
Capacity of Non-Malleable Codes

Mahdi Cheraghchi∗

CSAIL
MIT

Cambridge, MA 02139

Venkatesan Guruswami†

Computer Science Department
CMU

Pittsburgh, PA 15213

Abstract

Non-malleable codes, introduced by Dziembowski, Pietrzak and Wichs (ICS 2010), encode messages
s in a manner so that tampering the codeword causes the decoder to either output s or a message that is
independent of s. While this is an impossible goal to achieve against unrestricted tampering functions,
rather surprisingly non-malleable coding becomes possible against every fixed family F of tampering
functions that is not too large (for instance, when |F| 6 22

αn

for some α < 1 where n is the number of
bits in a codeword).

In this work, we study the “capacity of non-malleable coding,” and establish optimal bounds on
the achievable rate as a function of the family size, answering an open problem from Dziembowski et
al. (ICS 2010). Specifically,

• We prove that for every family F with |F| 6 22
αn

, there exist non-malleable codes against F with
rate arbitrarily close to 1− α (this is achieved w.h.p. by a randomized construction).

• We show the existence of families of size exp(nO(1)2αn) against which there is no non-malleable
code of rate 1− α (in fact this is the case w.h.p for a random family of this size).

• We also show that 1 − α is the best achievable rate for the family of functions which are only
allowed to tamper the first αn bits of the codeword, which is of special interest.
As a corollary, this implies that the capacity of non-malleable coding in the split-state model
(where the tampering function acts independently but arbitrarily on the two halves of the codeword,
a model which has received some attention recently) equals 1/2.

We also give an efficient Monte Carlo construction of codes of rate close to 1 with polynomial time
encoding and decoding that is non-malleable against any fixed c > 0 and family F of size 2n

c

, in
particular tampering functions with say cubic size circuits.

∗Email: 〈mahdi@csail.mit.edu〉. Research supported in part by V. Guruswami’s Packard Fellowship, MSR-CMU Center for
Computational Thinking, and the Swiss National Science Foundation research grant PA00P2-141980.
†Email: 〈guruswami@cmu.edu〉. Research supported in part by the National Science Foundation under Grant No. CCF-

0963975. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do
not necessarily reflect the views of the National Science Foundation.

1

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Report No. 118 (2013)

Contents

1 Introduction 3
1.1 Our results . 4
1.2 Proof ideas . 5

2 Preliminaries 6
2.1 Notation . 6
2.2 Definitions . 6

3 Probabilistic construction of non-malleable codes 8
3.1 Proof of Theorem 3.1 for bijective adversaries . 9
3.2 Proof of Theorem 3.1 for general adversaries . 10
3.3 Efficiency in the random oracle model . 20

4 A Monte Carlo construction for computationally bounded adversaries 21

5 Impossibility bounds 25
5.1 General adversaries . 25
5.2 Random adversaries . 26
5.3 General adversaries acting on a subset of positions . 27

A Rate 1/2 barrier for the uniform coding scheme. 32

B Useful tools 33

2

1 Introduction

Non-malleable codes are a fascinating new concept put forth in [8], following the program on non-malleable
cryptography which was introduced by the seminal work of Dolev, Dwork and Naor [6]. Non-malleable
codes are aimed at protecting the integrity of data in situations where it might be corrupted in ways that
precludes error-correction or even error-detection. Informally, a code is non-malleable if the corrupted
codeword either encodes the original message, or a completely unrelated value. This is akin to the notion of
non-malleable encryption in cryptography which requires the intractability of, given a ciphertext, producing
a different ciphertext so that the corresponding plaintexts are related to each other.

A non-malleable (binary1) code against a family F of tampering functions each mapping {0, 1}n to
{0, 1}n, consists of a randomized encoding function Enc : {0, 1}k → {0, 1}n and a deterministic decoding
function Dec : {0, 1}n → {0, 1}k ∪ {⊥} (where ⊥ denotes error-detection) which satisfy Dec(Enc(s)) = s
always, and the following non-malleability property with error ε: For every message s ∈ {0, 1}k and every
function f ∈ F , the distribution of Dec(f(Enc(s)) is ε-close to a distribution Df that depends only on f
and is independent2 of s. In other words, if some adversary (who has full knowledge of the code and the
message s, but not the internal randomness of the encoder) tampers with the codeword Enc(s) corrupting
it to f(Enc(s)), he cannot control the relationship between s and the message the corrupted codeword
f(Enc(s)) encodes.

In general, it is impossible to achieve non-malleability against arbitrary tampering functions. Indeed, the
tampering function can decode the codeword to compute the original message s, flip the last bit of s to obtain
a related message s̃, and then reencode s̃. This clearly violates non-malleability as the tampered codeword
encodes the message s̃ which is closely related to s. Therefore, in order to construct non-malleable codes,
one focuses on a restricted class of tampering functions. For example, the body of work on error-correcting
codes consists of functions which can flip an arbitrary subset of bits up to a prescribed limit on the total
number of bit flips.

The notion of non-malleable coding becomes more interesting for families against which error-correction
is not possible. A simple and natural such family is the set of functions causing arbitrary “additive errors,”
namely Fadd = {f∆ | ∆ ∈ {0, 1}n} where f∆(x) := x + ∆. Note that there is no restriction on the Ham-
ming weight of ∆ as in the case of channels causing bounded number of bit flips. While error-correction
is impossible against Fadd, error-detection is still possible — the work of Cramer et al. [5] constructed
codes of rate approaching 1 (which they called “Algebraic Manipulation Detection” (AMD) codes) such
that offset by an arbitrary ∆ 6= 0 will be detected with high probability. AMD codes give a construction of
non-malleable codes against the family Fadd.

Even error-detection becomes impossible against many other natural families of tampering functions.
A particularly simple such class consists of all constant functions fc(x) := c for c ∈ {0, 1}n. This family
includes some function that maps all inputs to a valid codeword c∗, and hence one cannot detect tamper-
ing. Note, however, that non-malleability is trivial to achieve against this family — the rate 1 code with
identity encoding function is itself non-malleable as the output distribution of a constant function is trivially
independent of the message. A natural function family for which non-malleability is non-trivial to achieve
consists of bit-tampering functions f in which the different of bits of the codewords are tampered indepen-

1Throughout this paper we deal only with binary codes. We point out that non-malleability is mainly interesting over small
alphabets, since when the alphabet size is large enough, even error-detection (e.g., via MDS codes) is possible at rates achieved by
non-malleable codes.

2The formal definition (see Definition2.3) has to accommodate the possibility that Dec error-corrects the tampered codeword to
the original message s; and this is handled in a manner independent of s by including a special element same in the support of Df .

3

dently (i.e., either flipped, set to 0/1, or left unchanged); formally f(x) = (f1(x1), f2(x2), . . . , fn(xn)) for
arbitrary 1-bit functions f1, f2, . . . , fn [8].

The family Fall of all functions f : {0, 1}n → {0, 1}n has size given by log log |Fall| = n+ log n. The
authors of [8] show the existence of a non-malleable code against any small enough family F (for which
log log |F| < n). The rate of the code is constant if log log |F| 6 αn for some constant α ∈ (0, 1). The
question of figuring out the optimal rates of non-malleable codes for various families of tampering functions
was left as an open problem in [8]. In this work we give a satisfactory answer to this question, pinning down
the rate for many natural function families. We describe our results next.

1.1 Our results

Our results include improvements to the rate achievable as a function of the size of the family of tampering
functions, as well as limitations of non-malleable codes demonstrating that the achieved rate cannot be im-
proved for natural families of the stipulated size. Specifically, we establish the following results concerning
the possible rates for non-malleable coding as a function of the size of the family of tampering functions:

1. (Rate lower bound) We prove in Section 3 that if |F| 6 22αn , then there exists a (strong) non-malleable
code of rate arbitrarily close to 1 − α which is non-malleable w.r.t F with error exp(−Ω(n)). This
significantly improves the probabilistic construction of [8], which achieves a rate close to (1 − α)/3

using a delicate Martingale argument. In particular, for arbitrary small families, of size 22o(n) , our
result shows that the rate can be made arbitrarily close to 1. This was not known to be possible even for
the family of bit-tampering functions (which has size 4n), for which 1/3 was the best known rate3 [8].
In fact, we note (in Appendix A) why the proof strategy of [8] is limited to a rate of 1/2 even for a
very simple tampering function such as the one that flips the first bit. As discussed in Section 3.3, our
probabilistic construction is equipped with an encoder and decoder that can be efficiently and exactly
implemented with access to a uniformly random permutation oracle and its inverse (corresponding to
the ideal-cipher model in cryptography). This is a slight additional advantage over [8], where only an
approximation of the encoder and decoder is shown to be efficiently computable.

2. (Upper bound/limitations on rate) The above coding theorem shows that the “capacity” of a function
family |F| for non-malleable coding is at least 1 − (log log |F|)/n. We also address the natural
“converse coding quesiton” of whether this rate bound is the best achievable (Section 5). This turns
out to be false in general due to the existence of uninteresting large families for which non-malleable
coding with rate close to 1 is easy. But we do prove that the 1− α rate is best achievable in “virtually
all” situations:

(a) We prove that for random families of size 22αn , with high probability it is not possible to exceed
a rate of 1− α for non-malleable coding with small error.

(b) For the family of tampering functions which leave the last (1−α)n bits intact and act arbitrarily
on the first αn bits, we prove that 1 − α is the best achievable rate for non-malleable coding.
(Note that a rate of 1− α is trivial to achieve for this family, by placing the message bits in the
last (1− α)n bits of the codeword, and setting the first αn bits of the codeword to all 0s.)

3Assuming the existence of one-way functions, an explicit construction of non-malleable codes of rate close to 1 was proposed
in [8]. This construction, however, only satisfies a weaker definition of non-malleability that considers computational indistin-
guishability rather than statistical security.

4

The result 2b, together with the existential result 1 above, pins down the optimal rate for non-malleable
codes in the split-state model to 1/2. In the split-state model, which was the focus of a couple of recent
works [7, 1], the tampering function operates independently (but in otherwise arbitary ways) on the two
halves of the codeword, i.e., f(x) = ((f1(x1), f2(x2)) where x1, x2 are the two halves of x and f1, f2 are
functions mapping n/2 bits to n/2 bits. The recent work [1] gave an explicit construction in this model
with polynomially small rate. Our work shows that the capacity of the split-state model is 1/2, but we do
not offer any explicit construction. For the more restrictive class of bit-tampering functions (where each bit
is tampered independently), in a follow-up work [3] we give an explicit construction with rate approaching
1 [3]. We also present in that work a reduction of non-malleable coding for the split-state model to a new
notion of non-malleable two-source extraction.

Monte Carlo construction for small families. Our result 1 above is based on a random construction which
takes exponential time (and space). Derandomizing this construction, in Section 4 we are able to obtain an
efficient Monte Carlo construction of non-malleable codes of rate close to 1 (with polynomial time encoding
and decoding, and inverse polynomially small error) for an arbitrary family of size exp(nc) for any fixed
c > 0. Note that in particular this includes tampering functions that can be implemented by circuits of any
fixed polynomial size, or simpler families such as bit-tampering adversaries. The construction does not rely
on any computational hardness assumptions, at the cost of using a small amount of randomness.

1.2 Proof ideas

Rate lower bound. Our construction of rate ≈ 1 − (log log |F|)/n codes is obtained by picking for each
message, a random blob of t codewords, such that blobs corresponding to distinct messages are disjoint.
For each tampering function f , our proof analyzes the distribution of Dec(f(Enc(s)) for each message s
separately, and shows that w.h.p. they are essentially close to the same distribution Df . In order to achieve
sufficiently small error probability allowing for a union bound, the proof uses a number of additional ideas,
including a randomized process that gradually reveals information about the code while examining the t
codewords in each blob in sequence. The analysis ensures that as little information is revealed in each
step as possible, so that enough independence remains in the conditional joint distribution of the codewords
throughout the analysis. Finally, strong concentration bounds are used to derive the desired bound on the
failure probability. The proof for the special case of bijective tampering functions turns out to be quite
straightforward, and as a warm-up we present this special case first in Section 3.1.

