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Abstract

The Minimum Distance Problem (MDP), i.e., the computational task of evaluating (exactly
or approximately) the minimum distance of a linear code, is a well known NP-hard problem
in coding theory. A key element in essentially all known proofs that MDP is NP-hard is the
construction of a combinatorial object that we may call a locally dense code. This is a linear
code with large minimum distance d that admits a ball of smaller radius r < d containing an
exponential number of codewords, together with some auxiliary information used to map these
codewords.

In this paper we provide a generic method to explicitly construct locally dense binary codes,
starting from an arbitrary linear code with sufficiently large minimum distance. Instantiating
our construction with well known linear codes (e.g., Reed-Solomon codes concatenated with
Hadamard codes) yields a simple proof that MDP is NP-hard to approximate within any constant
factor under deterministic polynomial time reductions, simplifying and explaining recent results
of Cheng and Wan (STOC 2009 / IEEE Trans. Inf. Theory, 2012) and Khot and Austrin
(ICALP 2011).

Our work is motivated by the construction of analogous combinatorial objects over integer
lattices, which are used in NP-hardness proofs for the Shortest Vector Problem (SVP). We
show that for the max norm, locally dense lattices can also be easily constructed. However,
all currently known constructions of locally dense lattices in the standard Euclidean norm are
probabilistic. Finding a deterministic construction of locally dense Euclidean lattices, analogous
to the results presented in this paper, would prove the NP-hardness of approximating SVP under
deterministic polynomial time reductions, a long standing open problem in the computational
complexity of integer lattices.

1 Introduction

A locally dense code (or lattice) is a linear code (resp. lattice) L with large minimum distance d
admitting a ball B(s, r) of smaller1 radius r < d centered around s containing a large (exponential
in the dimension) number of codewords. Applications of locally dense codes often require not only
knowledge of the code, but also the center s, as well as some auxiliary information T used to index
the codewords in B(s, r). (See Section 2 for a formal definition.) The construction of locally dense
codes is a recurring problem in the computational study of linear codes and point lattices. Beside
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1Clearly, for the ball to contain more than a single codeword, it must be r ≥ d/2. Here we are interested in balls
with radius not much bigger than that, say r < γ · d for some constant 1/2 < γ < 1.
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obvious connections to the problems of designing good spherical codes, and providing explicit
upper bounds on the list decoding radius of the code L, locally dense codes play a key role in
the computational study of the two most famous problems in coding theory (and their analogous
problem on integer lattices) as discussed below.

Lattice and Coding Problems The Nearest Codeword Problem, given a linear code C over a
finite field and a target vector t, asks to find the codeword in C (approximately) closest to t. The
Minimum Distance Problem (MDP), given a linear code C over a finite field, asks to compute (or
approximate) the minimum distance between any two codewords in C, and sometime also a pair
of codewords achieving this distance. Equivalently, by linearity, the MDP can be defined as the
problem of computing (the length of) a nonzero codeword closest to the origin, and can be regarded
as the homogeneous version of NCP. MDP and NCP are directly related to the computational
problems of estimating the error correction capability of a code, and recovering from errors, and
are arguably the most important computational problems in coding theory. The analogous problems
over integer lattices are the famous Shortest Vector Problem (SVP) and the Closest Vector Problem
(CVP) arising in many algorithmic applications (e.g., factoring polynomials over the rationals [12]
and integer programming with a constant number of variables [13, 9]), as well as the foundation of
lattice based cryptography [16, 17].

