Depth Threshold Formulae

Gil Cohen∗ Ivan Bjerre Damg̊ard† Yuval Ishai‡ Jonas Kölker†

Peter Bro Miltersen† Ran Raz∗ Ron D. Rothblum∗

August 1, 2013

Abstract

We put forward a new approach for the design of efficient multiparty protocols:

1. Design a protocol π for a small number of parties (say, 3 or 4) which achieves
security against a single corrupted party. Such protocols are typically easy
to construct, as they may employ techniques that do not scale well with the
number of corrupted parties.

2. Recursively compose π with itself to obtain an efficient n-party protocol which
achieves security against a constant fraction of corrupted parties.

The second step of our approach combines the “player emulation” technique of Hirt
and Maurer (J. Cryptology, 2000) with constructions of logarithmic-depth formulae
which compute threshold functions using only constant fan-in threshold gates.

Using this approach, we simplify and improve on previous results in cryptogra-
phy and distributed computing. In particular:

• We provide conceptually simple constructions of efficient protocols for Secure
Multiparty Computation (MPC) in the presence of an honest majority, as well
as broadcast protocols from point-to-point channels and a 2-cast primitive.

• We obtain new results on MPC over blackbox groups and other algebraic
structures.

The above results rely on the following complexity-theoretic contributions, which
may be of independent interest:

∗Weizmann Institute. {gil.cohen,ran.raz,ron.rothblum}@weizmann.ac.il. Supported by ISF
(Israel Science Foundation) grants and by the I-CORE Program of the Planning and Budgeting Com-
mittee.
†Aarhus University. {ivan,epona,bromille}@cs.au.dk. Supported by the Danish National Re-

search Foundation and The National Science Foundation of China (under the grant 61061130540) for the
Sino-Danish Center for the Theory of Interactive Computation, within which part of this work was per-
formed; and also from the CFEM research center (supported by the Danish Strategic Research Council)
within which part of this work was performed.
‡Technion. yuvali@cs.technion.ac.il. Supported by the European Research Council as part of

the ERC project CaC (grant 259426).

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Report No. 107 (2013)

• We show that for every j, k ∈ N such that m , k−1
j−1 is an integer, there is

an explicit (poly(n)-time) construction of a logarithmic-depth formula which
computes a good approximation of an (n/m)-out-of-n threshold function using
only j-out-of-k threshold gates and no constants.

• For the special case of n-bit majority from 3-bit majority gates, a non-explicit
construction follows from the work of Valiant (J. Algorithms, 1984). For this
special case, we provide an explicit construction with a better approximation
than for the general threshold case, and also an exact explicit construction
based on standard complexity-theoretic or cryptographic assumptions.

2

Contents

1 Introduction 1
1.1 Our Approach . 2
1.2 Threshold Formulae from Threshold Gates 5
1.3 Organization . 7

2 Our Results 7
2.1 Cryptographic Results . 7
2.2 Distributed Computing Results . 9
2.3 Complexity-Theoretic Results . 9

3 Proof Overview of Complexity-Theoretic Results 11
3.1 Supporting Sub-Constant Bias . 12

4 Preliminaries for the Complexity Theoretic Results 14

5 Threshold Formulae from Threshold Gates 15
5.1 Proof of Lemma 4 . 15
5.2 Proof of Theorem 5 . 17

6 Majority Formulae from Majority Gates 21
6.1 Proof of Theorem 2 . 21
6.2 Proof of Theorem 3 . 24

7 From Threshold Formulae to Broadcast 26
7.1 Virtual Processors and Formulas . 27
7.2 Broadcast for less than n/3 Corrupted Parties. 28
7.3 From 2-Cast to Broadcast . 29

8 The Multiparty Computation Framework 30
8.1 The Player Emulation Technique . 30
8.2 The [HM00] MPC Framework . 31

9 From Threshold Formulae to Secure Multiparty Computation 35

10 Secure MPC over Blackbox Rings 38
10.1 The Passive Model . 38
10.2 The Active Model . 40
10.3 MPC over k-Linear Maps . 42

11 Secure MPC over Groups 43
11.1 The Passive Model . 44
11.2 The Active Model . 48
11.3 Two-Party Protocols . 50

1 Introduction

Secure multiparty computation (MPC) enables a set of parties to jointly accomplish some
distributed computational task, while maintaining the secrecy of the inputs and the
correctness of the outputs in the presence of coalitions of dishonest parties. Originating
from the seminal works of [Yao82a, GMW87, BGW88, CCD88], secure MPC has been
the subject of an enormous body of work.

Despite this body of work, MPC protocols remain quite complicated and their security
is difficult to prove. In this work we propose a new general approach to the construction
of efficient1 multiparty protocols in the presence of an honest majority. This approach en-
ables us to obtain conceptually simple derivations of known feasibility results (or slightly
weaker variants of such results), and also to obtain new results.

Our approach is inspired by, and builds on, the “player emulation” technique of Hirt
and Maurer [HM00], who obtain secure MPC protocols by reducing the construction of
an n-party protocol to the task of constructing a protocol π for a constant (e.g., three or
four) number of parties. The motivation of [HM00] was to obtain n-party protocols that
are secure with respect to general (non-threshold) adversary structures. A disadvantage
of their n-party protocols is that their complexity grows exponentially with n. This seems
inevitable when considering arbitrary adversary structures.

Our motivation is very different: We would like to use the atomic protocol π for con-
structing efficient n-party protocols in the traditional MPC setting of threshold adversary
structures. Since π only involves a small number of parties, its design may employ simpler
techniques that do not scale well with the number of corrupted parties. Thus, our goal
is to simplify the design of efficient n-party protocols by reducing it to the design of a
simpler atomic protocol π.

To make the approach of [HM00] scale with the number of parties, we introduce a new
complexity-theoretic primitive: a logarithmic-depth formula2 which is composed only of
constant-size threshold gates and computes an n-input threshold function. The problem
of constructing such formulae is closely related to a classical problem in complexity theory.
In this work we also make a contribution to this complexity-theoretic problem, which may
be of independent interest.

In addition to providing conceptually simple protocols, our approach is very general
and can be applied in a variety of settings and models. In contrast to most traditional
MPC protocols, it is not tied to some underlying algebraic structure. We demonstrate this
generality by obtaining new results on MPC over black-box groups and other algebraic
structures, improving on previous results from the literature.

Before proceeding to describe the details of our approach, we note that the goal of
designing MPC protocols whose complexity grows (only) polynomially with the number of
parties also has relevance to two-party cryptography. Indeed, there are general techniques
for applying MPC protocols with security in the presence of an honest majority (where
the number of parties grows with the security parameter) towards two-party tasks such

1Here and throughout this work, by “efficient” we mean polynomial-time in the number of parties
and the input size.

2A formula is a circuit with fan-out 1. A logarithmic-depth formula (more precisely, infinite family
of formulas) is one whose depth is O(log n), where n is the number of inputs. Throughout this paper we
consider only monotone formulas without negations or constants.

1

as zero-knowledge proofs and secure two-party computation [IKOS09, IPS08].

1.1 Our Approach

In the following, for simplicity, we consider the case of perfect security against a passive
adversary. In this setting, parties are honest but curious. That is, they follow the protocol
but may attempt to learn secret information based on what they see. We note that, in
contrast to the norm, the extension of this approach to the case of an active adversary is
relatively straightforward.

We first give an overview of the player emulation technique of Hirt and Maurer [HM00]
and then proceed to describe how we overcome the exponential blow-up incurred by
[HM00] in the case of threshold adversary structures.

Recall that security of MPC protocols is defined by comparing a real protocol to an
ideal protocol, in which, in addition to the parties involved in the computation, there is
a trusted party. A protocol is deemed secure if for every adversary in the real protocol
controlling a subset of the parties, there is an equivalent adversary controlling the same
subset in the ideal protocol.

The technique from [HM00] is to reduce the design of n-party protocols to the design of
protocols that support only 3 parties (the minimal number of parties for perfect security
in the passive security model).

We proceed to present an informal description of the reduction. Indeed, suppose that
the 3-party case has been solved. That is, for every computational task involving three
parties there exists a secure protocol that securely implements this task when at most one
of the parties is passively corrupted.3 We describe how to use this protocol to securely
implement computational tasks using a larger number of parties.

Consider n parties that wish to securely accomplish some joint computational task.
It is best to think of this task as being specified by an ideal protocol π0 which involves, in
addition to the n parties, a trusted party τ . The ideal protocol is secure (by definition)
even if the adversary controls any subset of the parties that does not contain τ .

Consider a new protocol π1 that involves the n original parties but where we replace
the trusted party τ with three new virtual parties v1, v2, v3. Since in π0, the trusted
party τ is just involved in a computational task, we can use the given 3-party protocol
to simulate τ using v1, v2, v3. When is the new protocol π1 secure? Since π0 was only
insecure whenever the adversary controlled τ and since the 3-party protocol is secure as
long as the adversary controls at most one of the virtual parties, π1 is secure as long as
the adversary does not control two or more of the virtual parties.

We continue this process by designing a new protocol π2 in which the virtual party
v1 is itself simulated by three new virtual parties w1, w2, w3. Since π1 is only insecure
whenever the adversary controls more than one of v1, v2, v3 and since the protocol for
emulating v1 is secure when at most one of w1, w2, w3 is controlled by the adversary, π2

is secure as long as the adversary does not control either v2 and v3 or one of v2, v3 and
two or more of w1, w2, w3.

We continue in this process simulating virtual parties by more virtual parties. The
sets of corrupted parties against which the resulting protocol is secure can be described

3Since we deal with perfect security, the size of the secure protocol depends only on the size of the
original protocol. In particular, any constant size protocol can be implemented securely in constant size.

2

by looking at a formula composed of 3-input majority gates which we denote by Maj3.
Each wire represents a virtual party. The protocol π1 can be represented by a simple
formula F1 consisting of a single Maj3 gate where the three input wires correspond to the
virtual parties v1, v2, v3 and the output wire corresponds to τ . We assign to each input
wire corresponding to an honest party a value of 0 and a value of 1 to those corresponding
to dishonest parties. It can be easily verified that the protocol is secure whenever the
formula F1 evaluates to 0.

Similarly, the protocol π2 can be represented by a formula F2 which is constructed
from F1 by connecting the input wire corresponding to v1 with an additional Maj3 gate
with three new input wires (corresponding to w1, w2, w3). It is easy to verify that the
new protocol is secure whenever the formula evaluates to 0.

Suppose that we continue on like this but instead of arbitrarily choosing which virtual
party to simulate, we choose it according to some formula F , composed only of Maj3
gates.4 Once we reach the input layer of the formula, we associate each input variable to
a real party and every remaining virtual party is simulated by the real party associated
with the corresponding input wire.

As above, the protocol is secure against every set T of parties on which the formula
F evaluates to 0. (Here and in the following we associate a set T with its characteristic
vector χT .) Thus, to obtain a protocol that is secure for a particular adversary structure,
it suffices to provide a formula that evaluates to 0 on all sets in the structure. Since, in
contrast to [HM00], our goal is merely to obtain security in the presence of an honest
majority, we need only to construct a formula that computes the majority function (using
only Maj3 gates and no constants).

Such a formula was implicitly constructed by Hirt and Maurer [HM00] for general Q2

functions5 and in particular for majority. Unfortunately, the formula of [HM00] has linear
depth. This yields a protocol whose complexity grows exponentially with the number of
parties, since when traversing the formula we increased the complexity of the protocol
by a constant multiplicative factor (corresponding to the number of operations in the
3-party protocol) at every layer.

To overcome the exponential blowup, we replace the formula of [HM00] by a logarithmic-
depth formula (which computes the majority function using only Maj3 gates). Using the
formula-based protocol described above, the logarithmic depth results in an efficient pro-
tocol, namely one whose complexity only grows polynomially with the number of parties.
In Section 1.2 we describe the construction of a good “approximation” of such a formula
as well as exact constructions under standard complexity-theoretic assumptions.

This approach is indeed very general and can be used in different models of secure
MPC. For example, it can be used to obtain both passive security as outlined above
and active security by using an underlying 4-party protocol that is secure against one
active party and a log-depth threshold formula composed of two-out-of-four threshold
gates (denoted by Th4

2) which we also construct (see Section 1.2).
In fact, this reduction gives us a “cookbook” for designing secure multiparty protocols.

The first step is to design a protocol for a constant number of parties that is secure

4Actually, [HM00] do not present their construction in the terminology of Maj3 formulae; we use this
presentation since it is more intuitive and is better suited for our purposes.

5A monotone function f : {0, 1}n → {0, 1} is said to be of type Qd if f(x1) = f(x2) = . . . = f(xd) = 0
implies that x1 ∨ x2 ∨ . . . ∨ xd 6= 1n.

3

against one dishonest party and the second step is to use a logarithmic-depth threshold
from thresholds formula to obtain an efficient multiparty protocol that is secure against
a constant fraction of corrupted parties.

We demonstrate the generality of this approach by deriving protocols in both passive
and active settings and in different MPC models which differ in the type of underlying
algebraic structure, including models for which no protocols were known. We also obtain
conceptually simple protocols for classical problems in distributed computing such as
broadcast protocols.

Simplified feasibility results. The classical results of Ben-Or et al. [BGW88] and
Chaum et al. [CCD88] allow n parties to evaluate an arbitrary function, using secure
point-to-point channels, with perfect security against t < n/2 passively corrupted parties
or t < n/3 actively corrupted parties. We can derive conceptually simpler variants of
these results by applying our approach with π being a 3-party or 4-party instance of
the simple MPC protocol of Maurer [Mau06]. On the one hand our results are slightly
weaker because they either need the threshold t to be slightly sub-optimal or alternatively
require (standard) complexity theoretic assumptions to construct an appropriate formula
for implementing the protocol. It is instructive to note that the complexity of Maurer’s
protocol grows exponentially with the number of parties. Our approach makes this a
non-issue, as we only use the protocol from [Mau06] with a constant number of parties.6

MPC over blackbox algebraic structures. There has been a considerable amount of
work on implementing MPC protocols for computations over different algebraic structures
such as fields, rings, and groups. Algebraic computations arise in many application sce-
narios. While it is possible in principle to emulate each algebraic operation by a sequence
of boolean operations, this is inefficient both in theory and in practice. In particular,
the communication complexity of the resulting protocols grows with the computational
complexity of the algebraic operations rather than just with the bit-length of the inputs
and outputs. This overhead can be avoided by designing protocols which make a black-
box (i.e., oracle) use of the underlying structure. The advantage of such protocols is that
their communication complexity and the number of algebraic operations they employ are
independent of the complexity of the structure.

MPC over rings and k-linear maps. The work of Cramer et al. [CFIK03] shows
how to efficiently implement secure MPC over blackbox rings. We obtain a simpler
derivation of such a protocol by noting that the simple protocol of Maurer [Mau06]
directly generalizes to work over a blackbox ring. As before, one could not apply this
protocol directly because its complexity is exponential in the number of parties. We show
how to use a similar approach for obtaining the first blackbox feasibility results for MPC
over k-linear maps. See Section 10 for details.

6While in the present work we apply our approach only to perfectly secure protocols, one could apply
a similar technique to derive the result of Rabin and Ben-Or [RBO89], namely a statistically secure
protocol which tolerates t < n/2 actively corrupted parties.

4

MPC over groups. The problem of MPC over blackbox groups was introduced by
Desmedt et al. [DPSW07] and further studied in [SYT08, DPS+12b, DPS12a]. 7 To
apply our approach in the group model, we need to specify the atomic protocol π that we
use. For the case of passive security, we directly construct a simple 3-party protocol that
has security against one corrupted party. This protocol is loosely based on a protocol by
Feige et al. [FKN94] and considerably simplifies the 3-party instance of a general result
from [DPS+12b].

In the active security model, we rely on the recent work of [DPS12a] who obtain
the first MPC protocols with active security in the group model. The complexity of
the protocol of [DPS12a] grows exponentially with the number of parties. However, we
only need to employ the [DPS12a] protocol for four parties and so we do not suffer the
exponential blowup. Thus, we settle the main problem left open in [DPS12a] by applying
our technique to an instance of their results.

We also obtain the first two-party MPC protocols over blackbox groups. In the pas-
sive corruption model, we combine a group product randomization technique due to
Kilian [Kil88] with a “subset sum” based statistical secret sharing of group elements. We
then get security against active corruptions by combining this two-party protocol with
our efficient n-party protocol for the active model via the IPS compiler [IPS08]. See
Section 11 for details.

Broadcast. Broadcast is one of the most basic problems in distributed computing.
Recall that in a broadcast protocol a broadcaster wants to send a message to all other
parties. A broadcast protocol should end with all parties holding the same value, even if
some of the parties, possibly including the broadcaster, behave adversarially. Obtaining
efficient broadcast protocols is a highly nontrivial task [PSL80, Dol82, GM98]. Our
generic approach for MPC protocols can be used to directly construct simple broadcast
protocols for t < n/3 corrupted parties. We also get a simplified proof of a result of Fitzi
and Maurer [FM00], showing that an ideal primitive allowing broadcast for 3 parties
(so-called 2-cast) implies broadcast with t < n/2 corrupted parties. Our proof technique
also yields broadcast for the more general case of Q2 adversaries which was previously an
open problem. See Section 7 for details.

1.2 Threshold Formulae from Threshold Gates

Motivated by the above applications to MPC, we consider the problem of constructing a
logarithmic-depth threshold formula from threshold gates. Before discussing the general
problem, we first discuss the special case of constructing a logarithmic depth formula
composed of Maj3 gates that computes the majority function. Note that this is exactly
the type of formula required in the setting of passive MPC security.

7 Interestingly, group-based MPC with low security threshold was implicitly used in the recent work
of Miles and Viola on leakage-resilient circuits [MV13]. It seems likely that efficient group-based MPC
protocols with near-optimal security threshold, such as those obtained in our work, can be useful in this
context.

5

1.2.1 Majority from Majorities.

A closely related problem was considered by Valiant [Val84] who proved the existence
of a logarithmic-depth monotone formula that computes the majority function where
the formula uses And and Or gates, both of fan-in 2. As noted independently by several
authors [BM92, GM96, Zwi96, Gol11b], a slight modification of Valiant’s argument shows
the existence of a logarithmic-depth formula composed of Maj3 gates that computes the
majority function.

Valiant’s proof is based on the probabilistic method and is non-constructive. Namely,
the proof only assures us of the existence of a formula with the above properties, but
does not hint on how to find it efficiently. Motivated by the applications presented in
Section 1.1, we ask whether Valiant’s proof can be derandomized using only Maj3 gates
and no constants.8 We raise the following conjecture:

Conjecture 1 (Majority from Majorities). There exists an algorithm A that given an
odd integer n as input, runs in poly(n)-time and generates a formula F on n inputs, with
the following properties:

• F consists only of Maj3 gates and no constants.

• depth(F) = O(log n).

• F computes the majority function on n inputs.

A derandomization for Valiant’s proof for formulas over And and Or gates follows from
the seminal paper of Ajtai, Komlós and Szemerédi [AKS83], though the latter does not
seem to imply a derandomization in the context of Maj3 gates, where constants are not
allowed.9

In this paper we make a significant progress towards proving Conjecture 1. In par-
ticular, we prove that relaxed variants of the conjecture hold. In addition, we show that
the conjecture follows from standard complexity assumptions, namely, E , DTIME(2O(n))
does not have 2εn-size circuits for some constant ε > 0. Note that the latter follows from
the existence of exponentially hard one-way functions.10 See details in Section 2.

1.2.2 Threshold Formulae from Threshold Gates.

Motivated by applications to the active MPC setting, and being a natural complexity-
theoretic problem on its own, we initiate the study of a generalization of the majority
from majorities problem, which we call the threshold from thresholds problem.