Monte Carlo construction. Since the analysis of the probabilistic code construction considers each mes-
sage s separately, we observe that it only only needs limited (t-wise) independence of the codewords. On the
other hand, the code construction is designed to be sparse, namely taking t = poly(n, log |F|, 1/ε) suffices
for the analysis. This is the key idea behind our efficient Monte Carlo construction for small families with
log |F| 6 poly(n).

The birthday paradox implies that picking the blob of codewords encoding each message independently
of other messages, while maintaining disjointness of the various blobs, limits the rate to 1/2. Therefore,
we construct the code by means of a t-wise independent decoding function implemented via a random low-
degree polynomial. After overcoming some complications to ensure an efficient encoding function, we get
our efficient randomized construction for small families of tampring functions.

Rate upper bounds. Our main impossibility result for the family of adversaries that only tamper the first
αn bits of the codeword uses an information theoretic argument. We argue that if the rate of the code is

5

sufficiently large, one can always find messages s0 and s1 and a set Xη ⊆ {0, 1}αn such that the following
holds: The first αn bits of the encoding of s0 has a noticeable chance of being in Xη, whereas this chance
for s1 is quite small. Using this property, we design an adversary that maps the first αn bits of the encoding
to a dummy string if they belong to Xη and leaves the codeword intact otherwise. This suffices to violate
non-malleability of the code.

2 Preliminaries

2.1 Notation

We use Un for the uniform distribution on {0, 1}n and Un for the random variable sampled from Un and
independently of any existing randomness. For a random variable X , we denote by D(X) the probability
distribution that X is sampled from. Moreover, for an event E , we use D(X|E) to denote the conditional
distribution on the random variable X on the event E . Generally, we will use calligraphic symbols (such
as X) for probability distributions and the corresponding capital letters (such as X) for related random
variables. For a discrete distribution X , we denote by X (x) the probability mass assigned to x by X . Two
distributions X and Y being ε-close in statistical distance is denoted by X ≈ε Y . We will use (X ,Y) for
the product distribution with the two coordinates independently sampled from X and Y . All unsubscripted
logarithms are taken to the base 2. Support of a discrete random variable (or distribution) X is denoted by
supp(X). With a slight abuse of notation, for various bounds we condition probabilities and expectations
on random variables rather than events (e.g., E[X|Y], or Pr[E|Y]). In such instances, the notation means
that the statement holds for every possible realization of the random variables that we condition on.

2.2 Definitions

In this section, we review the formal definition of non-malleable codes as introduced in [8]. First, we recall
the notion of coding schemes.

Definition 2.1 (Coding schemes). A pair of functions Enc : {0, 1}k → {0, 1}n and Dec : {0, 1}n →
{0, 1}k ∪ {⊥} where k 6 n is said to be a coding scheme with block length n and message length k if
the following conditions hold.

1. The encoder Enc is a randomized function; i.e., at each call it receives a uniformly random sequence
of coin flips that the output may depend on. This random input is usually omitted from the notation
and taken to be implicit. Thus for any s ∈ {0, 1}k, Enc(s) is a random variable over {0, 1}n. The
decoder Dec is; however, deterministic.

2. For every s ∈ {0, 1}k, we have Dec(Enc(s)) = s with probability 1.

The rate of the coding scheme is the ratio k/n. A coding scheme is said to have relative distance δ, for
some δ ∈ [0, 1), if for every s ∈ {0, 1}k the following holds. Let X := Enc(s). Then, for any ∆ ∈ {0, 1}n
of Hamming weight at most δn, Dec(X + ∆) =⊥ with probability 1.

Before defining non-malleable coding schemes, we find it convenient to define the following notation.

Definition 2.2. For a finite set Γ, the function copy : (Γ ∪ {same})× Γ→ Γ is defined as follows:

copy(x, y) :=

{
x x 6= same,

y x = same.

6

The notion of non-malleable coding schemes from [8] can now be rephrased as follows.

Definition 2.3 (Non-malleability). A coding scheme (Enc,Dec) with message length k and block length n
is said to be non-malleable with error ε (also called exact security) with respect to a family F of tampering
functions acting on {0, 1}n (i.e., each f ∈ F maps {0, 1}n to {0, 1}n) if for every f ∈ F there is a
distribution Df over {0, 1}k ∪ {⊥, same} such that the following holds. Let s ∈ {0, 1}k and define the
random variable S := Dec(f(Enc(s))). Let S′ be independently sampled from Df . Then,

D(S) ≈ε D(copy(S′, s)).

Remark 2.4. The above definition allows the decoder to output a special symbol⊥ that corresponds to error
detection. It is easy to note that any such code can be transformed to one where the decoder never outputs⊥
without affecting the parameters (e.g., the new decoder may simply output 0k whenever the original decoder
outputs ⊥).

Dziembowski et al. [8] also consider the following stronger variation of non-malleable codes.

Definition 2.5 (Strong non-malleability). A pair of functions as in Definition 2.3 is said to be a strong non-
malleable coding scheme with error ε with respect to a family F of tampering functions acting on {0, 1}n
if the conditions (1) and (2) of Definition 2.3 is satisfied, and additionally, the following holds. For any
message s ∈ {0, 1}k, let Es := Enc(s), consider the random variable

Ds :=

{
same if f(Es) = Es,
Dec(f(Es)) otherwise,

and let Df,s := D(Ds). It must be the case that for every pair of distinct messages s1, s2 ∈ {0, 1}k,
Df,s1 ≈ε Df,s2 .

Remark 2.6 (Computational security). Dziembowski et al. also consider the case where statistical distance
is replaced with computational indistinguishability with respect to a bounded computational model. As
our goal is to understand information-theoretic limitations of non-malleable codes, we do not consider this
variation in this work. It is clear, however, that our negative results in Section 5 apply to this model as well.
A related (but incomparable) model that we consider in Section 4 is when the distinguishability criterion
is still statistical; however the adversary is computationally bounded (e.g., one may consider the family of
polynomial sized Boolean circuits). For this case, we construct an efficient Monte Carlo coding scheme that
achieves any rate arbitrarily close to 1.

Remark 2.7 (Efficiency of sampling Df). The original definition of non-malleable codes in [8] also re-
quires the distribution Df to be efficiently samplable given oracle access to the tampering function f . We
find it more natural to remove this requirement from the definition since even combinatorial non-malleable
codes that are not necessarily equipped with efficient components (such as the encoder, decoder, and sam-
pler for Df) are interesting and highly non-trivial to construct. It should be noted; however, that for any
non-malleable coding scheme equipped with an efficient encoder and decoder, the following is a valid and
efficiently samplable choice for the distributionDf (possibly incurring a constant factor increase in the error
parameter):

1. Let S ∼ Uk, and X := Enc(S).

2. If Dec(X) = S, output same. Otherwise, output Dec(X).

Our Monte Carlo construction in Section 4 is equipped with a polynomial-time encoder and decoder. So is
the case for our probabilistic construction in Section 3 in the random oracle model.

7

3 Probabilistic construction of non-malleable codes

In this section, we introduce our probabilistic construction of non-malleable codes. Contrary to the original
construction of Dziembowski et al. [8], where they pick a uniformly random truth table for the decoder
and do not allow the ⊥ symbol. Our code, on the other hand, is quite sparse. In fact, in our construction
Dec(Un) =⊥ with high probability. As we observe in Section A, this is the key to our improvement, since
uniformly random decoders cannot achieve non-malleability even against extremely simple adversaries at
rates better than 1/2. Moreover, our sparse construction offers the added feature of having a large minimum
distance in the standard coding sense; any tampering scheme that perturbs the codeword in a fraction of
the positions bounded by a prescribed limit will be detected by the decoder with probability 1. Another
advantage of sparsity is allowing a compact representation for the code. We exploit this feature in our
Monte Carlo construction of Section 4. Our probabilistic coding scheme is described in Construction 1.

We remark that Construction 1 can be efficiently implemented in the ideal-cipher model, which in turn
implies an efficient approximate implementation in the random oracle model (see the discussion following
the proof of Theorem 3.1 in Section 3.3). In turn, this implies that the distribution Df in Definition 2.3 for
this construction can be efficiently sampled in both models (see Remark 2.7).

• Given: Integer parameters 0 < k 6 n and integer t > 0 such that t2k 6 2n, and a relative distance
parameter δ, 0 6 δ < 1/2.

• Output: A pair of functions Enc : {0, 1}k × {0, 1}n and Dec : {0, 1}n → {0, 1}k, where Enc may
also use a uniformly random seed which is hidden from that notation, but Dec is deterministic.

• Construction:

1. Let N := {0, 1}n.
2. For each s ∈ {0, 1}k, in an arbitrary order,

– Let E(s) := ∅.
– For i ∈ {1, . . . , t}:

(a) Pick a uniformly random vector w ∈ N .
(b) Add w to E(s).
(c) Let Γ(w) be the Hamming ball of radius δn centered at w. Remove Γ(w) fromN (note

that when δ = 0, we have Γ(w) = {w}).
3. Given s ∈ {0, 1}k, Enc(s) outputs an element of E(s) uniformly at random.
4. Given w ∈ {0, 1}n, Dec(s) outputs the unique s such that w ∈ E(s), or ⊥ if no such s exists.

Construction 1: Probabilistic construction of non-malleable codes.

The main theorem of this section is the result below that proves non-malleability of the coding scheme
in Construction 1.

Theorem 3.1. Let F : {0, 1}n → {0, 1}n be any family of tampering functions. For any ε, η > 0, with
probability at least 1 − η, the coding scheme (Enc,Dec) of Construction 1 is a strong non-malleable code
with respect to F and with error ε and relative distance δ, provided that both of the following conditions are
satisfied.

8

1. t > t0, for some

t0 = O

(
1

ε6

(
log
|F|N
η

))
. (1)

2. k 6 k0, for some
k0 > n(1− h(δ))− log t− 3 log(1/ε)−O(1), (2)

where h(·) denotes the binary entropy function.

Thus by choosing t = t0 and k = k0, the construction satisfies

k > n(1− h(δ))− log log(|F|/η)− log n− 9 log(1/ε)−O(1).

In particular, if |F| 6 22αn for any constant α ∈ (0, 1), the rate of the code can be made arbitrarily close
to 1− h(δ)− α while allowing ε = 2−Ω(n).

Remark 3.2. (Error detection) An added feature of our sparse coding scheme is the error-detection capa-
bility. However, observe that any probabilistic coding scheme that is non-malleable against all families of
adversaries of bounded size over {0, 1}n (such as Construction 1, Construction 2, and the probabilistic con-
struction of [8]) can be turned into one having relative distance δ (and satisfying the same non-malleability
guarantees) by composing the construction with a fixed outer code C of block length n and relative distance
δ. Indeed, any class F of tampering functions for the composed code corresponds to a class F ′ of the same
size or less for the original construction. Namely, each function f ′ ∈ F ′ equals DecC ◦ f (DecC being the
decoder of C) for some f ∈ F . The caveat with this approach (rather than directly addressing distance as in
Construction 1) is that the composition may lose strong non-malleability even if the original code is strongly
non-malleable. Indeed, it may be the case that f is a sophisticated tampering function whereas its projec-
tion f ′ becomes as simple as the identity function. If so, non-malleability may be satisfied by choosing
Df := D(same) whereas strong non-malleability does not hold.

3.1 Proof of Theorem 3.1 for bijective adversaries

We first prove the theorem for adversaries that are bijective and have no fixed points. This case is still broad
enough to contain interesting families of adversaries such as additive error adversaries Fadd mentioned in
the introduction, for which case we reconstruct the existence proof of AMD codes (although optimal explicit
constructions of AMD codes are already known [5]).

As it turns out, the analysis for this case is quite straightforward, and significantly simpler than the
general case that we will address in Section 3.2.

Let N := 2n, K := 2k, and consider a fixed message s ∈ {0, 1}k and a fixed bijective tampering
function f : {0, 1}n → {0, 1}n such that for all x ∈ {0, 1}n, f(x) 6= x. We show that the non-malleability
requirement of Definition 2.3 holds with respect to the distribution Df that is entirely supported on {⊥}.
That is, we wish to show that with high probability, the coding scheme (Enc,Dec) of Construction 1 is so
that

Pr[Dec(f(Enc(s))) 6=⊥] 6 ε. (3)

By taking a union bound over all choices of f and s, this would imply that with high probability, the code is
non-malleable (in fact, strongly non-malleable) for the entire family F .