The homogeneous (MDP, SVP) and inhomogeneous (NCP, CVP) problems are closely related.
On the one hand the homogeneous problems can be reduced in polynomial time to the inhomoge-
neous ones [7], showing that NCP and CVP are at least as hard as MDP and SVP. In the other
direction, all NP-hardness proofs for the homogeneous problems [19, 1, 3, 14, 6, 4, 10, 11, 8, 15]
work essentially by reduction from (variants of) their inhomogeneous counterparts, which are well
known NP-hard problems [18, 2, 5]. In most of these proofs (sometime implicitly) a locally dense
code (L, s,T) is used to embed an inhomogeneous (NCP or CVP) instance (C, t) in a higher dimen-
sional space, so to increase the minimum distance of C, while keeping the target t close to the code.
Ultimately, this allows to find the codeword closest to the target t by looking for a short vector in
the code generated by both C and t, thereby reducing NCP to MDP (and variants of CVP to SVP
for lattices.)

Interestingly, the use of locally dense codes is also what makes most of these proofs probabilistic:
[1, 3, 14, 6, 10, 8, 15] all provide (sometime implicitly) deterministic constructions of a globally2

dense code L, and then probabilistically find a dense ball B(s, r) (i.e., a ball containing many
codewords) by picking its center s at random. As a result, [1, 3, 14, 6, 10, 8, 15] only show that
MDP and SVP are NP-hard under randomized reductions.

Recently, for the case of codes over finite fields, Cheng and Wang [4] were able to derandomize
the NP-hardness proof of [6], giving an efficient deterministic construction of locally dense codes,
and thereby proving that MDP is NP-hard to approximate3 under the standard notion of deter-
ministic polynomial time reductions. The construction of [4] is by no means simple, making use of
advanced mathematical tools like Weil’s character sum bound on the affine line. The NP-hardness
result from [4] was then extended to asymptotically good codes by Khot and Austrin [11], who
also gave a mathematically more elementary proof, but did not provide an explicit construction of

2Here, by “globally dense”, we mean a linear code with minum distance d such that the number of codewords in
a ball B(s, r) of radius r < d is high in expectation, when the center s is chosen uniformly at random.

3For the exact version of this problem, hardness under deterministic reductions had already been proved by Vardy
[19] using a comparatively simpler construction.
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locally dense codes.
For the case of lattices, finding deterministic constructions analogous to locally dense codes and

proving the NP-hardness of SVP (even in the exact version of the problem) under deterministic
reductions is still open. Interestingly, in the most recent work on the NP-hardness of SVP [15],
randomness is used exclusively for the construction of locally dense lattices, and moreover these
lattices are built from binary linear codes. (As usual, the construction of the lattice L itself
is deterministic, and randomness is used to find a good center s.) This suggests that a better
understanding of locally dense code constructions may ultimately lead to deterministic hardness
results for SVP.

Our contribution The results presented in this paper started as an attempt to use the methods
of [11] to give an explicit construction of locally dense codes, without resorting to the number
theoretic techniques of [4]. Perhaps surprisingly, we obtain a construction that is at the same time
simple and general: we show how to (deterministically and efficiently) transform any linear code
with sufficiently large minimum distance (namely, minimum distance d > n/

√
6) into a locally dense

code containing an exponential number of codewords within distance r < d from a known, fixed
center s, independent of the original code. Moreover, as the distance of the original code approaches
d ≈ n/2, the radius-to-distance ratio of the resulting locally dense code approaches (r/d) ≈ 2/3.
Our construction comes with the required auxiliary information needed to derandomize the NP-
hardness proof in [6], yielding a new, simple proof that MDP is NP-hard to approximate within any
constant factor under deterministic polynomial time reductions. While the NP-hardness of MDP
was already known [6, 4, 11], we believe that our construction improves our understanding of this
important result, and the techniques may find other applications, e.g., in derandomizing similar
constructions for integer lattices [14, 15].

Organization The rest of the paper is organized as follows. In Section 2 we provide some
background, and a formal definition of locally dense codes as needed in the NP-hardness proof of
[6]. In Section 3 we present and analyze our main result on transforming arbitrary binary linear
codes with sufficiently large minimum distance into codes that are locally dense around a known
center. Section 4 describes known results and open problems about the deterministic construction
of locally dense lattices, and possible avenues to prove the NP-hardness of SVP (in the Euclidean
norm) under deterministic polynomial time reductions.