For integers 2 ≤ j ≤ k, define the threshold function Thkj : {0, 1}k → {0, 1} as follows.

Thkj (x) = 1 if and only if the Hamming weight of x is at least j. Note that Maj3 = Th3
2.

Unlike the majority from majorities problem, it is not a priori clear what threshold
function, if any, can be computed by a log-depth formula composed only of Thkj gates,
even if no explicit construction is required.

8We cannot allow the use of the constant 0, as this would correspond to assuming parties to be
incorruptible. The use of the constant 1 alone is not helpful in our context.

9Note that And and Or gates can be implemented using Maj3 gates and constants.
10We find it curious that perfectly secure MPC results are based on the existence of (sufficiently strong)

one-way functions.

6

We make significant progress also on this question. Roughly speaking, we provide an
explicit construction of a logarithmic depth formula composed solely of Thkj gates, that

well approximates Thnn/m, where m = k−1
j−1

. For further details, see Section 2.3.

1.3 Organization

In Section 2 we state our results and in Section 3 we present the proof techniques of the
complexity-theoretic part (for an overview of applications to cryptography and distributed
computing, see Section 1.1).

Being of potential interest to researchers in cryptography, complexity theory and dis-
tributed computing, the technical part of the paper is partitioned into three corresponding
and stand-alone parts.

The complexity theoretic part encompasses Sections 4 to 6. In Section 4 we give
basic definitions relevant only to this part of the paper. In Section 5 we present our
constructions of threshold formulae from threshold gates. In Section 6 we address the
special case of majority formulae from majority gates.

The distributed computing part is presented in Section 7.
The cryptographic part encompasses Sections 8 to 11. In Section 8 we define multi-

party computation. In Section 9 we present our generic approach for constructing MPC
protocols from threshold formulae. In Section 10 we show how to obtain results in the
ring MPC model. In Section 11 we show new results in the group MPC model.

2 Our Results

We first describe the applications of our approach in cryptography and distributed com-
puting, and then proceed to the complexity-theoretic results.

2.1 Cryptographic Results

We start by stating known results that we rederive using our approach, and later state
our new results.

In the passive Ring-MPC model, we get the following results.

• If the majority from majorities conjecture (Conjecture 1) holds then we obtain an
explicit MPC protocol that has optimal security in the passive model. That is, it
is secure as long as at most a 1

2
− Ω(1

n
) fraction of the n parties (more precisely,

t < n/2) are passively corrupted. See Theorem 13.

As noted above and stated formally in Theorem 3, Conjecture 1 follows from widely-
believed conjectures in complexity theory and cryptography.

• An unconditional explicit and close to optimal protocol in the passive model in
which the fraction of dishonest parties is at most 1

2
−2−O(

√
logn) out of the n parties

(in contrast to the optimal threshold of 1
2
− Ω(1

n
)). See Theorem 14.

• A randomized construction of an optimal protocol in the passive model. By ran-
domized construction we mean that the protocol is constructed by a randomized

7

algorithm which may fail with negligible (undetectable) probability, but otherwise
outputs the description of a perfect protocol. See Theorem 15.

We obtain the following result in the active Ring-MPC model.

• An explicit but non-optimal protocol that is secure against any active adversary
that controls at most a 1

3
− Ω(1√

logn
) fraction of the n parties (in contrast to the

optimal bound of 1
3
− Ω(1

n
)). See Theorem 17.

Next we state our new results in the blackbox group model, introduced by Desmedt
et al. [DPSW07, DPS+12b]. In this model the function computed by the protocol is
specified by an arithmetic circuit over a (possibly non-Abelian) group, and the parties
are restricted to making blackbox access to the group. (This includes oracle access to the
group operation, taking inverses, and sampling random group elements; see Section 11.)
In particular, the number of group operations performed by the protocol should not
depend on the structure of the group or the complexity of implementing a group operation
using, say, a Boolean circuit.

• Group-MPC, passive: The best explicit protocol of [DPS+12b] offers perfect se-
curity against a 1

nε
fraction of passively corrupted parties, for any constant ε > 0,

where n is the total number of parties.

We improve upon the latter by constructing an explicit protocol that has perfect se-
curity against an (almost optimal) 1

2
−2−O(

√
logn) fraction of passively corrupted par-

ties (see Theorem 19). Alternatively, we get an optimal bound of 1
2
−Ω(1

n
) assuming

the majority from majorities conjecture (see Theorem 20), via a non-uniform con-
struction (see Theorem 21), or under standard derandomization or cryptographic
assumptions. Lastly, we also obtain a protocol with an optimal bound of 1

2
−Ω(1

n
)

with a running time that is only quasi-polynomial in the number of parties (see
Theorem 22).

• Group-MPC, active: In a recent work, Desmedt et al. [DPS12a] constructed a
secure MPC protocol in the group model with security against an active adversary.
However, their result only gives a protocol whose complexity depends exponentially
on the number of parties, regardless of the corruption threshold.

We construct an efficient secure MPC protocol in the group model where an active
adversary can control (an almost optimal) 1

3
− Ω(1√

logn
) fraction of the n parties.

• Secure two-party computation over groups: We construct the first secure
two-party protocols over blackbox groups. Our protocols offer statistical security
against active corruptions (assuming an oblivious transfer oracle) and rely on the
afforementioned n-party protocols over black-box groups.

Finally, our protocols for the Ring-MPC model described above can be generalized to
yield the following new result for MPC over k-linear maps.

8

• MPC over k-linear maps: We show that, for any constant k and any basis
B of k-linear maps over finite Abelian groups, there are efficient MPC protocols
for computing circuits over B which only make blackbox access to functions in B
and group operations. This generalizes previous results for MPC over blackbox
rings [CFIK03], which follow from the case k = 2, and can potentially be useful in
cryptographic applications that involve complex bilinear or k-linear maps. These
protocols are perfectly secure against a 1

k
−Ω(1√

logn
) fraction of passively corrupted

parties or a 1
k+1
− Ω(1√

logn
) fraction of actively corrupted parties.

2.2 Distributed Computing Results

Broadcast. It is well known that broadcast can be implemented over point-to-point
channels if and only if less than a third of the parties are actively corrupted [PSL80, Dol82]
or, more generally, if and only if no three of the subsets the adversary may corrupt cover
the entire set of parties [HM00, FM98], a so called Q3-adversary.

In this paper we show that a trivial broadcast protocol for 4 parties where one is
actively corrupted easily implies the result of [FM98] using existing constructions of
(super-logarithmic depth) formulae. Substituting instead our own logarithmic depth
formula constructions implies a simple polynomial-time broadcast protocol for less than
n(1

3
− Ω(1√

logn
)) corrupted parties.

Broadcast from 2-cast. In [FM00], Fitzi and Maurer identify a minimal primitive that
allows to improve the n

3
corruption threshold: if we are given the ability to broadcast

among any subset of 3 parties for free, a so-called 2-cast primitive, then broadcast becomes
possible when less than n

2
parties are corrupted. It is natural to ask whether 2-cast also

implies broadcast secure against general Q2-adversaries (where no two corruptible subsets
cover the entire set of parties). This problem was previously open.

We apply our approach to construct broadcast protocols based on a 2-cast primitive.
Together with existing constructions of (super-logarithmic depth) formulae composed of
Maj3-gates, this immediately implies a construction of broadcast from 2-cast for every
Q2-adversary, resolving the above problem. Substituting instead our logarithmic-depth
formula constructions, we get a simplified derivation of polynomial-time protocols for the
case of an honest majority considered in [FM00]. We do not know if the formula based
approach also implies the results in [CFF+05], which consider generalizations of the 2-cast
primitive.

2.3 Complexity-Theoretic Results

In this section we describe our results on constructing threshold formulae from threshold
gates. For the special case of computing majority from Maj3 gates we obtain stronger
results which we state first.

2.3.1 Majority from Majorities

Our first complexity-theoretic result shows that given a small promise on the bias of
the input (defined as the difference between the normalized Hamming weight and 1/2),

9

Conjecture 1 holds.

Theorem 2. There exists an algorithm A that given an odd integer n as input, runs in
poly(n)-time and computes a formula F on n inputs, with the following properties:

• F consists only of Maj3 gates and no constants.

• depth(F) = O(log n).

• ∀x ∈ {0, 1}n such that bias(x) ≥ 2−O(
√

logn) it holds that F (x) = Maj(x).

We note that the proof of Theorem 2 also gives a construction of a formula that
computes the majority function exactly (i.e., without a promise on the bias) but with
depth that is only poly-logarithmic (rather than logarithmic), see Lemma 6.1.

Our second result shows that under standard complexity hardness assumptions, Con-
jecture 1 holds.

Theorem 3. If there exists an ε > 0 such that E , DTIME(2O(n)) does not have 2εn-size
circuits then Conjecture 1 holds. In particular, if there exist exponentially hard one-way
functions then Conjecture 1 holds.11

In fact, the proof of Theorem 3 explicitly presents an algorithm for constructing a
formula as in Conjecture 1 given the truth table of any function in E, on a suitable number
of inputs, that cannot be computed by 2εn-size circuits. Moreover, the assumption made
in Theoerem 3 can be relaxed (see the end of Section 6.2).

2.3.2 Thresholds Formulae from Threshold Gates

Lemma 4. There exists an algorithm A that given t, j, k ∈ N as input, where j, k are
constants in t such that j ≥ 2 and k ≥ 2j − 1,12 runs in exp(t)-time and generates a
formula F with the following properties:

• F has mt+ 1 inputs, where m =
⌊
k−1
j−1

⌋
.

• F consists only of Thkj gates and no constants.

• depth(F) = O(t).

• ∀x ∈ {0, 1}mt+1 it holds that F (x) = Thmt+1
t+1 (x).

Lemma 4 generalizes results of [AR63, HM00, BIW10], who proved it for particular
values of j and k, and uses a similar technique. We note that the depth of the formula
generated in Lemma 4 is linear, which is too large for our applications. Nevertheless, the
following theorem, which uses Lemma 4 as a building block, shows that a formula with
logarithmic depth can be generated efficiently assuming a sufficient “bias” on the input.

11A one-way function f is exponentially hard if there exists an ε > 0 such that every fam-
ily of 2εn-size circuits can invert f with only 2−εn probability. If there exists such a function
f , then the language Lf is in E but does not have 2εn-size circuits, where Lf = {(y, x′, 1n) :
y has a preimage of length n under f which starts with x′}.

12Throughout the paper we assume, without loss of generality, that k ≥ 2j − 1. The complementary
case can be reduced to this one by using Thkk−j+1 gates and interpreting 0 as 1 and vice versa.

10

Theorem 5. There exists an algorithm A that given n, j, k ∈ N as input, where j, k are
constants in n such that j ≥ 2 and k ≥ 2j − 1, runs in poly(n)-time and generates a
formula F on n inputs, with the following properties:

• F consists only of Thkj gates and no constants.

• depth(F) = O(log n).

• ∀x ∈ {0, 1}n with normalized Hamming weight at least 1
m

+ Ω(1√
logn

), it holds that

F (x) = 1, where m =
⌊
k−1
j−1

⌋
.

• ∀x ∈ {0, 1}n with normalized Hamming weight at most 1
m
− Ω(1√

logn
), it holds that

F (x) = 0.

Note that Theorem 2 is not a special case of Theorem 5 (with j = 2, k = 3) as
the required promise on the bias in Theorem 2 is exponentially smaller than that in
Theorem 5.

We do not know whether an analog of Conjecture 1 is plausible for the threshold from
thresholds problem, even without the time-efficiency requirement. Theorem 5 might
serve as evidence for the affirmative. However, the probabilistic argument used in the
majority from majorities problem (see, e.g., [Gol11b]) breaks for this more general case.
We consider this to be an interesting open problem for future research.

3 Proof Overview of Complexity-Theoretic Results

In this section we give an overview of our complexity-theoretic constructions. For sim-
plicity, we start by giving an overview of our construction of a logarithmic-depth formula
composed of Maj3 gates, and no constants, that computes the majority function for in-
puts with constant bias. That is, we informally describe an efficient algorithm that given
n, ε as inputs, where ε > 0 is constant in n, outputs a logarithmic-depth formula with n
inputs which computes the majority function correctly on inputs with bias at least ε. It
is not hard to see (see Observation 4.1) that it is enough to construct a logarithmic-depth
circuit, since such a circuit can be efficiently converted to an equivalent logarithmic-depth
formula.

To this end, we design an algorithm called ShrinkerGenerator (see Lemma 5.5) that
given n, ε as inputs, generates a constant-depth circuit Shrinker with n inputs and n

2

outputs, composed of Maj3 gates and no constants, such that

∀x ∈ {0, 1}n bias(x) ≥ ε =⇒ bias(Shrinker(x)) ≥ ε.

Thus, Shrinker shrinks the number of variables to half while maintaining the bias, as-
suming the input has a sufficiently large bias. By repeatedly calling ShrinkerGenerator on
inputs n, n

2
, n

4
, . . . , 2 (with the same ε) and concatenating the resulting circuits, one gets

a logarithmic-depth circuit that computes the majority function assuming the input has
large enough bias.

A key object we use in the design of ShrinkerGenerator is a Boolean sampler. Roughly
speaking, a Boolean sampler is a randomized algorithm which on input x ∈ {0, 1}n

11

approximates the Hamming weight of x by reading only a small number of the bits of
x. More precisely, a (d, ε, δ)-Boolean sampler is a randomized algorithm that on input
x ∈ {0, 1}n with normalized Hamming weight ω, samples at most d bits of x, and outputs
β ∈ [0, 1] such that Pr[|ω − β| ≥ ε] ≤ δ.

We will use a special type of samplers which take their samples in a non-adaptive
fashion, and their output is simply the average of the sampled bits. For any ε, δ > 0
there exist efficient (d, ε, δ)-Boolean samplers, with d = O(ε−2 · δ−1), that on inputs of
length n use only log n random bits (see Theorem 6).

Because such a sampler is non-adaptive and simply outputs the average of the sampled
bits, it can be represented as a bipartite graph G = (L,R,E), with |L| = |R| = n. For
an input x ∈ {0, 1}n, the i’th vertex in L is labeled with the i’th bit of x. Each vertex
in R represents one of the possible log n bit random strings used by the sampler. Each
right vertex r is connected to the d left-vertices that are sampled by the algorithm when
r is used as the random string.

The algorithm ShrinkerGenerator on inputs n, ε starts by constructing a graph G that
represents a (d, ε

2
, 1

8
)-Boolean sampler, with d = poly(1

ε
) = O(1). It then arbitrarily

chooses half of the right vertices in G and discards the rest. This gives a bipartite graph
G′ = (L′, R′, E ′) with |L′| = n, |R′| = n

2
and constant right-degree d. The circuit Shrinker

that the algorithm ShrinkerGenerator outputs is given by placing a circuit that computes
the majority function on d inputs for every right vertex. The inputs of this majority
circuit are the neighbors of the respective right vertex. Note that as d is constant, a
constant-depth circuit that computes the majority function on d inputs can be found in
constant time.

As for the correctness of the construction, assume now that x ∈ {0, 1}n has some
constant bias ε and, without loss of generality, assume that the bias is towards 1 (i.e.,
wt(x) ≥ (1

2
+ ε)n). Then, by the guarantee of the sampler, for all but 1

8
of the right

vertices in the original graph G, the fraction of neighbors with label 1 of a right vertex
is at least 1

2
+ ε− ε

2
> 1

2
. Thus, all but 1

8
of the (constant-size) majority circuits located

in R output 1. Hence, the fraction of majority circuits that output 0 in R′ is at most
n/8
n/2

= 1
4
≤ 1

2
− ε, as desired.

3.1 Supporting Sub-Constant Bias

For sub-constant ε, the sampler technique described above is wasteful, as it requires us
to use a sequence of O(log n) layers with fan-in O(ε−2). For sub-constant ε, this results
in a circuit with a super-logarithmic depth. However, we observe that one layer of fan-in
O(ε−2) circuits is enough to amplify the bias from ε to 0.4 (rather than just keep the bias
at ε). This reduces us to the constant bias case, which can be solved as above with an
additional O(log n)-depth.

Thus, in order to obtain an O(log n)-depth circuit on n inputs, that computes majority
correctly for inputs with bias at least ε, it is enough to construct an O(log n)-depth circuit
with O(ε−2) inputs that computes majority correctly on all inputs.

Using a naive brute-force algorithm, one can efficiently find an optimal-depth circuit
on roughly log n inputs that computes majority. By plugging this circuit into the above
scheme, one immediately gets an O(log n)-depth circuit that computes majority on n
inputs with bias roughly ε = Ω(1√

logn
).

12

We improve on this by using an additional derandomization idea. Specifically, we
construct an O(log n)-depth circuit on 2O(

√
logn) inputs, that computes majority (under

no assumption on the bias). Thus, we obtain an explicit construction of a circuit that
computes majority assuming the bias is at least ε = 2−O(

√
logn).

We first describe a randomized construction of an O(logm)-depth circuit on m inputs
for majority, where m is set, in hindsight, to 2O(

√
logn). Our construction only uses

O(log2m) random bits (compared to poly(m) random bits used in Valiant’s construction).
We then show how to derandomize this construction.

Our randomized construction works as follows. Consider an input x ∈ {0, 1}m with
bias ε. Suppose that we sample uniformly and independently at random 3 bits of x and
compute their majority. It is shown in [Gol11b] that the majority’s bias is at least 1.2ε
(as long as ε is not too large).

Thus, by placing m majority gates of fan-in 3, and selecting their inputs from x
uniformly and independently at random, the output of the m majority gates will have bias
of at least 1.1ε with overwhelming probability. By composing O(log (1/ε)) such layers, we
can amplify the bias to a constant. Note that this construction uses O(m · logm · log(1/ε))
random bits.

To save on the number of random bits used (which is essential for the derandomization
step), instead of sampling the inputs of each one of the m gates uniformly at random, we
choose them in each layer using a 6-wise independent hash function. While 3-wise inde-
pendence suffices for the expectation of the bias to be as before, the 6-wise independence
guarantees that the outputs of the majority gates in each layer are pairwise independent.
Using tail inequalities we show that, with probability 1− o(1), the bias increases in each
layer as before.

By composing O(log (1/ε)) such layers, each of which requires O(logm) random bits,
we obtain a circuit as desired. The total number of random bits used is O(log (m) ·
log (1/ε)), which is bounded by O(log2m). We derandomize the construction by placing
all 2O(log2 m) majority circuits that can be output by the randomized construction and
taking the majority vote of these circuits.

Since we have a guarantee that almost all (a 1−o(1) fraction) of the circuits correctly
compute majority, it is enough to compute the majority vote at the end using a circuit
with 2O(log2 m) inputs that works for, say, constant bias. Such a circuit, with depth
O(log2m), can be constructed in time 2O(log2 m) by the constant-bias scheme described
earlier.

As we set m = 2O(
√

logn), we get a poly(n)-time uniform construction of an O(log n)-
depth circuit on 2O(

√
logn) inputs that computes majority correctly on all inputs. This

circuit is then used in the scheme described above.

Threshold formulae from thresholds gates. The scheme described above works also
in the more general setting of threshold from thresholds. Indeed, in the paper we present
the scheme in the general setting. To apply the scheme in the thresholds setting, one needs
to construct a small circuit that computes the required threshold formula, to be used by
ShrinkerGenerator. We accomplish this by extending results of [AR63, HM00, BIW10].
See Section 5.

