
(2 + ε)-SAT is NP-hard

Per Austrin∗ Venkatesan Guruswami† Johan Håstad‡

October 2013

Abstract

We prove the following hardness result for a natural promise variant of the classical
CNF-satisfiability problem: Given a CNF-formula where each clause has width w and
the guarantee that there exists an assignment satisfying at least g = dw2 e − 1 literals in
each clause, it is NP-hard to find a satisfying assignment to the formula (that sets at least
one literal to true in each clause). On the other hand, when g = dw2 e, it is easy to find a
satisfying assignment via simple generalizations of the algorithms for 2-SAT.

Viewing 2-SAT ∈ P as easiness of SAT when 1-in-2 literals are true in every clause, and
NP-hardness of 3-SAT as intractability of SAT when 1-in-3 literals are true, our result can
be viewed as showing, for every ε > 0, intractability of finding a satisfying assignment to
instances of “(2 + ε)-SAT” where the density of satisfied literals in each clause is 1/(2 + ε).

We also strengthen the results to prove that given a (2k + 1)-uniform hypergraph that
can be 2-colored such that each edge has perfect balance (at most k + 1 vertices of either
color), it is NP-hard to find a 2-coloring that avoids a monochromatic edge. In other
words, a set system with discrepancy 1 is hard to distinguish from a set system with worst
possible discrepancy.

Finally, we prove a general result showing intractability of promise CSPs in the wake
of paucity of certain “weak polymorphisms.” The core of the above hardness results is
the claim that weak polymorphisms in these particular cases are juntas depending on few
variables.

Keywords: Constraint satisfaction, complexity dichotomy, discrepancy, hypergraph coloring,
polymorphisms, probabilistically checkable proofs.

∗School of Computer Science and Communication, KTH Royal Institute of Technology, Stockholm, Sweden.
austrin@kth.se
†Computer Science Department, Carnegie Mellon University, Pittsburgh, USA. Research supported in part by

NSF grant CCF-1115525. guruswami@cmu.edu
‡School of Computer Science and Communication, KTH Royal Institute of Technology, Stockholm, Sweden,

some of this work done while visiting the Simon’s institute. johanh@kth.se

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Report No. 159 (2013)

1 Introduction
One of the first distinctions we learn in complexity theory is that while 2-SAT can be solved
in polynomial time, 3-SAT is our favorite NP-complete problem. As there are no integers be-
tween 2 and 3 this seems to be a sharp characterization but a closer inspection shows that a
more fine-grained analysis is possible. One conclusion of the current paper is that the transi-
tion from easy to hard takes place just after two and not just before three.

Suppose we consider w-CNF formulas where each clause is of width exactly w and ask for
an assignment that satisfies a literals in each clause. It follows more or less immediately from
the above facts that this problem is NP-hard for a 6 w − 2 and solvable in polynomial time
when a > w− 1. Suppose, however, that we make this into a promise problem and guarantee
that there is an assignment that satisfies g literals in each clause for some g > a. We call the
resulting problem (a, g, w)-SAT. It turns out that (a, g, w)-SAT can be solved in polynomial
time if and only if (a+1, g+1, w+1)-SAT can be solved in polynomial time (we give the short
proof of this fact in the preliminaries). We can thus focus on the case a = 1.

Let us start with some easy observations. Starting with a 3-CNF formula we can turn this
into a 3g-CNF formula by taking the union of all g-tuples of clauses. It is easy to see that if
the original formula is satisfiable then we can satisfy g literals in the produced formula. From
this it follows that (1, g, w)-SAT is NP-hard whenever g 6 w/3. To the best of our knowledge,
no hardness was known for any g > w/3.

On the algorithmic side it is not difficult to see that the probabilistic 2-SAT algorithm of
Papadimitriou [12] extends to (1, g, w)-SAT when g > w/2. Using a linear program we show
how to construct an algorithm running in deterministic polynomial time for the same range.

It turns out that this is all that can be achieved in polynomial time. The main new result
of this paper is to establish that the problem is NP-hard whenever g < w/2. In particular, we
have the following theorem.

Theorem 1.1. For every integer g > 1, (1, g, 2g + 1)-SAT is NP-hard.

This hardness result is the source of the above claim that the transition from easy to hard
takes place at two. Once the density of satisfied literals drops strictly below one half, it is hard
to find a satisfying assignment.

To establish this result we give a reduction from the Label Cover problem, the usual start-
ing point for inapproximability results (even though our results apply only to traditional con-
straint satisfaction problems where we want to satisfy all constraints). It is slightly surprising
that such a strong starting point is needed but as an indication that something non-trivial is
going on we give a proof that there is no standard gadget reduction from 3-SAT to any or our
problems, and in particular not to (1, g, 2g + 1)-SAT. This impossibility result is due to Do-
minik Scheder, and extends to show that there is no gadget reduction from (1, g, 2g + 1)-SAT

to (1, g′, 2g′ + 1)-SAT for g′ > g > 1.
One can also consider an approximation problem associated with (1, g, 2g+1)-SAT, where

where we are guaranteed that there is an assignment that strongly g-satisfies a fraction c of
clauses and the goal is to find an assignment that satisfies a fraction s fraction of clauses. We
observe that an application of the theorem on “uselessness of predicates” from [2] implies a
strong inapproximability result for this problem (albeit only for almost satisfiable instances
and assuming the Unique Games conjecture) that shows hardness for c = 1 − ε and s =
1− 2−(2g+1) + ε for any ε > 0.

2

Hypergraph discrepancy. A problem closely related to (a, g, w)-SAT is hypergraph discrepancy.
Here, given sets of size 2g+1 of elements from a universe, the problem is to color the elements
with two colors such that each set has a good balance of colors. We extend our methods to
prove the following hardness result, showing that systems of bounded-size sets with smallest
possible discrepancy are NP-hard to distinguish from set systems with worst possible dis-
crepancy.

Theorem 1.2. For g > 1, given a (2g+ 1)-uniform hypergraph that admits a 2-coloring under which
each hyperedge is evenly balanced (g elements of one color and g+ 1 of the other), it is NP-hard to find
a 2-coloring that avoids creating a monochromatic edge.

The above result implies Theorem 1.1 via a simple reduction: for each hyperedge (x1, x2,
. . . , x2g+1) of the hypergraph, create two width 2g + 1 clauses (x1 ∨ x2 ∨ · · · ∨ x2g+1) and
(x1 ∨ x2 ∨ · · · ∨ x2g+1). But we prove Theorem 1.1 first to illustrate our approach in a simpler
setting that allows negated literals and repeated variables within a clause.

For the case of even-sized sets, i.e., 2g-uniform hypergraphs for g > 2, a trivial gadget
reduction from the above result ensures that it is hard to achieve discrepancy smaller than
(2g − 2) even if there is a coloring with discrepancy 0. For systems with unbounded set size,
it is known that even if there is a coloring with discrepancy 0, it is NP-hard to find a coloring
of discrepancy Ω(

√
N) where N is the size of the universe [5].

Connection to weak polymorphisms. The crux of our proof of Theorem 1.1 is to show that
all weak polymorphisms which map assignments satisfying at least g out of 2g + 1 variables to
an assignment satisfying at least one of those variables depend only on a small number of
variables. (For Theorem 1.2, a slightly weaker statement that allows a small number of excep-
tional inputs is the basis for the proof.) To elucidate the underlying principle governing our
hardness results, we show a general statement that a paucity of non-trivial weak polymor-
phisms leads to intractability of the associated promise CSP.