2 Background

In this section we introduce the notation used in the rest of the paper, give some background on
coding theory and formally define the computational problems we study.

Notation We write x = (x1, . . . , xn) for the column vector with coordinates xi, i = 1, . . . , n, and
A = [a1, . . . ,an] for the matrix with columns ai, i = 1, . . . , n. The all one vector with n coordinates
is denoted un = (1, . . . , 1), or just u when n is clear from the context. The transpose of a matrix
A is written AT .

For any prime power q, let Fq be the finite field with q elements. The Hamming norm (or weight)
of a vector x ∈ Fnq is the number of nonzero coordinates ‖x‖H = |{i:xi 6= 0}|. The Hamming ball
of radius r centered around s ∈ Fnq is BH(s, r) = {x ∈ Fnq : ‖x − s‖H ≤ r}. For any two matrices
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A ∈ Fn×mq and B = Fh×kq , the tensor product of A and B is the matrix A⊗B ∈ Fnh×mkq obtained
by replacing each entry ai,j of A with the matrix ai,j · B. In particular, for any vector x ∈ Fnq ,

uk ⊗ x ∈ Fknq is the vector obtained by concatenating k copies of x and has norm ‖uk ⊗ x‖H =
k · ‖x‖H .

Coding Theory A q-ary linear code of length n, dimension k and minimum distance (at least)
d (written C[n, k, d]q) is a k-dimensional linear subspace C ⊆ Fnq such that ‖x‖H ≥ d for all nonzero
codewords x ∈ C \ {0}. A linear code C[n, k, d]q is usually represented by a generating matrix
C ∈ Fn×kq such that the columns of C are a basis for C as a vector space over Fq, i.e., the columns

of C are linearly independent and C = CFkq . A basis C is in systematic form if the first k rows

of C form the identity matrix I, i.e., CT = [I,C′] for some C′ ∈ Fk×(n−k)q . Any basis can be put
in systematic form by possibly permuting the coordinates (so that the first k rows are linearly
independent) and performing elementary column operations.

Let A and B be bases for linear codes over Fq with minimum distance distH(A) and distH(B)
respectively. The tensor product of the two codes is the linear code generated by the matrix A⊗B.
It is easy to check that this code does not depend on the choice of the bases A,B, and it has
minimum distance distH(A⊗B) = distH(A) · distH(B).

In instantiating our results we will make use of two well known linear codes. The Reed-Solomon
code RS[q, k, q−k+1]q is the linear code over Fq consisting of all codewords (p(x):x ∈ Fq) obtained
evaluating any polynomial p(x) ∈ Fq[x] of degree less than k at every point x ∈ Fq. The Reed-
Solomon code has minimum distance d = q − k + 1 because any nonzero polynomial of degree
less than k can have at most k − 1 zeros. We will use Reed-Solomon codes over Fq for q = 2h a
power of 2. These codes can be turned into binary codes by concatenating them with a Hadamard
code. The Hadamard code H[qn, n, qn−1(q − 1)]q is the linear code consisting of all codewords
obtained by evaluating any multilinear polynomial p(x) ∈ Fq[x1, . . . , xn] at all inputs x ∈ Fnq .
For any nonzero multilinear polynomial p, the value p(x) is uniformly distributed over Fq when
x ∈ Fnq is chosen uniformly at random. It follows that all nonzero codewords of the Hadamard code

have Hamming norm qn(1 − 1
q ) = qn−1(q − 1). The concatenation of RS[qn, k, qn − k + 1]qh and

H[qn, n, qn−1(q − 1)]q is the code obtained by viewing the elements of the Reed-Solomon alphabet
Fqn as vectors in Fnq , and mapping them to corresponding Hadamard codewords. The result of
concatenating RS[qn, k, qn − k + 1]qh and H[qn, n, qn−1(q − 1)]q is a linear code with parameters
H ◦RS[q2n, kn, (qn − k + 1)(q − 1)qn−1]q.