13

4 Preliminaries for the Complexity Theoretic Re-

sults

Let x ∈ {0, 1}n. We denote the Hamming weight of x by wt(x). The normalized Hamming
weight is denote by relwt(x), that is, relwt(x) = wt(x)/n. We further denote the bias of
x by bias(x) = |relwt(x)− 1/2|. Let G = (V,E) be an undirected graph. The degree of a
vertex v is denoted by d(v). For a set S ⊆ V define dS(v) = |{s ∈ S : sv ∈ E}|.

Circuits and Formulae. Let C be a circuit on n inputs that outputs m bits. For
x ∈ {0, 1}n, we denote by C(x) ∈ {0, 1}m the output of C when fed with x as input.
Let C1 be a circuit on n inputs that outputs m bits. Let C2 be a circuit on m inputs
that outputs r bits. We denote by C2 ◦ C1 the circuit on n inputs and r outputs that
is composed of C1 and C2, where the m outputs of C1 are wired to the m inputs of C2.
Clearly, C2 ◦ C1(x) = C2(C1(x)).

The size of a circuit C, denoted by size(C), is the number of gates in the circuit. The
depth, denoted by depth(C), is the largest number of gates from an input to an output
in C.

In this paper we focus on logarithmic-depth formulae composed of constant fan-in
threshold gates. Note that such formulae always have polynomial size.

Observation 4.1. A logarithmic-depth circuit composed of constant fan-in gates can be
efficiently transformed to a logarithmic-depth formula composed of constant fan-in gates,
that computes the same function.

Indeed, one can work his way bottom-up and duplicate every gate with fan-out k > 1,
together with its sub-formula, to k copies. As the duplication does not change the depth
of a gate, the resulting formula has logarithmic depth (and so, due to the constant fan-
in, a polynomial size). Thus, in all of our theorems we are satisfied with constructing
logarithmic-depth circuits composed of constant fan-in gates.

For integers 0 ≤ j ≤ k define the threshold function Thkj : {0, 1}k → {0, 1} as follows.

Thkj (x) = 1 if and only if wt(x) ≥ j. Define Maj2t+1 = Th2t+1
t+1 . That is, Maj2t+1 computes

the majority function on 2t + 1 inputs. When the number of variables is clear from the
context we omit it from the subscript and write Maj.

From bipartite graphs to circuits. The following notation will be useful for us. Let
G = (L,R,E) be a bipartite graph with right-degree mt + 1. Define the circuit CG,m,t

as follows. CG,m,t has |L| inputs and |R| outputs. With every vertex r ∈ R associate a
threshold circuit Thmt+1

t+1 in CG,m,t. The inputs to this circuit are the mt+ 1 neighbors of
r in G. The outputs of CG,m,t are the output of the |R| threshold circuits, one for each
vertex in R. When m, t are clear from the context we omit them from the subscript and
write CG.

Samplers. Samplers are key pseudorandom objects we use in our constructions. In
this paper we only use a special kind of samplers, known in the literature as non-adaptive
averaging Boolean samplers. For brevity we call them samplers. For more details we refer

14

the reader to a survey by Goldreich [Gol11a]. It will be useful for us to define samplers
in terms of bipartite graphs.

Definition 4.2 (Samplers). An (n, d, ε, δ)-sampler is a bipartite graph Sampler = (L,R,E)
with the following properties:

• |L| = |R| = n.

• Sampler has right-degree d.

• For every S ⊆ L, it holds that for at least 1− δ fraction of the vertices r ∈ R,∣∣∣∣dS(r)

d(r)
− |S|

n

∣∣∣∣ ≤ ε.

Theorem 6 ([KPS85, Gol11a]). For every n ∈ N and for every ε = ε(n) > 0, δ = δ(n) >
0, there exists an (n, d, ε, δ)-sampler Sampler, with d = O(ε−2 · δ−1). Moreover, Sampler
can be constructed in time poly(n, ε−1, δ−1).

5 Threshold Formulae from Threshold Gates

In this section we prove Theorem 5. Recall that we assume without loss of generality
that j ≥ 2 and k ≥ 2j − 1. We start by proving Lemma 4.

5.1 Proof of Lemma 4

To prove Lemma 4 we recall a couple of definitions and prove helpful lemmas.

Definition 5.1 (Qm functions). Let m ∈ N. A function f : {0, 1}n → {0, 1} is a Qm

function if for every x(1), . . . , x(m) ∈ f−1(0) there exists an h ∈ [n] such that x
(1)
h = · · · =

x
(m)
h = 0.

Lemma 5.2. Let j, k ∈ N. Every function that can be computed by a formula composed
only of Thkj gates and no constants is a Qm function, where m =

⌊
k−1
j−1

⌋
.

Proof. We prove the lemma by induction on the depth of the formula. Let F be a depth
0 formula composed of Thkj gates and without constants. Then, F computes the function
F (x) = xh for some index h. Clearly this is a Qm function.

Let F be a formula composed of Thkj gates without constants, where depth(F) > 0.
Let G be the output gate of F . Let G1, . . . , Gk be the gates that have their output wired
to the inputs of G. By induction, for every i ∈ [k], the function computed by the sub
formula of F with output gate Gi is a Qm function.

Let x be an input rejected by F . Since G is a Thkj gate, at most j−1 of the Gi’s accept
one of the m inputs. Thus, for every m inputs rejected by F , at most m(j−1) ≤ k−1 of
the gates Gi’s accept (at least) one of the inputs. Hence, there exists an ` ∈ [k] such that
G` rejects all of those m inputs. The proof follows by applying the induction hypothesis
on the sub-circuit with output gate G`.

15

Lemma 5.3. There exists an algorithm A that given constants j, k ∈ N, where m =⌊
k−1
j−1

⌋
, and the truth table of a Qm function f : {0, 1}n → {0, 1} as input, runs in exp(n)-

time and generates a formula F on n inputs, with the following properties:

• F consists only of Thkj gates and no constants.

• depth(F) = O(n).

• ∀x ∈ f−1(0) it holds that F (x) = 0.

Proof. The algorithm A is recursive. The base case for the recursion is |f−1(0)| ≤ m. In
this case, since f is a Qm function, there exists an h ∈ [n] such that for every x ∈ f−1(0)
it holds that xh = 0. The algorithm A can find such h in exp(n)-time and return the
formula that on input x outputs xh.

Assume now that |f−1(0)| ≥ m+ 1. Partition the set f−1(0) into k sets

f−1(0) = A0 ∪ · · · ∪ Ak−1

of size d|f−1(0)|/ke or b|f−1(0)|/kc each, such that |A0| ≥ |A1| ≥ · · · ≥ |Ak−1|. Let
t ≤ k − 1 be the maximum integer such that At 6= ∅. Note that t ≥ m + 1 because if
there is an empty set among A0, . . . , At then every non-empty set in the partition has
size exactly 1, but their union has size |f−1(0)| ≥ m+ 1.

Let G = (L,R,E) be a bipartite graph with L = {0, 1, . . . , k−1}, R = {0, 1, . . . , t}. A
vertex r ∈ R is connected by edge to the vertices {(j−1)r, (j−1)r+1, . . . , (j−1)r+j−2} ⊆
L, where addition is modulo k. By construction, the degree of every right vertex is j− 1.
Moreover, the degree of every left vertex is at least 1 since (j − 1)t + j − 2 ≥ k − 1.
Indeed,

(j − 1)t+ j − 2 ≥ (j − 1)(m+ 1) + j − 2 ≥ (j − 1)

(⌊
k − 1

j − 1

⌋
+ 1

)
+ j − 2 ≥ k − 1.

For ` = 0, 1, . . . , k − 1 define the function f` : {0, 1}n → {0, 1} to be such that

f−1
` (0) = f−1(0) \

(⋃
r:`r∈E

Ar

)
.

For every ` = 0, 1, . . . , k−1, the algorithm A makes a recursive call on inputs j, k and the
truth table of f`. Denote by F0, . . . , Fk−1 the formulae generated by these recursive calls.
Define F to be the formula where the outputs of F0, . . . , Fk−1 are wired to the inputs of
a Thkj gate, which is the output gate of F . Note that the recursion will eventually get
to the base case as the degree of every left vertex in G is at least 1, and so, for every `,
|f−1

` (0)| is strictly smaller than |f−1(0)|.
Let x ∈ f−1(0). We now show that F (x) = 0. Let r ∈ {0, 1, . . . , t} be the unique

integer such that x ∈ Ar. As the degree of r in G is j−1, there are exactly j−1 functions
among f0, . . . , fk−1 that accept x. Thus, by induction, there are at most j − 1 formulae
among F0, . . . , Fk−1 that accept x. Hence, F (x) = 0.

16

We now analyze the depth and running time of the algorithm. Fix ` ∈ {0, 1, . . . , k−1}.
If |f−1(0)| ≥ 2k it holds that

|f−1
` (0)| ≤ |f−1(0)| − (j − 1) ·

⌊
|f−1(0)|

k

⌋
≤
(

1− j − 1

k

)
· |f−1(0)|+ j − 1

≤
(

1− 1

2k

)
|f−1(0)|.

That is, f−1
` (0) has size which is a constant fraction, strictly smaller than 1, of the size of

f−1(0), as long as |f−1(0)| ≥ 2k. Together with the fact that |f−1(0)| ≤ 2n, this implies
that the depth of the recursion is O(n) + 2k = O(n). We note that the depth of F is
exactly the recursion’s depth, and so depth(F) = O(n).

For a function g : {0, 1}n → {0, 1}, let rt(g) be the running time of A when given as
input j, k and the truth table of g. Then,

rt(f) =
k−1∑
i=0

rt(fi) + exp(n),

where the exponential time in n is due to the computation of A0, . . . , Ak−1 from g−1(0).
Solving the recursion yields rt(f) = exp(n).

Proof of Lemma 4. We first note that Thmt+1
t+1 is a Qm function. Let F be the formula

generated by the algorithm in Lemma 5.3 on input j, k and the truth table of the function
Thmt+1

t+1 . By Lemma 5.3, every x ∈ {0, 1}mt+1 such that wt(x) ≤ t is rejected by F .
We now show that every x ∈ {0, 1}mt+1 such that wt(x) ≥ t + 1 is accepted by F .

Assume for contradiction that there exists x(1) ∈ {0, 1}mt+1 such that wt(x(1)) ≥ t + 1
but x(1) is rejected by F . Then, there exist x(2), . . . , x(m) ∈ {0, 1}mt+1, each of weight at

most t, such that for every h ∈ [mt+ 1] there exists an i ∈ [m] such that x
(i)
h = 1. On the

other hand, since F is composed of Thkj gates, by Lemma 5.2, the function computed by

F is a Qm function. This contradicts the existence of such x(1). Thus, F (x) = Thmt+1
t+1 (x)

for every x ∈ {0, 1}mt+1.
The depth of F as well as the running time of A follows by Lemma 5.3.

5.2 Proof of Theorem 5

In this section we prove Theorem 5. A key step in proving Theorem 5 is the following
lemma.

Lemma 5.4. Suppose that there exists an algorithm A′ that given t, j, k ∈ N as input,
where j, k are constants in t, runs in T ′(t)-time and generates a circuit C ′ on mt + 1
inputs, where m =

⌊
k−1
j−1

⌋
, with the following properties:

• C ′ consists only of Thkj gates and no constants.

• size(C ′) = S ′(t).

17

• depth(C ′) = D′(t).

• ∀x ∈ {0, 1}mt+1, C ′(x) = Thmt+1
t+1 (x).

Then, there exists an algorithm A that given n, t, j, k as input, where j, k are constants in
n, runs in poly(n, T ′(O(t)))-time and generates a circuit C on n inputs, with the following
properties:

• C consists only of Thkj gates and no constants.

• size(C) = O (n · S ′(O(t))).

• depth(C) = D′(O(t)) +O(log n).

• ∀x ∈ {0, 1}n such that relwt(x) ≥ 1
m

+ 1√
t

it holds that C(x) = 1.

• ∀x ∈ {0, 1}n such that relwt(x) ≤ 1
m
− 1√

t
it holds that C(x) = 0.

To prove Lemma 5.4 we need the following key lemma. Informally, Lemma 5.5 shows
how to construct a circuit that shrinks the number of variables to half while maintaining
a promise on the weight.

Lemma 5.5. There exists an algorithm ShrinkerGenerator that given n ∈ N as input
as well as constants ε > 0 and j, k ∈ N such that 0 < ε ≤ 1

2m
, where m =

⌊
k−1
j−1

⌋
,

ShrinkerGenerator runs in poly(n)-time and generates a circuit Shrinker with the following
properties:

• Shrinker has n inputs and n
2

outputs.

• Shrinker consists only of Thkj gates and no constants.

• size(Shrinker) = O(n).

• depth(Shrinker) = O(1).

• ∀x ∈ {0, 1}n such that relwt(x) ≥ 1
m

+ ε it holds that relwt(Shrinker(x)) ≥ 1
m

+ ε.

• ∀x ∈ {0, 1}n such that relwt(x) ≤ 1
m
− ε it holds that relwt(Shrinker(x)) ≤ 1

m
− ε.

Proof. Let Sampler = (L,R,E) be an (n, d, ε
2
, 1

4m
)-sampler. By Theorem 6, Sampler can

be constructed in poly(n, ε−1,m) = poly(n)-time with d = O(ε−2m) = O(1). Consider
the circuit CSampler. Let t ∈ N be such that d = mt + 1.13 Since d = O(1), by Lemma 4,
the circuit Cd, used in CSampler, that computes the function Thmt+1

t+1 can be generated in
O(1)-time. Clearly, the size and depth of Cd are constants.

The circuit Shrinker is defined to be the circuit CSampler, where we arbitrarily choose
half of the outputs and discard the rest, together with the respective copies of Cd. By
construction, Shrinker has n inputs and n

2
outputs. It consists of Thkj gates and no

constants. Clearly, size(Shrinker) = n
2
·size(Cd) = O(n) and depth(Shrinker) = depth(Cd) =

O(1).

13For simplicity of presentation we assume d ≡ 1 (mod m). This assumption can be met easily.

18

Let x ∈ {0, 1}n be such that relwt(x) ≥ 1
m

+ ε. Define the set Sx = {i ∈ [n] : xi = 1}.
Note that |Sx| ≥ (1

m
+ε)n. By identifying L with [n], we get by the definition of Sampler,

that for at least 1− 1
4m

fraction of the vertices r ∈ R it holds that

dSx(r)

d(r)
≥ |Sx|

n
− ε

2
≥ 1

m
+
ε

2
.

Thus, the copy of Cd in CSampler that is associated with such r gets an input with weight
at least (

1

m
+
ε

2

)
· (mt+ 1) > t.

Thus, the output of Cd that is associated with such r is 1, and so relwt(CSampler(x)) ≥
1− 1

4m
. Hence, for any subset of size n

2
of the outputs of CSampler, at least 1− 1

2m
fraction

of them are equal to 1. That is,

relwt(Shrinker(x)) ≥ 1− 1

2m
≥ 1

m
+ ε,

where the last inequality follows since m ≥ 2 and ε ≤ 1
2m

.
Let x ∈ {0, 1}n be such that relwt(x) ≤ 1

m
− ε. In this case |Sx| ≤ (1

m
− ε)n. By the

definition of Sampler, we have that for at least 1 − 1
4m

fraction of the vertices r ∈ R it
holds that

dSx(r)

d(r)
≤ |Sx|

n
+
ε

2
≤ 1

m
− ε

2
.

Thus, the copy of Cd in CSampler that is associated with such r gets an input with weight
at most (

1

m
− ε

2

)
· (mt+ 1) < t+ 1.

Thus, the output of Cd that is associated with such r is 0, and so relwt(CSampler(x)) ≤ 1
4m

.
Hence, for any subset of size n

2
of the outputs of CSampler, at most 1

2m
fraction of them are

equal to 1. That is,

relwt(Shrinker(x)) ≤ 1

2m
≤ 1

m
− ε,

where the last inequality follows since ε ≤ 1
2m

.

Proof of Lemma 5.4. Let Sampler = (L,R,E) be an (n, d, 1
2
√
t
, 1

2m
)-sampler. By Theo-

rem 6, Sampler can be constructed in poly(n, t,m) = poly(n, t)-time with d = O((2
√
t)2 ·

(2m)) = O(t). Consider the circuit CSampler. Let t′ be an integer such that d = mt′ + 1.
Note that t′ = O(t). By calling A′ on input t′, j, k, the algorithm A can generate the
circuit C ′ on d inputs, used in CSampler in T ′(t′) = T ′(O(t))-time. Moreover, size(C ′) =
S ′(t′) = S ′(O(t)) and depth(C ′) = D′(t′) = D′(O(t)).

For an integer `, let Shrinker` be the circuit generated by ShrinkerGenerator on input
`, 1

2m
, j, k (see Lemma 5.5). The algorithm A generates Shrinker` for ` = n

2i
, where i =

0, 1, . . . , log2 (n)− 1. The output of A is the circuit

C = Shrinker2 ◦ · · · ◦ Shrinkern
4
◦ Shrinkern

2
◦ Shrinkern ◦ CSampler.

19

Let x ∈ {0, 1}n be such that relwt(x) ≥ 1
m

+ 1√
t
. Define Sx = {i ∈ [n] : xi = 1}. Note

that |Sx| ≥ (1
m

+ 1√
t
) · n. By identifying L with [n], and by the definition of Sampler, for

at least 1− 1
2m

fraction of the vertices r ∈ R it holds that

dSx(r)

d(r)
≥ |Sx|

n
− 1

2
√
t
≥ 1

m
+

1

2
√
t
.

Thus, the copy of C ′ in CSampler that is associated with such r gets an input with weight
at least (

1

m
+

1

2
√
t

)
(mt′ + 1) > t′.

Thus, the output of C ′ that is associated with such r is 1. Hence,

relwt(CSampler(x)) ≥ 1− 1

2m
≥ 1

m
+

1

2m
, (5.1)

where the last inequality follows since m ≥ 2. Define x(1) = Shrinkern (CSampler(x)) ∈
{0, 1}n/2. By the definition of Shrinkern and by Equation (5.1), we have that relwt(x(1)) ≥
1
m

+ 1
2m

. Similarly, x(2) , Shrinkern/2(x(1)) ∈ {0, 1}n/4 has weight at least 1
m

+ 1
2m

.
Continuing this way we get that C(x) ∈ {0, 1} has weight at least 1

m
+ 1

2m
. As C(x) is a

single bit it follows that C(x) = 1.
Let x ∈ {0, 1}n be such that relwt(x) ≤ 1

m
− 1√

t
. In this case |Sx| ≤ (1

m
− 1√

t
) · n. By

the definition of Sampler, for at least 1− 1
2m

fraction of the vertices r ∈ R it holds that

dSx(r)

d(r)
≤ |Sx|

n
+

1

2
√
t
≤ 1

m
− 1

2
√
t
.

Thus, the copy of C ′ in CSampler that is associated with such r gets an input with weight
at most (

1

m
− 1

2
√
t

)
(mt′ + 1) < t′ + 1.

Thus, the output of C ′ that is associated with such r is 0. Hence,

relwt(CSampler(x)) ≤ 1

2m
=

1

m
− 1

2m
. (5.2)

Define x(1) , Shrinkern (CSampler(x)) ∈ {0, 1}n/2. By the definition of Shrinkern and by
Equation (5.2) we have that relwt(x(1)) ≤ 1

m
− 1

2m
. Similarly, x(2) , Shrinkern

2
(x(1)) ∈

{0, 1}n/4 has weight at most 1
m
− 1

2m
. Continuing this way we get that C(x) ∈ {0, 1} has

weight at most 1
m
− 1

2m
. Since C(x) is a single bit, it follows that C(x) = 0.