Apart from the inherent interest in the given problems it is our hope that these new results
will be useful as starting points for reductions to give new inapproximability results. While
the inapproximability of Max-3Lin [9] is a good starting point for problems where we are
counting the number of satisfied constraints, our new problems might be good starting points
when it is the worst local situation that governs the quality of a solution. As a small step in this
direction we use our result to improve the inapproximability result for hereditary discrepancy
for matrices from 3/2 to any number arbitrarily close to 2.

Organization. An outline of the paper is as follows. We start with some definitions and
preliminaries in Section 2. As the algorithmic results are relatively simple and our main con-
tribution is on the hardness side, we present the algorithmic results in Section 7 towards the
end of the paper, and discuss the hardness results first. Before presenting our hardness re-
sult for (1, g, 2g + 1)-SAT in Section 4, we take a brief “polymorphic” detour in Section 3,
proving the non-existence of a simple gadget reduction from 3-SAT to (1, g, 2g + 1)-SAT, and
also commenting on the general principle underlying our hardness result. This principle is
governed by the lack of “weak polymorphisms” of large arities, and is described in detail in
a self-contained Appendix A at the end of the paper. We present the extension of our hard-
ness results to hypergraph discrepancy (Theorem 1.2) in Section 5, where we also show how
to ensure that all variables appearing in a constraint are distinct. We give the application

3

to hereditary discrepancy in Section 6, and finally we end with some concluding remarks in
Section 8.

2 Preliminaries

We start with some basic definitions.

Definition 2.1. A w-SAT formula is a CNF formula where each clause has width exactly w.

Definition 2.2. A w-SAT formula Φ is strongly g-satisfiable if there is an assignment to the
variables such that at least g literals are true in every clause of Φ.

Definition 2.3. For 1 6 a 6 g < w, the (a, g, w)-SAT promise problem is as follows. The input
is a w-SAT formula Φ and the goal is to accept instances Φ that are strongly g-satisfiable and
reject instances that do not admit any assignment that strongly a-satisfies Φ.

We have defined the decision version above, and in the search version we are given a
w-SAT formula Φ that is guaranteed to be strongly g-satisfiable and the goal is to find an as-
signment that strongly a-satisfies Φ.

Note that (1, 1, w)-SAT is the usual w-SAT problem. Let us start with a couple of simple
observations.

Observation 2.4. There is a polynomial time reduction from (a, g, w)-SAT to (a, g, w + 1)-SAT

Proof. For each old clause, create two new clauses extending it by a variable and its comple-
ment.

Proposition 2.5. The problems (a, g, w)-SAT and (a+1, g+1, w+1)-SAT are interreducible to each
other in polynomial time. (Thus one of them is polynomial time solvable iff the other one is.)

Proof. We establish two easy reductions and start with the obvious one.
If we have an instance of (a, g, w)-SAT, then adding the same new variable to all clauses

gives an instance of (a+ 1, g + 1, w + 1)-SAT of the same difficulty.
For the reduction in the other direction, take all subclauses of size w of each clause of size

w + 1. It is readily verified that this gives a correct reduction.

In view of the above proposition we can focus on the case a = 1, i.e., the problem of
finding a satisfying assignment in a w-CNF formula when we are guaranteed that there is an
assignment that satisfies at least g literals in each clause.

One detail to consider is whether we allow repeated literals or two literals correspond-
ing to the same variable in a clause. It turns out that this distinction does not change the
complexity of the problem. While our algorithms apply directly to the general case, in the
hardness results the requirement to use only distinct literals does create some slight technical
complications. Hence we first give a cleaner proof of Theorem 1.1 where we allow repeated
literals, and then present a full proof of the stronger result for hypergraph discrepancy, Theo-
rem 1.2, in which we ensure that all variables in a constraint are distinct (i.e., the hypergraph is
(2g+ 1)-uniform). We now define the discrepancy problem underlying Theorem 1.2 formally.

4

Let S be a subset of size 2g + 1 of some universe U . We say that X ⊆ U splits S evenly if
|X ∩ S| ∈ {g, g + 1}.
Definition 2.6. An instance of the g-DISCREPANCY problem consists of a collection of sets
S1, . . . , Sm ⊂ U each of size exactly 2g + 1, and the objective is to distinguish between

Yes: there is an X ⊆ U that splits each Si evenly.

No: for every X ⊆ U , some Si is not split by X at all (i.e., |X ∩ Si| ∈ {0, 2g + 1}).

Label Cover and Long Codes. Our reductions establishing hardness results fit in the standard
form for Probabilistically Checkable Proofs (PCPs), commonly used to establish inapproxima-
bility results for maximum constraint satisfaction problems. In particular our reductions start
from label cover and use the long code encoding of each label.

Definition 2.7. An instance Ψ = (U, V,E, {πe : LV → LU}) of Label Cover consists of a
bipartite graph (U, V,E), label sets LU and LV for U and V , and for each edge e ∈ E a map
πe : LV → LU .

A labeling ` is a map that assigns for each u ∈ U a label `(u) ∈ LU and for each v ∈ V a
label `(v) ∈ LV . The labeling ` satisfies an edge e = (u, v) if πe(`(v)) = `(u).

The value of a labeling ` is the fraction of edges satisfied by `, and the value Opt(Ψ) of Ψ
is the maximum value of any labeling.

Theorem 2.8 ([1, 13]). For every ε > 0, there are LU , LV such that given a Label Cover instance Ψ
with label sets LU and LV it is NP-hard to distinguish between Opt(Ψ) = 1 and Opt(Ψ) 6 ε.

The long code of ` ∈ L is a table f : {0, 1}L → {0, 1}where f(x) = x`. Whenever negation
is available in the CSP for which we try to prove a lower bound we assume that tables are
odd and respect negation (in standard PCP terminology “are folded”) i.e. that f(¬x) = ¬f(x)
where ¬ is a negation operator that works both on bits and strings (by negating each bit
individually). The oddness of f is ensured by storing, for each pair (x,¬x), only the value
f(x) and if f(¬x) is needed then ¬f(x) is used instead. We note that this is possible for our
results for satisfiability but not for the hypergraph discrepancy problem which does not allow
negations in the constraints.

We use some standard notation in the paper. We let ei ∈ {0, 1}n be the unit vector with a
one in position i and use ⊕ to denote exclusive-or. Thus if x ∈ {0, 1}n is any assignment, x
and x⊕ ei differ in exactly coordinate i.

3 A polymorphic detour

Before proceeding with the actual proof that (1, g, 2g + 1)-SAT is NP-hard let us gather some
intuition for the problem by proving that there is no simple gadget reduction from standard 3-
SAT, and also comment on the polymorphic principle governing our hardness results (whose
detailed description we defer to Appendix A).

Let us first consider the possibility of a gadget reduction from 3-SAT to (1, 2, 5)-SAT. For
each clause, say (x1 ∨ x2 ∨ x3), this hypothetical reduction introduces a number of auxiliary
variables ai (which are particular to this clause) and forms a number of constraints in the form
of clauses of width 5. This reduction should satisfy:

5

1. Completeness: for each assignment to x1, x2 and x3 that satisfies the original clause
there is an assignment to the auxiliary variables such that at least two literals in each
new clause are true, and

2. Soundness: if x1, x2, x3 are all set to false, no assignment to the auxiliary variables satis-
fies all the new clauses.