Computational Problems For simplicity in the rest of the paper we focus on binary codes, i.e.,
linear codes over the alphabet F2. Approximation versions of the minimum distance and nearest
codeword problems are formally defined as follows.

Definition 1 For any approximation factor γ ≥ 1, the Minimum Distance Problem (MDPγ), given
a basis matrix V ∈ Fn×k2 and a distance bound d, asks to distinguish between the following two cases:

1. There exists a nonzero codeword Vx (x ∈ Fk2 \ {0}) of norm ‖Vx‖H ≤ d.

2. All nonzero codewords Vx (x ∈ Fk2 \ {0}) have norm at least ‖Vx‖H > γd.

Definition 2 For any approximation factor γ ≥ 1, the Nearest Codeword Problem (NCPγ), given
a basis B ∈ Fn×k2 , a target y ∈ Fn2 and a distance bound t, asks to distinguish between the following
two cases:
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1. There exists a codeword Bz (z ∈ Fk2) within distance ‖Bz− y‖H ≤ t from the target.

2. All codewords Bz (z ∈ Fn2 ) are at distance at least ‖Bz− y‖H > γt from the target.

As shown in [6], the NCP is easily reduced to MDP using, as a gadget, a locally dense code
satisfying the following definition.

Definition 3 A locally dense (binary) code with parameters (m, k, d, r) is a tuple (L, s,T) where
L ∈ Fh×m2 is the basis of an m dimensional code with minimum distance (at least) d, and T ∈ Fk×h2

is a linear transformation such that T(BH(s, r) ∩ LFm2 ) = Fk2.

Notice that, as needed by [6], the above definition requires not only an explicit ball BH(s, r)
containing at least 2k codewords, but also a linear map T that can be used to index all 2k vectors
z ∈ Fk2 by a codeword in BH(s, r). For completeness, we recall how [6] uses this gadget to reduce
NCP to MDP.4

Theorem 1 ([6]) Let (L, s,T) be a locally dense binary code with parameters (m, k, d, r) for some
d > r. Then, for any γ < d

r and γ′ > ( 1γ −
r
d)−1, there is a deterministic polynomial time reduction

(using the locally dense code as auxiliary input) from NCPγ′ on k-dimensional codes to MDPγ on
(m+ 1)-dimensional codes.

Proof Let (B,y, t) be an NCP input instance, where B ∈ Fn×k2 . The output of the reduction is the
basis

V =

[
ua ⊗BTL −ua ⊗ y

ub ⊗ L −ub ⊗ s

]
∈ F(an+bh)×(m+1)

2

together with the distance bound d′ = at+ br, where a and b are integer scaling factors such that
a/b is a rational number in the interval

γr

(γ′ − γ)t
≤ a

b
<
d− rγ
γt

.

Notice that this interval is always nonempty under the conditions on γ, γ′ stated in the theorem,
so the scaling factors a, b can be properly selected. The columns of V are linearly independent
because L is a basis and s /∈ LFn2 . So, ub ⊗ [L,−s] has full column rank and V is a basis of an
(m+ 1)-dimensional code. We need to analyze the minimum distance of the code generated by V.

If (B,y, t) is a positive instance of NCP, then there exists a vector z ∈ {0, 1}k such that
‖Bz − y‖H ≤ t. Moreover, by Definition 3, there is a vector x such that ‖Lx − s‖H ≤ r and
TLx = z. It follows that there exists a nonzero codeword V(x, 1) of norm at most

‖V(x, 1)‖H = ‖(ua ⊗ (Bz− y),ub(Lx− s))‖H = a · ‖Bz− y‖H + b · ‖Lx− s‖H ≤ at+ br = d′.