We now analyze the size and depth of C.

size(C) = size (CSampler) +

logn∑
i=0

size
(
Shrinker n

2i

)
= n · S ′(O(t)) +O

(
logn∑
i=0

n

2i

)
= O (n · S ′(O(t))) ,

20

and

depth(C) = depth (CSampler) +

logn∑
i=0

depth
(
Shrinker n

2i

)
= D′(O(t)) +O(log n).

Theorem 5 readily follows by Lemma 4 and Lemma 5.4.

Proof of Theorem 5. By calling the algorithm from Lemma 4 on input t = log n, j, k, the
algorithm A can generate in exp(t) = poly(n)-time an O(t) = O(log n)-depth formula on
mt + 1 = O(log n) inputs, composed of Thkj gates with no constants, that computes the

function Thmt+1
t+1 . By Lemma 5.4 this implies that in time poly(n, exp(t)) = poly(n), A

can generate a circuit C on n inputs that is composed of Thkj gates, with the following
property. For x ∈ {0, 1}n such that relwt(x) ≥ 1

m
+Ω(1√

logn
), C(x) = 1, and for x ∈ {0, 1}n

such that relwt(x) ≤ 1
m
− Ω(1√

logn
), C(x) = 0. Moreover depth(C) = O(t + log n) =

O(log n).
By Observation 4.1, the circuit C can be transformed in poly(n)-time to a formula

with the same depth, that computes the same function.

6 Majority Formulae from Majority Gates

In this section we prove Theorem 2 and Theorem 3.

6.1 Proof of Theorem 2

Theorem 2 readily follows by Lemma 5.4 together with the following lemma.

Lemma 6.1. There exists an algorithm A that given an integer n as input, runs in
poly(n)-time and computes a circuit C on m , 2

√
logn inputs, with the following proper-

ties:

• C consists only of Maj3 gates and no constants.

• size(C) = poly(n).

• depth(C) = O(log n).

• ∀x ∈ {0, 1}m it holds that C(x) = Maj(x).

To prove Lemma 6.1 we need the following definitions and results on bounded inde-
pendence distributions. The following well known lemma gives a concentration bound for
a sequence of pairwise independent random variables (see, e.g., [Vad11]).

Lemma 6.2. Let X1, . . . , Xm ∈R [0, 1] be a sequence of pairwise independent random
variables. Let

X =
X1 + · · ·+Xm

m
,

and let µ = E[X]. Then,

Pr [|X − µ| ≥ ε] ≤ 1

mε2
.

21

Definition 6.3 (k-Wise Independent Hash Functions). Let n,m, k ∈ N. A family of func-
tions H = {h : [n]→ [m]} is called k-wise independent if for every distinct x1, . . . , xk ∈
[n], the random variables h(x1), . . . , h(xk), where h is sampled uniformly from H, are
independent and uniformly distributed in [m].

Theorem 7. For every n,m, k ∈ N there exists an explicit construction of a k-wise inde-
pendent family of hash functions H = {h : [n]→ [m]}, with size |H| = O(max{n,m}k).

A proof for Theorem 7 can be found in, e.g., [Vad11]. To prove Lemma 6.1 we also
need the following fact proved by Goldreich [Gol11b] in his exposition of Valiant’s proof.
The fact roughly states that the output of a Maj3 gate, applied to three uniformly sampled
entries of a (biased) string x, has a higher bias than the bias of x.

Fact 6.4. Let n be an odd integer. Let x ∈ {0, 1}n and let ε = bias(x). Define

ε′ , Pri,j,k∼[n] [Maj3(xi, xj, xk) = Maj(x)]− 1

2
.

Then, ε′ = 1.5ε − 2ε3. In particular, if ε ≤ 0.4 then ε′ > 1.15ε. Moreover, for every
ε ∈ [0, 1/2] it holds that ε′ ≥ ε.

The following notation will be useful for us. Let m ∈ N. For a function f : [3m]→ [m],
define the bipartite graph Gf = (L,R,E), with |L| = |R| = m as follows. Associate L
and R with [m], and connect every vertex r ∈ R with the vertices f(3r − 2), f(3r − 1)
and f(3r) in L. Note that the right-degree of Gf is 3. We also define Cf , CGf .

Lemma 6.5. Let m ∈ N, and let H = {h : [3m]→ [m]} be the 6-wise independent family
of hash functions from Theorem 7. Then, for every x ∈ {0, 1}m such that bias(x) ≥ 1

m1/4 :

Prh∼H
[
bias (Ch(x)) ≤ min {1.1 · bias(x), 0.4}

]
= O

(
1√
m

)
.

Proof. Fix x ∈ {0, 1}m. Since H is a 6-wise independent family of hash functions, it is in
particular 3-wise independent. As the majority gates in Ch have 3 inputs each, we can
apply Fact 6.4 and conclude that

Eh∼H
[
bias (Ch(x))

]
≥ min {1.15 · bias(x), 0.4} .

By the 6-wise independence of H, the outputs of the majority gates in the circuit Ch,
where h is sampled uniformly from H, are pairwise independent. Thus, by Lemma 6.2
and since bias(x) ≥ 1

m1/4 ,

Prh∼H
[
bias (Ch(x)) < min {1.1 · bias(x), 0.4}

]
≤ 1

m · (0.05 · bias(x))2
= O

(
1√
m

)
.

Proof of Lemma 6.1. We first describe the circuit C and then prove its correctness.
As a first step, the circuit C replicates each one of its m inputs m3 times to obtain a

total of m′ = m4 wires. Note that the bias of these wires is at least 1
m

= 1
(m′)1/4

.

22

Let H = {h : [3m′]→ [m′]} be the 6-wise independent family of hash functions from
Theorem 7. Recall that H has size O((m′)6) = poly(m), and can be constructed in
poly(m)-time. Let h1, . . . , h` be functions sampled from H uniformly and independently
at random, where ` is the smallest integer that satisfies the inequality 1.1` ≥ 0.4m.

Let C ′ be the circuit generated by the algorithm from Theorem 5 on input m′, j =
2, k = 3. The circuit C ′ computes the majority function correctly on inputs with bias at
least o(1) and thus certainly when the bias is at least 0.4. Moreover, C ′ has poly(m)-size,
O(logm)-depth, and can be constructed in poly(m)-time. For h1, . . . , h` ∈ H, define the
circuit

Ch1,...,h` , C ′ ◦ Ch` ◦ · · · ◦ Ch1 .

Let C ′′ be the circuit generated by the algorithm in Theorem 5 on input |H|`, j = 2, k = 3.
Since |H|` = mO(logm) = poly(n), the circuit C ′′ has poly(n)-size, O(log n)-depth, and can
be constructed in poly(n)-time. C ′′ computes the majority function correctly on inputs
with bias at least 0.1 (and, in fact, even for bias at least o(1)).

After the replication step, the m′ replicated wires are wired as inputs to the circuit
Ch1,...,h` for every `-tuple h1, . . . , h` ∈ H. Wire the output of each such circuit to an input
of C ′′. The output of C is defined to be the output of C ′′. By the above, C can be
constructed in poly(n)-time. This implies that size(C) = poly(n). Since

depth(Ch1,...,h`) = depth(C ′) +
∑̀
i=1

depth(Chi) = O(logm) + ` ·O(1) = O(logm)

for every h1, . . . , h` ∈ H, and since depth(C ′′) = O(log n), we have that depth(C) =
O(log n).

We now show that C computes the majority function. Let x ∈ {0, 1}m and let
x′ ∈ {0, 1}m′

be the resulted replicated string. By Lemma 6.5, and by applying a union
bound,

Prh1,...,h`∼H [bias (Ch` ◦ · · · ◦ Ch1(x
′)) < 0.4] <

`√
m′

= O

(
logm

m2

)
< 0.1.

Thus, by the definition of C ′,

Prh1,...,h`∼H [Ch1,...,h`(x
′) = Maj(x)] ≥ 0.9.

That is, at least a 0.9 fraction of the circuits Ch1,...,h` output Maj(x). This implies that
C ′′, and thus C, outputs Maj(x).

Proof of Theorem 2. By Lemma 6.1, a circuit of poly(n)-size and O(log n)-depth, that
computes the majority function on 2

√
logn inputs can be generated in poly(n)-time. By

applying Lemma 5.4 we obtain, in poly(n)-time, an O(log n)-depth circuit that com-
putes the majority under the assumed promise on the bias. The proof then follows by
Observation 4.1.

23

6.2 Proof of Theorem 3

In this section we prove Theorem 3. We first recall a few definitions and results.

Definition 6.6. Let n, s ∈ N. A distribution R over {0, 1}n is s-pseudorandom if for
every circuit C on n inputs with size at most s, it holds that

|Pr[C(R) = 1]− Pr[C(Un) = 1]| < 0.1.

Definition 6.7. Let S : N → N be a time-constructible function 14. A function PRG :
{0, 1}∗ → {0, 1}∗ is an S-pseudorandom generator 15 if

• ∀r ∈ {0, 1}∗, |PRG(r)| = S(|r|).

• There exists an algorithm that, given r ∈ {0, 1}∗, runs in time 2O(|r|) and outputs
PRG(r).

• ∀s ∈ N, the distribution PRG(Us) is (S(s))5-pseudorandom.

In a long line of research initiated by Nisan and Wigderson [NW94] (with some of
the ideas, in the context of cryptography, dating back to Yao, Blum and Micali [Yao82b,
BM84]), it has been shown that pseudorandom generators can be constructed under
hardness assumptions. We state a more recent theorem by Umans [Uma03].

Theorem 8 ([Uma03]). Let S : N→ N. Given the truth table of a function f : {0, 1}s →
{0, 1} that cannot be computed by a circuit with size at most S(s), there exists an S(s)Ω(1)-
pseudorandom generator.

We also make use of the following theorem.

Theorem 9 ([Val84], see also [Gol11b]). There exists a constant c1 such that the following

holds. For every n ∈ N there exists a family of formulae Fn =
{
F

(n)
w : w ∈ {0, 1}nc1

}
,

each on n inputs, such that for every w ∈ {0, 1}nc1 ,

• F (n)
w consists only of Maj3 gates and no constants.

• size(F
(n)
w) = O(nc1).

• depth(F
(n)
w) = O(log n),

and
Prw∼{0,1}nc1

[
∀x ∈ {0, 1}n F (n)

w (x) = Maj(x)
]
> 1− 2−n.

Moreover, given n ∈ N, w ∈ {0, 1}nc1 , the formula F
(n)
w can be constructed in O(n2c1)-

time.

14A function S : N→ N is time constructible if ∀s ∈ N it holds that S(s) ≥ s, and there exists a Turing
machine that on input 1s outputs 1S(s) in O(S(s))-time.

15Note that this definition refers to pseudorandom generators in the context of computational com-
plexity rather than cryptography.

24

Proof of Theorem 3. By Theorem 8, the assumption of Theorem 3 implies the existence
of a 2s/c2-pseudorandom generator PRG, for some constant c2 > 1. Set s = c1c2 log2 n,
where c1 is the constant from Theorem 9. Note that the PRG outputs nc1 bits.

We first describe the circuit C and then turn to prove its correctness. Let C ′ be the
circuit generated by the algorithm from Theorem 5 on input nc1c2 , j = 2, k = 3. The
circuit C ′ computes the majority correctly on inputs with bias at least 0.1 (and, in fact,
o(1)). Moreover, C ′ has O(log n)-depth, and can be generated in poly(n)-time.

Define the circuit C on n inputs as follows. The n inputs of C are wired to the
inputs of the formula F

(n)
w for every w ∈ {PRG(r) : r ∈ {0, 1}s}. The output of each such

formula is wired to an input of C ′. The output of C is defined to be the output of C ′.
For every r ∈ {0, 1}s, the string w = PRG(r) can be computed in exp(s) = poly(n)-

time. By Theorem 9, given n ∈ N and w ∈ {0, 1}nc1 , the formula F
(n)
w can be generated

in poly(n)-time. Since there are 2s = nc1c2 such formulae, and since C ′ can be generated
in poly(n)-time, the circuit C can be generated in poly(n)-time. By Theorem 5 and

Theorem 9, depth(C ′) = O(log n) and for every w ∈ {0, 1}nc1 , depth(F
(n)
w) = O(log n).

Hence, depth(C) = O(log n), as stated.
We now prove that C computes the majority function. Assume, for contradiction,

that there exists x0 ∈ {0, 1}n such that C(x0) 6= Maj(x0). Then, by the construction of
C,

Prr∼{0,1}s
[
F

(n)
PRG(r)(x0) = Maj(x0)

]
≤ 0.6. (6.1)

By Theorem 9, given n ∈ N, w ∈ {0, 1}nc1 , the formula F
(n)
w can be constructed in

O(n2c1)-time. Therefore, there exists a circuit Cuniversal of size O(n4c1) that has nc1 + n
inputs, such that for every w ∈ {0, 1}nc1 , x ∈ {0, 1}n it holds that Cuniversal(w, x) =

F
(n)
w (x).16 Consider the circuit C0 on nc1 inputs defined by hard wiring x0 as x to
Cuniversal. Clearly, C0(w) = Cuniversal(w, x0) for every w ∈ {0, 1}nc1 . By Equation (6.1),

Prr∼{0,1}s [C0(PRG(r)) = Maj(x0)] ≤ 0.6.

On the other hand, by Theorem 9,

Prw∼{0,1}nc1 [C0(w) = Maj(x0)] ≥ 1− o(1).

This yields a contradiction as C0, which has size O(n4c1) < (nc1 + n)5, distinguishes with
probability 0.4− o(1) > 0.1 a random string from a random output of PRG.

Weakening the Assumption in Theorem 3. One can show that the assumption in
Theorem 3 (i.e., the existence of an ε > 0 such that E , DTIME(2O(n)) does not have
2εn-size circuits) can be relaxed to the following assumption: there exists a pseudorandom
generator with seed length O(log n) for read once branching programs of length n and
width O(n).17 The latter assumption is implied by the assumption that appears in
Theorem 3.

16The quadratic overhead is due to the simulation of an algorithm by a family of circuits; see, e.g.,
Theorem 6.6 in [AB09].

17We do not give here a formal definition for read once branching programs. For more information the
reader is referred to [AB09], Chapter 21, Section 6.

25

The state of the art pseudorandom generator for read once branching programs has
seed length O(log2 n) [Nis92, INW94]. We stress that this construction is unconditional
(i.e., no computational assumptions are necessary). We also note that it is possible to
use this pseudorandom generator to give an alternative proof for Lemma 6.1, and any
advancement in the construction of pseudorandom generators for read once branching
programs is a step forward in resolving Conjecture 1. We omit the details in this version
of the paper.

7 From Threshold Formulae to Broadcast

In this section, we show a simple way to construct broadcast protocols for n parties from
protocols for a constant number of parties based on threshold and also more general
formulae. Following the notation of [HM00], we differentiate here between a processor
which is the entity doing the actual computation and communication and the player which
is the entity that receives input and produces output. A party is the player together with
the associated processor.

We will assume throughout that processors can communicate via synchronous secure
point-to-point channels. The results and protocols in this section could also be phrased
in the more general MPC framework we present later, but we have chosen not to do this,
to make the section more self-contained and easier to read. We begin with some basic
definitions:

Definition 7.1. In a Byzantine Agreement (BA) protocol, each player Pi has input xi
and output yi. All honest players must terminate and output the same value, and if xi = x
for all honest Pi then it must be the case that yi = x for all honest Pi.

In a Broadcast protocol some designated player P starts from input x. All honest
players must terminate and output the same value y, and if P is honest, it must be the
case that x = y.

A 2-cast protocol is a broadcast protocol for three players.

It is well known and easy to see that BA implies Broadcast: the broadcaster sends his
message to all processors and then we do BA. Conversely, if less than n

2
processors are

corrupt, then Broadcast implies BA: each processor broadcasts his input and then each
processor takes majority decision to get the output. Note that in case the inputs are not
bits but come from a larger set, it may happen that that no value is in majority (if the
honest processors do not agree on the input to start with). In this case, we adopt in the
following the convention that processors output ⊥.

In the following we want to consider more general adversaries than those that are
limited simply by the number of processors they can corrupt. For this we need some
definitions:

Definition 7.2. An adversary structure is a family Γ of subsets of the processors such
that A ∈ Γ, B ⊆ A implies B ∈ Γ. An adversary structure is Q2 (resp., Q3) if it
is the case that no two (resp., no three) subsets in Γ cover the entire processor set. A
Q2-adversary is an adversary that may only corrupt sets of processor belonging to a Q2

adversary structure. A Q3-adversary is defined in the same way.

26

As an example, an adversary who can corrupt less than n
2

of the processors is a special
case of a Q2-adversary.

Assume now we are given a monotone formula F on n inputs. If we let each input
variable correspond to a processor, an input string corresponds to a subset of the pro-
cessors in a natural way, by considering it as the characteristic vector of the subset. The
family of subsets that are rejected by F under this correspondence forms an adversary
structure because F is monotone. It is not hard to see by induction on the height of F
that if it is composed of Th3

2 gates, the corresponding adversary structure is Q2, in fact
the same arguments shows that any formula composed of Thkj gates where j − 1 < k/2
has a corresponding Q2 adversary structure (a stronger statement follows by Lemma 5.2).
Moreover, for Th4

2 gates we have a stronger condition, namely they lead to Q3 adversary
structures. Conversely, it follows from [HM00] that for every Q2 (Q3) adversary struc-
ture Γ, there exists a formula composed of Th3

2 (Th4
2) gates that rejects exactly Γ. The

formulas obtained this way are not necessarily logarithmic depth, in fact they are very
large even for threshold functions.

7.1 Virtual Processors and Formulas

Consider a formula F composed of Thkj gates with n inputs. We assume the formula is
laid out as a k-ary tree with the output gate on top. As described in the introduction,
we assign a virtual processor to the output wire of each gate, and a real processor to each
input wire of F . A virtual processor is emulated by the k processors that “sit below him”
in the formula.

A virtual processor is defined to be honest if at most j − 1 of his k emulators are
corrupt. An honest virtual processor holds a value if all honest processors emulating him
agree on that value.

Now assume for a moment that we are given BA for free as a primitive for any group
of k processors emulating a virtual processor, where the BA is guaranteed to work if that
virtual processor is honest. This immediately implies the following recursively defined
protocol for sending a message x from a (virtual or real) processor S to another (virtual
or real) processor R:

Message Transfer Protocol (MTP)

1. If S,R are real, send x from S to R.

2. If S is real and R is virtual, S sends x to each processor emulating R using MTP.
The emulators do BA to agree on what was received.

3. If S is virtual and R is real, processors emulating S send x to R using MTP, and
R takes majority decision to decide what was received.

4. Otherwise (both processors are virtual) each processor emulating S sends x to each
processor emulating R using MTP. Each emulator takes majority decision on what
he receives, and finally the emulators do BA to agree on what was received.

We will only use this protocol in cases where j−1 < k/2. This means that for an honest
virtual processor, a majority of his emulators are honest. This and a straightforward
inductive argument implies:

27

Lemma 7.3. Consider a formula F composed of Thkj gates as above, where j − 1 < k/2.
Assume that we are given BA as a primitive for all groups of k processors emulating a
virtual processor, where the BA is guaranteed to work if that virtual processor is honest.
If S and R are both honest and run the Message Transfer Protocol, R will end up holding
x. Even if S is not honest, an honest R always ends up holding some message.

Under the same assumption as in the above lemma, we can build the following simple
protocol for broadcasting a bit, based on formula F composed of Thkj gates:

Broadcast Protocol based on F .