We have the following observation by Dominik Scheder that such a gadget reduction does
not exist.

Proposition 3.1. There is no gadget reduction from 3-SAT to (1, 2, 5)-SAT.

Proof. Consider the three cases when (x1, x2, x3) takes the values (1, 0, 0), (0, 1, 0) and (0, 0, 1),
respectively. Consider the good assignment to the auxiliary variables in each of these three
cases, satisfying at least two literals in each created clause. Define a new assignment to the
auxiliary variables as the majority of these three assignments. We claim that this new assign-
ment satisfies at least one literal in each created clause even when the xi’s are all false.

To see this, look at a single clause of width 5 and consider the values of these 5 literals
under the three assignments. In total we have at least 6 satisfied literals. Thus, one of the five
literals is satisfied in two of the three assignments, and this literal is then satisfied also in the
majority assignment.

It is not difficult to see that the proof extends to prove that there is no gadget reduction
from (1, g, 2g + 1)-SAT to (1, g′, 2g′ + 1)-SAT for g′ > g. We simply take 2g + 1 assignments
with g true literals in each such that each literal is true in g assignments. A majority of these
assignments does the trick as in the above argument.

For readers familiar with the notion of polymorphisms from the CSP dichotomy theory,
we note that what we have established is that majority of 2g + 1 bits is a type of “weak
polymorphism”. Namely, if each input strongly g′-satisfies a clause of width (2g′ + 1) clause
then the output must satisfy the clause if g′ > g but not for smaller values of g′. Moreover if
w 6 2g then any odd majority is a polymorphism that takes assignments for width w clause
that is strongly g-satisfying into a satisfying assignment. Our hardness result for (1, g, 2g+1)-
SAT are based on a proof that such polymorphisms for w > 2g can only depend on few
variables.

One can consider the (1, g, 2g+1)-SAT problem as an instance of a large family of problems
parametrized by two predicates P andQ of the same arity k, with P implyingQ. One is given
a large number of k-tuples of literals and the promise that there is an assignment such that all
resulting k-tuples of bits satisfy P . The task now is to find an assignment such that the strings
instead satisfy Q. It turns out that the lack of non-trivial polymorphisms on arbitrarily many
variables that take satisfying assignments for P and map it to satisfying assignments for Q
implies that this promise P vs. Q constraint satisfaction problem is NP-hard. We present a
formal statement and proof of this connection between non-existence of polymorphisms and
intractability in Appendix A.

6

4 NP-hardness of (1, g, 2g + 1)-SAT

We now return to the goal of establishing that (1, g, 2g + 1)-SAT is NP-hard. In what follows
we write w = 2g+1. In order to simplify the presentation and cleanly convey the general idea
behind the reduction without having to pay too much attention to technical details, we here
allow repeated literals in each clause. Proving the result without repeated literals can be done
with a little more care, using the same approach as in Section 5, where we prove a stronger
result for the discrepancy problem (Theorem 1.2) without allowing repeated variables in a
constraint.

4.1 A Dictatorship Gadget

First, we construct a dictatorship gadget, which is an instance defined over 2n variables,
viewed as a function f : {0, 1}n → {0, 1}which is, as discussed in the preliminaries, assumed
to be folded.

The constraints on f are all clauses of the form (f(x1)∨f(x2)∨. . .∨f(xw)) where x1, . . . , xw
are such that for each j ∈ [n],

∑w
i=1 xi,j > g. In other words there are at least g ones in each

coordinate.
The completeness of the gadget (stated below) follows by construction.

Lemma 4.1. If f is a dictatorship function then it strongly g-satisfies the dictatorship gadget.

The converse of the above lemma is only true in a weaker sense.

Lemma 4.2. Any assignment f which is odd and satisfies the dictatorship gadget depends on at most
2g − 1 variables.

In fact, this lemma is sharp – as noted in the previous section, the majority of 2g − 1
variables does satisfy the gadget. The essential part of the above lemma is contained in the
following claim that we establish first.

Claim 4.3. Suppose f is odd, depends on g different variables i1, . . . , ig, and satisfies the dictatorship
gadget. Then f(z) = 1 for all inputs z such that zi1 = . . . = zig = 1.

Proof. Suppose for contradiction that there is an input z such that f(z) = 0 yet zij = 1 for all
j ∈ [g]. Since f depends on variables i1, . . . , ig, there are inputs x1, . . . , xg such that for each
j ∈ [g]

f(xj) = 1 and f(xj ⊕ eij) = 0 .

Now consider the clause

f(z) ∨ f(¬x1) ∨ f(x1 ⊕ ei1) ∨ . . . ∨ f(¬xg) ∨ f(xg ⊕ eig). (1)

Note that this clause might contain repeated literals but this is allowed at the moment. Clearly,
this clause is not satisfied by f , so if this clause appears in the gadget we have our desired
contradiction. In other words, we have to show that in each coordinate i ∈ [n] we have at
least g ones.

For any coordinate i 6∈ {i1, . . . , ig}we have that coordinate i is 1 in exactly one of {¬xj , xj⊕
eij}, for a total of at least g ones. For the coordinate ij , we have that for all j′ 6= j, at least one

7

of {¬xj′ , xj′⊕ eij′} has a 1 in coordinate ij . Furthermore z has a one in coordinate j, for a total
of at least g ones.

It is now easy to prove Lemma 4.2.

Proof of Lemma 4.2. Suppose f depends on 2g distinct variables i1, . . . , ig, j1, . . . , jg. Let z be
an input such that zi1 = . . . = zig = 1 and zj1 = . . . = zjg = 0. By Claim 4.3, f(z) = 1 and
f(¬z) = 1, contradicting that f is odd.

4.2 Reduction from Label Cover

Let Ψ = (U, V,E, {πe : LV → LU}) be a Label Cover instance. To each vertex u ∈ U we
associate a function fu : {0, 1}LU → {0, 1} intended to be a dictator of the label `u of u, and
similarly fv : {0, 1}LV → {0, 1} for v ∈ V .

We add the following constraints:

• For each u ∈ U (resp. v ∈ V), the dictatorship gadget on fu (resp. fv).

• Fix an edge e = (u, v). Let x1, . . . , xg ∈ {0, 1}LU be g inputs on theU side and y1, . . . , yg+1 ∈
{0, 1}LV be g + 1 inputs on the V side. If for each l ∈ LV it holds that

g∑
j=1

xj,πe(l) +

g+1∑
j=1

yj,l > g

we add the constraint

fu(x1) ∨ . . . ∨ fu(xg) ∨ fv(y1) ∨ . . . fv(yg+1)

We also use folding to make sure that each fu (and fv) is odd.
Call the resulting formula Φ. The completeness is standard and follows immediately from

the construction and the completeness of the dictatorship gadget.

Lemma 4.4 (Completeness). If Opt(Ψ) = 1 then Φ is strongly g-satisfiable.

We turn to the more interesting case of soundness.

Lemma 4.5 (Soundness). If Φ is satisfiable then Opt(Ψ) > 1/(2g − 1)2.

Proof. Fix a satisfying assignment {fu}, {fv} to Φ. By the soundness of the dictatorship gadget
(Lemma 4.2) every fu and fv depends on at most 2g − 1 variables.