Now assume (B,y, t) is a negative NCP instance. Consider any nonzero codeword V(x, c)
generated by V. We need to prove that ‖V(x, c)‖H > γd′. We distinguish two cases depending on
the value of c. If c = 0, then x 6= 0 and

‖V(x, 0)‖H = ‖(ua ⊗BTLx,ub ⊗ Lx)‖H ≥ ‖ub ⊗ Lx‖H ≥ bd > γd′

4The original paper [6] contains a more general sequence of reductions that proves the hardness of various other
intermediate problems and applies to linear codes over possibly larger fields. For simplicity, here we report a stripped
down proof specialized to the case of binary codes.
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where the last inequality follows from the upper bound on a
b . On the other hand, if c = 1 then

using ‖Bz− y‖H > γ′t for z = TLx we get

‖V(x, 1)‖H = ‖(ua ⊗ (BTLx− y),ub ⊗ (Lx− s))‖H ≥ a · ‖(Bz− y)‖H > γ′at ≥ γd′

where the last inequality follows from the lower bound on a
b . This shows that all nonzero codewords

have norm bigger than γd′ and concludes the analysis of the reduction. �

Since NCPγ is NP-hard for any constant factor γ ≥ 1 [2], Theorem 1 immediately implies
that if locally dense codes can be efficiently constructed, then MDPγ is also NP-hard, at least for
factors γ < d/r. As long as we can build locally dense codes with r/d < 1 − ε for some constant
ε > 0, Theorem 1 proves the NP-hardness of approximating MDPγ within some constant factor
γ > 1. Inapproximability of MDPγ for any constant factor γ also follows, using the fact that
distH(V ⊗ V) = distH(V)2. (See [6] for details.) In summary, in order to prove that MDPγ is
NP-hard for any constant factor γ it is enough to give an efficient construction of locally dense
codes with r/d < 1− ε.

3 Main Result

In this section we describe a general method to construct locally dense binary codes, satisfying
Definition 3, starting from arbitrary codes with sufficiently large minimum distance. We remark
that for the following theorem to yield useful locally dense codes (with relative radius r/d < 1) we
need to start from linear codes with relative minimum distance at least d/n > 1/

√
6. In Corollary 1

we show how to instantiate the theorem with codes with relative minimum distance arbitrarily close
to d/n ≈ 1/2, resulting in locally dense codes with relative radius arbitrarily close to r/d ≈ 2/3.

Theorem 2 There is a polynomial time algorithm that on input a linear code C[n, k, d]2 with d ≤
n/2, outputs a locally dense binary code (L, s,T) with parameters (k(k + 1)/2, k, 6d2, n2).

More specifically, the construction produces a linear code L[4n2, k(k+1)/2, 6d2]2, a target vector
s ∈ {0, 1}4n2

and a set of coordinates T of size k such that for any vector x ∈ Fk2 there is a codeword
at distance exactly n2 from s whose restriction to T equals x.

Proof Let C ∈ Fn×k2 be a generating matrix for C, and assume C is in systematic form, i.e., its first
k rows equal the identity matrix I. The code L is the set of all n× (4n) matrices

W = [Y,Y + uyT ,Y + yuT ,Y + uyT + yuT ]

where Y = CXCT for some symmetric matrix X = XT ∈ Fk×k2 , y is the diagonal of Y and u
is the all one vector. The resulting code is linear (and a basis L can be easily computed using
linear algebra) because all entries of the codeword W are linear functions of the entries of X, and
the matrix X ranges over a linear (k(k + 1)/2-dimensional) subspace of Fk×k2 . Moreover, since
codewords are in one-to-one correspondence with X, the code L has rank k(k + 1)/2. The center
of the Hamming ball is

S = [O,O,O,uuT ]

and T is the projection matrix corresponding to the set of coordinates T = {(i, i) | 1 ≤ i ≤ k}, i.e.,
T maps each codeword W to the k-dimensional vector obtained by taking the first k coordinates
along the diagonal of Y. The locally dense code is given by (L,S,T).
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We first show that for any x ∈ {0, 1}k, we can build a codeword W at distance r = n2

from S, and which equals x at positions T . Let X = xxT , and consider the associated value of
Y = CXCT = (Cx)(Cx)T . Notice that if we let y = Cx, then the diagonal of Y = yyT equals
y, because y2i = yi in F2. Moreover, the first k elements of the diagonal y equal x because C is
systematic and y = Cx. So, T projects W back to x. We need to compute the distance of W to
the center S of the ball, i.e., Hamming weight of