1. The broadcaster sends his bit to the virtual processor sitting on top of the formula
using MTP.

2. The virtual processor sitting on top of the formula now holds a bit. He sends it to
each real processor using MTP.

Theorem 10. Consider a formula F composed of Thkj gates as above, where j−1 < k/2.
Assume that we are given BA as a primitive for all groups of k processors emulating a
virtual processor, where the BA is guaranteed to work if that virtual processor is honest.
If the set of corrupt real processors is rejected by F , then the Broadcast Protocol based on
F is correct.

Proof. Since F is built from Thkj gates where j − 1 < k/2, the family of subsets it rejects
must be Q2 as noted above. Hence the set of honest real processors is accepted by F .
This means that the virtual processor sitting on top of F is honest. The theorem now
follows immediately from Lemma 7.3.

7.2 Broadcast for less than n/3 Corrupted Parties.

As a warm-up we show how to get known results for broadcast in a simple way from the
formula based approach.

Corollary 7.4. The formula based approach implies a broadcast protocol for n parties
secure if less than n(1

3
− 1√

logn
) parties are corrupted, and more generally a broadcast

protocol secure against any Q3-adversary.

Proof. As noted above, there exists a formula composed of Th4
2 gates that rejects exactly

the given adversary structure. This formula satisfies the assumptions in Theorem 10,
so all we have to do is to argue that we do BA for 4 processors where at most 1 is
corrupt. But this is easy, we can get broadcast and hence BA as follows: the broadcaster
P sends his message to all processors using the Message Transfer Protocol, and then each
receiver sends to all receivers what he got from P . Finally, the receivers take majority
decision to get the output. This construction implies that the BA protocol and the
MTP are recursively defined in terms of each other, but this is not a problem, as each
recursive call is always to the next lower level, so the recursion eventually “bottoms out”.
This implies the Q3-result, and using the formulas constructed in Theorem 5, we get a
polynomial time broadcast protocol for the case where at most t processors are corrupted
and t < n(1

3
− 1√

logn
).

28

This result also follows from the results in [HM00], albeit in a more complicated
way. Also, Fitzi and Maurer [FM98] show a broadcast protocol for Q3-adversaries that is
polynomial time in n given access to an oracle that decides membership in the adversary
structure.

7.3 From 2-Cast to Broadcast

It was shown by Fitzi and Maurer [FM00] that given 2-cast as a primitive for any group
of 3 processors, one can get perfectly secure broadcast for n processors assuming less than
n
2

are corrupted.
Here, we give an alternative and simple proof of this result, and moreover the same

proof trivially extends to show that broadcast is possible in a more general case of a
Q2-adversary. This generalization was previously open.

It is of course easy to do Byzantine agreement (BA) among 3 processors where at
least two are honest, if 2-cast is given. So an obvious approach is to do something similar
as in the previous corollary: take a formula composed of Th3

2 gates rejecting exactly the
given Q2 structure and apply Theorem 10. However, to satisfy the assumptions in that
result, we need BA, or equivalently 2-cast, among any group of 3 processors, even virtual
processors. But we are only given 2-cast among real processors.

We therefore need to construct a 2-cast protocol π2c that works for virtual processors,
i.e., it is a protocol for 9 processors split in 3 committees of 3 processors each, such that
each committee emulates a virtual processor and at least 2 of the 3 virtual processors are
honest. There will be a sending virtual processor S and two receivers R0, R1. π2c may
use 2-cast among any 3-subset of the 9 emulating processors, and must ensure that 1) if
S is honest and holds a message (a bit b), then the honest receiver(s) receive b; and 2) if
S is not honest, then R0 and R1 (who must then be honest) hold the same bit after the
protocol18. As a first step, we construct a 2-cast protocol π′2c, where the sender is not the
entire committee S, but one of the processors in S, here denoted by PS.

Protocol π′2c

1. PS 2-casts his bit b to every pair of processors, where one processor is in R0 and
one is in R1.

2. Each processor in R0 or R1 considers all received bits. If the same bit b was received
in all 2-casts, store as temporary result b. Else store ⊥.

3. Each committee Ri (i = 0, 1) does BA using the temporary results as inputs. The
result will be a bit bi or ⊥. The result is reported to the other committee using the
message transfer protocol described above.

4. Each processor in Ri computes an output as follows: if your own committee reported
bi, output bi. If your own committee reported ⊥ and R1−i reported b1−i, output
b1−i. Otherwise (both committees reported ⊥) output 0.

Lemma 7.5. Protocol π′2c implements correctly 2-cast from PS to R0 and R1.

18 Note that we cannot rely on the result by Fitzi and Maurer to get such a protocol, since we do not
have honest majority: it may be the case that only 4 of the 9 processors are honest.

29

Proof. If the sender PS is honest and sends b, then if the committee Ri is honest, then
the (at least 2) honest processors in Ri will only see b, therefore Ri will report b and
honest processors from Ri will output b as they should no matter what happens in R1−i.

If PS is corrupt, we can assume that both R0 and R1 are honest and we must show
that they output the same bit. Clearly, if at least one of R0 and R1 report ⊥ or they
both report the same bit b, then R0 and R1 output the same bit. We now show that the
only remaining case where they report different bits cannot occur: assume without loss
of generality that R0 reports 0. In order for this to happen, at least one of the honest
processors in R0 must have 0 as temporary result. But this means (by the 2-casts we
used in the first step) that all honest processors in R1 see at least one 0. Therefore none
of them can have 1 as temporary result, and R1 therefore cannot report 1.

To get the protocol π2c, we simply run π′2c 3 times with each processor in S playing
the role of PS, and processors in R0, R1 take majority decision on the bit to output. The
properties we wanted for π2c now follow immediately from the above lemma.

This and Theorem 10 now immediately implies

Corollary 7.6. Given 2-cast among any group of 3 parties, there exists a broadcast
protocol for n parties secure against any Q2-adversary.

Note that our results on construction of formulas for the majority function (Theorems
3, 2) together with the construction behind the corollary immediately gives polynomial
time (in n) broadcast protocols for at most t corrupted processors. We can use a random-
ized construction or a construction conditioned on a complexity assumption to get the
optimal result t < n

2
, matching the result from [FM00]. Or we can use the (unconditional)

explicit construction that gives us t < n(1
2
− 2−O(

√
logn)).

8 The Multiparty Computation Framework

In Section 8.1 we give a general overview of the player emulation technique and in Sec-
tion 8.2 we give a formal definition of the MPC framework that we will use (based on the
[HM00] MPC framework).

8.1 The Player Emulation Technique

The formulas constructed in Section 5 and Section 6 will be used to construct efficient
multiparty protocols via the “player emulation” technique from [HM00]. Variants of this
technique, also referred to as player virtualization or simulation, were used for different
purposes in several other works (e.g. [Bra87, Cha89, HIKN08, DIK+08, IPS08, LRM10,
LOP11]). While implementing player emulation in the passive security model is quite
straightforward, in the active security model it requires more care. In the following we
give more details on the implementation of this technique.

Recall that in a single player emulation step, the role of a party τ participating in
a protocol Π is replaced by a secure protocol π which involves a small set of parties
v1, . . . , vk, along with the parties of Π. We will typically let k = 3 (resp., k = 4) in
the case of security against a passive (resp., active) adversary, and let π be a protocol
which remains secure as long as at most one of the emulating parties vi is corrupted.

30

Furthermore, the total computational complexity of all parties in π (which is typically
cast in some algebraic computation model) is only bigger by a constant factor than
that of the emulated party τ in Π. As explained in the Introduction, a logarithmic-
depth threshold formula defines a sequence of such player emulation steps which result
in transforming an atomic protocol π for a constant number of parties into an efficient
n-party protocol which tolerates an optimal or near-optimal fraction of corrupted parties.

The application of the player emulation technique in [HM00] is formulated in a
specialized framework for secure MPC and is restricted to the protocol compiler of
BGW [BGW88].19 However, the technique is quite insensitive to many of these details
and can be applied with other protocols and notions of security from the literature.

A conceptually simple way for implementing a player emulation step is by viewing
the role of τ in Π as a reactive ideal functionality, which interacts with the parties in Π
(receiving incoming messages as inputs and delivering outgoing messages as outputs), and
maintains a state information during this interaction. The protocol π emulating τ then
needs to realize the corresponding functionality using the emulating parties vi instead of
τ . Note that protocol π does not only involve the players emulating τ . It also specifies
how players communicating with τ should translate their messages into whatever format
π uses.20

The protocol π can satisfy any composable notion of security that applies to reactive
functionalities, namely one which ensures that π can be securely used as a substitute for
τ in an arbitrary execution environment if at most a single vi is corrupted. The protocols
π we use in this work all satisfy the standard notion of UC-security from [Can01], which
suffices for this purpose.21

Alternatively, it is possible to implement a player emulation step by only relying on
protocols for secure function evaluation which satisfy the standard definitions of stan-
dalone security [Can00, Gol04]. The idea is to first ensure that only a single message is
sent in each round of Π, and then implement a round in which τ interacts with party
P by a protocol involving P and the emulating parties vi. The functionality realized by
such a protocol is determined by the choice of a concrete (robust) secret sharing scheme
which is used to distribute the state of τ between the emulating parties.

8.2 The [HM00] MPC Framework

We consider n players that wish to perform some computational task together. We
focus only on perfect security and, as usual in this context, we assume secure point-to-
point communication channels between every two processors. We introduce an abstract
framework in which the specific operations that can be performed by the individual

19In Section 8.2 we use a slightly stronger variant of the model from [HM00] which supports player
emulation without any further requirements.

20Alternatively, if the communication channels are modeled as an ideal functionality, one can extend
the definition of this functionality so it will do the translation, and then in a final step implement the
translation. This leads in some cases to a slightly simpler protocol in the end.

21In particular, all these protocols are perfectly secure with a straight-line black-box simulator, which
was shown in [KLR10] to imply UC-security in the case of secure function evaluation. We note that while
standard UC-security is cast in an asynchronous network model and does not guarantee output delivery, it
can be extended to capture synchronous protocols which guarantee output delivery (cf. [CDN12, Chapter
4]).

31

processors remains undefined. This allows us to obtain generic results that are applied in
subsequent sections to concrete multiparty computation models that are instantiations
of our abstract framework. Our definitions are based on [HM00], except that we make
an additional “locality” requirement which is implicitly used in [HM00].

As in [HM00], we distinguish between a player and the corresponding processor. A
player is the entity that receives input and produces output and the processor is in
charge of executing operations and communicating. A party is a player together with the
associated processor.

We assume a global variable space X . A variable x ∈ X can take value from some
fixed finite set of values V . We associate with each variable a set of processors that know
the value of the variable. We assume that variables are only used in a write-once manner
and therefore, transmitting a message between two processors simply entails of adding a
variable that is in the sending processor’s view to the receiving processor’s view.

A multiparty computation model (or MPC model) defines the set of values V that may
be assigned to variables and the different operators (and respective operands) that the
processors may use. The MPC model may also specify that some of these variables have
predetermined values and are treated as constants. Additionally the MPC model specifies
the power of the adversary (i.e., whether it is passive or active, see Section 8.2.1). All
the following definitions are with respect to some fixed MPC modelM which will always
be clear from the context.

A protocol π among a set P of processors, that involves variables from a variable space
X , is a sequence of statements. Each statement may be of the following forms:

1. An input statement input(pi, x) instructs the processor pi ∈ P to read a value from
its input tape and to assign the value to its local variable x ∈ X .

2. A transmit statement transmit(p1, p2, x) instructs the processor p1 ∈ P to send
the value of the variable x ∈ X (that is in its view) to the processor p2 ∈ P . This
simply means that x is added to the view of p2.

3. An output statement output(p, x) instructs the processor p ∈ P to output the value
of the variable x ∈ X to its associated processor. We define by output(p) the
list of all values that p has output throughout the execution of the protocol and by
outputi(p) the output of p before the execution of the i-th statement of the protocol.

4. A computation statement comp(p, op,X, x) instructs the processor p to perform the
atomic operation op on the variables X ⊆ X (that are in its view) and to assign
the result to the variable x ∈ X . This may include assigning a random value. The
specification of the operation as well as its operands are a part of the MPC model
M.

A multiparty computation specification (or simply called specification) formally spec-
ifies the task to be accomplished by the processors. Intuitively, a specification specifies
the cooperation in an ideal environment which includes, in addition to the n processors,
a trusted processor. Formally, a specification is a pair (π, τ) consisting of a protocol π
among a set P0 of processors, and the name of a virtual processor τ ∈ P0. The protocol π
of the specification is also called the ideal protocol. We assume that τ is never involved
in input and output statements.

32

As an example, consider a specification described by a protocol in which all the parties
first read their input, send their inputs to the trusted processor τ who computes some
function of their input and transmits a result of this computation to each processor.
Each processor outputs its own result. We note that this type of specification is known
as secure function evaluation.

A multiparty protocol generator G for the set PG of processors is a polynomial-time
algorithm that takes as input a multiparty computation specification (π0, τ) involving
processors from a set P0 and returns a protocol π for the processors (P0\{τ}) ∪ PG. A
statement index function for a specification (π0, τ) and protocol π is a strictly monotone
function f ,

f : {1, . . . , |π0|+ 1} → {1, . . . , |π|+ 1}

where f(1) = 1 and f(|π0|+1) = |π|+1. We say that a protocol generator is local if each
statement α in π0 is mapped to a sequence of statements in π such that the mapping does
not depend on variables that do not appear in the statement α. All protocol generators
considered in this work are local.

Intuitively, a protocol generator G simulates the virtual trusted processor τ by a
multiparty computation protocol among the processors in PG. Each statement of the
ideal protocol π0 is expanded into a sequence of statements, and all these sequences are
concatenated to the resulting protocol π. The statement index function f specifies how
statements in π0 are expanded into subprotocol in π. Thus, each index i maps a statement
in π0 to the index f(i) of the first statement in the corresponding subprotocol in π.

We consider different levels of explicitness of the protocol generator. If the protocol
generator can be implemented by a polynomial-time Turing Machine, we say that it is
explicit. If it can be implemented by a probabilistic polynomial-time Turing Machine
that only fails with probability that is exponentially vanishing in the number of players
then we say that it is a randomized construction. We will be mainly interested in protocol
generators that only have blackbox access to an algebraic structure V . This can be modeled
by assuming that each element in V is given some adversarially chosen identifier.

For an integer k ∈ N, a k-processor protocol generator is a protocol generator that
supports specification involving at most k processors other than the trusted processor τ .

8.2.1 Security Notions for Multiparty Protocols

Let π be a protocol for the set P of processors. Our framework supports adversaries that
may be either active or passive (whether the adversary is passive or active is defined as
part of the MPC model).

A passive adversary A for the protocol π that corrupts the processors ZA is a (prob-
abilistic) strategy. After each statement of the protocol π, the passive adversary A may
read the variables in the views of the corrupted processors ZA and can extend its own
current view based on these values. It may also do arbitrary computation over its own
view. The adversary is computationally unbounded.

An active adversary A for the protocol π is a passive adversary that may, in addition,
take complete control over the corrupted processors ZA.

Let A be an adversary and (π0, τ) be a specification for the set of processors P0.
We say that the protocol π A-securely computes the specification (π0, τ) if there exists a
statement index function f : {1, . . . , |π0|+ 1} → {1, . . . , |π|+ 1} and an adversary A0 for

33

the ideal protocol π0 with ZA0 = ZA∩(P0\{τ}) that satisfy the following property. For all
inputs and for every i = 1, . . . , π0 + 1, the joint distribution of A0’s view with the output
of outputi(p) for all non-corrupted processors p ∈ (P0\{τ}\ZA0) before the i-th statement
of the ideal protocol π0 (with the adversary A0 present) is equal to the joint distribution
of A’s view and the views vf(i)(p) of all non-corrupted processors p ∈ (P0\{τ}\ZA0) before
the f(i)-th statement of the real protocol π (with the adversary A present). Moreover,
the complexity of A0 must be polynomial in the complexity of A.

The adversary A0 can be thought of as a kind of simulator for A.
A structure Z ⊆ 2P is a monotone set of subsets of the processors P where by

monotone we mean that it is closed to taking subsets. For a structure Z and a specification
(π0, τ), we say that a protocol π Z-securely computes (π0, τ) if for every adversary A such
that ZA ∈ Z, it holds that π A-securely computes (π0, τ).

A protocol generator G for the set of processors P is A-secure if, for every specification,
the protocol that results by applying G to this specification A-securely computes the
specification. For a structure Z ⊆ 2P , a protocol generator G for the set P of processors
is Z-secure if, for every adversary A such that ZA ∩ P ∈ Z, the protocol generator is
A-secure. (See [HM00] for further details.)

8.2.2 Remapping and Simulating Processors

Let P and P ′ be sets of processors. A processor mapping σ : P → P ′ is a surjective
function from P onto P ′. If π is a protocol and σ : P → P ′ is a processor mapping
then the mapped protocol σ(π) is the same protocol, where each statement involving a
processor in p ∈ P is replaced by the processor σ(p).

For a specification (π0, τ) with τ /∈ P , the mapped specification σ(π0, τ) is defined as
(σ(π0), τ).

The inverse processor mapping σ−1 of a processor mapping is defined by

σ−1 : P ′ → 2P

where σ−1(p′) = {p ∈ P : σ(p) = p′}. For a set of processors P , we define σ(P) =
∪p∈P{σ(p)} and σ−1(P) = ∪p∈Pσ−1(p).

For a structure Z for the set P of processors and a processor mapping σ : P → P ′,
the mapped structure is σ(Z) = {Z ⊆ P ′ : σ−1(Z) ∈ Z}.

Lemma 8.1 (Processor Remapping Lemma, [HM00]). Given a protocol π for the set P of
processors that Z-securely computes the specification (π, τ), and some processor mapping
σ, then σ(π) is a protocol for the set σ(P) of processors that σ(Z)-securely computes the
specification σ(π0, τ).

Consider a multiparty protocol π among the set P of processors and a protocol gener-
ator G for the set PG of processors. To simulate a virtual processor p ∈ P in π applying
the protocol generator G means to consider this processor p as a trusted processor and to
have this processor simulated by a subprotocol among the processors in PG, according to
G. More precisely, the specification (π, p) is used as input for the protocol generator G.
We note that only processors that do not have input and output statements are simulated.

34

The following theorem of [HM00] show that a processor in an MPC protocol can be
simulated by other processors.22

Theorem 11 (Processor Simulation Theorem, adapted from [HM00]). Let π be a protocol
in the MPC-model M among the set P of processors that Z-securely computes a speci-
fication (π0, τ), and let G1, . . . , Gk be Z1, . . . ,Zk-secure local protocol generators for the
processor sets P1, . . . , Pk, respectively. Assume that in π the k processors pr1 , . . . , prk ∈ P
(which have no input or output statements) are simultaneously simulated by subprotocols
applying the protocol generators G1, . . . , Gk respectively. Then the resulting multiparty
protocol π∗ (also in the MPC-model M) is for the set P ∗ of processors and Z∗-securely
computes the specification (π0, τ), where

P ∗ = (P\R) ∪
k⋃

i=1

Pi,

Z∗ =

{
Z ⊆ P ∗ :

((
Z ∩ (P\R)

)
∪
{
pri ∈ R : Z ∩ Pi /∈ Zi

})
∈ Z

}
,

and R = {pr1 , . . . , prk} is the set of replaced processors.

9 From Threshold Formulae to Secure Multiparty

Computation

In this section we show how to use logarithmic depth threshold formulae to obtain an
efficient generic reduction from multiparty MPC protocols to MPC protocols for a constant
number of parties. Before proceeding to the statement and proof of Lemma 9.1 which
captures our approach, we recall some standard notations that will be used in this section.

