
(2 + ε)-SAT is NP-hard∗

Per Austrin† Venkatesan Guruswami‡ Johan Håstad§

Abstract

We prove the following hardness result for a natural promise variant of the classical
CNF-satisfiability problem: Given a CNF-formula where each clause has width w and
the guarantee that there exists an assignment satisfying at least g = dw

2 e − 1 literals in
each clause, it is NP-hard to find a satisfying assignment to the formula (that sets at least
one literal to true in each clause). On the other hand, when g = dw

2 e, it is easy to find a
satisfying assignment via simple generalizations of the algorithms for 2-SAT.

Viewing 2-SAT ∈ P as easiness of SAT when 1-in-2 literals are true in every clause,
and NP-hardness of 3-SAT as intractability of SAT when 1-in-3 literals are true, our result
shows, for any fixed ε > 0, the hardness of finding a satisfying assignment to instances of
“(2 + ε)-SAT” where the density of satisfied literals in each clause is promised to exceed

1
2+ε .

We also strengthen the results to prove that given a (2k + 1)-uniform hypergraph that
can be 2-colored such that each edge has perfect balance (at most k + 1 vertices of either
color), it is NP-hard to find a 2-coloring that avoids a monochromatic edge. In other
words, a set system with discrepancy 1 is hard to distinguish from a set system with worst
possible discrepancy.

Finally, we prove a general result showing intractability of promise CSPs based on the
paucity of certain “weak polymorphisms.” The core of the above hardness results is the
claim that the only weak polymorphisms in these particular cases are juntas depending
on few variables.

Key Words and Phrases: constraint satisfaction, complexity dichotomy, discrepancy, hy-
pergraph coloring, polymorphisms, probabilistically checkable proofs.

∗A preliminary version of this paper has appeared at FOCS 2014 [AGH14].
†School of Computer Science and Communication, KTH Royal Institute of Technology, Stockholm, Sweden.

Supported by ERC Advanced Grant 226203 and Swedish Research Council Grant 621-2012-4546. austrin@kth.se
‡Computer Science Department, Carnegie Mellon University, Pittsburgh, USA. Research supported in part by

a Packard Fellowship, and NSF grants CCF-1115525 and CCF-1526092. guruswami@cmu.edu
§School of Computer Science and Communication, KTH Royal Institute of Technology, Stockholm, Sweden.

Supported by ERC Advanced Grant 226203, and some of this work done while visiting the Simon’s institute.
johanh@kth.se

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Revision 2 of Report No. 159 (2013)

1 Introduction

One of the first distinctions we learn in complexity theory is that while 2-SAT can be solved
in polynomial time, 3-SAT is our favorite NP-complete problem. As there are no integers be-
tween 2 and 3 this seems to be a sharp characterization but a closer inspection shows that a
more fine-grained analysis is possible. One conclusion of the current paper is that the transi-
tion from easy to hard takes place just after two and not just before three.

Suppose we consider w-CNF formulas where each clause is of width exactly w and ask for
an assignment that satisfies a literals in each clause. It follows more or less immediately from
the above facts that this problem is NP-hard for a 6 w− 2 and solvable in polynomial time
when a > w− 1. Suppose, however, that we make this into a promise problem and guarantee
that there is an assignment that satisfies g literals in each clause for some g > a. We call the
resulting problem (a, g, w)-SAT. It turns out that (a, g, w)-SAT can be solved in polynomial
time if and only if (a + 1, g + 1, w + 1)-SAT can be solved in polynomial time (we give the
short proof of this fact in the preliminaries). We can thus focus on the case a = 1, i.e., finding
satisfying assignments in the usual sense.

Let us start with some easy observations. Starting with a 3-CNF formula we can turn this
into a 3g-CNF formula by taking the union of all g-tuples of clauses. It is easy to see that if
the original formula is satisfiable then we can satisfy g literals in each clause of the produced
formula. From this it follows that (1, g, w)-SAT is NP-hard whenever g 6 w/3. To the best of
our knowledge, no hardness was known for any g > w/3.

On the algorithmic side it is not difficult to see that the probabilistic 2-SAT algorithm of
Papadimitriou [Pap91] extends to (1, g, w)-SAT when g > w/2. Using a linear program we
show how to construct an algorithm running in deterministic polynomial time for the same
range.