9

Let E(s) := supp(Enc(s)) be the set of the t codewords that are mapped to s by the decoder. Let
E1, . . . , Et be the codewords in this set in the order they are picked by the code construction. For any
x ∈ {0, 1}n \ E(s), we know that

Pr[Dec(x) 6=⊥] 6 t(K − 1)/(N − t) 6 γ

1− γ
,

where γ := tK/N . This can be seen by observing that each codeword in E(s′) for s′ 6= s is uniformly
distributed on the set {0, 1}n\E(s), and taking a union bound. Thus, in particular since {f(E1), . . . , f(Et)}
is a set of size t outside E(s), we see that Pr[Dec(f(E1)) 6=⊥] 6 γ

1−γ . In fact, the same argument holds
for Dec(E2) conditioned on any realization of f(E1), and more generally, one can derive for each i ∈ [t],

Pr[Dec(f(Ei)) 6=⊥ |f(E1), . . . , f(Ei−1)] 6
γ

1− γ
. (4)

Define indicator random variables 0 = X0, X1, . . . , Xt ∈ {0, 1}, where Xi = 1 iff Dec(f(E1)) 6=⊥. From
(4) and using Proposition B.1, we can deduce that for all i ∈ [t], Pr[Xi = 1|X0, . . . , Xi−1] 6 γ

1−γ . Now,
using Proposition B.5, letting X := X1 + · · ·+Xt,

Pr[X > εt] 6
(eγ

ε(1− γ)

)εt
.

Assuming γ 6 ε/4, the above upper bound simplifies to exp(−Ω(εt)). By taking a union bound over all
possible choices of s and f (that we trivially upper bound by N |F|), it can be seen that, as long as t > t0 for
some choice of t0 = O

(
1
ε log(N |F|η)

)
, the probability that (Enc,Dec) fails to satisfy (3) for some choice of

s and f is at most η.
Finally, observe that the assumption γ 6 ε/4 can be satisfied provided that K 6 K0 for some choice of

K0 = Ω(εN/t), or equivalently, when k 6 k0 for some choice of k > n − log t − log(1/ε). Note that for
this case the proof obtains a better dependence on ε compared to (1) and (2).

3.2 Proof of Theorem 3.1 for general adversaries

First, we present a proof sketch describing the ideas an intuitions behind the general proof, and then proceed
with a full proof of the theorem.

• Proof sketch

In the proof for bijective adversaries, we heavily used the fact that the tampering of each set E(s) of code-
words is a disjoint set of the same size. For general adversaries; however, this may not be true. Intuitively,
since the codewords in E(s) are chosen uniformly and almost independently at random (ignoring the dis-
tinctness dependencies), the tampered distribution f(E(s)) should look similar to f(Un) for all s, if |E(s)|
is sufficiently large. Indeed, this is what shown in the proof. The proof also adjusts the probability mass of
same according to the fraction of the fixed points of f , but we ignore this technicality for the proof sketch.

Note that the distribution f(Un) may be arbitrary, and may assign a large probability mass to a small set
of the probability space. For example, f may assign half of the probability mass to a single point. We call
the points in {0, 1}n such that receive a noticeable share of the probability mass in f(Un) the heavy elements
of {0, 1}n, and fix the randomness of the code construction so that the decoder’s values at heavy elements

10

are revealed before analyzing each individual message s. Doing so allows us to analyze each message s
separately and take a union bound on various choices of s as in the case of bijective adversaries. Contrary
to the bijective case; however, the distribution Df is no longer entirely supported on ⊥; but we show that it
still can be made to have a fairly small support; roughly poly(n, log |F|). More precisely, the proof shows
non-malleability with respect to the choice of Df which is explicitly defined to be the distribution of the
following random variable:

D :=

same if f(Un) = Un,

Dec(f(Un)) if f(Un) 6= Un and f(Un) ∈ H,
⊥ otherwise,

where H ⊆ {0, 1}n is the set of heavy elements formally defined as

H := {x ∈ {0, 1}n : Pr[f(Un) = x] > 1/r},

for an appropriately chosen r = Θ(ε2t).
Although the above intuition is natural, turning it into a rigorous proof requires substantially more work

than the bijective case, and the final proof turns out to be rather delicate even though it only uses elementary
probability tools. The first subtlety is that revealing the decoder at the heavy elements creates dependencies
between various random variables used in the analysis. In order to make the proof more intuitive, we
introduce a random process, described as an algorithm Reveal, that gradually reveals information about the
code as the proof considers the codewords E1, . . . , Et corresponding to the picked message s. The process
outputs a list of elements in {0, 1}k, and we show that the empirical distribution of this list is close to the
desired Df for all messages s.

Roughly speaking, at each step i ∈ [t] the analysis estimates the distribution of Dec(f(Ei)) conditioned
on the particular realizations of the previous codewords. There are three subtleties that we need to handle to
make this work:

1. The randomness corresponding to some of the Ei is previously revealed by the analysis and thus such
codewords cannot be assumed to be uniformly distributed any more. This issue may arise due to
the revealing of the decoder’s values at heavy elements in the beginning of analysis, or existence of
cycles in the evaluation graph of the tampering function f . Fortunately, it is straightforward to show
that the number of such codewords remain much smaller than t with high probability, and thus they
may simply be ignored.

2. At each step of the analysis, the revealed information make the distribution of Dec(f(Ei)) gradually
farther from the desired Df . The proof ensures that the expected increase at each step is small, and
using standard Martingale concentration bounds the total deviation fromDf remains sufficiently small
with high probability at the end of the analysis.

3. Obtaining small upper bounds (e.g., exp(−cn) for some c < 1) on the probability of various bad
events in the analysis (e.g., Dec(f(Enc(s))) significantly deviating fromDf) is not difficult to achieve.
However, extra care is needed to ensure that the probabilities are much smaller than 1/(2k|F|) (to
accommodate the final union bound), where the latter may easily be doubly-exponentially small in
n. An exponential upper bound of exp(−cn) does not even suffice for moderately large families of
adversaries such as bit-tampering adversaries, for which we have |F| = 4n.

11

• Complete proof of Theorem 3.1

First, observe that by construction, the minimum distance of the final code is always greater than δn; that is,
whenever Dec(w1) 6=⊥ and Dec(w2) 6=⊥ for any pair of vectors w1 6= w2, we have

disth(w1, w2) > δn,

where disth(·) denotes the Hamming distance. This is because whenever a codeword is picked, its δn
neighborhood is removed from the sample space for the future codewords. Let V denote the volume of a
Hamming ball of radius δn. It is well known that V 6 2nh(δ), where h(·) is the binary entropy function.

Fix an adversary f ∈ F . We wish to show that the coding scheme (Enc,Dec) defined by Construction 1
is non-malleable with high probability for the chosen f .

Define p0 := Pr[f(Un) = Un]. In the sequel, assume that p0 < 1 (otherwise, there is nothing to prove).
For every x ∈ {0, 1}n, define p(x) := Pr[f(Un) = x ∧ x 6= Un]. Observe that∑

x

p(x) = 1− p0.

We say that a string x ∈ {0, 1}n is heavy if

p(x) > 1/r,

for a parameter r 6 t to be determined later. Note that the number of heavy strings must be less than r.
Define

H := {x ∈ {0, 1}n : p(x) > 1/r},
γ := t/N,

γ′ := tK/N.

Fix the randomness of the code construction so that Dec(x) is revealed for every heavy x. We will argue that
no matter how the decoder’s outcome on heavy elements is decided by the randomness of the code construc-
tion, the construction is non-malleable for every message s and the chosen function f with overwhelming
probability. We will then finish the proof with a union bound over all choices of s and f .

Consider a random variable D defined over {0, 1}k ∪ {⊥, same} in the following way:

D :=

same if f(Un) = Un,

Dec(f(Un)) if f(Un) 6= Un and f(Un) ∈ H,
⊥ otherwise.

(5)

For the chosen f , we explicitly define the distribution Df as Df := D(D).
Now, consider a fixed message s ∈ {0, 1}k, and define the random variable Es := Enc(s). That is, Es

is uniformly supported on the set E(s) (this holds by the way that the encoder is defined). Observe that the
marginal distribution of each individual set E(s) (with respect to the randomness of the code construction)
is the same for all choices of s, regardless of the ordering assumed by Construction 1 on the message space
{0, 1}k.

Furthermore, define the random variable Ds as follows.

Ds :=

{
same if f(Es) = Es,

Dec(f(Es)) otherwise.
(6)

12

Our goal is to show that the distribution of Ds (for the final realization of the code) is ε-close to Df with
high probability over the randomness of the code construction. Such assertion is quite intuitive by comparing
the way the two distributions Ds and Df are defined. In fact, it is not hard to show that the assertion holds
with probability 1 − exp(−Ω(n)). However, such a bound would be insufficient to accommodate a union
bound of even moderate sizes such as 2n, which is needed for relatively simple classes such as bit-tampering
adversaries. More work needs to be done to ensure that it is possible to achieve a high probability statement
with failure probability much smaller than 1/|F|, which may in general be doubly exponentially small in n.

The claim below shows that closeness of D(Ds) to Df would imply non-malleability of the code.

Claim 3.3. Suppose that for every s ∈ {0, 1}k, we have D(Ds) ≈ε Df for the choice of Df defined in (5).
Then, (Enc,Dec) is a non-malleable coding scheme with error ε and a strong non-malleable coding scheme
with error 2ε.

Proof. In order to verify Definition 2.5, we need to verify that for every distinct pair of messages s1, s2 ∈
{0, 1}k, D(Ds1) ≈2ε D(Ds2). But from the assumption, we know that D(Ds1) and D(Ds2) are both
ε-close to Df . Thus the result follows by the triangle inequality.

It is of course possible now to use [8, Theorem 3.1] to deduce that Definition 2.3 is also satisfied.
However, for the clarity of presentation, here we give a direct argument that shows that non-malleability is
satisfied with the precise choice of Df defined in (5) and error ε. Let s ∈ {0, 1}k, and let Es := Enc(s) and
S := Dec(f(Es)). Let S′ ∼ Df and S′′ ∼ D(Ds) be sampled independently. We need to show that

D(S) ≈ε D(copy(S′, s)). (7)

From the definition of Ds in (6), since Dec(f(Es)) = s when f(Es) = Es, we see that D(copy(S′′, s)) =
D(Dec(f(Es))) = D(S). Now, since by assumption D(S′) ≈ε D(S′′), it follows that D(copy(S′, s)) ≈ε
D(copy(S′′, s)) which proves (7).

Let the random variables E1, . . . , Et be the elements of E(s), in the order they are sampled by Con-
struction 1.

Define, for i ∈ [t],

Si :=

{
same if f(Ei) = Ei,

Dec(f(Ei)) otherwise.

We note that, no matter how the final code is realized by the randomness of the construction, the distribution
Ds is precisely the empirical distribution of S1, . . . , St as determined by the code construction.

In the sequel, for each i ∈ [t], we analyze the distribution of the variable Si conditioned on the values
of S1, . . . Si−1 and use this analysis to prove that the empirical distribution of the sequence (S1, . . . , St) is
close to Df .

In order to understand the empirical distribution of the Si, we consider the following process Reveal that
considers the picked codewords E1, . . . , Et in order, gradually reveals information about the code construc-
tion, and outputs a subset of the Si. We will ensure that

1. The process outputs a large subset of {S1, . . . , St}, and,

2. The empirical distribution of the sequence output by the process is close to Df with high probability.

The above guarantees would in turn imply that the empirical distribution of the entire sequence Si is also
close to Df with high probability. We define the process as follows.

13

Process Reveal:

1. Initialize the set Skip ⊆ [t] with the empty set. Recall that the values of Dec(w) for all w ∈ H are
already revealed in the analysis, as well as Dec(Γ(w)) for those for which Dec(w) 6=⊥.

2. For each heavy element w ∈ H , if Dec(w) = s, consider the unique j ∈ [t] such that Ej = w. Reveal4

j and Ej , and add j to Skip.

3. For i from 1 to t, define the ith stage as follows:

3.1. If i ∈ Skip, declare a skip and continue the loop with the next i. Otherwise, follow the remaining
steps.

3.2. Reveal Γ(Ei). Note that revealing Ei implies that Dec(Ei) is revealed as well, since Dec(Ei) =
s. Moreover, recall that for any x ∈ Γ(Ei) \ Ei, Dec(x) =⊥ by the code construction.