For each variable, let Su ⊆ LU (resp. Sv ⊆ LV) be the set of variables that fu (resp. fv)
depends on and we have the following claim.

Claim 4.6. For every edge e = (u, v) it holds that πe(Sv) ∩ Su 6= ∅.

Proof. Suppose for contradiction that Su ∩ πe(Sv) = ∅. Let x1, . . . , xg ∈ {0, 1}LU be g inputs
such that fu(xj) = 0 and xj,l′ = 1 for all l′ ∈ LU \ Su, and similarly let y1, . . . , yg+1 ∈ {0, 1}LV

be g + 1 inputs such that fv(yj) = 0 and yj,l = 1 for all l ∈ LV \ Sv.

8

Let us now check that
g∑
j=1

xj,πe(l) +

g+1∑
j=1

yj,l > g ∀ l ∈ LV . (2)

Note that this would imply that fu(x1)∨ . . .∨fu(xg)∨ . . .∨fv(y1)∨ . . . fv(yg+1) is a clause in Φ
and by construction it is not satisfied, a contradiction. For l /∈ Sv, (2) holds because yj,l = 1 for
j = 1, 2, . . . , g + 1. For l ∈ Sv, we have πe(l) /∈ Su, and therefore xj,πe(l) = 1 for j = 1, 2, . . . , g,
and (2) again holds.

We now finish the proof of Lemma 4.5. We construct a random labeling by picking a
random label from Su (resp. Sv) for each variable u ∈ U (resp. v ∈ V) of Ψ. For each edge
e = (u, v) it follows from the claim that the probability that e is satisfied by this labeling is

1
|Su|·|Sv | > 1/(2g − 1)2 implying the bound on Opt(Ψ).

To finish the hardness part of the proof of Theorem 1.1 we now simply make sure to start
with a Label Cover instance with soundness at most (2g− 1)−2 and then invoke Theorem 2.8.

4.3 Inapproximability under the Unique Games conjecture

We now note the following “approximation resistance” phenomenon associated with almost-
satisfiable instances of (1, g, 2g + 1)-SAT.

Theorem 4.7. Let g > 1 be an integer. Assuming the Unique Games conjecture [10], the following
promise problem is hard for every ε > 0. Given an instance of (2g + 1)-SAT (with no repetitions of
variables allowed within a clause), distinguish between the following two cases:

1. There is an assignment that strongly g-satisfies (1− ε) of the clauses, and

2. There is no assignment that satisfies a fraction (1− 2−2g+1 + ε) of the clauses.

Note that we have a gap between the two cases both in terms of the predicate being imposed
on the clauses, and the fraction of clauses satisfiable according to the respective predicates.
Also, since a random assignment satisfies an expected fraction 1 − 2−2g+1 of the clauses, the
inapproximability factor is tight.

Proof of Theorem 4.7. We observe that there is a pairwise independent distribution µ on {0, 1}2g+1

which is supported only on strings with at least g ones. This distribution appears in the proof
of Theorem 5.2 in [7], and as it is easy to describe, we recall it for completeness. Let p = 1

2g+2 .
We sample a string according to µ as follows: With probability p, sample the all 1’s string, and
with probability 1 − p, sample a string uniformly from those with exactly g ones. A simple
argument (see [7, Thm 5.2]) shows that every pair of bits are uniformly distributed under µ.
The existence of µ together with Theorem 1.3 of [2] (the hardness part of which is based on
[3]) shows the following: Given an instance of (2g + 1)-SAT admitting an assignment that
strongly g-satisfies a fraction (1 − ε) of the constraints, it is Unique Games-hard to find an
assignment for which the distribution of (2g + 1)-bit substrings appearing in the scope of
various constraints in the instance is ε-far from uniform. In particular, this means that it is
Unique Games-hard to find an assignment satisfying a fraction (1−2−2g+1 +ε) of the clauses,
as a random assignment satisfies an expected fraction (1− 2−2g+1) of the clauses.

9

5 Discrepancy With Small Sets

The main result of this section is the following theorem, which is of course just an alternate
statement of Theorem 1.2.

Theorem 5.1. g-DISCREPANCY is NP-hard for every constant g > 1.

The reduction and proof follows along the same lines as the hardness proof for (1, g, 2g +
1)-SAT in the previous section, though some modifications in the constructions are needed
since “true” and “false” are now treated symmetrically. Additionally, we shall now deal with
the details for the case when repeated elements are not allowed.

Another distinction from (1, g, 2g + 1)-SAT to g-DISCREPANCY is that we no longer have
the concept of negated literals and so we can no longer assume that our long codes are folded.
If we allowed repeated elements in our sets this problem can be solved very simply by adding
a constraint with g copies of f(x) and g + 1 copies of f(¬x) for any x. Since we do not allow
repetitions we have to be slightly more careful.

5.1 Dictatorship test

Let us start with the dictatorship test for a function f : {0, 1}n → {0, 1}. This consists of all
sets of 2g + 1 (distinct) variables {f(x1), . . . , f(x2g+1)} such that for each coordinate j ∈ [n]

we have g 6
∑2g+1

i=1 xi,j 6 g + 1. We refer to this as the discrepancy dictatorship gadget.
The completeness of the gadget follows by construction.

Lemma 5.2. If f is a dictatorship function then it evenly splits all sets in the discrepancy dictatorship
gadget.

For the soundness, we can no longer conclude that if f does not leave any set of the
gadget monochromatic then f only depends on a few variables. For instance, if we let f equal
a dictator except at a few points then f depends on all variables but would split all sets in the
gadget. We prove that this is the only problem, and as a first step we start with a definition.

Definition 5.3. A function f is said to t-depend on variable i if there are at least t disjoint
pairs {xj , xj ⊕ ei}, j ∈ [t], such that f(xj) 6= f(xj ⊕ ei).

Using this definition, we have the following analogue of Lemma 4.2.

Lemma 5.4. Any function f : {0, 1}n → {0, 1} which does not leave any set of the discrepancy
dictatorship gadget monochromatic 2g-depends on at most 2g − 1 variables, provided n > 5g.

Towards proving this, we first note that even though we can not force f to be folded by
means of negated literals, the dictatorship test forces f to be folded on all but a small number
of bad inputs.

Lemma 5.5. If f does not make any set of the discrepancy dictatorship gadget monochromatic then
there are at most g pairs of inputs {xi,¬xi} such that f(xi) = f(¬xi) = 0, and at most g pairs
{yi,¬yi} such that f(yi) = f(¬yi) = 1.

10

Proof. Suppose for contradiction that we have g+1 distinct pairs {x1,¬x1}, . . . , {xg+1,¬xg+1}
such that f(xi) = f(¬xi) = 0. Then f leaves (x1,¬x1, . . . , xg,¬xg, xg+1) monochromatic and
it straightforward to see that this is one of allowed tests. The other claim is analogous.

Next we have the following analogue of Claim 4.3, saying that the value of f can be es-
sentially fixed by some setting of g variables.

Claim 5.6. Suppose f 2g-depends on g different variables i1, . . . , ig and does not leave any set of the
discrepancy dictatorship gadget monochromatic. Then there are constants c1, . . . , cg ∈ {0, 1} such
that f(z) = 1 for all but at most 2g inputs z such that zij = cj for all j ∈ [g].