Notation. For a set I ⊆ [n], we denote by 1I the n-bit indicator vector (b1, . . . , bn) ∈
{0, 1}n where bi = 1 if i ∈ I and bi = 0 otherwise. Let F be a depth d formula. We say
that the output wire of F has depth 0. For any other wire, we say that it has depth i if it
is an input to a gate whose output wire has depth i−1. For a wire w, that is not an input
wire, we define by children(w) the input wires of the gate of which w is an output wire.
For a subset of input wires S, we define F (S) we be the value obtained by evaluating F
when the input wires of S have value 1 and the other input wires have value 0.

Lemma 9.1. Let j < k < n be integers and suppose that F is a formula on n inputs,
which uses only Thkj gates and uses no constants. If there exists an explicit and local
k-processor protocol generator for the MPC model M that is secure against the structure
{Z ⊆ {p1, . . . , pk} : |Z| < j} then there exists an explicit ZF -secure n-processor protocol
generator also in the MPC model M for a set P = {p1, . . . , pn} of n processors where,

ZF =
{
{pi1 , pi2 , . . . , pik} : k ≤ n and F (1{i1,...,ik}) = 0

}
.

22The actual theorem in [HM00] restricts the simulating protocol generators to [BGW88] protocol
generators. However, as stated in [HM00, Footnote 16], the only property of the [BGW88] protocol
generators that they use is that they are local (see Section 8).

35

Given a specification (π, τ), the protocol generator outputs a protocol π′ that ZF -
securely computes (π, τ) such that the |π′| = cdepth(F) · |π| for a suitable constant c.

Proof. Let Gk be the k-processor protocol generator (that is secure against adversaries
that control less than j processors). Given a specification (π, τ) for the processor set
{p1, . . . , pn, τ}, our protocol generator computes a sequence of protocols π0, . . . , πd, πd+1

and finally outputs the protocol πd+1. Each protocol πi involves a set of processors
Pi (which includes p1, . . . , pn but may include additional processors) and Zi-securely
computes (π, τ), for a specific adversary structure Zi. Note that the protocol generator
only outputs the final protocol πd+1, which only involves the processors P , {p1, . . . , pn}.
The main part of the proof will be to show that πd+1 is indeed secure with respect to the
adversary structure ZF . In other words, that Zd+1 = ZF .

The protocols π1, . . . , πd are constructed recursively, whereas π0 is described directly
and πd+1 is a simple transformation of πd. For i ∈ {0, . . . , d}, the protocol πi involves
the processors p1, . . . , pn (which we call real processors) as well as additional processors
(which we call virtual processors). Each protocol πi is constructed by simulating the
virtual processors in πi−1 by other virtual processors. Only in the very last step (i.e., the
d+ 1-th protocol), all the remaining virtual processors are simulated by real processors.

We associate each wire of F with a (virtual) processor. For a wire w, we abuse
notation and use w to denote both the wire and the associated processor. It will be clear
from the context whether we think of w as a wire or as the associated processor.

We denote by Wi the set of wires that are either of depth (exactly) i or are input
wires and are of depth no larger than i. Note that W0 contains only the output wire of
F whereas Wd includes all of the wires of F .

We proceed to describe the protocols π0, . . . , πd. For every i ∈ {0, . . . , d}, the protocol
πi will involve the (virtual) processors associated with wires in Wi as well as the (real)
processors P . That is, Pi = P ∪Wi.

We first describe the protocol π0. As noted above, π0 involves the processors P0 =
{p1, . . . , pn, w0} where w0 is the processor associated with the output wire (i.e., the single
wire of depth 0). The protocol π0 is simply the protocol π where τ (the trusted processor)
is replaced with w0. Formally, let σ be the processor mapping that maps w0 to τ . Then
π0 = σ(π). Let Z0 = {Z ⊆ P0 : Z ⊆ P}. Since w0 acts as a trusted processor in Z0, the
protocol π0 trivially Z0-privately computes the specification (π, τ).

For i ∈ {1, . . . , d}, we define πi recursively, based on πi−1. Let Ri−1 ⊆ Wi−1 be the
subset of wires of depth i−1 that are not input wires. The protocol πi is constructed using
Theorem 11 where the processors Ri−1 are (simultaneously) replaced by their children.
Specifically, every processor w ∈ Ri−1 is replaced by its own children children(w) ⊆ Wi

using the k-processor local protocol generator Gk. By Theorem 11, the resulting protocol
πi, Zi-privately computes the specification (π, τ) for

Zi ,

{
Z ⊆ Pi :

(
Z ∩ (Pi−1\Ri−1)

)
∪
{
w ∈ Ri−1 :

∣∣∣∣Z ∩ children(w)

∣∣∣∣ ≥ j
}
∈ Zi−1

}
.

The final protocol πd+1 is obtained by renaming every virtual processor w (corre-
sponding to an input wire w) by a real processor. More specifically, if w is connected to
the i-th input variable, then w is simulated by pi. Formally, let φ be a processor mapping

36

that maps every input wire w that is connected to the i-th input variable to pi. We define
πd+1 = φ(πd).

To prove that Zd+1 = ZF , we introduce the notion of a suffix of a formula. We denote
by Fi the i-deep suffix of F . That is, Fi is the formula that contains all the wires in
∪j≤iWj. Note that the gates at depth i are not included. Also, note that the wires Wi

are included in Fi but are not the output of any gate (in Fi). The wires Wi are used as
the input wires of Fi. It is easy to see that F0 is a trivial formula taking 1 input to 1
output. We also point out that Fd is not (necessarily) equal to F since different input
wires of Fd may be wired to the same input variable of F .

Claim 9.2. For every i ∈ {0, . . . , d} it holds that Z ∈ Zi if and only if Fi(Z\P) = 0
where Fi is the i-deep suffix of F .

Proof. We prove the claim by induction. For i = 0, by the definition of Z0, it holds
that Z ∈ Z0 if and only if Z ⊆ P . Note that the formula F0 is just the trivial formula
composed of a single wire that is both the input and output wire. Hence, Z ∈ Z0 if and
only if F0(Z\P) = 0.

Let i ∈ {1, . . . , d} and suppose that the claim holds for i− 1. Let Z ∈ Pi and let

Z ′ ,
(
Z ∩ (Pi−1\Ri−1)

)
∪
{
w ∈ Ri−1 :

∣∣∣∣Z ∩ children(w)

∣∣∣∣ ≥ j
}
. (9.1)

By the definition of Zi, it holds that Z ∈ Zi if and only if Z ′ ∈ Zi−1. By the inductive
hypothesis, Z ′ ∈ Zi−1 if and only if Fi−1(Z ′\P) = 0. Thus, it suffices to show that
Fi(Z\P) = Fi−1(Z ′\P).

Consider the evaluation of the formula Fi on input Z\P . That is, the evaluation of Fi

when the only input wires of Fi that have value 1 are those in Z\P . Consider the values
of the wires Wi−1 during the evaluation of the formula. We show that the wires of Wi−1

that have value 1 are exactly those in Z ′. Fix a wire w ∈ Wi−1. We separate into two
cases:

1. Suppose that w /∈ Ri−1 (i.e., w is an input wire).
(⇒) If w has a value of 1 then w ∈ Z (since only input wires in Z have a value of
1). Thus, by definition of Z ′ and since w /∈ Ri−1, it holds that w ∈ Z ′.
(⇐) On the other hand, if w ∈ Z ′, then since w /∈ Ri−1, it holds that w ∈ Z and
therefore has value 1.

2. Suppose that w ∈ Ri−1.
(⇒) If w has value 1 then, since w is the output of a Thkj gate, at least j of its
children have value 1 and in particular at least j of w’s children are in Z. Thus, by
definition of Z ′, it holds that w ∈ Z ′.
(⇐) On the other hand if w ∈ Z ′ then, by the definition of Z ′, at least j of w’s
children are in Z. The children of w are input wires and therefore have value 1.
Since w’s value is computed as the threshold of at least j of its children, w has
value 1.

Thus, Fi(Z\P) = Fi−1(Z ′\P) and the claim follows.

37

By Claim 9.2, Z ∈ Zd if and only if Fd(Z\P) = 0. By Lemma 8.1,

Zd+1 = φ(Zd) =
{
Z ⊆ P : φ−1(Z) ∈ Zd

}
.

Claim 9.3. For Z ⊆ P it holds that Z ∈ Zd+1 if and only if F (Z) = 0.

Proof. (⇒) Suppose that Z ∈ Zd+1, then Z ⊆ P and φ−1(Z) ∈ Zd. In particular
Fd(φ

−1(Z)\P) = 0. Now consider the evaluation of F on input 1Z . An input wire w that
is connected to the i-th input variable has value 1 if and only if pi ∈ Z. Thus, the input
wires correspond exactly to φ−1(Z)\P . Since the formula proceeds by evaluating Fd on
the input wires we have F (1Z) = 0.

(⇐) If F (Z) = 0, then in particular Fd(φ
−1(Z)) = 0. Hence, φ−1(Z) ∈ Zd and so

Z ∈ Zd+1.

We conclude that the protocol πd+1 ZF -securely computes the specification (π, τ).
Observe that |π0| = |π| and that the Processor Simulation Theorem (Theorem 11) replaces
every statement in πi−1 by a constant number of statements in πi. Therefore, |πd| =
cdepth(F)|π| for some suitable constant c. The protocol πd+1 has the same length as πd since
it is constructed by replacing every statement in πd with a single statement. Therefore,
the protocol generator outputs a protocol of length cdepth(F)|π|.

10 Secure MPC over Blackbox Rings

In this section we consider multiparty computation over any commutative ring (R,+, ∗).
The processors are only given blackbox access to the ring. This model of secure com-
putation was first considered by Cramer et al.[CFIK03] and it generalizes the classical
model of [BGW88], where the computation is over a finite field. We note that the clas-
sical results of [BGW88] for passive and active security do not extend to this model as
they require field operations23. We present a protocol generator based on the threshold
formula to MPC approach introduced in Section 9. We stress that our protocols use the
ring in an entirely blackbox manner, are fairly simple and do not rely on any nontrivial
facts from algebra (as in [CFIK03]).

Formally, we define an MPC model which we call the Ring-MPC model as follows.
Every variable x ∈ X may take values in the ring R. We allow processors to compute
addition and multiplication over the ring. That is, protocols in the Ring-MPC model
support the operator + (resp., ∗), which takes two operands and returns their sum (resp.,
product). Additionally, the processors can sample a random ring element and have access
to the constant −1 (i.e., the additive inverse of the multiplicative neutral element of the
ring R).

10.1 The Passive Model

Our approach to constructing secure multiparty protocol generators is to use Lemma 9.1
to reduce the problem to that of constructing protocols for a constant number of proces-
sors. For the latter, we use Maurer’s [Mau06] simple and elegant protocol generator. We

23Specifically, the ability to find multiplicative inverses is used by Shamir’s secret sharing scheme
[Sha79].

38

note that Maurer’s protocol works over any ring and uses the ring in a blackbox manner.
A downside of Maurer’s protocol generator is that it produces protocols of length expo-
nential in the threshold of tolerated adversaries. However, this does not concern us since
we only need to use the base protocol for a constant number of processors.

In fact, instead of using Maurer’s protocol generator we could also use the classical
[BGW88] protocol. We choose to use Maurer’s protocol generators because (1) they
are significantly simpler than [BGW88] and combined with our approach yield a fairly
simple and straightforward construction of multiparty protocol generators and (2) they
can be implemented over any ring and not just a field. We stress that we improve upon
Maurer’s protocol generators in that we produce protocols of length polynomial, rather
than exponential, in the desired threshold of corrupted processors.

The main caveat of our approach is that it is either (1) based on an unproven conjec-
ture (the majority from majorities conjecture - Conjecture 1) or (2) uses a randomized
construction or (3) supports a non-optimal threshold of corrupt processors.

As noted above, we only require the following special cases of Maurer’s protocol
generator:

Theorem 12 ([Mau06]). There exists an explicit three processor local protocol generator
in the Ring-MPC model that is secure against a single passive adversary.

Using Lemma 9.1 combined with Theorem 12 and our majority formulae constructions
(see Section 6) we obtain Theorems 13, 14 and 15.

Theorem 13. If the majority from majorities conjecture (Conjecture 1) holds then there
exists an explicit protocol generator in the Ring-MPC model that is secure against a passive
adversary that controls any t < n

2
of the n processors.

Given a protocol for n processors that involves t ring operations, the protocol generator
outputs a protocol involving t · poly(n) ring operations.24

Proof. The majority from majorities conjecture implies that there exists an algorithm
that on input n outputs a logarithmic depth formula Fn composed of Maj3 gates (i.e.,
Th3

2 gates) that computes majority. The running time of the algorithm is polynomial
in n.

Given a specification (π, τ) that involves n processors, the protocol generator con-
structs Fn and then applies Lemma 9.1 while using Maurer’s 3-processor local protocol
generator of Theorem 12.

Note that by Theorem 3, the conjecture used in Theorem 13 can be replaced by the
assumption that E does not have 2εn- size circuits for some ε > 0, or even more specifically
on the existence of sub-exponentially hard one-way functions.

As an additional result, using our construction of formulae that compute majority
given sufficient bias (Theorem 2), we obtain the following result which guarantees close
to optimal security.

Theorem 14. There exists an explicit protocol generator in the passive Ring-MPC model
that is secure against any adversary that controls a 1

2
− 2−O(

√
logn) fraction of the n pro-

cessors.
24Note that the number of communicated ring elements is always upper bounded by the amount of

computation.

39

Given a protocol for n processors that involves t ring operations, the protocol generator
outputs a protocol involving t · poly(n) ring operations.

Proof. By Theorem 2, there exists an algorithm that on input n outputs a logarithmic
depth formula Fn composed of Maj3 such that given any string of relative Hamming
weight less than 1

2
− 2−O(

√
logn) as input, the formula Fn outputs 0. The running time of

A is polynomial in n.
Given a specification (π, τ) that involves n processors, the protocol generator con-

structs Fn by running A and then applies Lemma 9.1 while using Maurer’s 3-processor
local protocol generator of Theorem 12.

Alternatively, the logarithmic depth majority formulae can be obtained using the
randomized construction of [Val84] (see also [Gol11b]). This results in the following
randomized construction.

Theorem 15. There exists a randomized construction of a protocol generator in the
passive Ring-MPC model that is secure against an adversary that controls t < n

2
of the n

processors.
Given a protocol for n processors that involves t ring operations, the protocol generator

outputs a protocol involving t · poly(n) ring operations.

Proof. By Theorem 9, there exists a randomized algorithm A that on input n, other than
with exponentially small probability, outputs a logarithmic depth formula Fn composed
of Maj3 gates that computes majority. The running time of A is polynomial in n. As the
advice string for our protocol generator we use the random coins of A.

Given a specification (π, τ) that involves n processors, the protocol generator generates
Fn by running A on the random coins specified by its advice string and then applies
Lemma 9.1 while using Maurer’s local 3-processor protocol generator of Theorem 12.

10.2 The Active Model

In this section we show a protocol generator in the Ring-MPC model that is secure against
an active adversary. To do so we shall once again use Lemma 9.1, only this time we reduce
the n-processor problem to a four processor problem.

In order to solve the four processor case we once again use Maurer’s [Mau06] actively
secure protocol. Indeed, Maurer gives a simple and elegant protocol that is secure against
any adversary that actively controls at most one processor.

Unfortunately, Maurer’s four processor active protocol requires operations not sup-
ported by the blackbox ring model. Specifically, the protocol requires the ability to test
for equality and to choose a majority between three values (where a tie is not possible).

To support Maurer’s protocol we could potentially add these operations to our model.
However, in order to use Lemma 9.1, we would have to be able to simulate such operations
done by a virtual processor using other processors (which does not seem easy).

Instead, we take a different approach. We slightly extend our model by allowing
global variables. That is, variables that exist in the view of all processors (both real and
virtual). Every processor may give a global variable a value (for simplicity we assume
that the value of each global variable is only set once) and read the values of global
variables.

40

In addition, we allow the parties to do arbitrary computation over global variables.
This computation may use oracle access to the underlying ring but only based on the
(adversarially chosen) identifiers of ring elements. In particular the number of oracle
queries may not depend on the underlying ring. We call this the Active Ring-MPC model.

Note that the Processor Simulation Theorem (Theorem 11) and Lemma 9.1 can be
extended to this model. This can be done since an operation over global variables by
a virtual processor can be simulated by having each simulating processor do the exact
same computation. Note that since the variables are global, each simulating processor
has access to these variables.

It is worthwhile to point out that a protocol in the Active Ring-MPC model can be
easily transformed to work in a more standard model in which (1) we allow broadcasts and
(2) allow additional operations such as testing equality and taking majority. However, it
will be useful for us to present our protocols in the Active Ring-MPC and they can later
be adapted to other models.

We give a sketch of the steps required to adapt Maurer’s four processor protocol to
the Active Ring-MPC model:

1. Handling Equality: equality is used in Maurer’s protocol only in the consistency
check of the underlying verifiable secret sharing (VSS) protocol.

In the four processor VSS protocol, a dealer sharing a secret s ∈ R sends shares
s1, s2, s3, s4 to processors p1, p2, p3, p4 such that processor i receives all shares but
si. Then, for every i ∈ {1, 2, 3, 4}, every processor except the i-th processor check
that their received value si is the same. This is done by three pairwise equality
tests.

Suppose that processors j and k holding the respective shares s
(j)
i and s

(k)
i (which

are supposed to be equal to si) want to verify that their share are equal. In Maurer’s
protocol this is done by simply sending each other the shares and broadcasting a
complaint if they differ.

Instead of testing equality, both the j-th and k-th processor publish the difference
s

(j)
i −s

(k)
i between their two shares as a global variable. We argue that this does not

extend the view of the adversary. Indeed, if the adversary controls either processor
i, j or k then its view is not extended since it already knows both s

(j)
i and s

(k)
i . If

the adversary controls the fourth processor then its view is also not extended since
it will always see the constant 0 (recall that since we deal with a four processor
protocol there is only one processor controlled by the adversary).

Suppose that one of these global variables vi,j,k corresponding to a share si was set
to a non-zero value. Then, as in Maurer’s protocol, the dealer publishes si as a
global value which is used by all parties as the correct value of si. Note that the
latter operation can be implemented solely using global variables and computation
over these global variables.

2. Handling Majority: A majority between three value a, b, c ∈ R (where there
is no possibility of a tie) is used in Maurer’s VSS reconstruction phase. In this
protocol each processor computes the majority of three values that were broadcast
by three processors. We replace these broadcasts by publishing global variables and

41

therefore the majority operation is an operation done over global variables which
we allow in our model.

Using this transformation, we can state Maurer’s active protocol in terms of a four-
processor protocol generator:

Theorem 16 ([Mau06]). There exists an explicit four processor local protocol generator
in the Active Ring-MPC model that is secure against an active adversary that controls a
single processor.

Using Theorem 16 combined with Lemma 9.1 and our construction of a logarithmic
depth threshold formula from Th4

2 gates (Theorem 5), we obtain the following result in
the active model.

Theorem 17. There exists an explicit protocol generator in the Active Ring-MPC model
that is secure against an active adversary that controls at most a 1

3
− Ω(1√

logn
) fraction

of the n processors.
Given a protocol for n processors that involves t ring operations, the protocol generator

outputs a protocol involving t · poly(n) ring operations.

Proof. By Theorem 5, there exists an algorithm that on input n outputs a logarithmic
depth formula Fn composed of Th4

2 gates that outputs 0 for any input of relative Hamming
weight 1

3
− Ω(1√

logn
) or less.