3.3. If Dec(f(Ei)) is not already revealed:

3.3.1. Reveal Dec(f(Ei)).
3.2.2. If Dec(f(Ei)) = s, consider the unique j ∈ [t] such that Ej = f(Ei). It must be that

j > i, since Dec(Ej) has not been revealed before. Reveal j and add it to Skip.
3.3.3. Declare that an unveil has happened if Dec(f(Ei)) 6=⊥. If so, reveal Dec(f(x)) for all

x ∈ Γ(f(Ei)) \ Ei to equal ⊥.

3.4. Reveal and output Si.

For i ∈ [t], we use the notation Reveali to refer to all the information revealed from the beginning of the
process up to the time the ith stage begins. We also denote by Next(i) the least j > i such that a skip does
not occur at stage j; define Next(i) := t + 1 if no such j exists, and define Next(0) to be the index of the
first stage that is not skipped. Moreover, for w ∈ {0, 1}n, we use the notation w ∈ Reveali as a shorthand
to denote the event that the process Reveal has revealed the value of Dec(w) at the time the ith stage begins.

By the way the code is constructed, the decoder’s value at each given point is most likely ⊥. We make
this intuition more rigorous and show that the same holds even conditioned on the information reveal by the
process Reveal.

Claim 3.4. For all i ∈ [t] and any a ∈ supp(Reveali),

Pr[Dec(x) 6=⊥ |(Reveali = a) ∧ (x /∈ Reveali)] 6 γ′/(1− 3γV).

Proof. Suppose x /∈ Reveali, and observe that Reveali at each step reveals at most the values of the decoder
at 2V points; namely, Γ(Ei) and Γ(f(Ei)). Moreover, before the first stage, decoder’s value is revealed at
up to r heavy points and its Hamming neighborhood at radius δn. In total, the total number of points at
which decoder’s value is revealed by the information in Reveali is at most

(|H|+ 2(i− 1))|V | 6 (2t+ r)V 6 3γV N.

4In a rigorous sense, by revealing a random variable we mean that we condition the probability space on the event that a particular
value is assumed by the variable. For example, revealing Ei means that the analysis branches to a conditional world where the
value of Ei is fixed to the revealed value. In an intuitive way, one may think of a reveal as writing constraints on the realization
of the code construction on a blackboard, which is subsequently consulted by the analysis (in form of the random variable Reveali
that the analysis defines to denote the information revealed by the process before stage i).

14

Let
C :=

⋃
s

E(s)

be the set of all codewords of the coding scheme. Some of the elements of C are already included in Reveali,
and by assumption we know that none of these is equal to x.

The distribution of each unrevealed codeword, seen in isolation, is uniform over the N(1 − 3γV) re-
maining vectors in {0, 1}n. Thus by taking a union bound on the probability of each such codeword hitting
the point x (which is the only way to make Dec(x) 6=⊥, we deduce that

Pr[Dec(x) 6=⊥ |Reveali = a] 6
tK

N(1− 3γV)
= γ′/(1− 3γV).

Ideally, for each i ∈ [t] we desire to have Ei almost uniformly distributed, conditioned on the revealed
information, so that the distribution of Dec(f(Ei)) (which is described by Si when Ei does not hit a fixed
point of f) becomes close to Dec(f(Un)). However, this is not necessarily true; for example, when the
process Reveal determines the decoder’s value on the heavy elements, the value of, say, E1 may be revealed,
at which point there is no hope to ensure that E1 is nearly uniform. This is exactly what the set Skip is
designed for, to isolate the instances when the value of Ei is already determined by the prior information.
More precisely, we have the following.

Claim 3.5. Suppose that i /∈ Skip when the ith stage of Reveal begins. Then, for any a ∈ supp(Reveali),

D(Ei|Reveali = a) ≈ν Un,

where ν := (3γV)/(1− 3γV).

Proof. Note that, without any conditioning, the distribution of Ei is exactly uniform on {0, 1}n. If at any
point prior to reaching the ith stage it is revealed that Dec(Ei) = s, either line 2 or line 3.2.2 of process
Reveal ensures that i is added to the set Skip.

If, on the other hand, the fact that Dec(Ei) = s has not been revealed when the ith stage begins, the
distribution ofEi becomes uniform on the points in {0, 1}n that have not been revealed yet. As in Claim 3.4,
the number of revealed points is at most (2t+ r)V 6 3γV N . Thus, the conditional distribution Ei remains
((3γV)/(1− 3γV))-close to uniform by Proposition B.2.

For each i ∈ [t], define a random variable S′i ∈ {0, 1}k ∪ {same,⊥} as follows (where Un is indepen-
dently sampled from Un):

S′i :=

same if f(Un) = Un,

Dec(f(Un)) if f(Un) 6= Un ∧ f(Un) ∈ Reveali,

⊥ otherwise.

(8)

Note that D(S′1) = Df .
Intuitively, S′i is the “cleaned up” version of the random variable Si that we are interested in. As

defined, S′i is an independent random variable, and as such we are more interested in its distribution than
value. Observe that the distribution of S′i is randomly determined according to the randomness of the code
construction (in particular, the knowledge of Reveali completely determines D(S′i)). The variable S′i is
defined so that its distribution approximates the distribution of the actual Si conditioned on the revealed
information before stage i. Formally, we can show that conditional distributions of these two variables are
(typically) similar. Namely,

15

Claim 3.6. Suppose that i /∈ Skip when the ith stage of Reveal begins. Then, for any a ∈ supp(Reveali),

D(Si|Reveali = a) ≈ν D(S′i|Reveali = a),

where ν := (3γV + γ′)/(1− 3γV).

Proof. First, we apply Claim 3.5 to ensure that

D(Ei|Reveali = a) ≈ν′ Un,

where ν ′ = (3γV)/(1−3γV). Thus we can assume that the conditional distribution ofEi is exactly uniform
at cost of a ν ′ increase in the final estimate.

Now, observe that, conditioned on the revealed information, the way Si is sampled at stage i of Reveal
can be rewritten as follows:

1. Sample Ei ∼ Un.

2. If f(Ei) = Ei, set Si ← same.

3. Otherwise, if f(Ei) ∈ Reveali, set Si to Dec(f(Ei)) as determined by the revealed information.

4. Otherwise, reveal Dec(f(Ei)) (according to its conditional distribution on the knowledge of Reveali)
and set S accordingly.

This procedure is exactly the same as how S′i is sampled by (8); with the difference that at the third step,
S′i is set to ⊥ whereas Si is sampled according to the conditional distribution of Dec(f(Ei)). However, we
know by Claim 3.4 that in this case,

Pr[Dec(f(Ei)) 6=⊥ |Reveali = a] 6 γ′/(1− 3γV).

Thus we see that Si changes the probability mass of ⊥ in D(S′i) by at most γ′/(1 − 3γV). The claim
follows.

Recall that the distribution of S′1 is the same asDf . However, for subsequent stages this distribution may
deviate from Df . We wish to ensure that by the end of process Reveal, the deviation remains sufficiently
small.

For i ∈ [t− 1], define ∆i as
∆i := dist(D(S′i+1),D(S′i)).

where dist(·) denotes statistical distance. Note that ∆i is a random variable that is determined by the
knowledge of Reveali+1 (recall that Reveali determines the exact distribution of S′i). We show that the
conditional values attained by this random variable are small in expectation.

Claim 3.7. For each i ∈ [t− 1], and all a ∈ supp(Reveali),

E[∆i|Reveali = a] 6
2γ′

r(1− 3γV)
. (9)

Moreover, Pr[∆i 6 2/r | Reveali = a] = 1.

16

Proof. Recall that the distribution of S′i+1 is different from S′i depending on the points at which the decoder’s
value is revealed during stage i of Reveal. If a skip is declared at stage i, we have Reveali+1 = Reveali and
thus, ∆i = 0. Thus in the following we may assume that this is not the case.

However, observe that whenever for some x ∈ {0, 1}n, the decoder’s value Dec(x) is revealed at stage
i, the new information affects the probability distribution of S′i only if Dec(x) 6=⊥. This is because when
Dec(x) =⊥, some of the probability mass assigned by Si to ⊥ in (8) is removed and reassigned by S′i+1 to
Dec(x), which is still equal to⊥. Thus, changes of this type can have no effect on the distribution of S′i. We
conclude that only revealing the value of Ei and an unveil (as defined in line 3.3.3 of process Reveal) can
contribute to the statistical distance between S′i and S′i+1.

Whenever an unveil occurs at stage i, say at point x ∈ {0, 1}n, some of the probability mass assigned
to ⊥ by S′i is moved to Dec(x) in the distribution of S′i+1. Since we know that x /∈ H , the resulting change
in the distance between the two distributions is bounded by 1/r, no matter what the realization of x and
Dec(x) are. Overall, using Claim 3.4, the expected change between the two distributions contributed by the
occurrence of an unveil is upper bounded by the probability of an unveil occurring times 1/r, which is at
most

γ′/r

1− 3γV
. (10)

The only remaining factor that may contribute to an increase in the distance between distribution of S′i
and S′i+1 is the revealing of Ei at stage i. The effect of this reveal in the statistical distance between the two
distributions is p(Ei), since according to (8) the value of S′i+1 is determined by the outcome of f(Un), and
thus the probability mass assigned to Dec(Ei) by S′i+1 is indeed Pr[f(Un) = Ei]. LetDE be the distribution
of Ei conditioned on the knowledge of Reveali. Observe that, since the values {p(x) : x ∈ {0, 1}n} defines
a probability distribution on N points, we clearly have∑

x∈supp(DE)

p(x) 6 1. (11)

On the other hand, by the assumption that a skip has not occurred at stage i, we can deduce using the
argument in Claim 3.5 that DE is uniformly supported on a support of size at least N(1− 3γV). Therefore,
using (11), the expected contribution to ∆i by the revealing of Ei is (which is the expected value of p(Ei))
is at most

1

N(1− 3γV)
6

γ′/r

(1− 3γV)
, (12)

where the inequality uses r 6 γ′N = tK. The desired bound follows by adding up the two perturbations
(10) and (12) considered.

Finally, observe that each of the perturbations considered above cannot be more than 1/r, since stage i
never reveals the decoder’s value on a heavy element (recall that all heavy elements are revealed before the
first stage begins and the choices of Ei that correspond to heavy elements are added to Skip when Reveal
begins). Thus, the conditional value of ∆i is never more than 2/r.

Using the above result, we can deduce a concentration bound on the summation of the differences ∆i.

Claim 3.8. Let ∆ := ∆1 + · · ·+ ∆t−1, and suppose

γ′

1− 3γV
6

εr

32t
. (13)

17

Then,
Pr[∆ > ε/8] 6 exp(−ε2r2/(2048t)) =: η0. (14)

Proof. For i ∈ [t−1], define ∆′i := ∆ir/2, ∆′0 := 0, and ∆′ := ∆′1 + · · ·+∆′t−1. Since Reveali determines
∆′i−1, by Claim 3.7 we know that

E[∆′i|∆′0, . . . ,∆′i−1] 6 ν,

where ν := γ′

1−3γV 6 εr/(32t) In the above, conditioning on ∆′0, . . . ,∆
′
i−1 instead of Reveali (for

which Claim 3.7 applies), is valid in light of Proposition B.1, since the knowledge of Reveali determines
∆′0, . . . ,∆

′
i−1.

Moreover, again by the Claim 3.7, we know that the ∆′i are between 0 and 1. Using Proposition B.3, it
follows that

Pr[∆ > ε/8] = Pr[∆′ >
εr

16t
· t] 6 η0.

Next, we prove a concentration bound for the total number of unveils that can occur in line 3.3.3 of
process Reveal.

Claim 3.9. Let u be the total number of unveils that occur in process Reveal. Assuming γ′/(1−3γV) 6 ε/8
(which is implied by (13)), we have

Pr[u > εt/4] 6 exp(−ε2t/128) 6 η0.

Proof. Let X1, . . . , Xt be indicator random variable such that Xi = 1 iff an unveil occurs at stage i, and let
X0 := 0. Recall that an unveil can only occur at a stage that is not skipped. Thus, if i ∈ [t] when the ith
stage begins, we can deduce that Xi = 0.