Proof. We proceed as in the proof of Claim 4.3. For each j ∈ [g] there are 2g different inputs
x satisfying f(x) = 1 and f(x⊕ eij) = 0. By Lemma 5.5, f is not folded on at most g of these
and in particular there are g different choices of x such that f(¬x) = f(x⊕ eij) = 0.

It follows that we can choose g distinct inputs x1, . . . , xg such that f(¬xj) = f(xj⊕eij) = 0
for each j ∈ [g]. Now let cj = xj,ij . Consider any input z such that zij = cj for each j ∈ [g] but
distinct from the 2g inputs ¬x1, x1 ⊕ ei1 , . . . , xg, xg ⊕ eig . We claim that {f(z), f(¬x1), f(x1 ⊕
ei1), . . . , f(¬xg), f(xg ⊕ eig)} is a set in the discrepancy dictatorship gadget and hence f(z)
must equal 1.

To see this, note that in coordinate ij the inputs ¬x1, x1 ⊕ ei1 , . . . ,¬xg, xg ⊕ eig have g −
1 occurrences of the value xj,ij and g + 1 occurrences of the value ¬xj,ij , and z provides
one additional occurrence of the value cj = xj,ij so that this coordinate is balanced. For
coordinates outside i1, . . . , ig the x’s provide an equal number of 0’s and 1’s and hence the
value of z in these coordinates is irrelevant.

Proof of Lemma 5.4. The only difference to the proof of Lemma 4.2 is that we need to make
sure to avoid the up to 4g bad inputs where f is not folded and the at most 2g + 2g choices of
z where Claim 5.6 does not apply, but if 2n−2g > 8g such a contradictory z exists.

5.2 Reduction from Label Cover

The reduction from Label Cover also proceeds as in Section 4.2. The main crux is to locate a set
consisting of disjoint variables. To simplify the presentation, we alter the reduction somewhat
by augmenting each fu and fv with a set A of auxiliary variables, i.e., fu : {0, 1}LU∪A → {0, 1}
and fv : {0, 1}LV ∪A → {0, 1}. Loosely speaking this is like creating 2|A| copies of each variable
and ensures that there is an abundance of variables allowing us to easily identify sets without
repeated variables. This is technically not needed – provided the label sets LU and LV are
sufficiently large one can find sufficiently many distinct variables in the original reduction.

In the reduction from a label cover instance Ψ, we add the discrepancy dictatorship gadget
on each fu and fv (without any special treatment of the auxiliary variables). In the edge
constraints we for an edge e = (u, v) the clause

{fu(x1), . . . , fu(xg), fv(y1), . . . fv(yg+1)}

provided g 6
∑g

j=1 xj,πe(i) +
∑g+1

j=1 yj,i 6 g + 1 for each i ∈ Lv and the xi’s and yi’s are
distinct. Note that we do not have any constraint on the sum of values in the auxiliary coor-
dinates. Calling the resulting g-DISCREPANCY instance Φ, we have the following analogue of
Lemma 4.5.

11

Lemma 5.7. If there is an assignment to Φ which does not leave any set monochromatic then Opt(Ψ) >
1/(2g − 1)2, provided |A| = Ω(log |LV |).

Proof. As in the proof of Lemma 4.5 we take a satisfying assignment {fu}, {fv} to Φ.
We now choose Su ⊆ LU (resp. Sv ⊆ LV) to be the set of non-auxiliary variables that fu

(resp. fv) 4g-depends on, which by Lemma 5.4 are at most 2g − 1 variables.
Proceeding as in Lemma 4.5, we now want to re-prove Claim 4.6, showing that Su in-

tersects πe(Sv) for the new choices of Su and Sv. Looking at the proof of Claim 4.6, the new
aspects that we need to deal with is that the inputs x1, . . . , xg, y1, . . . , yg+1 picked there should
be distinct, and we also have the added complication that fu and fv may depend on variables
outside Su and Sv (though only on a very small number of input strings).

Say that a partial assignment z ∈ {0, 1}Su∪A is good if:

1. zj = b for all j ∈ Su and some b ∈ {0, 1} (i.e., z is constant on the coordinates of Su)

2. fu is odd on all inputs agreeing with z

3. fu(y) = 0 for all y ∈ {0, 1}LU∪A such that y|Su∪A = z.

Similarly we say that a partial assignment w ∈ {0, 1}Sv∪A is good provided the same condi-
tions hold with Su and fu replaced by Sv and fv.

There are 2|A|+1 partial assignments satisfying the first condition, and by Lemma 5.5 at
most g partial assignments violating the second condition, so we have 2|A|+1 − g partial as-
signments satisfying the first two conditions.

Since fu does not 4g-depend on any i 6∈ Su ∪ A, there are at most 8g|LU | inputs x ∈
{0, 1}LU∪A for which f(x) 6= f(x ⊕ ei) for some i 6∈ Su ∪ A. This implies that there are
2|A|+1 − g − 8g|LU | partial assignments that satisfy the first two conditions and fu restricted
to z is constant. Since we have excluded the points where fu is not odd, fu takes the value 0
on half of the remaining assignments, so there are at least 2|A| − (g + 8g|LU |)/2 good partial
assignments z.

Similarly there are at least 2|A| − (g + 8g|LV |)/2 good partial assignments w. It follows
that if |A| = Ω(log |LV |) we can choose 2g+1 distinct good partial assignments z1, . . . , zg, and
w1, . . . , wg+1. See also Figure 1.

Any way of completing these partial assignments to inputs x1, . . . , xg, y1, . . . , yg+1 such
that {fu(x1), . . . , fu(xg), fv(y1), . . . , fv(yg+1)} is a set appearing in Φ gives the desired contra-
diction since fu (resp. fv) is 0 on the xj ’s (resp. yj ’s) by construction.

This is easily done: we simply need to make sure that the number of ones in each column
is g or g + 1. The perhaps only subtle point is that we need to take care with the coordinates
in j ∈ π−1e (πe(Sv)) (i.e., the j that collide with some j′ ∈ Sv under πe). This is where we use
that the partial assignments wi are constant on Sv, as we can then use those constant values
for the remaining coordinates in π−1e (πe(Sv)).

This concludes the proof that Su intersects πe(Sv) for each edge (u, v), and the rest of the
proof proceeds identically to Lemma 4.5.

12

A
Su

Sv

b1 b1

b2 b2

∗z1

z2

w1

w2

w3

b3 b3 b3

b4 b4 b4

b5 b5 b5

πe

∗ ∗ ∗

∗ ∗ ∗ ∗

∗ ∗ ∗ ∗

∗ ∗ ∗ ∗

∗ ∗ ∗ ∗

Figure 1: The good partial assignments z1, . . . , zg, w1, . . . , wg+1

6 Application to hereditary matrix discrepancy

Consider the following problem. Given a matrix A = (aij) 1 6 i 6 n and 1 6 j 6 m of
dimension n × m, the task is to find signs xi ∈ {−1, 1}, to make any subset of the columns
balanced. To be more precise we want for any α ⊆ [n], α 6= ∅, the vector bαj =

∑
i∈α xiaij to

have small L∞-norm. The minimum such quantity is called the hereditary discrepancy.
This problem was considered in [11] where it was proved to be hard to approximate within

a factor 3
2 . It follows more or less immediately from Theorem 5.1 that we can improve this

inapproximability factor to 2g+1
g+1 for any integer g and thus arbitrarily close to 2. Both the

reduction of [11] and here actually gives a matrix such that either the discrepancy of A is
large (in our case 2g + 1) or the hereditary discrepancy is small (in our case g + 1).