W − S = [yyT ,yyT + yuT ,yyT + uyT ,yyT + yuT + uyT + uuT ]

= [yyT ,y(y + u)T , (y + u)yT , (y + u)(y + u)T ].

At this point we simply observe that for any 1 ≤ i, j ≤ n, exactly one of the four square matrices
in the last expression equals 1 at position (i, j). E.g., if yi = 0 and yj = 1, then only (y + u)yT

equals 1 at position (i, j). Similarly, for the other values of yi, yj . So, the distance of W to S is
precisely n2.

It remains to bound the minimum distance of the code L, i.e., the minimum weight of nonzero
codewords W. Consider an arbitrary nonzero codeword, defined by X,Y,y as above. We distin-
guish two cases, depending on whether y is identically 0.

First assume y = 0. Then W consists of 4 identical copies of Y, and all we need to do is to
show that Y has weight at least 6d2/4 = (3/2)d2. We will show that Y has at least (3/2)d nonzero
columns. Since the columns of Y = C(XCT ) are codewords of C, their weight (when nonzero) is
at least d, and the bound on the total weight of Y immediately follows. In order to bound the
number of nonzero columns, we notice that Y must contain at least two distinct nonzero rows,
because it is symmetric and has zero diagonal. Let aT and bT be two such rows, and

• let a be the number of coordinates such that ai = 1 and bi = 0,

• let b be the number of coordinates such that ai = 0 and bi = 1,

• let c be the number of coordinates such that ai = 1 and bi = 1.

The rows of Y are also codewords in C, so a, b and their sum a + b must have weight at least d.
So, a+ c = ‖a‖ ≥ d, b+ c = ‖b‖ ≥ d and a+ b = ‖a + b‖ ≥ d. Adding up we get 2a+ 2b+ 2c ≥ 3d.
But the number of nonzero columns of Y is at least as large as the number of coordinates such that
either a or b (or both) are nonzero. So, the number of nonzero columns is at least a+b+c ≥ (3/2)d.

Now consider any codeword W such that the diagonal y is nonzero. For any position (i, j) in
Y, the codeword W has 4 entries that equal yi,j , yi,j+yi, yi,j+yj , yi,j+yi+yj . It is easy to see that
unless (yi, yj) = (0, 0), at least (in fact, exactly) 2 of these four entries are 1. So, the weight of W
is at least 2(n2− (n−w)2) = 2w(2n−w), where w is the Hamming weight of y. For any symmetric
matrix X with diagonal x, it can be easily verified that the diagonal of Y = CXCT equals Cx. In
particular, y is a nonzero codeword of C, and has weight w = ‖y‖ ≥ d. Since d ≤ w ≤ n, our lower
bound 2w(2n−w) on the weight of W is at least 2d(2n− d), which, for d ≤ n/2 is at least 6d2. �

Some remarks about the above proof are in order. First, notice that the code in the construction
is somehow redundant. For example, the two middle matrices in W are always zero on the diagonal,
so we could reduce the dimension of the code by 2n. Moreover, the two middle matrices are one
the transpose of the other, the first and fourth matrix are symmetric, and they are equal on the
diagonal. So, every entry is repeated twice. We could remove the duplication, and reduce the
dimension of the code by a factor 2, from 4n2 down to 2n2 − n. However, the center of the
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Hamming ball does not have the property that the first and fourth matrix have the same diagonal,
so this slightly complicates the analysis.