Consider i ∈ [t] such that i /∈ Skip when the ith stage begins. An unveil occurs when Dec(f(Ei)) /∈
Reveali. In this case, by Claim 3.4, we get that

Pr[Dec(f(Ei)) 6=⊥ |Reveali] 6 γ′/(1− 3γV).

Since Reveali determines all the revealed information in each prior stage, and in particular the values of
X0, . . . , Xi−1, we can use Proposition B.1 to deduce that

Pr[Xi = 1|X0, . . . , Xi−1] 6 γ′/(1− 3γV).

Finally, Proposition B.3 derives the desired concentration bound on the number of unveils, which is X1 +
· · ·+Xt.

We are now ready to wrap up the proof and show that with overwhelming probability, the empirical
distribution of S1, . . . , St is ε-close to Df .

Suppose that process Reveal outputs a subset of the Si. Let T ⊆ [t] be the set of indices i such Reveal
outputs Si in the end of the ith stage. Note that T = [t] \ Skip, where Skip denotes the skip set when Reveal
terminates. Observe that |Skip| is at most the total number of unveils occurring at line 3.3.3 of Reveal plus
r (which upper bounds the number of heavy elements in H). Thus, using Claim 3.9 we see that, assuming
(13),

Pr[t− |T | > r + εt/4] 6 η0. (15)

Let δi for i ∈ [t] denote the statistical distance between S′i and Df . We know that δi is a random variable
depending on Reveali. Thus, the value of δi becomes known to a particular fixed value conditioned on the

18

outcome of every Revealj , j > i. Define δ0 := maxi δi, which is a random variable that becomes revealed
by the knowledge of Revealt in the end of the process.

Using Claim 3.6, we thus know that for any a ∈ supp(Reveali) and i ∈ T ,

D(Si|Reveali = a) ≈ν0+δ0 Df ,

where
ν0 := (3γV + γ′)/(1− 3γV).

Let S denote the empirical distribution of {Si : i ∈ T}, and define S0 :=⊥. From the above conclusion,
using Proposition B.1 we can now write, for i ∈ T ,

D(Si|(Sj : j ∈ T ∩ {1, . . . , i− 1}) ≈ν0+δ0 Df .

Recall that |supp(Df)| 6 r + 2. Assuming that

ν0 + δ0 6 ε/4, (16)

Proposition B.7 implies (after simple manipulations) that with probability 1− η1, where

η1 6 2r+4−Ω(ε2|T |), (17)

S is (ε/2)-close to Df .
Recall that D(S′1) = Df . Using the triangle inequality for statistical distance, for every i ∈ [t] we can

write
dist(S′i,Df) = dist(S′i, S

′
1) 6 ∆1 + · · ·+ ∆i−1 6 ∆,

and thus deduce that δ0 6 ∆. Recall that by Claim 3.8, we can ensure that, assuming (13), ∆ 6 ε/8 (and
thus, δ0 6 ε/8) with probability at least 1− η0. Thus under the assumption that

ν0 6 ε/8, (18)

and (13), which we recall below
γ′

1− 3γV
6

εr

32t
,

we can ensure that ν0 + δ0 6 ε/4 with probability at least 1 − η0. Moreover, conditioned on the event
ν0 + δ0 6 ε/4 (recall that δ0 is a random variable), we have already demonstrated that with probability at
least 1 − η1, S is (ε/2)-close to Df . After removing conditioning on the bound on δ0, we may deduce that
overall (under the assumed inequalities (13) and (18)), with probability at least 1−O(η0 + η1),

S ≈ε/2 Df ,

which in turn, implies that the empirical distribution of S1, . . . , St becomes ε′-close to uniform, where

ε′ := ε/2 + (1− |T |/t).

Finally, we can use (15) to ensure that (assuming (13)), ε′ 6 ε and |T |/t > 1− ε/2 with probability at least
1−O(η0 + η1) as long as

r 6 εt/4. (19)

19

By comparing (17) with (14), we also deduce that η1 = O(η0) (and also that (19) holds) as long as r 6 r0

for some
r0 = Ω(ε2t). (20)

Altogether, we arrive at the conclusion that under assumptions (13), (18), and by taking r := r0, with
probability at least 1−O(η0),

(empirical distribution of (S1, . . . , St)) ≈ε Df ,

which ensures the required non-malleability condition for message s and tampering function f . By taking a
union bound over all possible choices of s and f , the probability of failure becomes bounded by

O(η0K|F|) =: η2.

We can now ensure that η2 6 η for the chosen value for r by taking t > t0 for some

t0 = O

(
1

ε6

(
log
|F|N
η

))
. (21)

Furthermore, in order to satisfy assumptions (13), (18), and the requirement tKV 6 1 which is needed
to make the construction possible, it suffices to have K 6 K0 for some

K0 = Ω(ε3N/(tV)).

Using the bound V 6 2nh(δ), where h(·) is the binary entropy function, and taking the logarithm of both
sides, we see that it suffices to have k 6 k0 for some

k0 > n(1− h(δ))− log t− 3 log(1/ε)−O(1).

This concludes the proof of Theorem 3.1.

3.3 Efficiency in the random oracle model

One of the main motivations of the notion of non-malleable codes proposed in [8] is the application for
tamper-resilient security. In this application, a stateful consists of a public functionality and a private state
s ∈ {0, 1}k. The state is stored in form of its non-malleable encoding, which is prone to tampering by a
family of adversaries. It is shown in [8] that the security of the system with encoded private state can be
guaranteed (in a naturally defined sense) provided that the distribution Df related to the non-malleable code
is efficiently samplable. In light of Remark 2.7, efficient sampling ofDf can be assured if the non-malleable
code is equipped with an efficient encoder and decoder.

Although the code described by Construction 1 may require exponential time to even describe, it makes
sense to consider efficiency of the encoder and the decoder in the random oracle model, where all involved
parties have oracle access to a shared, exponentially long, random string. The uniform decoder construction
of [8] is shown to be efficiently implementable in the random oracle model in an approximate sense (as long
as all involved parties query the random oracle a polynomial number of times), assuming existence of an
efficient algorithm implementing a uniformly random permutation Π and its inverse Π−1.

We observe that Construction 1, for the distance parameter δ = 0 (which is what needed for strong
non-malleability as originally defined in [8]) can be exactly implemented efficiently (without any further

20

assumptions on boundedness of the access to the random oracle) assuming access to a uniformly random
permutation and its inverse (i.e., the so-called ideal-cipher model). This is because our code is designed so
that the codewords are picked uniformly at random and without replacement. More precisely, the encoder,
given message s ∈ {0, 1}k, can sample a uniformly random i ∈ [t], and output Π(s, i), where (s, i) is
interpreted as an element of {0, 1}n (possibly after padding).

As noted in [8], efficient approximate implementations of uniformly random permutations exist in the
random oracle model. In particular, [4] show such an approximation with security poly(q)/2n, where q is
the number of queries to the random oracle.

4 A Monte Carlo construction for computationally bounded adversaries

An important feature of Construction 1 is that the proof of non-malleability, Theorem 3.1, only uses limited
independence of the permutation defining the codewords E(s) corresponding to each message. This is
because the proof analyzes the distribution of Dec(f(Enc(s))) for each individual message separately, and
then takes a union bound on all choice of s.

More formally, below we show that Theorem 3.1 holds for a broader range of code constructions than
the exact Construction 1.

Definition 4.1 (`-wise independent schemes). Let (Enc,Dec) be any randomized construction of a coding
scheme with block length n and message length k. For each s ∈ {0, 1}k, define E(s) := supp(Enc(s)) and
let ts := |supp(Enc(s))|. We say that the construction is `-wise independent if the following are satisfied.

1. For any realization of (Enc,Dec), the distribution of Enc(s) (with respect to the internal randomness
of Enc) is uniform on supp(Enc(s)).

2. The distribution of the codewords defined by the construction is `-wise independent. Formally, we
require the following. Let C :=

⋃
s∈{0,1}k supp(Enc(s)). Suppose the construction can be described

by a deterministic function5 E : {0, 1}k ×N ×N → {0, 1}n such that for a bounded random oracle
O over N (describing the random bits used by the construction), the sequence

(E(s, i,O))s∈{0,1}k,i∈[ts]

enumerates the set C. Moreover, for any set of t indices S = {(sj , ij) : j ∈ [`], sj ∈ {0, 1}k, ij ∈
[ts]}, we have

D(E(s1, i1,O), . . . , E(s`, i`,O)) = D(Π(1), . . . ,Π(`))

for a uniformly random bijection Π: [2n]→ {0, 1}n.

Lemma 4.2. Let (Enc,Dec) be any randomized construction of a coding scheme with block length n and
message length k. For each s ∈ {0, 1}k, define E(s) := supp(Enc(s)). Suppose that for any realization of
(Enc,Dec), and for every s1, s2 ∈ {0, 1}k, we have

1. |E(s1)| > t0, where t0 is the parameter defined in Theorem 3.1.

2. |E(s2)| = O(|E(s1)|).

5As an example, in Construction 1, all the values ts are equal to the chosen t, and moreover, one can take E(s, i,O) = Π(s, i),
where Π: {0, 1}k × [2n−k]→ {0, 1}n is a uniformly random bijection defined by the randomness of O.

21

Moreover, suppose that k 6 k0, for k0 as in Theorem 3.1. Let t := maxs |E(s)|. Then, assuming that the
construction is (3t)-wise independent, the conclusion of Theorem 3.1 for distance parameter δ = 0 holds
for the coding scheme (Enc,Dec).

Proof. We argue that the proof of Theorem 3.1 holds without any technical change if

1. The codewords in supp(Enc(Uk)) are chosen not fully independently but (3t)-wise independently,
and

2. Each set E(s) is not necessarily of exact size t but of size at least t0 and Θ(t).

The key observation to be made is that the proof analyzes each individual message s ∈ {0, 1}k separately,
and then applies a union bound on all choices of s. Thus we only need sufficient independence to ensure
that the view of the analysis on each individual choice of the message is statistically the same as the case
where the codewords are chosen fully independently.

Observe that the bulk of the information about the code looked up by the analysis for analyzing each
individual message is contained in the random variable Revealt+1 defined in the proof of Theorem 3.1, that
is defined according to how the process Reveal evolves. Namely, Revealt+1 summarizes all the information
revealed about the code by the end of the process Reveal.

For a fixed message s ∈ {0, 1}n the process Reveal iterates for |E(s)| 6 t step. At each step, the
location of at most two codewords in supp(Enc(Uk)) is revealed. Moreover, before the process starts, the
values of the decoder on the heavy elements in H , which can correspond to less than t codewords, are
revealed by the process. The only other place in the proof where an independent codeword is required is
the union bound in the proof of Claim 3.4, which needs another degree of independence. Altogether, we
conclude that the proof of Theorem 3.1 only uses at most 3t degrees of independence in the distribution of
the codewords picked by the construction.

Moreover, for each message s, the analysis uses the fact that |E(s)| > t0 to ensure that the code does
not satisfy non-malleability for the given choice of s and tampering function remains below the desired
level. Since |E(s)| for different values of s are assumed to be within a constant factor of each other, the
requirement (20) may also be satisfied by an appropriate choice of the hidden constant. Finally, using the
fact that maxs |E(s)| = O(mins |E(s)|), we can also ensure that assumptions (13), and (18) can be satisfied
for appropriate choices of the hidden constants in asymptotic bounds.

In order to implement an efficient `-wise independent coding scheme, we use the bounded independence
property of polynomial evaluations over finite fields. More precisely, we consider the coding scheme given
in Construction 2.

The advantage of using the derandomized Monte Carlo construction is that the number of random bits
required to describe the code is dramatically reduced from O(tnK) bits (which can be exponentially large
if the rate of the code is Ω(1)) to only O(tn) bits, which is only polynomially large if t = poly(n). In order
to efficiently implement the derandomized construction, we use bounded independence properties of poly-
nomial evaluation. Using known algorithms for finite field operations and root finding, the implementation
can be done in polynomial time.

Lemma 4.3. Consider the pair (EncMC,DecMC) defined in Construction 2. For every η > 0, there is a
t0 = O(n+ log(1/η)) such that for every t > t0 (where t is a power of two), with probability at least 1− η
the following hold.