To see this letA be the incidence matrix of the set system constructed to prove Theorem 5.1.
In other words aij = 1 if the ith element appears in set j. A setting of the xi corresponding
to a very balanced 2-coloring gives a witness that the hereditary discrepancy is at most g + 1
while a monochromatic set gives that the discrepancy of A is at least 2g + 1.

7 Algorithms for (1, g, 2g)-SAT

We now present efficient algorithms to find a satisfying assignment when at least half the
literals in each clause are promised to be true under some assignment.

7.1 A randomized algorithm

Let us first describe a simple randomized algorithm closely following Papadimitriou’s algo-
rithm [12] for 2-Sat.

The analysis of this algorithm is essentially equivalent with that of Papadimitriou.

Proposition 7.1. If Φ is strongly g-satisfying and w 6 2g then Algorithm 1 finds a satisfying assign-
ment in O(tn2) steps with probability at least 1− 2−t.

13

Algorithm 1: Randomized algorithm for (1, g, w)-SAT.
(1) x← arbitrary assignment
(2) while x is not satisfying
(3) Pick (arbitrarily) a falsified clause φ
(4) Flip the value of a randomly chosen literal of φ
(5) return x

Proof. Let x∗ be any g-satisfying assignment, and let xi be the value of x in the i’th iteration
of Algorithm 1 and φi be the clause chosen. Define the random variable Di = d(xi, x

∗) where
d(x, y) is the Hamming distance between x and y. Clearly, Di+1 − Di = ±1. Furthermore,
since x∗ satisfies g literals of φi and it contains at most 2g literals we have

Pr[Di+1 = Di − 1] > 1/2

so that E[Di+1 − Di|Di] 6 0. In other words D1, D2, . . . describes a random walk starting at
some point between 0 and n where each step is unbiased or biased towards 0. Such a walk
hits 0 in n2 steps with constant probability. The probability that it fails to hit 0 with ctn2 steps
is thus at most 2−t for a suitable chosen constant c.

Note that this algorithm is not affected by the presence of multiple copies of the same
literal within a clause. Also note that if w < 2g the walk is in fact biased towards 0 and a
satisfying assignment is, with high probability, found in O(n) steps.

We next present a deterministic algorithm that is based on linear programming.

7.2 A deterministic algorithm

There is a very natural linear program connected to a w-Sat formula. Namely, relax each
Boolean variable xi to a real-valued variable yi which takes values in [0, 1]. In the formula
replace xi by yi and ¬xi by 1− yi and require that the sum over each clause is at least g. As an
example in (1, 2, 4)-SAT we replace the clause (x1 ∨ x2 ∨ ¬x3 ∨ ¬x4) by the linear inequality

y1 + y2 + (1− y3) + (1− y4) > 2

This might seem like a not very useful linear program as yi = 1/2 for all i satisfy all the
inequalities whenw = 2g, but forcing a single variable to take the value 0 or 1 does give useful
information. Consider the procedure described in Algorithm 2 where we let bye denote the
integer closest to y (we only apply this operation to numbers whose fractional part is not 1/2
and hence this number is unique). We establish in the below proposition that the algorithm is
indeed correct.

Proposition 7.2. Given a strongly g-satisfiable w-SAT instance, where w 6 2g, Algorithm 2 finds a
satisfying assignment.

Proof. Note first that if w < 2g then in the LP solution any clause must contain a literal whose
value is greater than 1/2 and thus in fact the tentative assignment to xi in line 3 is not needed.

When w = 2g each clause that contains a literal that is not exactly 1/2 must, in each
feasible solution, contain a literal that is of value strictly greater than 1/2. This implies that

14

Algorithm 2: Deterministic algorithm for (1, g, w)-SAT.
(1) repeat
(2) Let xi be some unassigned variable
(3) Choose b ∈ {0, 1} such that the basic LP with yi forced to b is feasible

(4) if the LP is infeasible for both choices of b then return “Not strongly
g-satisfiable”

(5) Let y1, . . . , yn be the LP solution when yi is forced to b
(6) foreach i such that yi 6= 1

2
(7) Assign xi ← byie
(8) Remove all satisfied clauses from the formula
(9) until all variables are assigned
(10) return x

if we assign the value of some variable in a clause then in the same round we set one of
its literals to true and satisfy the clause. Thus there is no risk of falsifying a clause during
this process. In addition, the clauses that remain after each round consist only of unassigned
variables and thus the remaining set of clauses still forms a strongly g-satisfiable instance.

8 Conclusions

We have given a sharp classification for a natural promise version of CNF-Sat. As CNF-Sat
is a favorite starting point for many reductions we hope that this can give improved results
quantitatively in many situations. We gave a rather modest example in Section 6 but there
should be many possibilities.

As we show in Appendix A, the non-existence of weak polymorphisms whose outputs
satisfy a weaker predicate Q than the predicate P obeyed by its inputs implies the hardness
of finding a Q-satisfying assignment to a P -satisfiable CSP instance. It will be extremely
interesting to obtain some results in the converse direction, obtaining algorithms based on the
existence of non-trivial weak polymorphisms, at least for the case of Boolean predicates P,Q.
(We recall that when P = Q, we know in the Boolean case that the existence of non-trivial
polymorphisms precisely governs the tractability of the associated CSP.)

One may also consider an approximate version of (a, g, w)-SAT where we are guaranteed
that there is an assignment that strongly g-satisfies a fraction c of clauses and the goal is
to find an assignment that strongly a-satisfies a fraction s of clauses. As mentioned in Sec-
tion 4.3, we have a strong hardness result under the Unique Games Conjecture, wherein given
a (2g + 1)-SAT instance admitting an assignment that strongly g-satisfies a fraction 1 − ε of
the constraints, it is hard to find an assignment that satisfies a fraction 1 − 2−(2g+1) + ε of
the constraints (which is what a random assignment would achieve). Obtaining such a result
without relying on the Unique Games Conjecture seems out of reach with current techniques.
It is also an interesting goal to obtain a strong inapproximability result for this problem with
perfect completeness, i.e., when the instance admits a strongly g-satisfying assignment.

15

Acknowledgment

We are indebted to Dominik Scheder for the claim about the non-existence of gadget reduc-
tions described in Section 3.