1.1 Our results

It turns out that this is all that can be achieved in polynomial time. The main new result of this
paper is to establish that the problem is NP-hard whenever g < w/2. In particular, we have
the following theorem. While the above discussion focused on the search problem, our hard-
ness result applies even for the promise decision problem, of distinguishing instances of SAT

that admit assignments satisfying many literals in each clause from unsatisfiable instances.

Theorem 1.1. For every fixed integer g > 1, (1, g, 2g + 1)-SAT is NP-hard.

This hardness result is the source of the above claim that the transition from easy to hard
takes place at two. Once the density of satisfied literals drops strictly below one half, it is hard
to find a satisfying assignment.1

To establish this result we give a reduction from the Label Cover problem, the usual start-
ing point for inapproximability results (even though our results apply only to traditional con-
straint satisfaction problems where we want to satisfy all constraints). At first glance it might

1This is the sense in which we implied (2 + ε)-SAT is NP-hard in the paper title, but we should mention here
that (2+ ε)-SAT has been used previously to denote instances of satisfiability containing a mix of 2CNF and 3CNF
clauses, with about ε fraction of clauses being 3CNF [AKKK01]. As the terminology (2 + ε)-SAT is restricted to
just the title of this paper, we hope it does not cause much confusion.

2

seem slightly surprising that such a strong starting point is needed for our NP-hardness re-
sult. As an indication that something non-trivial is going on we give a proof that there is
no standard gadget reduction from 3-SAT to any of our problems, and in particular not to
(1, g, 2g + 1)-SAT. This impossibility result is due to Dominik Scheder, and extends to show
that there is no gadget reduction from (1, g, 2g + 1)-SAT to (1, g′, 2g′ + 1)-SAT for g′ > g > 1.

One can also consider an approximation problem associated with (1, g, 2g+ 1)-SAT, where
we are guaranteed that there is an assignment that satisfies at least g literals in a fraction c of
clauses and the goal is to find an assignment that satisfies a fraction s of the clauses. Our
proof of Theorem 1.1 implicitly shows that this problem is hard for c = 1 and some s =
s(g) < 1, thus showing APX-hardness of (1, g, 2g + 1)-SAT. We observe that an application of
the theorem on “uselessness of predicates” from [AH13] implies a strong inapproximability
result for this problem (albeit only for almost satisfiable instances and assuming the Unique
Games conjecture) that shows hardness for c = 1− ε and s = 1− 2−(2g+1) + ε for any ε > 0
(see Theorem 3.8).

Hypergraph discrepancy. A problem closely related to (a, g, w)-SAT is hypergraph discrep-
ancy. Here, given sets of size 2g + 1 of elements from a universe, the problem is to color the
elements with two colors such that each set has a good balance of colors. We extend our
methods to prove the following hardness result, showing that systems of bounded-size sets
with smallest possible discrepancy are NP-hard to distinguish from set systems with worst
possible discrepancy.

Theorem 1.2. For each fixed g > 1, given a (2g + 1)-uniform hypergraph that admits a 2-coloring
under which each hyperedge is evenly balanced (g elements of one color and g + 1 of the other), it is
NP-hard to find a 2-coloring that avoids creating a monochromatic hyperedge.

The above result implies Theorem 1.1 via a simple reduction: for each hyperedge (x1, x2,
. . . , x2g+1) of the hypergraph, create two width 2g + 1 clauses (x1 ∨ x2 ∨ · · · ∨ x2g+1) and
(x1 ∨ x2 ∨ · · · ∨ x2g+1). But we prove Theorem 1.1 first to illustrate our approach in a simpler
setting that allows arbitrary clauses of width 2g + 1.

For the case of even-sized sets, i.e., 2g-uniform hypergraphs for g > 2, we can get the
following statement by a simple reduction from Theorem 1.2 (the first statement follows by
adding a special private element to each set in the instance, and the second by taking all
2g-element subsets of each (2g + 1)-sized set in the instance).

Corollary 1.3. (i) For each fixed g > 2, given a 2g-uniform hypergraph that admits a 2-coloring
under which each hyperedge is perfectly balanced (has g elements of each color), it is NP-hard to find
a 2-coloring with discrepancy smaller than (2g− 2) (i.e., with more than one vertex of each color in
every hyperedge).

(ii) For each fixed g > 2, given a 2g-uniform hypergraph that admits a 2-coloring with discrepancy
at most 2, it is NP-hard to find a 2-coloring that avoids creating a monochromatic hyperedge.