22

• Given: Integer parameters 0 < k 6 n and integer t > 1 which is a power of two. Let b := log(2t)
and m := n− k − b.

• Output: A coding scheme (EncMC,DecMC) of block length n and message length k.

• Randomness of the construction: A uniformly random polynomial P ∈ F2n [9t− 1].

• Construction of EncMC: Given s ∈ {0, 1}k,

1. Initialize a set E ⊆ {0, 1}n to the empty set.

2. For every z ∈ {0, 1}b,
(a) Construct a vector y := (s, 0m, z) ∈ {0, 1}n and regard it as an element of F2n .
(b) Solve P (X) = y, and add the set of solutions (which is of size at most 9t− 1) to E.

3. Output a uniformly random element of E.

• Construction of DecMC: Given x ∈ {0, 1}n, interpret x as an element of F2n , and let y := P (x),
interpreted as a vector (y1, . . . , yn) ∈ {0, 1}n. If (yk+1, yk+2, . . . , yk+m) = 0m, output (y1, . . . , yk).
Otherwise, output ⊥.

Construction 2: The Monte Carlo Construction.

1. (EncMC,DecMC) is a (9t)-wise independent coding scheme.

2. For all s ∈ {0, 1}k, |supp(EncMC(s))| ∈ [t, 3t].

Proof. Let N := 2n and K := 2k. Consider the vector X := (X1, . . . , XN) ∈ FN2n , where Xi := P (i)
and each i is interpreted as an element of F2n . Since the polynomial P is of degree 9t− 1, the distribution
of X1, . . . , XN over the randomness of the polynomial P is (9t)-wise independent with each individual Xi

being uniformly distributed on F2n . This standard linear-algebraic fact easily follows from invertibility of
square Vandermonde matrices.

Note that the decoder function DecMC in Construction 2 is defined so that

DecMC(Un) =

{
⊥ with probability 1− 2tK/N

s ∈ {0, 1}k with probability 2t/N.
(22)

For s ∈ {0, 1}k, let E(s) := supp(EncMC(s)). Note that the encoder, given s, is designed to output
a uniformly random element of E(s). Since the definition of the EncMC(s) is so that it exhausts the list
of all possible words in {0, 1}n that can lie in DecMC−1(s), it trivially follows that (EncMC,DecMC) is
always a valid coding scheme; that is, for any realization of the code and for all s ∈ {0, 1}n, we have
DecMC(EncMC(s)) = s subject to the guarantee that |E(s)| > 0.

Fix some s ∈ {0, 1}k. Let Z1, . . . , ZN ∈ {0, 1} be indicator random variable such that Zi = 1 iff
DecMC(i) = s (when i is interpreted as an n-bit string). Recall that (Z1, . . . , ZN) is a (9t)-wise independent
random vector with respect to the randomness of the code construction. Let Z := Z1 + · · ·+ ZN , and note
that Z = |E(s)|. From (22), we see that

E[Z] = E[|E(s)|] = 2t .

23

Using Theorem B.6 with ` := t/4 and A := E[Z]/2 = t, we see that

Pr[|Z − 2t| > t] 6 8(3/4)t/4.

By taking a union bound over all choices of s ∈ {0, 1}k, we conclude that with probability at least 1 − η0,
where we define η0 := 8N(3/4)t/4, the realization of (EncMC,DecMC) is so that

(∀s ∈ {0, 1}k) : |E(s)| ∈ [t, 3t].

This bound suffices to show the desired conclusion.

By combining the above tools with Theorem 3.1, we can derive the following result on the performance
of Construction 2.

Theorem 4.4. Let F : {0, 1}n → {0, 1}n be any family of tampering functions. For any ε, η > 0, with
probability at least 1 − η, the pair (EncMC,DecMC) in Construction 2 can be set up so achieve a non-
malleable coding scheme with respect to F and with error ε. Moreover, the scheme satisfies the following.

1. The code achieves k > n− log log(|F|/η)− log n− 9 log(1/ε)−O(1).

2. The number of random bits needed to specify the code is O
(

(n+ log(|F|/η))n/ε6
)

.

3. The encoder and the decoder run in worst case time poly(log(|F|/η)n/ε).

Proof. Let t0 and k0 be the parameters promised by Theorem 3.1. We instantiate Construction 2 with
parameter t := t0 and k := k0. Observe that this choice of t is large enough to allow Lemma 4.3 to hold.
Thus we can ensure that, with probability at least 1−η, (EncMC,DecMC) is a (9t)-wise independent coding
scheme where, for every s ∈ {0, 1}k, |E(s)| ∈ [t0, 3t0]. Thus we can now apply Lemma 4.2 to conclude
that with probability at least 1 − 2η, (EncMC,DecMC) is a strong non-malleable code with the desired
parameters.

The number of random bits required to represent the code is the bit length of the polynomial P (X) in
Construction 2, which is 9tn. Plugging in the value of t from (21) gives the desired estimate.

The running time of the decoder is dominated by evaluation of the polynomial P (X) at a given point.
Since the underlying field is of characteristic two, a representation of the field as well as basic field operations
can be computed in deterministic polynomial time in the degree n of the extension using Shoup’s algorithm
[10].

The encoder is, however, slightly more complicated as it needs to iterate through O(t) steps, and at
each iteration compute all roots of a given degree 9t − 1 polynomial. Again, since characteristic of the
underlying field is small, this task can be performed in deterministic polynomial time in the degree 9t−1 of
the polynomial and the degree n of the extension (e.g., using [11]). After plugging in the bound on t from
(21), we obtain the desired bound on the running time.

As a corollary, we observe that the rate of the Monte Carlo construction can be made arbitrarily close
to 1 while keeping the bit-representation of the code as well as the running time of the encoder and decoder
at poly(n) provided that ε = 1/poly(n) and |F| = 2poly(n). In particular, we see that the Monte Carlo
construction achieves strong non-malleability even with respect to such powerful classes of adversaries
as polynomial-sized Boolean circuits (with n outputs bits) and virtually any interesting computationally
bounded model.

24

Remark 4.5. Since in this construction the error ε is only polynomially small, for cryptographic applications
such as tamper-resilient security it is important to set up the code so as to ensure that 1/ε is significantly
larger than the total number of tampering attempts made by the adversary.

Caveat. We point out that any explicit coding scheme for computationally bounded models (such as polynomial-
sized Boolean circuits) necessarily implies an explicit lower bound for the respective computational model.
This is because a function in the restricted model cannot be powerful enough to compute the decoder func-
tion, as otherwise, the following adversary would violate non-malleability:

Consider fixed tuples (s1, x1), (s2, x2) ∈ {0, 1}k × {0, 1}n, where s1 6= s2, Dec(x1) = s1 and
Dec(x2) = s2. Given a codeword x ∈ {0, 1}n, compute s := Dec(x). If s = s1, output x2. If
s = s2, output x1. Otherwise, output x.

Remark 4.6. (Alternative Monte Carlo construction) In addition to Construction 2, it is possible to consider
a related Monte Carlo construction when polynomial evaluation is performed at the encoder and root finding
is done by the encoder. More precisely, the encoder, given s ∈ {0, 1}k, may sample i ∈ [t] uniformly at
random, and output P (s, i) where (s, i) is interpreted as an element of F2n (possibly after padding). The
drawback with this approach is that the rate of the code would be limited by 1/2, since for larger rates there
is a noticeable chance that the encoder maps different messages to the same codeword.

5 Impossibility bounds

In this section, we show that the bounds obtained by Theorem 3.1 are essentially optimal. In order to do so,
we consider three families of adversaries. Throughout the section, we use k and n for the message length
and block length of coding schemes and define N := 2n and K := 2k.

5.1 General adversaries

The first hope is to demonstrate that Theorem 3.1 is the best possible for every family of the tampering
functions of a prescribed size. We rule out this possibility and demonstrate a familyF of tampering functions
achieving log log |F| ≈ n for which there is a non-malleable code achieving rate 1− γ for arbitrarily small
γ > 0.

Let S ⊆ {0, 1}n be any set of size at least N1−α and at most N/2. Consider the family F of functions
satisfying the property that

(∀f ∈ F)(∀x ∈ S) : f(x) = x.

We can take the union of such families over all choices of S; however, for our purposes it suffices to define
F with respect to a single choice of S. Observe that

|F|NN−|S| > NN/2,

which implies
log log |F | > n− 1.

However, there is a trivial coding scheme that is non-malleable with zero error for all functions in F .
Namely, the encoder Enc is a deterministic function that maps messages to distinct elements of S, whereas

25

the decoder Dec inverts the encoder and furthermore, maps any string outside S to ⊥. In this construction,
we see that

(∀f ∈ F)(∀x ∈ {0, 1}k) : Dec(f(Enc(x))) = x,

since f necessarily fixes all the points in S (in particular, in Definition 2.3 one can take Df := D(same)).
Finally, observe that the rate of this coding scheme is at least 1−γ. In fact, this result holds for any γ > 1/n,
implying that the rate of the code can be made 1− o(1).

5.2 Random adversaries

The observation in Section 5.1 rules out the hope for a general lower bound that only depends on the size
of the adversarial family. However, in this section we show that for “virtually all” families of tampering
functions of a certain size, Theorem 3.1 gives the best possible bound. More precisely, we construct a family
F of a designed size M as follows: For each i ∈ [M], sample a uniformly random function fi : {0, 1}n →
{0, 1}n and add fi to the family. Since some of the fi may turn out to be the same (albeit with negligible
probability), |F| may in general be lower than M (which can only make a lower bound stronger).

We prove the following.

Theorem 5.1. For any α > 0, there is an M0 satisfying

log logM0 6 αn+O(log n)

such that with probability 1 − exp(−n), a random family F with designed size M > M0 satisfies the
following: There is no coding scheme achieving rate at least 1 − α and error ε < 1 that is non-malleable
with respect to the tampering family F .

Proof. We begin with the following simple probabilistic argument:

Claim 5.2. Let C ⊆ [q]N be a multi-set of vectors each chosen uniformly and independently at random.
For any integer ` ∈ [N] and parameter γ > 0, there is an M0 = O(`q` log(qN/γ)) such that as long as
|C| > M0, the following holds with probability at least 1 − γ: For every S ⊆ [N] with |S| 6 `, the set of
vectors in C restricted to the positions picked by S is equal to [q]|S|.

Proof. Fix any choice of the set S (where, without loss of generality, |S| = `) and let CS be the set of vectors
in C restricted to the positions in S. For any w ∈ [q]|S , we have

Pr[w /∈ CS] =
(

1− 1

q`

)|C|
6 exp(−Ω(|C|/q`)).

By taking a union bound on all the choices of w and S, the probability that C does not satisfy the desired
property can be seen to be at most

(qN)` exp(−Ω(|C|/q`)),

which can be made no more than γ for some

|C| = O
(
q`(` log(qN) + log(1/γ))

)
.

26

Let γ > 0 be a parameter to be determined later. By Claim 5.2, with probability at least 1− γ over the
randomness of the family F , we can ensure that for all sets S ⊆ {0, 1}n of size at most 2Nα, and for all
functions fS : S → {0, 1}n, there is a function f ∈ F that agrees with fS on all points in S. This guarantee
holds if we take F >M0 for some

M0 = O
(
N (4Nα)(8Nα log(N/γ))

)
.

Overestimating the above bound yields

log logM0 6 αn+ log log(N/γ) +O(1)

which is at most αn+O(log n) for γ = exp(−n). Assuming that the family F attains the above-mentioned
property, we now proceed as follows.

Consider any coding scheme (Enc,Dec) with block length n and message length k which is non-
malleable for the family F randomly constructed as above and achieving rate at least 1− α for some α > 0
and any non-trivial error ε < 1. For any message s ∈ {0, 1}k, let

E(s) := supp(Enc(s)) ⊆ [N]

and observe that E(s) ∩ E(s′) = ∅ for all s 6= s′. Observe that

E[|E(Uk)|] 6 Nα

by the disjointness property of the E(s) and the assumption on the rate of the code. By Markov’s bound,

Pr[|E(Uk)| > 2Nα] < 1/2

implying that for at least half of the choices of s ∈ {0, 1}k, we can assume |E(s)| 6 4Nα. Take two distinct
vectors s1, s2 ∈ {0, 1}k satisfying this bound.