References

[1] Sanjeev Arora, Carsten Lund, Rajeev Motwani, Madhu Sudan, and Mario Szegedy. Proof
verification and intractability of approximation problems. Journal of the ACM, 45:501–555,
1998. 5

[2] Per Austrin and Johan Håstad. On the usefulness of predicates. ACM Transactions on
Computation Theory, 5:1–24, 2013. 2, 9

[3] Per Austrin and Elchanan Mossel. Approximation resistant predicates from pairwise
independence. Computational Complexity, 18:249–271, 2009. 9

[4] Andrei A. Bulatov, Peter Jeavons, and Andrei A. Krokhin. Classifying the complexity of
constraints using finite algebras. SIAM J. Comput., 34(3):720–742, 2005. 18

[5] Moses Charikar, Alantha Newman, and Aleksandar Nikolov. Tight hardness results for
minimizing discrepancy. In Proceedings of the 22nd Annual ACM-SIAM Symposium on
Discrete Algorithms, pages 1607–1614, 2011. 3

[6] Hubie Chen. A rendezvous of logic, complexity, and algebra. ACM Comput. Surv., 42(1),
2009. 18

[7] Mahdi Cheraghchi, Johan Håstad, Marcus Isaksson, and Ola Svensson. Approximating
linear threshold predicates. TOCT, 4(1):2, 2012. 9

[8] Uri Feige. A threshold of lnn for approximating set cover. Journal of the ACM, 45:634–652,
1998. 19

[9] Johan Håstad. Some optimal inapproximability results. Journal of the ACM, 48:798–859,
2001. 3

[10] Subhash Khot. On the power of unique 2-prover 1-round games. In Proceedings of 34th
ACM Symposium on Theory of Computating, pages 767–775, 2002. 9

[11] Aleksandar Nikolov, Kunal Talwar, and Li Zhang. The geometry of differential privacy:
the sparse and approximate cases. In Proceedings of the 45th annual ACM symposium on
Symposium on theory of computing, STOC ’13, pages 351–360, New York, NY, USA, 2013.
ACM. 13

[12] Christos H. Papadimitriou. On selecting a satisfying truth assignment (extended ab-
stract). In Proceedings of the 32nd annual symposium on Foundations of computer science,
SFCS ’91, pages 163–169, Washington, DC, USA, 1991. IEEE Computer Society. 2, 13

[13] Ran Raz. A parallel repetition theorem. SIAM J. on Computing, 27:763–803, 1998. 5

16

[14] Thomas J. Schaefer. The complexity of satisfiability problems. In Proceedings of the Tenth
annual ACM Symposium on Theory of Computing, pages 216–226, 1978. 18

A Hardness based on absence of polymorphisms

In this section, we show that the principle underlying our hardness result for (1, g, 2g+1)-SAT

applies more generally. Namely, the absence of certain “weak polymorphisms” of arbitrarily
large arities implies hardness for the associated promise CSP.

The hardness for (1, g, 2g+1)-SAT is thus a particular case based on the fact (established in
Lemma 4.2) that there is no weak polymorphism of arity larger than 2g that takes assignments
strongly g-satisfying a width (2g + 1)-clause and outputs an assignment that satisfies the
clause.

We present our result for constraint satisfaction problems over an arbitrary finite domain,
allowing for both folding (the generalization of “negated” variables to non-Boolean domains)
and repeated literals (a “literal” associated with variable v is given by v+ a for some constant
a in the domain, where the addition is modulo the domain size). It is not clear whether or
not these two assumptions are essential or whether they can be removed as in the case of
(1, g, 2g + 1)-SAT.

Definition A.1 (CSP). For integers q, k > 2, a constraint satisfaction problem over domain
[q] = {0, 1, . . . , q−1} and arity k, denoted CSP(P), is specified by a predicate P : [q]k → {0, 1}.

An instance of this CSP is given by a set of variables V , and a collection of constraints,
each specified by (τ, a) for τ = (v1, . . . , vk) ∈ V k and a = (a1, . . . , ak) ∈ [q]k (which requires
that the constraint P applied to the “literals” v1 + a1, . . . , vk + ak is met). Accordingly, the
instance is said to be satisfiable if there is an assignment σ : V → [q] such that P (σ(v1) +
a1, . . . , σ(vk) + ak) = 1 for all constraints (τ, a) of the instance.

The following promise problem generalizes the (1, g, 2g + 1)-SAT problem to arbitrary
predicates.

Definition A.2. For predicates P,Q : [q]k → {0, 1} such that P implies Q (i.e., ∀x, P (x) 6
Q(x)), the (P,Q)-CSP problem is the following promise problem:

Given an instance of CSP (P), distinguish between “Yes instances” which are sat-
isfiable as a CSP(P) instance, and “No instances” which are unsatisfiable even as
a CSP(Q) instance.

We now define the notion of weak polymorphisms that map satisfying assignments for one
predicate into one for a more relaxed predicate.

Definition A.3. Let P,Q : [q]k → {0, 1} be predicates such that ∀x, P (x) 6 Q(x). For a
positive integer m, a function f : [q]m → [q] is said to be a folded (P,Q)-weak polymorphism if
the following properties hold:

1. (Polymorphism property) For all b1, b2, . . . , bm ∈ P−1(1), we have

(f(b1,1, b2,1, . . . , bm,1), f(b1,2, b2,2, . . . , bm,2), · · · , f(b1,k, b2,k, . . . , bm,k)) ∈ Q−1(1) .

17

2. (Foldedness)1 For every x ∈ [q]m and a ∈ [q], f(x + (a, a, . . . , a)) = f(x) + a where the
addition is mod q.

In the sequel, we define the arity of a function f : [q]m → [q] to be the smallest integer t
for which f is a t-junta (i.e., depends only on t input coordinates); formally, the smallest t for
which there exists a subset S ⊆ {1, 2, . . . ,m} with |S| = t and a function g : [q]t → [q] such
that for every x ∈ [q]m, f(x) = g(x|S). Thus dictator functions have arity 1.

We now state our main theorem (Theorem A.5 below) connecting (the lack of) polymor-
phisms to the hardness of (P,Q)-CSP. This generalizes a similar well-known statement for
the case P = Q, namely that if the only polymorphisms for the constraint P are dictators,
then the CSP(P) problem is NP-hard. The converse of this statement would imply the alge-
braic dichotomy conjecture of [4] that precisely ties the tractability of a CSP to the existence
of non-trivial polymorphisms. Establishing the converse of Theorem A.5 for the promise ver-
sion is only harder, but an interesting question would be to try to prove it for Boolean CSPs
where the complexity dichotomy was shown long ago by Schaefer [14] (see the survey [6] for
a modern algebraic treatment of Schaefer’s dichotomy theorem).

The statement of the theorem imposes the following technical condition on P .

Definition A.4. A predicate P : [q]k → {0, 1} is said to be full-domain-using if for every i ∈
{1, 2, . . . , k} and a ∈ [q], there is a satisfying assignment to P that sets the i’th variable to a.

Note that if P is not full-domain-using, say P (x1, x2, . . . , xk) = 1 implies xi ∈ T , then the
range of any variable that appears in the i’th position of any constraint can be reduced. In the
case of Boolean variables this would determine the value of any such variable, but also in the
general case simplifications can be made. Therefore, the full-domain-using property of P is a
natural non-degeneracy condition to assume.

We are now ready to state the main result of this section, which we prove in the rest of the
section.

Theorem A.5 (Large arity polymorphisms are necessary for tractability). Suppose P,Q : [q]k →
{0, 1} are predicates such that every folded (P,Q)-weak polymorphism has arity bounded by a finite
constant B, and assume that P is full-domain-using. Then (P,Q)-CSP is NP-hard.

A.1 Dictatorship test

As usual, we start with a dictatorship test for a function f : [q]m → [q] with constraints corre-
sponding to the (P,Q)-CSP problem. We assume that f is folded, i.e., f(x + (a, a, . . . , a)) =
f(x) + a for every x ∈ [q]m and a ∈ [q]. The constraints of this test are as follows:

For all x1, x2, . . . , xk ∈ [q]m such thatP (x1,j , x2,j , . . . , xk,j) = 1 for each j ∈ {1, 2, . . . ,m},
check that

Q(f(x1), f(x2), · · · , f(xk)) = 1 . (3)

The completeness of the test is obvious by design.

Lemma A.6. If f is a dictatorship function, then it satisfies all the constraints (3) (even if the predicate
Q is replaced with P in those constraints).