Given a specification (π, τ) that involves n processors, the protocol generator generates
Fn and then applies Lemma 9.1 while using Maurer’s 4-processor local protocol generator
of Theorem 16.

10.3 MPC over k-Linear Maps

In this section we describe an extension of Maurer’s protocol generator which supports
blackbox computation over an arbitrary basis of k-linear maps. For simplicity, we restrict
the attention here to k-linear maps over Abelian groups (rather than vector spaces or
modules, over which they are usually defined). The computational model is defined by a
set of finite Abelian groups G1, . . . , Gm written in additive notation and a basis B of k-
linear maps over these groups, where a k-linear map is a function L : Gi1×· · ·×Gik :→ Gi0

with the following property. If all of the input variables but the j-th are held constant,
then the resulting function L′ : Gij → Gi0 satisfies L′(g + g′) = L′(g) + L′(g′) for each
g, g′ ∈ Gij . Note that k′-linear maps for k′ < k (including addition in a single group
Gi) are special cases of k-linear maps. A blackbox computation over B can have inputs
and variables taken from any of the groups Gi and may combine them using an arbitrary
sequence of k-linear maps from B as well as individual group operations.

Our main observation is that by using a simple generalization of Maurer’s protocol,
n = k + 1 processors (resp., n = k + 2 processors) suffice for evaluating an arithmetic
circuit over B with security against a single passively (resp., actively) corrupted processor.
We sketch the approach for the passive case.

As in [Mau06], we represent each group element g ∈ G by k + 1 additive shares
g1, . . . , gk+1 such that processor i holds all shares except gi. Now, suppose we are given k

42

group elements g(1), . . . , g(k) represented in this way, so that g(i) =
∑k+1

j=1 g
(i)
j . To locally

compute additive shares of L(g(1), . . . , g(k)), we write

L(g(1), . . . , g(k)) =
∑

a∈[k+1]k

L
(
g

(a1)
1 , . . . , g

(ak)
k

)
.

Noting that the value of each of the (k + 1)k terms is known to at least one of the k + 1
processors (namely, any processor whose index does not occur in the tuple a corresponding
to the term), we can assign each term to a processor who can evaluate it. Letting each
processor sum the values of the term assigned to it, we get an additive representation
of L(g(1), . . . , g(k)). To continue the computation, each share of the output needs to be
re-shared as in the protocol of [Mau06].

This approach, combined with Theorem 5, yields the following theorem.

Theorem 18. For any constant k ≥ 2, there exists an explicit protocol generator in the
model of MPC over k-linear maps that is secure against a passive (resp., active) adversary
controlling at most a 1

k
− Ω(1√

logn
) (resp., 1

k+1
− Ω(1√

logn
)) fraction of the n processors.

Given a protocol for n processors that involves t group operations, the protocol gener-
ator outputs a protocol involving t · poly(n) group operations.

11 Secure MPC over Groups

In this section we consider a different instantiation of the abstract MPC framework intro-
duced in Section 8, where the computation is done over a finite group while only making
a black-box access to the group. In particular, the number of group elements communi-
cated during the protocol does not depend on the computational complexity of the group
operation. This model was introduced by Desmedt et al. [DPSW07] and further studied
in [SYT08, DPS+12b, DPS12a].

Let (G, ∗) be a fixed finite group written in multiplicative notation. We do not
assume that the group is Abelian (and think of it as being non-Abelian). We instantiate
the framework with variables taking values in G. We allow the processors to compute
the following operations:

• The group operator ∗. That is, given g1, g2 ∈ G a processor can compute the value
g1 ∗ g2. Note that since the group is (usually) non-Abelian, the order of operands
is important.

• The operator invert which given an operand g ∈ G returns the inverse g−1 of g.

• The operator rand that takes no operands and returns a uniformly distributed
group element.

We call this model the Group-MPC model. For brevity, we will sometimes write g1g2

instead of g1 ∗ g2.

43

11.1 The Passive Model

In this section, we directly present a simple 3-processor protocol generator (in the Group-MPC
model) that has passive security against a single adversary. The protocol that we present
is loosely based on a protocol of Feige, Killian and Naor [FKN94] and simplifies a previous
protocol from [DPS+12b].

Let x ∈ G. Recall that a 2-out-of-2 secret sharing of x is the following (random)
process: select x1 ∈R G and set x2 = x−1

1 x such that x = x1x2). We call (x1, x2) a
sharing of x. Note that since the group may be non-Abelian, x1 and x2 play different
roles and are called the left and right shares respectively.

Our protocol consists of three processors p1, p2, p3. The protocol generator will main-
tain the invariant that every variable held in the ideal protocol (i.e., the specification) by
τ is secret shared by p1 and p2 such that p1 holds the left share and p2 holds the right
share. In fact, by “computing a sharing z” we mean that p1 computes z1 and p2 computes
z2 such that z = z1z2 and z1 is uniformly distributed in G.

Before presenting the 3-processor protocol generator, we present two useful sub-
protocols that will be used by the protocol generator. The first protocol is useful for
multiplying two sharings. It is described and proved in Claim 11.1. The second protocol
transforms a sharing (a, b) into a random sharing of ba. It is described and proved in
Claim 11.2.

Claim 11.1 (Share Multiplication Protocol). Let {p1, p2, p3} be a set of three processors
in the Group-MPC model such that p1 gets as input a1, a2 ∈ G, p2 gets as input b1, b2 ∈ G
and p3 has no input. Let z = a1b1a2b2. Then there exists a protocol for computing a
sharing of z such that the view of each processor is statistically independent of the input
of the other processors.

Proof. Consider the following protocol:

1. p1 selects at random r0, r1, r2, r3 ∈R G and sends r0, r1, r2, r3 to p2.

2. p1 computes a′1 = r−1
0 a1r1 and a′2 = r−1

2 a2r3 and sends a′1 and a′2 to p3.

3. p2 computes b′1 = r−1
1 b1r2 and b′2 = r−1

3 b2 and sends b′1 and b′2 to p3.

4. p3 selects r′ ∈R G and sends u1 = a′1b
′
1a
′
2b
′
2r
′ to p1 and u2 = r′−1 to p2.

5. The share of p1 is z1 = r0u1 and the share of p2 is z2 = u2.

Note that (z1, z2) is indeed a sharing of z since z2 is uniformly distributed in G and

z1z2 = r0u1u2 = r0a
′
1b
′
1a
′
2b
′
2 = (r0r

−1
0)a1(r1r

−1
1)b1(r2r

−1
2)a2(r3r

−1
3)b2 = a1b1a2b2 = z.

The view of p1 consists only of a1, a2, r0, r1, r2, r3, z1. Since z1 = r0a1b1a2b2r
′, and since

r′ is not known to p1, the view is statistically independent from b1, b2.
The view of p2 consists only of b1, b2, r0, r1, r2, r3, z2 which is statistically independent

from a1, a2 (since z2 = r′−1).
The view of p3 consists only of r−1

0 a1r1, r
−1
1 b1r2, r

−1
2 a2r3, r

−1
3 b2 which is statistically

independent of a1, b1, a2, b2.

44

Claim 11.2 (Share Inversion Protocol). Let {p1, p2, p3} be a set of three processors in
the Group-MPC model such that p1 gets as input a ∈ G, p2 gets as input b ∈ G and p3 has
no input. Then there exists a protocol for computing a sharing of the inverted product ba
such that the view of each processor is statistically independent of the input of the other
processors.

Proof. Consider the following protocol:

1. p1 samples uniformly at random r1 ∈R G, computes y1 = ar1 and sends r1 to p2

and y1 to p3.

2. p2 samples uniformly at random r2 ∈R G, computes y2 = r2b and sends r2 to p1

and y2 to p3.

3. p3 samples uniformly at random s ∈R G, computes w1 = y2s and w2 = s−1y1. It
sends w1 to p1 and w2 to p2.

4. The share of p1 is z1 = r−1
2 w1 and the share of p2 is z2 = w2r

−1
1 .

Note that:
z1z2 = r−1

2 w1w2r
−1
1 = r−1

2 y2ss
−1y1r

−1
1 = r−1

2 r2bar1r
−1
1 = ba

as required.
The view of p1 consists of a, r1, r2, w1. Since w1 = r2bs and s is unknown to p1, its

view is statistically independent of b.
Similarly, the view of p2 consists of b, r1, r2, w2. Since w2 = sar1 and s is unknown to

p2, its view is statistically independent of a.
Finally, the view of p3 consists of ar1, r2b. Since r1 and r2 are unknown to p3, its view

is statistically independent of a, b.

Using Claims 11.1 and 11.2 we are ready to describe our protocol generator and prove
its security against a single adversary.

Lemma 11.3. There exists a 3-processor local protocol generator in the Group-MPC model
that has passive security against a single adversary.

Proof. Let (π, τ) be a specification for the set of processors {p1, p2, p3}. Given (π, τ) as
input, the protocol generator outputs a protocol π′ by replacing each statement of π that
involves τ by a sub-protocol. Statements that do not involve τ are mapped to π′ as-is.
An invariant that we maintain that in π′, is that if τ has access to some variable x in π
then p1 and p2 have access to a sharing of x in π′.

1. Every statement of the form transmit(pi, τ, z) for i ∈ {1, 2, 3} is mapped to the
following sub-protocol. The processor pi selects at random z1 ∈R G and sets z2 =
z−1

1 z (such that z = z1z2). It sends z1 to p1 and z2 to p2. Note that this process
maintains our invariant that p1 and p2 hold a sharing of z.

2. Every statement of the form transmit(τ, pi, z) for i ∈ {1, 2, 3} is mapped to the
following sub-protocol. Since z is in the view of τ , by our invariant, p1 and p2 have
a sharing (z1, z2) of z. Processor p1 sends z1 to pi and processor p2 sends z2 also to
pi. Processor pi then computes z = z1z2.

45

3. Every statement of the form comp(τ, ∗, z1, z2, z) is mapped to the following sub-
protocol. Since z1 is known to τ , by our invariant, p1 and p2 have a sharing (a1, b1)
of z1 and a sharing (a2, b2) of z2. To compute a sharing of z = z1 ∗ z2 = a1b1a2b2,
p1 and p2 simply run the share multiplication protocol (Claim 11.1).

4. Every statement of the form comp(τ, inverse, z, z′) is mapped to the following sub-
protocol. Since z is known to τ , by our invariant, p1 and p2 have a sharing (z1, z2)
of z. They both invert their shares and run the inversion protocol (Claim 11.2) on
the inverted shares. At the end of the protocol p1 has u1 and p2 has u2 such that
u1u2 = z−1

2 z−1
1 = (z1z2)−1 = z−1.

5. Every statement of the form comp(τ, random, z) is mapped to the following sub-
protocol. Processor p1 samples a random element r1 and p2 samples a random
element r2. They set z = (r1, r2). That is (r1, r2) is a sharing of z.

We proceed to show that π′ securely computes the specification (π, τ) with respect to
an adversary that sees the view of a single processor.

Fix an adversary A′ that sees the view of a single processor p∗ ∈ {p1, p2, p3} in π′ and
fix inputs to the three processors. We consider the statement index function that maps
each statement in π to the corresponding sub-protocol (described above) in π′. We will
show an adversary A such that the joint distribution of its view together with the output
of the uncorrupted processors in π is identical to the view of A′ together with the output
non-corrupted processors in π′.

We proceed to describe what the adversary A does for the i-th statement of π and
argue why its view together with the output of the uncorrupted processors in π remains
identically distributed to that of A′ together with the uncorrupted processors in π′. For
every i ∈ {1, . . . , |π| + 1}, the adversary A performs the following steps for the i-th
statement of π:

1. If the statement (1) does not involve τ or (2) it is of the form transmit(pi, τ, z) or (3)
is of form transmit(τ, pi, z) for pi 6= p∗ then A runs the corresponding sub-protocol
in π′ and performs the same steps that A′ would perform. Since the views of neither
A′ is not extended and that output of all non-corrupt processors is either unchanged
or changed similarly (in case of an output statement), the joint distribution of the
view of A and the output of the uncorrupted processors in π′ remains identical to
that of A′ and the uncorrupted processors in π.

2. If the statement is of the form comp(τ, ∗, z1, z2, z) and p∗ ∈ {p1, p2} then (by
Claim 11.1, the view of A′ is extended by a random share of z. Thus, A extends its
view by simply selecting a uniformly distributed group element. If p∗ = p3 then it
simply performs the same steps that A′ would perform.

3. If the statement is of the form comp(τ, inverse, z1, z) and p∗ ∈ {p1, p2} then the
view of A′ is extended by an independent random sharing of z−1 (by Claim11.2).
Thus, A extends its own view by a uniformly distributed group element. If p∗ = p3

then it simply performs the same steps that A′ would perform.

46

4. If the statement is of the form comp(τ, rand, z) then A simulates the corresponding
sub-protocol in π′. The view of A′ is (possibly extended) by a single share of the
random element z. The adversary A simulates this by choosing a random group
element in G.

5. If the statement is of the form transmit(τ, p∗, z) then A simulates the corresponding
sub-protocol that recovers z from shares held by p1 and p2. It then performs the
same steps as A′ performs with respect to the above simulation. The view of both
A and A′ are extended by z.

Thus, after every statement, the joint distribution of the view of A together with the
output of all uncorrupted processors in π is identically distributed to that of A′ together
with the output of the uncorrupted processors in π′.

Using Lemma 11.3 together with Lemma 9.1 we obtain the following two results:

Theorem 19. There exists a protocol generator in the passive Group-MPC model that is
secure against an adversary that controls a 1

2
− 2−O(

√
logn) fraction of the n processors.

Given a protocol for n processors that involves t group operations, the protocol gener-
ator outputs a protocol involving t · poly(n) group operations.

Proof. By Theorem 2, there exists an algorithm that on input n outputs an O(log n)
depth formula Fn composed of Maj3 gates such that for every input of normalized weight
less than 1

2
−2−O(

√
logn), the formula Fn outputs 0. The theorem follows by an application

of Lemma 9.1 based on the 3-processor local protocol generator of Lemma 11.3.

Theorem 20. If the majority from majorities conjecture (Conjecture 1) holds then there
exists a protocol generator in the Group-MPC model that has passive security against an
adversary that controls at most t < n

2
processors.

Given a protocol for n processors that involves t group operations, the protocol gener-
ator outputs a protocol involving t · poly(n) group operations.

Proof. The majority from majorities conjecture implies the existence of an algorithm that
on input n outputs a logarithmic depth formula that uses only Maj3 gates and computes
majority. The theorem follows from an application of Lemma 9.1 based on the 3-processor
local protocol generator of Lemma 11.3.

Theorem 21. There exists a randomized construction of a protocol generator in the pas-
sive Group-MPC model that is secure against an adversary that controls t < n

2
processors.

Given a protocol for n processors that involves t group operations, the protocol gener-
ator outputs a protocol involving t · poly(n) group operations.

Proof. By Theorem 9, there exists a randomized polynomial-time algorithm that on input
n, other than with exponentially vanishing probability, outputs an O(log n) depth formula
composed of Maj3 gates that computes majority. The theorem follows by an application
of Lemma 9.1 based on the 3-processor local protocol generator of Lemma 11.3.

Theorem 22. There exists a protocol generator in the passive Group-MPC model that is
secure against an adversary that controls t < n

2
processors.

Given a protocol for n processors that involves t group operations, the protocol gener-
ator outputs a protocol involving t · nO(logn) group operations.

47

Proof. By Lemma 6.1, there exists a (deterministic) polynomial-time algorithm that on
input n, runs in time nO(logn), and outputs an O(log2 n) depth formula (of size nO(logn))
composed of Maj3 gates that computes majority. The theorem follows by an application
of Lemma 9.1 based on the 3-processor local protocol generator of Lemma 11.3.

11.2 The Active Model

In a recent work, Desmedt et al. [DPS12a], gave a protocol (or in our terminology, a
protocol generator) in the Group-MPC model which is actively secure against any Q3

adversary. However, the complexity of their protocol generator is quadratic in the number
of maximal sets in the adversary structure, which in the case of thresholds, is exponential
in the number of processors. In this section we address an open problem stated by
[DPS12a] by showing a protocol generator in the Group-MPC that has active security
against threshold adversaries where the complexity of the protocol is polynomial in the
number of processors. Our protocol is actively secure against any adversary that controls
at most a 1

3
−Ω(1√

logn
) fraction of the n processors (in contrast to the optimal threshold

of 1
3
− Ω(1

n
)).

We basically use the same processor simulation approach formalized in Section 9 and
used in previous sections. Recall that in order to use this approach we must rely on
a protocol-generator for a constant number of processors. For this we simply use an
instantiation of the protocol of Desmedt et al. [DPS12a] for four processors that is secure
against an adversary that actively control one processor.

Unfortunately, as in the case of Maurer’s four processor active protocol in the Ring-MPC
model (see Section 10.2), the [DPS+12b] protocol uses operations that are not supported
by our model. Specifically equality testing and computing majority.

As in Section 10.2, we extend the Group-MPC model by allowing global variables and
allowing arbitrary computation over global variables. This computation may use oracle
access to the underlying group but only based on the (adversarially chosen) identifiers
of group elements. In particular, the number of oracle queries may not depend on the
underlying ring. We call this the Active Group-MPC model.

Note that a protocol in the Active Group-MPC model can be easily transformed to
work in a more standard model in which (1) we allow broadcasts and (2) allow additional
operations such as testing equality and taking majority vote.

Below, we give a sketch of the steps required to adapt the four processor [DPS+12b]
protocol to the Active Group-MPC model:

1. Equality type 1: The first type of equality test that is used in the [DPS+12b]
protocol in the consistency check of the underlying VSS and consistency checks in
the NodeMult protocol. The problem and its solution are almost identical to that
encountered in Section 10.2.

In this type of equality, a dealer send secret shares of some value and the receiving
parties check the pairwise consistency of their shares. Specifically, suppose that
processor j and k are sent respective shares s

(j)
i and s

(k)
i (which are supposed to

be equal to a share si) and want to verify that their share are equal. In Maurer’s
protocol this is done by simply sending each other the shares and broadcasting a
complaint if they differ.

48

Instead of testing equality, both the j-th and k-th processor publish the ratio s
(j)
i ∗

(s
(k)
i)−1 between their two shares as a global variable. We argue that this does not

extend the view of the adversary. Indeed, if the adversary controls either processor
i, j or k then its view is not extended since it already knows both s

(j)
i and s

(k)
i . If

the adversary controls the fourth processor then its view is also not extended since
it will always see the neutral element of G (recall that since we deal with a four
processor protocol there is only one processor controlled by the adversary).

Suppose that one of these global variables vi,j,k corresponding to a share si was set
to a value not-equal to the neutral element. Then, as in the [DPS12a] protocol,
the dealer publishes si as a global value which is used by all parties as the correct
value of si. Note that the latter operation can be implemented solely using global
variables and computation over these global variables.

2. Equality type 2: The second type of equality operation occurs in the second step
of the NodeMult protocol. However, in this step after a processor tests whether
a = b, if a 6= b it just broadcasts the value a ∗ b−1. Thus, instead of testing a = b
we just set a ∗ b−1 as a global variable and use it as specified.

3. Equality type 3: The third type of equality operations occurs is on global vari-
ables. Since this computation is done over global variables we do not need to change
it (recall that we allow arbitrary computation over global variables).

4. Majority: A majority between three values a, b, c ∈ R (where there is no possibility
of a tie) is used in the [DPS12a] protocol only when a processor computes the
majority of three values that were broadcast by three processors. We replace these
broadcasts by publishing global variables and therefore the majority operation is
an operation done over global variables which we allow in our model.