Now, let S := E(s1) ∪ E(s2), where |S| 6 2Nα as above. Consider any c1 ∈ E(s1) and c2 ∈ E(s2)
and define fS : S → {0, 1}n such that

(∀x ∈ E(s1)) : fS(x) = c2 and (∀x ∈ E(s2)) : fS(x) = c1.

By the choice of F , we know that there is f ∈ F that agrees with fS on all the points in S. This choice of
the adversary ensures that

Pr[Dec(f(Enc(s1))) = s2] = 1 and Pr[Dec(f(Enc(s2))) = s1] = 1

with respect to the randomness of the encoder. Since the two distributions Dec(f(Enc(s1))) and Dec(f(Enc(s2)))
are maximally far from each other and moreover, the adversary f always tampers codewords in E(s1) and
E(s2) to a codeword corresponding to a different message, we conclude that there is no choice of Df in
Definition 2.3 that ensures non-malleability with any error less than 1.

5.3 General adversaries acting on a subset of positions

An important family of adversaries is the one that is only restricted by the subset of bits it acts upon. More
precisely, let T ⊆ [n] be a fixed set of size αn, for a parameter α ∈ (0, 1). For x ∈ {0, 1}n, we use the

27

notation xT ∈ {0, 1}|T | for the restriction of x to the positions in T . Without loss of generality, assume that
T contains the first |T | coordinate positions so that x = (xT , xT̄), where T̄ := [n] \ T . We consider the
family FT of all functions f : {0, 1}n → {0, 1}n such that

f(x) = (g(xT), xT̄)

for some g : {0, 1}|T | → {0, 1}|T |. Observe that |FT | 6 N (αNα) which implies log log |FT | 6 αn.
We prove the following lower bound, which is a variation of the classical Singleton bound for non-

malleable codes. What makes this variation much more challenging to prove is the fact that 1) non-malleable
codes allow a randomized encoder, and 2) non-malleability is a more relaxed requirement than error detec-
tion, and hence the proof must rule out the case where the decoder does not detect errors (i.e., outputs a
wrong message) while still satisfies non-malleability.

Theorem 5.3. Let T ⊆ [n] be of size αn and consider the family FT of the tampering functions that only
act on the coordinate positions in T (as defined above). Then, there is a δ0 = O((log n)/n) such that
the following holds. Let (Enc,Dec) be any coding scheme which is non-malleable for the family FT and
achieves rate 1 − α + δ, for any δ ∈ [δ0, α] and error ε. Then, ε > δ/(16α). In particular, when α and δ
are absolute constants, ε = Ω(1).

Before proving the theorem, we state the following immediate corollary.

Corollary 5.4. Let F be the family of split-state adversaries acting on n bits. That is, each f ∈ F interprets
the input as a pair (x1, x2) where x2 ∈ {0, 1}bn/2c and x2 ∈ {0, 1}dn/2e, and outputs (f1(x1), f2(x2)) for
arbitrary tampering functions f1 and f2 (acting on their respective input lengths).

Moreover, for a fixed constant δ ∈ (0, 1), let Fδ be the class of tampering functions where f ∈ Fδ iff
every bit of f(x) depends on at most bδnc of ths bits of x.

Let (Enc1,Dec1) (resp., (Encδ,Decδ) be any coding scheme which is non-malleable for the class F
(resp., Fδ) achieving error at most ε and rate R (resp., Rδ). Then, for every fixed constant γ > 0, there is a
fixed constant ε0 > 0 such that if ε 6 ε0, the following bounds hold.

(i) R 6 1/2− γ,

(ii) Rδ 6 1− δ − γ.

The proof of Theorem 5.3 uses basic tools from information theory, and the core ideas can be described
as follows. Assume that the codeword is (X1, X2) where the adversary acts on X1, which is of length αn.
We show that for any coding scheme with rate slightly larger than (1 − α)n, there is a set Xη ⊆ {0, 1}αn
such that

1. For some message s0, X1 lies in Xη with noticeable probability.

2. For a “typical” message s1, X1 is unlikely to land in Xη.

3. There is a vector w ∈ {0, 1}αn that cannot be extended to a codeword (w,w′) that maps to either s0

or s1 by the decoder.

We then use the above properties to design the following strategy that violates non-malleability of the code:
Given (X1, X2), if X1 ∈ Xη, the adversary tampers the codeword to (w,X2), which decodes to a message
outside {s0, s1}. This ensures that Dec(f(Enc(s0))) has a noticeable chance of being tampered to an incor-
rect message. Otherwise, the adversary leaves the codeword unchanged, ensuring that Dec(f(Enc(s1))) has
little chance of being tampered at all. Thus there is no choice for a distribution Df that sufficiently matches
both Dec(f(Enc(s0))) and Dec(f(Enc(s1))).

28

Proof of Theorem 5.3

Throughout the proof, we use standard information theoretic tools, such as the notation H(X) for the Shan-
non entropy of a discrete random variable X and I(X;Y) for the mutual information between discrete
random variables X and Y . We will need the following standard information-theoretic fact.

Claim 5.5. Suppose H(X) 6 r and let p(x) := Pr[X = x]. For any η > 0, and define

Xη := {x ∈ supp(X) : p(x) >
1

2r/(1−η)
}.

Then, Pr[X ∈ Xη] > η and |X| < 2r/(1−η).

Proof. The upper bound on |Xη| is immediate from the definition of Xη. Let X̄η := supp(X) \ Xη. We
need to show that Pr[X ∈ X̄η] 6 1− η. If this is not the case, we can write

H(X) >
∑
x∈X̄η

p(x) log(1/p(x))

>
∑
x∈X̄η

rp(x)

1− η

= Pr[x ∈ X̄η]r/(1− η) > r,

a contradiction.

Suppose there is a coding scheme (Enc,Dec) that is non-malleable for the family FT and achieving rate
at least 1 − α + δ, for an arbitrarily small parameter δ ∈ (0, α]. Let S ∼ Uk, X := Enc(S) and suppose
X = (X1, X2) where X1 := XT and X2 := XT̄ .

For any s ∈ {0, 1}k, define E(s) := supp(Enc(s)). Observe that

ES |E(S)| 6 N/N1−α+δ = Nα−δ

By Markov’s bound, for any γ ∈ (0, 1],

Pr[|E(S)| > Nα−δ/γ] < γ. (23)

By the assumption on rate, H(S) > n(1− α + δ). Also, H(X2|S) 6 H(X2) 6 n− |T | = n(1− α).
Thus,

I(X2;S) = H(S)−H(S|X2)

Using the chain rule for mutual information,

I(X1;S) = I(X1, X2;S)− I(X2;S|X1)

= (H(S)−H(S|X1, X2))− (H(X2|X1)−H(X2|S,X1))

> H(S)−H(X2|X1) (24)

> H(S)−H(X2) (25)

> (1− α+ δ)n− (1− α)n = δn, (26)

29

where (24) holds because S = Dec(X1, X2) and thus H(S|X1, X2) = 0, in addition to non-negativity
of entropy; (25) uses the fact that conditioning does not increase entropy; and (26) holds because of the
assumption on the rate of the code and the length of X2. From this, we can deduce that

H(X1|S) = H(X1)− I(X1;S) 6 H(X1)− δn.

Note that the latter inequality in particular implies that H(X1) > δn, and that supp(X1) > 2δn. By
Markov’s bound,

|{s ∈ {0, 1}k : H(X1|S = s) > (H(X1)− δn)(1 + 4γ)}| < 2k

1 + 4γ
6 (1− 2γ)2k. (27)

By combining (23) and (27) using a union bound, there is a choice of s0 ∈ {0, 1}k such that

|E(s0)| 6 Nα−δ/γ, and, H(X1|S = s0) 6 (H(X1)− δn)(1 + 4γ).

We can take γ := δ/(8α) so that the above becomes

|E(s0)| 6 8αNα−δ/δ, and, H(X1|S = s0) 6 H(X1)− δn/2. (28)

For a parameter η > 0, to be determined later, we can now apply Claim 5.5 to the conditional distribution
of X1 subject to S = s0 and construct a set Xη ⊆ {0, 1}αn such that

Pr[X1 ∈ Xη|S = s0] > η, (29)

|Xη| 6 2(H(X1)−δn/2)/(1−η).

Let η′ := Pr[X1 ∈ Xη], and let h(·) denote the binary entropy function. Using a simple information-
theoretic rule that follows from the definition of Shannon entropy, we can write

H(X1) = h(η′) + η′H(X1|X1 ∈ Xη) + (1− η′)H(X1|X1 /∈ Xη)

6 h(η′) + η′ · H(X1)− (δ/2)n

1− η
+ (1− η′)H(X1|X1 /∈ Xη) (30)

6 h(η′) + η′ · H(X1)− (δ/2)n

1− η
+ (1− η′)H(X1), (31)

where (30) is due to the upper bound on the support size of Xη and (31) holds since conditioning does not
increase entropy. After simple manipulations, (31) simplifies to

η′ 6
2h(η′)(1− η)

δn− 2ηH(X1)
6

2h(η′)

n(δ − 2ηα)
. (32)

Now, we take η := δ/(4α), so that the above inequalities, combined with the estimate h(η′) = O(η′ log(1/η′))
yields

h(η′)/η′ > δn/4⇒ log(1/η′) = Ω(δn)⇒ η′ 6 exp(−Ω(δn)).

From the above inequality, straightforward calculations ensure that

η′ 6 η/4 = δ/(16α), (33)

30

as long as δ > δ0 = O((log n)/n).
From (33), recalling that η′ = Pr[X1 ∈ Xη] and using Markov’s bound,

|{s : Pr[X1 ∈ Xη|S = s] > η/2}|/2k < 1/2.

Combined with (23) and a union bound, there is a fixed s1 ∈ {0, 1}k such that

|E(s1)| 6 8αNα−δ/δ, and, Pr[X1 ∈ Xη|S = s1] 6 η/2. (34)

Assuming the chosen lower bound for δ, we can also ensure that, using (28), that |E(s0)∪E(s1)| < Nα.
Thus, there is a fixed string w ∈ {0, 1}αn that cannot be extended to any codeword in E(s0) or in E(s1);
i.e.,

Pr[X1 = w|(S = s0) ∨ (S = s1)] = 0,

which in turn implies
(∀x2 ∈ {0, 1}n(1−α)) : Dec(w, x2) /∈ {s0, s1}. (35)

Now, we consider the following tampering strategy f : {0, 1}|T | × {0, 1}n−|T | → {0, 1}|T | × {0, 1}n−|T |
acting on the coordinate positions in T :

• Given (x1, x2) ∈ {0, 1}|T | × {0, 1}n−|T |, if x1 ∈ Xη, output (w, x2).

• Otherwise, output (x1, x2).

Suppose the coding scheme (Enc,Dec) satisfied Definition 2.3 for a particular distribution Df over
{0, 1}n ∪ {same,⊥} for the tampering function f .

Since f does not alter any string with the first component outside Xη, (34) implies that

Pr[f(X1, X2) = (X1, X2)|S = s1] > 1− η/2. (36)

On the other hand, by (29) and (35),

Pr[Dec(f(X1, X2)) /∈ {s0, s1}|S = s0] > η. (37)

By (37) and Definition 2.3, Df must be ε-close to a distribution D0 that assigns at most 1 − η of the
probability mass to {same, s0, s1}. On the other hand, by (36), Df must be ε-close to a distribution D1 that
assigns at least 1− η/2 of the probability mass to {same, s1}. Thus, the statistical distance between D0 and
D1 is at least η/2 (from the distinguisher corresponding to the event {same, s1}). By triangle inequality,
however, D0 and D1 are (2ε)-close. Therefore, ε > η/4 and the result follows.