1This is the generalization to larger domains of the concept of oddness of Boolean functions.

18

It follows pretty much from definition that a function f which passes all the checks (3) is
a (P,Q)-weak polymorphism. Indeed we can take m arbitrary satisfying assignments to P
as the j’th entries of x1, x2, . . . , xk for j = 1, 2, . . . ,m, and the output (f(x1), . . . , f(xk)) must
satisfy Q. Therefore, we also have the soundness property, similar to Lemma 4.2:

Lemma A.7. If every folded (P,Q)-weak polymorphism has arity bounded by B, then any folded f
that satisfies all constraints (3) of the dictatorship gadget depends on at most B variables.

A.2 NP-hardness reduction

We now turn to using the above construction in a NP-hardness reduction. Instead of the
“normal” bipartite Label Cover, we reduce from a k-partite version of Label Cover (where k
is the arity of the predicates P,Q). This version was originally proposed and used by Feige [8]
for his tight inapproximability result for set cover.

Definition A.8 (Multi-partite Label Cover). An instance of k-partite Label Cover consists of
a k-partite k-uniform hypergraph (U1, U2, . . . , Uk, E), label sets L and L̃, and constraint func-
tions π(e)i : L→ L̃ for each hyperedge e ∈ E and 1 6 i 6 k.

A labeling solution to such an instance consists of assignments σi : Ui → L.
We say a hyperedge e = (u1, u2, . . . , uk) is strongly satisfied by such a labeling if

π
(e)
1 (σ1(u1)) = π

(e)
2 (σ2(u2)) = · · · = π

(e)
k (σk(uk)) ,

and weakly satisfied if for some pair (i, j), 1 6 i < j 6 k,

π
(e)
i (σi(ui)) = π

(e)
j (σj(uj)) .

The following inapproximability result for k-partite Label Cover was shown by Feige [8].

Theorem A.9. Let k > 2 be an integer. For all ε > 0, there exists ` = `(k, ε) such that given a
k-partite Label Cover instance with label sets of size at most `, it is NP-hard to distinguish between the
following two cases:

1. (Yes instance) There exists a labeling solution that strongly satisfies every edge.

2. (No instance) Every labeling solution weakly satisfies at most a fraction ε of the hyperedges.

We now describe the reduction from k-partite Label Cover to (P,Q)-CSP. Suppose we are
given an instance with hypergraph (U1, U2, . . . , Uk, E), label sets L, L̃, and constraint func-
tions π(e)i . For each ui ∈ Ui, we associate a function fui : [q]L → [q], which we assume to be
folded, and which is intended to be a dictator of the label σi(ui) of ui. We add the following
constraints:

• For each ui ∈ Ui, i = 1, 2, . . . , k, the dictatorship gadget from Section A.1 on fui .

• For each hyperedge e = (u1, u2, . . . , uk) ∈ E add the constraint

Q(fu1(x1), fu2(x2), . . . , fuk(xk)) = 1 , (4)

19

for every choice of x1, x2, . . . , xk which satisfy

P (x1,l1 , x2,l2 , . . . , xk,lk) = 1

for all tuples (l1, l2, . . . , lk) ∈ Lk with π(e)1 (l1) = π
(e)
2 (l2) = · · ·π(e)k (lk).

The completeness of the reduction follows immediately from the construction, by taking
fui to be the dictatorship functions corresponding to the label of ui.

Lemma A.10. If there is a labeling to the k-partite Label Cover instance which strongly satisfies
every hyperedge, then the above instance is satisfiable even as a CSP(P) instance (i.e., when replacing
predicate Q with P in all the constraints).

It remains to analyze the soundness of the reduction. This is established in Lemma A.11
below. Note that by picking the soundness ε of the Label Cover instance to be � 1/B2,
Theorem A.5 would follow from Theorem A.9, and Lemmas A.10 and A.11.

Lemma A.11. Suppose every folded (P,Q)-weak polymorphism has arity at most B, and P is full-
domain-using. Then, if the CSP(Q) instance produced by the above reduction is satisfiable, there
is a labeling to the original k-partite Label Cover instance that weakly satisfies at least 1/B2 of the
hyperedges.

Proof. Suppose we have folded tables fui : [q]L → [q] for ui ∈ Ui, 1 6 i 6 k, that pass all the
constraints. Then by the soundness of the dictatorship tests, there must be subsets Sui ⊂ L
for each vertex ui with |Sui | 6 B such that fui only depends on variables in Sui .

Fix an hyperedge e = (u1, u2, . . . , uk) ∈ E. For notational simplicity, denote Sui by Si. We
now prove that in order to satisfy all the constraints (4), we must have

π
(e)
i (Si) ∩ π(e)j (Sj) 6= ∅ for some i 6= j . (5)

Once we prove this, the labeling strategy of assigning to each ui a random label from Sui
will weakly satisfy at least 1/B2 of the hyperedges in expectation, implying the existence of
a labeling that weakly satisfies at least 1/B2 of the hyperedges of the k-partite Label Cover
instance.

Suppose for contradiction that (5) is not the case and we have

∀ i, j; 1 6 i < j 6 k; π
(e)
i (Si) ∩ π(e)j (Sj) = ∅ . (6)

Pick an assignment β = (β1, β2, . . . , βk) ∈ Q−1(0). (The absence of (P,Q)-weak polymor-
phisms of arbitrary arity implies that Q cannot be the trivial predicate always outputting 1.)
For i = 1, 2, . . . , k, pick xi ∈ [q]L such that

1. xi is constant on Si, say xi,l = bi for all l ∈ Si, and

2. fui(xi) = βi

Such a choice is possible as the fui are folded. Note that by choice

Q(fu1(x1), fu2(x2), . . . , fuk(xk)) = 0 . (7)

20

Therefore, to get a contradiction we need to ensure that xi’s can be completed in other coor-
dinates in a manner so that the test (4) is made with this choice of xi’s. (This is analogous to
the contradiction we obtained in the proof of Lemma 5.7.)

Define Ti = (π
(e)
i)−1(π

(e)
i (Si)), i.e., the labels l′ that collide with some l ∈ Si under π(e)i .

Since fui(x) only depends on x|Si
, we can further assume that the chosen xi takes the constant

value bi for every coordinate in Ti. By (6), we have

π
(e)
i (Ti) ∩ π(e)j (Tj) = ∅ for all 1 6 i < j 6 k . (8)

By the full-domain-using property of P , for 1 6 i 6 k, we can find assignments θ(i) ∈ P−1(1)
such that θ(i) takes value bi in the i’th coordinate. We can now fill in the coordinates outside
Ti in xi, for each i = 1, 2, . . . , k, as follows.

• For coordinates l of xi such that π(e)i (l) /∈ ⋃
j π

(e)
j (Tj), we set xi,l = ai where (a1, a1, . . . , ak)

is some fixed satisfying assignment of P .

• For the coordinates l of xi such that π(e)i (l) ∈ π(e)j (Tj) for some j 6= i (note that such a j,
if it exists, is unique by (8)), we set xi,l to be the i’th coordinate of θ(j).

One can check by a quick inspection that this construction creates a tuple (x1, x2, . . . , xk) obey-
ing the conditions under which the constraint (4) is added, which is in contradiction with
(7).

21

ECCC ISSN 1433-8092

http://eccc.hpi-web.de