The above statements are best possible in the sense that if there is a perfectly balanced
(discrepancy 0) coloring of a 2g-uniform hypergraph, then one can efficiently find a 2-coloring
that avoids monochromatic hyperedges. This follows from the more general statement that
(1, g, 2g)-SAT can be solved in polynomial time (via the reduction mentioned after Theo-
rem 1.2).

3

For systems with unbounded set size, it is known that even if there is a coloring with
discrepancy 0, it is NP-hard to find a coloring of discrepancy at most c

√
N, where c > 0 is a

fixed constant and N is the size of the universe [CNN11].

Applications. Apart from the inherent interest in the given problems it is our hope that these
new results will be useful as starting points for reductions to give new inapproximability re-
sults. While the inapproximability of Max-3Lin [Hås01] is a good starting point for problems
where we are counting the number of satisfied constraints, our new problems might be good
starting points when it is the worst local situation that governs the quality of a solution. As an
example, consider the discrepancy problem, where the objective function is governed by the
hyperedge with the most unbalanced coloring. As a small step in this direction we use our
result to improve the inapproximability result for hereditary discrepancy for matrices from
3/2 to any number arbitrarily close to 2. Our Theorem 1.2 was also used recently in [FMS+14]
to show a tight factor 2 inapproximability for a certain scheduling problem on two machines.

1.2 Techniques

Our hardness results are established via reductions from the Label Cover problem, which is
an arity two constraint satisfaction problem over a large (but constant-sized) domain [L] =
{1, 2, . . . , L} and the constraint relations allowed are functions [L] → [L]. Specifically, an
instance of Label Cover can be viewed as a (bipartite) graph H = (U, V, E), and for each edge
e = (u, v) ∈ E there is a projection πe : [L] → [L] stipulating that the value assigned to u
maps to the value assigned to v under πe. That is, an assignment σ : U ∪ V → [L] satisfies
the constraint given by edge e if πe(σ(u)) = σ(v). Given the current technology of reductions
combining Label Cover and dictatorship tests, and the goal of only establishing hardness of
deciding satisfiability (rather than some tight inapproximability ratio), the technical details
of our proof are not difficult. Indeed, our result can be viewed as a particularly good entry
point to understand the highly influential “Label cover + Long Code” framework for showing
hardness results.

The combinatorial core of our results is a dictatorship test, where we are given a function
f : {0, 1}L → {0, 1}, which we assume to be odd (i.e., f (z) 6= f (¬z) where ¬z is the point
antipodal to z) and the goal is to ascertain if it is a dictator, i.e., f (z) = zi ∀z ∈ {0, 1}L, for some
coordinate i ∈ [L]. For the problem of (1, g, 2g + 1)-SAT, the allowed tests involve querying
carefully chosen subsets of 2g + 1 points of the hypercube, x1, x2, . . . , x2g+1, and checking that
at least g of the values f (xi) are 1. Given our desire to have all dictator functions pass all
tests, there is a very natural choice for which subsets to pick, namely all (2g + 1)-tuples for
which in every coordinate there are at least g 1’s. We prove that if the clauses produced by
this natural dictatorship test are all satisfied by some f , then the function f is a junta that only
depends on a constant number of inputs (independent of L).

To use this in a reduction from Label Cover, we have a hypercube of variables associated
with each vertex w ∈ U ∪ V of the Label Cover instance. A Boolean assignment to these
variables is naturally viewed as a function fw : {0, 1}L → {0, 1}. In the completeness case, if
the vertex w is assigned a label ` ∈ [L], then one takes fw to be the dictator function (aka long
code) that outputs the `’th bit of the input, and the reduction ensures that this assignment
will satisfy at least g literals in all the clauses of the produced (2g + 1)-SAT instance.

For the soundness, the reduction will impose the above dictatorship test on each fw, and

4

this will ensure that each fw must be a junta in order to satisfy all these “intra-hypercube”
clauses. Thus each fw can be viewed as highlighting a small set of possible labels to w. To
capture the projection constraints πe, we also introduce some natural clauses between the
hypercubes corresponding the endpoints u, v of each edge e. To pass the constraints that go
across two long codes fu, fv we show that there must be some consistency between the set
of labels highlighted by these juntas, and hence they can be used as labels to satisfy a con-
stant fraction of the constraints in the Label Cover instance. Thus if the original Label Cover
instance was highly unsatisfiable, there cannot be a satisfying assignment for the produced
(2g + 1)-SAT instance produced by the reduction.