As a last remark, the assumption d ≥ n/2 was only used at the end to argue that 2d(2n− d) ≥
6d2. The construction works also for codes with d ≥ n/2, in which case the minimum distance of
W is 2d(2n− d), rather than d2. However, codes with d ≥ n/2 necessarily have very low rate.

In the next corollary we instantiate Theorem 2 with binary codes C[n, k, d]2 with minimum
distance d close to n/2.

Corollary 1 For any ρ < 3/2, there is an efficient deterministic polynomial time algorithm that
on input k outputs a locally dense binary code (satisfying Definition 3) with parameters (m, k, d, r)
for some m = poly(k) and d/r > ρ.

Proof The algorithm, on input k, builds a linear code C[n, k, d]2 with minimum distance d ≈ n/2
and then invokes Theorem 2 to obtain a locally dense code with parameters (m, k, d, r) where
m = k(k + 1)/2, r = n2 and d′ = 6d2 > ρr. By taking d arbitrarily close to n/2, we can
obtain any ρ < 3/2. The code C[n, k, d]2 can be constructed as follows. (See Section 2 for a
description of Reed-Solomon and Hadamard codes.) Let q = 2h be the smallest power of 2 such
that q log2 q = qh ≥ k/ε. Take a Reed-Solomon code RS[q, k′, d]q of rate k′ = dk/he and minimum
distance d = q−k′+1 > q−k′. Concatenate the Reed-Solomon code with an equidistant Hadamard
codeH[q, h, q/2]2. The result is a binary code C[q2, k′h, d]2 with rate k′h ≥ k, and minimum distance
d = (q + 1− k′)q/2 > (q2/2)(1− k′/q) ≥ (q2/2)(1− ε) arbitrarily close to n/2 = q2/2. �

4 Lattices and Open Problems

As described in the introduction, interest in explicit constructions of locally dense codes is motivated
by the study of the computational complexity of problems analogous to NCP and MDP, but on
integer lattices rather than linear codes over finite fields. For a detailed introduction to lattices and
the Shortest Vector Problem the reader is referred to [16, 15] and references therein. An integer
lattice is the set BZk of all integer linear combinations of k linearly independent integer vectors
B = [b1, . . . ,bk] ∈ Zn×k. The Shortest Vector Problem (SVP) is defined analogously to MDP, and
asks, given a lattice basis B, to find a nonzero lattice vector Bx (x ∈ Zk \ {0}) of approximately
smallest length. SVP and all other lattice problems described in this section can be defined with
respect to any norm ‖·‖, but the Euclidean norm ‖x‖ =

√∑
i |xi|2 is the most important and more

commonly used one. NP-hardness of SVP is proved by reduction from (variants of) the Closest
Vector Problem (CVP), which is analogous to NCP, but for integer lattices rather than linear codes.
In fact, a reduction similar to the one described in Theorem 1, but for integer lattices, was originally
given in [14] to prove the inapproximability of SVP. (See also [15] for a more recent, still similar,
reduction.) Here we give the formal definition of locally dense lattices, which are the gadgets needed
by the reduction in [14] to prove the NP-hardness of SVP.

Definition 4 A locally dense lattice with parameters (m, k, d, r) is a tuple (L, s,T) where L ∈ Zh×m
is a basis of an m-dimensional integer lattice with minimum distance (at least) d, and T: (LZm)→
Zk is a linear transformation such that T(BH(s, r) ∩ LZm) ⊇ {0, 1}k.

Constructions of locally dense lattices satisfying Definition 4 are given in [14, 15], but they are
probabilistic, resulting in randomized NP-hardness proofs for SVP. We remark that for the `∞ (or
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“max”) norm ‖x‖∞ = maxi |xi|, locally dense lattices are very easy to build, even deterministically.
The locally dense lattice described in the following theorem is implicit in the proof from [18] that
SVP in the `∞ norm is NP-hard to solve exactly. In fact, the construction in Theorem 3 also implies
that SVP in the `∞ norm is NP-hard to approximate within any factor γ ≤ 2.