References

[1] D. Aggarwal, Y. Dodis, and S. Lovett. Non-malleable codes from additive combinatorics. ECCC
Technical Report TR13-081, 2013. 5

[2] M. Bellare and J. Rompel. Randomness efficient oblivious sampling. In Proceedings of the 35th
Annual IEEE Symposium on Foundations of Computer Science (FOCS), 1994. 35

31

[3] M. Cheraghchi and V. Guruswami. Non-malleable coding against bit-wise and split-state tampering.
Manuscript in preparation, 2013. 5

[4] J.-S. Coron, J. Patarin, and Y. Seurin. The random oracle model and the ideal cipher model are equiv-
alent. In Proceedings of CRYPTO 2008, 2008. 21

[5] R. Cramer, Y. Dodis, S. Fehr, C. Padró, and D. Wichs. Detection of algebraic manipulation with
applications to robust secret sharing and fuzzy extractors. In Proceedings of EUROCRYPT 2008,
pages 471–488, 2008. 3, 9

[6] D. Dolev, C. Dwork, and M. Naor. Nonmalleable cryptography. SIAM Journal on Computing,
30(2):391–437, 2000. 3

[7] S. Dziembowski, T. Kazana, and M. Obremski. Non-malleable codes from two-source extractors. In
Proceedings of CRYPTO, 2013. 5

[8] S. Dziembowski, K. Pietrzak, and D. Wichs. Non-malleable codes. In Proceedings of Innovations in
Computer Science (ICS 2010), 2010. 3, 4, 6, 7, 8, 9, 13, 20, 21, 32

[9] R. Motwani and P. Raghavan. Randomized Algorithms. Cambridge University Press, 1995. 35

[10] V. Shoup. New algorithms for finding irreducible polynomials over finite fields. Mathematics of
Computation, 54:435–447, 1990. 24

[11] J. von zur Gathen and V. Shoup. Computing frobenius maps and factoring polynomials. Computational
Complexity 2:187-224, 2:187–224, 1992. 24

A Rate 1/2 barrier for the uniform coding scheme.

Dziembowski et al. [8] consider the uniformly random coding scheme (Enc,Dec) in which the decoder Dec
maps any given input x ∈ {0, 1}n to a uniform and independent random string in {0, 1}k. Moreover, the
encoder, given s ∈ {0, 1}k, outputs a uniformly random element of Dec−1(s). In this section, we argue that
the uniform coding scheme cannot achieve a rate better than 1/2 even with respect to very simple tampering
functions.

Suppose that the scheme is indeed non-malleable with error upper bounded by a small constant (say
1/4), and consider any bijective tampering function f : {0, 1}n → {0, 1}n. For example, one may think
of f as the function that flips the first bit of the input. For simplicity, we assume that the coding scheme
achieves strong non-malleability (as proved by Dziembowski et al. [8]. Since the chosen tampering function
does not have any fixed points (i.e., f(x) 6= x), Definition 2.5 implies that there is a choice ofDf that has no
support on {same}, and we can restrict to such a distribution. However, it can be shown that the argument
extends to the weaker definition of non-malleability as well.

Let X := Enc(Uk) and observe that D(X) = Un, which in turn implies that D(f(X)) = Un. Con-
sider S := Dec(f(X)). Note that D(S) is a random variable depending on the randomness of the code
construction (namely, it is the empirical distribution of the truth table of the decoder). With respect to this
randomness, we have

E[D(S)] = Uk.

32

Moreover, with overwhelming probability, the realization of the code is so that

D(S) ≈o(1) Uk.

Suppose this is the case and fix the randomness of the code construction accordingly.
Since for every s ∈ {0, 1}k, we know that D(Dec(f(Enc(s)))) is close (in the sense described by

Definition 2.3) to Df , it follows that the convex combination∑
s∈{0,1}k

Pr[Dec(Un) = s] ·D(Dec(f(Enc(s))))

is equally close to Df . But, since f(Enc(Dec(Un))) = f(Un) = Un, the above convex combination is
exactly D(Dec(Un)) = D(S), which we know is close to Uk.

Thus it follows that for every s ∈ {0, 1}k,

(s,Dec(f(Enc(s)))) ≈o(1) (s,Uk),

and, for U ∼ Uk,
(U,Dec(f(Enc(U)))) ≈o(1) U2k. (38)

Since (U,Dec(f(Enc(U)))) is a function of Enc(U), we get

H(U,Dec(f(Enc(U)))) 6 n.

On the other hand, 38 implies that the above entropy is close to 2k. Thus, k 6 (n/2)(1 + o(1)).

B Useful tools

In many occasions in the paper, we deal with a chain of correlated random variables 0 = X0, X1, . . . , Xn

where we wish to understand an event depending on Xi conditioned on the knowledge of the previous
variables. That is, we wish to understand

E[f(Xi)|X0, . . . , Xi−1].

The following proposition shows that in order to understand the above quantity, it suffices to have an estimate
with respect to a more restricted event than the knowledge of X0, . . . , Xi−1. Formally, we can state the
following, where X stands for Xi in the above example and Y stands for (X0, . . . , Xi−1).

Proposition B.1. Let X and Y be possibly correlated random variables and let Z be a random variable
such that the knowledge of Z determines Y ; that is, Y = f(Z) for some function f . Suppose that for
every possible outcome of the random variable Z, namely, for every z ∈ supp(Z), and for some real-valued
function g, we have

E[g(X)|Z = z] ∈ I. (39)

for a particular interval I . Then, for every y ∈ supp(Y),

E[g(X)|Y = y] ∈ I.

Similarly, suppose for some distribution D, and all z ∈ supp(Z),

D(X|Z = z) ≈ε D.

Then, for all y ∈ supp(Y),
D(X|Y = y) ≈ε D.

33

Proof. Let T = {z ∈ supp(Z) : f(z) = y}, and let p(z) := Pr[Z = z|Y = y]. Then,

E[g(X)|Y = y] =
∑
z∈T

p(z)E[g(X)|Z = z].

Since by (39), each E[g(X)|Z = z] lies in I and
∑

z∈T p(z) = 1, we deduce that

E[g(X)|Y = y] ∈ I.

Proof of the second part is similar, by observing that if a collection of distributions is statistically close to a
particular distribution D, any convex combination of them is equally close to D as well.

Proposition B.2. Let the random variable X ∈ {0, 1}n be uniform on a set of size at least (1− ε)2n. Then,
D(X) is (ε/(1− ε))-close to Un.

We will use the following tail bounds on summation of possibly dependent random variables, which are
direct consequences of Azuma’s inequality.

Proposition B.3. Let 0 = X0, X1, . . . , Xn be possibly correlated random variables in [0, 1] such that for
every i ∈ [n] and for some γ > 0,

E[Xi|X0, . . . , Xi−1] 6 γ.

Then, for every c > 1,

Pr[
n∑
i=1

Xi > cnγ] 6 exp(−nγ2(c− 1)2/2),

or equivalently, for every δ > γ,

Pr[

n∑
i=1

Xi > nδ] 6 exp(−n(δ − γ)2/2).

Proof. The proof is a standard Martingale argument. For i ∈ [n], define

X ′i := Xi − γ,

and

Si :=
i∑

j=1

X ′i =
i∑

j−1

Xi − iγ.

By assumption, Si is a super-martingale, that is, assuming S0 := 0,

E[Si+1|S0, . . . , Si] 6 Si.

Thus, by Azuma’s inequality, for all t > 0,

Pr[Sn > t] 6 exp(−t2/(2n)).

Substituting t := (c− 1)nγ proves the claim.

In a similar fashion (using Azuma’s inequality for sub-martingales rather than super-martingales in the
proof), we may obtain a tail bound when we have a lower bound on conditional expectations.

34

Proposition B.4. Let 0 = X0, X1, . . . , Xn be possibly correlated random variables in [0, 1] such that for
every i ∈ [n] and for some γ > 0,

E[Xi|X0, . . . , Xi−1] > γ.

Then, for every δ < γ,

Pr[
n∑
i=1

Xi 6 nδ] 6 exp(−n(δ − γ)2/2).

The following tail bound is similar in flavor to the one given by Proposition B.3, but only applies to
indicator random variables. However, it can be better when the individual expectations are low and the
target deviation from mean is very large.

Proposition B.5. Let 0 = X0, X1, . . . , Xn ∈ {0, 1} be indicator, possibly dependent, random variables
such that for every i ∈ [n],

E[Xi|X1, . . . , Xi−1] 6 p,

for some p ∈ [0, 1]. Let X := X1 + · · ·+Xn. Then, for every c > 1,

Pr[X > cnp] 6 (e/c)cnp.

Proof. We closely follow the standard proof of Chernoff bounds for independent indicator random variables
(see, e.g., [9]). Using Markov’s bound on the exponential moment ofX , we can write, for a parameter t > 0
to be determined later,

Pr[X > cnp] 6
E[exp(tX)]

exp(tcnp)
=
E[exp(tX1) · · · exp(tXn)]

exp(tcnp)
. (40)

However, we can write down the expectation of product as the following chain of conditional expectations

E(X1,...,Xn)[exp(tX)] = EX1

[
etX1E(X2|X1)

[
etX2 . . .E(Xn|X1,...,Xn−1)e

tXn] . . .
]]

6 (p exp(t) + 1)n.

where the inequality uses the fact that the Xi are Bernoulli random variables and thus

E[exp(tXi)|X1, . . . , Xi−1] 6 p exp(t) + (1− p) exp(0) 6 p exp(t) + 1.

Using the inequality (1 + x)n 6 exp(nx) the above simplifies to

E[exp(tX)] 6 exp(np exp(t)),

and thus, plugging the above result into (40),

Pr[X > cnp] 6
exp(np exp(t))

exp(tcnp)
.

Choosing t := ln c yields the desired conclusion.

For summation of `-wise independent random variables, we use the following tail bound from [2]:

Theorem B.6. Let ` > 1 be an even integer, and let X1, . . . , Xn ∈ [0, 1] be t-wise independent variables.
Define X := X1 + · · ·+Xn and µ := E[X]. Then,

Pr[|X − µ| > A] 6 8
(`(µ+ `)

A2

)`/2
.

35

Approximating distributions by fuzzy correlated sampling

In this section, we show that it is possible to sharply approximate a distribution D with finite support by
sampling possibly correlated random variables X1, . . . , Xn where the distribution of each Xi is close to D
conditioned on the previous outcomes, and computing the empirical distribution of the drawn samples.

Lemma B.7. Let D be a distribution over a finite set Σ such that |supp(D)| 6 r. For any η, ε, γ > 0 such
that γ < ε, there is a choice of

n = O((r + 2 + log(1/η))/(ε− γ)2)

such that the following holds. Suppose 0 = X0, X1, . . . , Xn ∈ Σ are possibly correlated random variables
such that for all i ∈ [n] and all values 0 = x0, x1 . . . , xn ∈ supp(D),

D(Xi|X0 = x0, . . . , Xi−1 = xi−1) ≈γ D.

Then, with probability at least 1− η, the empirical distribution of the outcomes X1, . . . , Xn is ε-close to D.

Proof. First, we argue that without loss of generality, we can assume that |Σ| 6 r + 1. This is because if
not, we can define a function f : Σ→ supp(D) ∪ {?} as follows:

f(x) :=

{
x if x ∈ supp(D)

? otherwise.

Observe that for any distribution D′ over Σ, dist(D′,D) = dist(f(D′),D), since the elements outside
supp(D) always contribute to the statistical distance and we aggregate all such mass on a single extra point
?, and by doing so do not affect the statistical distance. Thus the empirical distribution of (X1, . . . , Xn) is
ε-close to D iff the empirical distribution of (f(X1), . . . , f(Xn)) is.

Now suppose |Σ| 6 r + 1. Let A ⊆ Σ be any non-empty event, and denote by D′ the empirical
distribution of the outcomes X1, . . . , Xn. Let p := D(A), and define indicator random variables

Yi :=

{
0 Xi /∈ A,
1 Xi ∈ A.

for i ∈ [n] and Y0 := 0. Observe that

D′(A) =

∑n
i=1 Yi
n

,

and, by the assumption on the closeness of conditional distributions of the Xi to D,

E[Yi|Y0, . . . , Yi−1] ∈ [p− γ, p+ γ].

By Propositions B.3 and B.4, we can thus obtain a concentration bound

Pr[|D′(A)− p| > ε] 6 2 exp(−(ε− γ)2n/2).

Now we can apply a union bound on all possible choices of A and conclude that

Pr[¬(D′ ≈ε D)] 6 2r+2 exp(−(ε− γ)2n/2),

which can be ensured to be at most η for some choice of

n = O((r + 2 + log(1/η))/(ε− γ)2).

36

ECCC ISSN 1433-8092

http://eccc.hpi-web.de