Thus, we have the following theorem:

Theorem 23 ([DPS12a]). There exists an explicit four processor local protocol generator
in the Active Group-MPC model that is secure against an active adversary that controls a
single processor.

Using Theorem 16 combined with Lemma 9.1 and our construction of a logarithmic
depth threshold formula from Th4

2 gates (Theorem 5), we obtain the following result in
the active model.

Theorem 24. There exists an explicit protocol generator in the Active Group-MPC model
that is secure against an active adversary that controls at most 1

3
− Ω(1√

logn
) of the n

processors.
Given a protocol for n processors that involves t group operations, the protocol gener-

ator outputs a protocol involving t · poly(n) group operations.

Proof. By Theorem 5, there exists an algorithm that on input n outputs a logarithmic
depth formula Fn composed of Th4

2 gates that outputs 0 for any input of normalized
Hamming weight 1

3
− Ω(1√

logn
) or less.

Given a specification (π, τ) that involves n processors, the protocol generator generates
Fn and then applies Lemma 9.1 while using the [DPS12a] four processor local protocol
generator of Theorem 23.

49

11.3 Two-Party Protocols

In this section we establish the first feasibility results for secure two-party computation
over black-box groups. The result we get for the active corruption model illustrates the
usefulness of the “threshold from threshold” technique even in the context of two-party
cryptography.

Instead of basing our protocols on concrete cryptographic assumptions, we follow the
convention of allowing the parties access to an ideal oblivious transfer oracle. Recall that
an oblivious transfer (OT) [Rab81, EGL85] oracle computes a two-party function that
allows a receiver to obtain one out of two strings held by a sender, without revealing
to the sender which of the two strings it chose. We refer to secure computation in the
presence of an ideal OT oracle as secure computation in the OT-Hybrid model. The
advantage of working in the OT-Hybrid model is that it enables unconditional security.
Using composition theorems for secure computation, the ideal OT oracle can be replaced
by (a black-box access to) any secure OT implementation.

Our two-party protocols are statistically secure in the OT-Hybrid model. That is, the
parties are given a security parameter 1k and we require that for every adversary, there
exists an adversary in the ideal world whose view is exp(−k)-close to that of the real
world adversary. The running time of the two parties may depend polynomially on k
and polylogarithmically on (an upper bound on) the group size. Since the latter may
be inferred from the length of the identifiers of group elements in the standard generic
group model, this convention does not violate the “black-box” aspect of the model (and
in particular does not allow the protocol to learn the group structure).

In Section 11.3.1 we show a secure a two party passive protocol and in Section 11.3.2 we
show, using the compiler of Ishai, Prabhakaran and Sahai [IPS08], how to transform the
passive protocol together with the unconditionally secure active protocol of Section 11.2
into a two party actively secure protocol.

11.3.1 A Two-Party Passively Secure Protocol

We denote the two parties by sender and receiver. The secure evaluation of a general
circuit over a group reduces to securely computing an iterated group product of the form
c = a1b1a2b2 · · · ambm where ai are the sender’s inputs, bi are the receiver’s inputs, and
the receiver gets the output c. (Indeed, this suffices for generating random shares of the
product xy given shares of x and shares of y.)

We will show a protocol for computing such an iterated group product in the OT-Hybrid
model where the view of each party can be simulated, up to 2−Ω(k) statistical distance,
given its input and output.

Before proceeding to the protocol we state and prove a lemma that will be useful in the
analysis of our protocol. The lemma generalizes a lemma of Impagliazzo and Naor [IN96]
on the subset sum problem. Recall that the statistical distance between two distributions
D1,D2 with support S is defined as SD(D1,D2) , maxA⊆S |Pr[D1 ∈ S]− Pr[D2 ∈ S]|.
Lemma 11.4. Let G be a finite group, let k > 0 be a security parameter and let s =
4k + log(|G|). Then, except for a 2−k fraction of r1, . . . , rs ∈ G it holds that:

SD(rw1
1 · · · rwss , g) < 2−k,

where w1, . . . , ws are uniformly distributed bits and g is uniformly distributed in G.

50

Proof. Consider the universal hash function family {hr1,...,rs : {0, 1}s → G}r1,...,rs∈G de-
fined as hr1,...,rs(w) =

∏s
i=1 r

wi
i . Then:

E
r1,...,rs∈G

[
SDw∈{0,1}s

g∈G
(hr1,...,rs(w), g)

]
= SDg,r1,...,rs∈G

w∈{0,1}s

(
(r1, . . . , rs, hr1,...,rs(w)), (r1, . . . , rs, g)

)
which, by the Leftover Hash Lemma25 [HILL99], is at most

√
|G|
2s

= 2−2k. The lemma

follows by an application of Markov’s inequality.

Lemma 11.4 is used to get a statistical secret sharing of group elements in the following
way. The receiver publishes s = 4k+log |G| public random group elements r1, ..., rs. Now,
for any w ∈ {0, 1}s we can represent a group element g using (w, g′) where g′ = g ∗

∏
rwii .

By the lemma, if we pick w at random then, except with 2−k probability over the choice
of ri, the element g′ is 2−k-close to uniform even when conditioned on the ri. This means
that (w, g′) form a statistical 2-out-of-2 secret sharing of g given public randomness
(r1, . . . , rs).

Using the above method for secret sharing group elements, the iterated group product
protocol proceeds as follows:

1. The receiver picks r1, ..., rs ∈ G uniformly at random and sends r1, . . . , rs to the
sender.

2. Using these ri, the receiver splits each of his inputs bi into (wi, b
′
i) and send b′i to

the sender. By Lemma 11.4, the view of the sender can be simulated up to 2−Ω(k)

statistical distance without knowing bi.

3. The sender can now write c as an iterated group product in which some slots
include his own inputs ai, some slots include the values b′i, and the rest include one
of two options: either 1 or an element r−1

j . The choice between the two options is
determined by the bit wi known to the receiver.

4. The sender randomizes this product using Kilian’s group product randomization
technique [Kil88]. That is, we first write the product as g1(c1) ∗ · · · ∗ gn(cn) where
each gi is some function from {0, 1} to G known to the sender and ci is a choice bit
known to the receiver. The sender then picks random group elements q1, ..., qn−1

and lets g′1(c1) = g1(c1)q1, g
′
2(c2) = q−1

1 g2(c2)q2, . . . , g
′
n(cn) = q−1

n−1gn(cn).

5. The sender and receiver invoke the OT oracle n times, delivering to the receiver the
values g′i(ci) where ci are the receiver’s choice bits. The n received group elements
contain no more information than z =

∏
gi(ci).

The above protocol implies the following theorem.

Theorem 25. Let f be a two-party functionality defined by a circuit of size s over a
group G. Then f can be realized in the OT-Hybrid model by a protocol which has statistical
security against one passively corrupted party. The protocol requires a total of O((k +
log |G|)s) group operations for achieving 2−k simulation error.

25A simplified version of the Leftover Hash Lemma states that if h is selected at random from a
universal hash function family from X to Y then the distribution (h, h(X)) and (h,Y) are at most√
|Y|
|X | -close (see, e.g., [Gol08, Appendix D]).

51

11.3.2 A Two Party Actively Secure Protocol

To get active security in the two-party model, we use the general compiler of [IPS08].
This compiler yields a 2-party protocol for a function f with statistical security against
active corruption in the OT-hybrid model by making a blackbox use of the following two
ingredients:

1. an “outer protocol” for f which employs k auxiliary parties (servers) in addition
to the two parties (clients) holding the inputs; this protocol should be perfectly
or statistically secure against active corruption provided that only some constant
fraction the servers can be corrupted; and

2. an “inner protocol” for implementing a reactive two-party functionality (“inner
functionality”) corresponding to the local computation of each server, in which the
server’s state is secret-shared between the two clients. In contrast to the outer
protocol, this protocol only needs to be secure against passive corruption. The
inner protocol can be implemented in the OT-Hybrid model.

We instantiate the outer protocol with the efficient protocol from Theorem 24 and the
inner protocol with the two-party protocol from Theorem 25. The details of this combi-
nation are analogous to those used for secure two-party computation over black-box rings
in [IPS09]. The crucial observation is that when the parties in the outer protocol only
make a blackbox use of a group G, then the functionality realized by the inner protocol is
also cast in the blackbox model and so parties in the inner protocol can make a blackbox
use of G. We refer the reader to [IPS09] for more details.

The result for the active two-party model is summarized by the following theorem.

Theorem 26. Let f be a two-party functionality defined by a circuit of size s over a
group G. Then f can be realized in the OT-Hybrid model by a protocol which has statistical
security against one actively corrupted party. The protocol requires a total of poly(k) ·
log |G| · s group operations for achieving 2−k simulation error.

References

[AB09] Sanjeev Arora and Boaz Barak. Computational Complexity - A Modern Ap-
proach. Cambridge University Press, 2009.

[AKS83] Miklós Ajtai, János Komlós, and Endre Szemerédi. An o(n log n) sorting
network. In STOC, pages 1–9, 1983.

[AR63] Sheldon Akers and Theodore Robbins. Logical design with three-input ma-
jority gates. Computer Design, 45(3):12–27, 1963.

[BGW88] Michael Ben-Or, Shafi Goldwasser, and Avi Wigderson. Completeness theo-
rems for non-cryptographic fault-tolerant distributed computation (extended
abstract). In STOC, pages 1–10, 1988.

[BIW10] Omer Barkol, Yuval Ishai, and Enav Weinreb. On locally decodable codes,
self-correctable codes, and t-private PIR. Algorithmica, 58(4):831–859, 2010.

52

[BM84] Manuel Blum and Silvio Micali. How to generate cryptographically strong
sequences of pseudo-random bits. SIAM J. Comput., 13(4):850–864, 1984.

[BM92] Peter Bro Miltersen. Lecutre notes. Available from author, 1992.

[Bra87] Gabriel Bracha. An O(log n) expected rounds randomized byzantine generals
protocol. J. ACM, 34(4):910–920, 1987.

[Can00] Ran Canetti. Security and composition of multiparty cryptographic protocols.
J. Cryptology, 13(1):143–202, 2000.

[Can01] Ran Canetti. Universally composable security: A new paradigm for crypto-
graphic protocols. In FOCS, pages 136–145, 2001.

[CCD88] David Chaum, Claude Crépeau, and Ivan Damg̊ard. Multiparty uncondition-
ally secure protocols (extended abstract). In STOC, pages 11–19, 1988.

[CDN12] Ronald Cramer, Ivan Damg̊ard, and Jesper Buus Nielsen. Secure Multiparty
Computation and Secret Sharing - An Information Theoretic Appoach. 2012.
Book draft, available at http://www.daimi.au.dk/∼ivan/MPCbook.pdf.

[CFF+05] Jeffrey Considine, Matthias Fitzi, Matthew K. Franklin, Leonid A. Levin,
Ueli M. Maurer, and David Metcalf. Byzantine agreement given partial broad-
cast. J. Cryptology, 18(3):191–217, 2005.

[CFIK03] Ronald Cramer, Serge Fehr, Yuval Ishai, and Eyal Kushilevitz. Efficient
multi-party computation over rings. In EUROCRYPT, pages 596–613, 2003.

[Cha89] David Chaum. The spymasters double-agent problem: Multiparty compu-
tations secure unconditionally from minorities and cryptographically from
majorities. In CRYPTO, pages 591–602, 1989.

[DIK+08] Ivan Damg̊ard, Yuval Ishai, Mikkel Krøigaard, Jesper Buus Nielsen, and
Adam Smith. Scalable multiparty computation with nearly optimal work
and resilience. In CRYPTO, pages 241–261, 2008.

[Dol82] Danny Dolev. The byzantine generals strike again. J. Algorithms, 3(1):14–30,
1982.

[DPS12a] Yvo Desmedt, Josef Pieprzyk, and Ron Steinfeld. Active security in multi-
party computation over black-box groups. In SCN, pages 503–521, 2012.

[DPS+12b] Yvo Desmedt, Josef Pieprzyk, Ron Steinfeld, Xiaoming Sun, Christophe Tar-
tary, Huaxiong Wang, and Andrew Chi-Chih Yao. Graph coloring applied
to secure computation in non-abelian groups. J. Cryptology, 25(4):557–600,
2012.

[DPSW07] Yvo Desmedt, Josef Pieprzyk, Ron Steinfeld, and Huaxiong Wang. On secure
multi-party computation in black-box groups. In CRYPTO, pages 591–612,
2007.

53

[EGL85] Shimon Even, Oded Goldreich, and Abraham Lempel. A randomized protocol
for signing contracts. CACM: Communications of the ACM, 28, 1985.

[FKN94] Uriel Feige, Joe Kilian, and Moni Naor. A minimal model for secure compu-
tation (extended abstract). In STOC, pages 554–563, 1994.

[FM98] Matthias Fitzi and Ueli M. Maurer. Efficient byzantine agreement secure
against general adversaries. In DISC, pages 134–148, 1998.

[FM00] Matthias Fitzi and Ueli M. Maurer. From partial consistency to global broad-
cast. In STOC, pages 494–503, 2000.

[GM96] Arvind Gupta and Sanjeev Mahajan. Using amplification to compute major-
ity with small majority gates. Computational Complexity, 6(1):46–63, 1996.

[GM98] Juan A. Garay and Yoram Moses. Fully polynomial byzantine agreement for
n > 3t processors in t+ 1 rounds. SIAM J. Comput., 27(1):247–290, 1998.

[GMW87] Oded Goldreich, Silvio Micali, and Avi Wigderson. How to play any mental
game or A completeness theorem for protocols with honest majority. In
STOC, pages 218–229. ACM, 1987.

[Gol04] Oded Goldreich. Foundations of Cryptography: Volume 2, Basic Applications.
Cambridge University Press, New York, NY, USA, 2004.

[Gol08] Oded Goldreich. Computational complexity - a conceptual perspective. Cam-
bridge University Press, 2008.

[Gol11a] Oded Goldreich. A sample of samplers: A computational perspective on sam-
pling. In Oded Goldreich, editor, Studies in Complexity and Cryptography,
volume 6650 of Lecture Notes in Computer Science, pages 302–332. Springer,
2011.

[Gol11b] Oded Goldreich. Valiant’s polynomial-size monotone formula for majority.
http://www.wisdom.weizmann.ac.il/~oded/PDF/mono-maj.pdf, 2011.

[HIKN08] Danny Harnik, Yuval Ishai, Eyal Kushilevitz, and Jesper Buus Nielsen. OT-
combiners via secure computation. In TCC, pages 393–411, 2008.

[HILL99] Johan H̊astad, Russell Impagliazzo, Leonid A. Levin, and Michael Luby. A
pseudorandom generator from any one-way function. SIAM Journal on Com-
puting, 28:12–24, 1999.

[HM00] Martin Hirt and Ueli M. Maurer. Player simulation and general adversary
structures in perfect multiparty computation. J. Cryptology, 13(1):31–60,
2000.

[HMP06] Shlomo Hoory, Avner Magen, and Toniann Pitassi. Monotone circuits for the
majority function. In APPROX-RANDOM, pages 410–425, 2006.

54

http://www.wisdom.weizmann.ac.il/~oded/PDF/mono-maj.pdf

[IKOS09] Yuval Ishai, Eyal Kushilevitz, Rafail Ostrovsky, and Amit Sahai. Zero-
knowledge proofs from secure multiparty computation. SIAM J. Comput.,
39(3):1121–1152, 2009.

[IN96] Russell Impagliazzo and Moni Naor. Efficient cryptographic schemes provably
as secure as subset sum. J. Cryptology, 9(4):199–216, 1996.

[INW94] Russell Impagliazzo, Noam Nisan, and Avi Wigderson. Pseudorandomness
for network algorithms. In Proceedings of the 26th Annual ACM Symposium
on Theory of Computing, STOC 1994, pages 356–364. ACM, 1994.

[IPS08] Yuval Ishai, Manoj Prabhakaran, and Amit Sahai. Founding cryptography on
oblivious transfer - efficiently. In CRYPTO, pages 572–591, 2008. Preliminary
full version in http://www.cs.illinois.edu/∼mmp/research.html.

[IPS09] Yuval Ishai, Manoj Prabhakaran, and Amit Sahai. Secure arithmetic com-
putation with no honest majority. In TCC, pages 294–314, 2009.

[Kil88] Joe Kilian. Founding cryptography on oblivious transfer. In STOC, pages
20–31, 1988.

[KLR10] Eyal Kushilevitz, Yehuda Lindell, and Tal Rabin. Information-theoretically
secure protocols and security under composition. SIAM J. Comput.,
39(5):2090–2112, 2010.

[KPS85] Richard M. Karp, N. Pippinger, and Nicholas Sipser. A time-randomness
tradeoff. In AMS Conference on Probabilistic Computational Complexity,
1985.

[LOP11] Yehuda Lindell, Eli Oxman, and Benny Pinkas. The IPS compiler: Optimiza-
tions, variants and concrete efficiency. In CRYPTO, pages 259–276, 2011.

[LRM10] Christoph Lucas, Dominik Raub, and Ueli M. Maurer. Hybrid-secure
mpc: trading information-theoretic robustness for computational privacy. In
PODC, pages 219–228, 2010.

[Mau06] Ueli M. Maurer. Secure multi-party computation made simple. Discrete
Applied Mathematics, 154(2):370–381, 2006.

[MV13] Eric Miles and Emanuele Viola. Shielding circuits with groups. IACR Cryp-
tology ePrint Archive, 2013:1, 2013. To appear in STOC 2013.

[Nis92] Noam Nisan. Pseudorandom generators for space-bounded computation.
Combinatorica, 12(4):449–461, 1992.

[NW94] Noam Nisan and Avi Wigderson. Hardness vs randomness. J. Comput. Syst.
Sci., 49(2):149–167, 1994.

[PSL80] Marshall C. Pease, Robert E. Shostak, and Leslie Lamport. Reaching agree-
ment in the presence of faults. J. ACM, 27(2):228–234, 1980.

55

[Rab81] Michael O. Rabin. How to exchange secrets by oblivious transfer. Technical
Report TR-81, Harvard Aiken Computation Laboratory, 1981.

[RBO89] Tal Rabin and Michael Ben-Or. Verifiable secret sharing and multiparty
protocols with honest majority (extended abstract). In David S. Johnson,
editor, STOC, pages 73–85. ACM, 1989.

[Sha79] Adi Shamir. How to share a secret. Commun. ACM, 22(11):612–613, 1979.

[SYT08] Xiaoming Sun, Andrew Chi-Chih Yao, and Christophe Tartary. Graph design
for secure multiparty computation over non-abelian groups. In ASIACRYPT,
pages 37–53, 2008.

[Uma03] Christopher Umans. Pseudo-random generators for all hardnesses. J. Com-
put. Syst. Sci., 67(2):419–440, 2003.

[Vad11] Salil P. Vadhan. Pseudorandomness. Foundations and Trends in Theoretical
Computer Science, 2011.

[Val84] Leslie G. Valiant. Short monotone formulae for the majority function. J.
Algorithms, 5(3):363–366, 1984.

[Yao82a] Andrew Chi-Chih Yao. Protocols for secure computations (extended ab-
stract). In FOCS, pages 160–164, 1982.

[Yao82b] Andrew Chi-Chih Yao. Theory and applications of trapdoor functions (ex-
tended abstract). In FOCS, pages 80–91, 1982.

[Zwi96] Uri Zwick. Lecture notes. http://www.cs.tau.ac.il/~zwick/

circ-comp-new/six.ps, 1996.

56

ECCC ISSN 1433-8092

http://eccc.hpi-web.de

http://www.cs.tau.ac.il/~zwick/circ-comp-new/six.ps
http://www.cs.tau.ac.il/~zwick/circ-comp-new/six.ps