Theorem 3 For any integer k ≥ 1, there is an efficiently constructible locally dense lattice with
respect to the `∞ norm with parameters (k, k, 2, 1).

Proof Let L = 2I be a basis for 2Zk, s = uk the all one vector, and T = 1
2I the scalar transformation

mapping 2Zk to Zk. Clearly, the lattice generated by L has `∞ minimum distance 2. Moreover,
for any x ∈ {0, 1}k, the lattice vector Lx = 2x is at `∞ distance 1 from s, and it is mapped back
to T(Lx) = x by the linear transformation T. �

However, for the standard Euclidean (`2) norm, no deterministic construction of locally dense
lattices is known yet,5 and the probabilistic constructions of [14, 15] only prove the NP-hardness of
SVP (in the `2 norm) under randomized reductions. Finding a deterministic construction satisfying
Definition 4 (as done in Theorems 2 and 3 for the Hamming and `∞ norms) is an interesting open
problem, as it would derandomize the NP-hardness proofs of [14, 15] and show that SVP is NP-hard
to approximate (within some constant factor)6 under deterministic polynomial time reductions.

We conjecture that locally dense lattices with respect to the Euclidean norm can be efficiently
constructed.

Conjecture 1 There is a deterministic algorithm that on input an integer k ≥ 1, outputs (in time
polynomial in k) a locally dense lattice (L, s,T) with parameters (m, k, d, r) satisfying Definition 4
with respect to the Euclidean norm with r < d(1− ε) for some constant ε > 0.

We see several ways in which the conjecture may eventually get positively resolved, thereby
proving the NP-hardness of approximating SVP under deterministic polynomial time reductions.
We remark that a candidate construction of locally dense lattices in the Euclidean norm was
given in [14] (see also [16]), and proved correct, conditionally, assuming a certain number theoretic
conjecture on the distribution of smooth numbers. Namely, [14] conjectures that for any ε there
is a c such that for all sufficiently large n, the interval [n, n + nε] contains a square free integer
with no prime factors larger than logc(n). While the conjecture is quite plausible (and may even
hold for ε = O(log log n/ log n) = o(1)), proving it seems very challenging, and other methods to
resolve Conjecture 1 may be more successful. Our work suggests two other possible approaches to
Conjecture 1.

1. One possibility is to prove a result similar to our Theorem 2, but for lattices. Namely, showing
that there is an efficient algorithm to transform an arbitrary input lattice with sufficiently
large minimum distance into a locally dense lattice containing exponentially many points
nearby a known vector s.

5But see [14] for a deterministic construction under a plausible, but unproven, number theoretic conjecture on the
distribution of smooth numbers.

6Amplifying the inapproximability factor via tensor products, and proving NP-hardness for any constant factor is
much trickier for lattices than for codes. See [15] for a detailed discussion.
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2. Another possibility is to use Theorem 2 as it is, and then use the resulting locally dense binary
codes to build a locally dense lattice. In fact, the latest randomized constructions of locally
dense lattices [15] use techniques from coding theory, and build the locally dense lattice by
combining together several binary codes with large minimum distance. However, [15] first
combines the codes with large minimum distance to build a globally dense lattice, and then
finds a dense ball B(s, r) by choosing its center s at random. So, one may try to reverse the
order of these two steps: first using Theorem 2 to turn each binary code into a locally dense
code with known dense center, and then combining the binary codes together into a lattice
containing a large number of points nearby a known fixed vector.

As a final note, proving Conjecture 1 would prove that SVPγ is NP-hard only for some constant
factor γ < d/r. Due to the differences between the Hamming and Euclidean norms, and their
behavior with respect to the tensor product operation, proving hardness for any constant factor
in the case of lattice problems is quite a bit trickier than for linear codes, and requires some
additional properties. Still, proving NP-hardness of SVP under deterministic reduction for some
constant factor would already be a good starting point. We refer the reader to [15, 8] for details
on how to use tensor product operation in the computational study of SVP.
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