Note that our proof method departs from the usual analytic approaches to analyze dicta-
torship tests (which seem ill-suited in our context) and relies on more combinatorial reason-
ing. The fact that our proofs are short and self-contained and yet yield a non-trivial hardness
result about such a natural and easy to state variant of SAT is, in our opinion, one of the main
selling points of this paper.

Connection to weak polymorphisms. Polymorphisms are operations that preserve a set of
relations. They are a crucial tool in the algebraic approach to classifying the complexity of
constraint satisfaction problems as either tractable or NP-hard. Formally, a polymorphism
for a predicate P ⊆ {0, 1}k is a map f : {0, 1}L → {0, 1}, for some arity L, such that for all
choices of x(1), x(2), . . . , x(L) ∈ P, applying f componentwise to the x(i)’s yields a string that
also satisfies P; that is, if z ∈ {0, 1}k is defined by zj = f (x(1)j , x(2)j , . . . , x(L)

j) for j = 1, 2, . . . , k,
then z ∈ P as well.

Our analysis of the dictatorship test (for (1, g, 2g + 1)-SAT) can be stated equivalently as
characterizing the “weak polymorphisms” that map assignments satisfying at least g out of
2g + 1 variables to an assignment satisfying at least one of those variables. In other words,
the constraint imposed on the output of the polymorphism is a more relaxed one. More
precisely, a weak polymorphism f for (1, g, 2g + 1)-SAT of arity L is a map with the following
property: if x(1), x(2), . . . , x(L) ∈ {0, 1}2g+1 are such that each x(j) has Hamming weight at least
g, then applying f componentwise to the x(j)’s yields a string z with at least one 1. By our
combinatorial result, such a weak polymorphism must be a junta, that depends on at most
2g− 1 variables.

To elucidate the more general underlying principle governing our hardness results, we
show that if the only weak polymorphisms mapping satisfying assignments of a predicate
P to those of an implied predicate Q are juntas (i.e., depend on a fixed constant number of
variables), than the promise CSP associated with the pair of predicates P, Q (where we are
promised satisfiability according to P and the goal is to find an assignment satisfying the
more lax predicate Q) is NP-hard.

1.3 Subsequent work

Our work raises several interesting directions for further research, some of which have al-
ready seen progress.

One way to generalize Theorem 1.2 would be to show hardness of weakly 2-coloring
(k + 1)-uniform hypergraphs that have even richer structure than discrepancy 1, for instance
when the hypergraph is k-rainbow colorable, i.e., there is a k-coloring of vertices such that ev-

5

ery hyperedge has vertices of each color.2. If the hypergraph is k-uniform (instead of k + 1-
uniform), one can efficiently 2-color it without monochromatic hyperedges (e.g. via a random
walk algorithm similar to the one in Section 6). Proving such a hardness for k + 1-uniform
hypergraphs is still open. However, in [GL15], the following strong inapproximability result
for coloring hypergraphs has been shown (taking g = 2 below shows hardness of 2-coloring
k-rainbow colorable hypergraphs when the hyperedges have size 2k):

For arbitrary integers g, k, C > 2, given as input a gk-uniform hypergraph that is
promised to have a k-coloring where each color appears at least (g− 1) times in
every hyperedge, it is NP-hard to weakly C-color the hypergraph.

While this result does not imply Theorem 1.2, taking k = 2 it implies part (ii) of Corollary 1.3,
and in fact a stronger form when an arbitrary constant number of colors are allowed in the
soundness case (part (i) also follows by a simple reduction). The proof of the above result
in [GL15] is significantly more involved than our proofs, relying on analytic machinery such
as invariance principles [Mos10, Wen13] and reverse hypercontractivity. The techniques can
also be adapted to yield a proof of Theorem 1.1. Establishing our main result on discrepancy
(Theorem 1.2), however, seems currently out of reach of these analytic methods.

The framework of showing hardness by characterizing the structure of the concerned
weak polymorphisms was applied in [BG16a] to graph coloring. In particular, it was shown
there that it is NP-hard to tell if an input graph is k-colorable, or has chromatic number at
least (2k − 1), for all k > 3. The combinatorial crux was a structural theorem about weak
polymorphisms (for k vs. 2k − 2 coloring) showing them to be dictators corrupted by noise
in a controlled way. A similar approach yielded results for 2-coloring hypergraphs with low
strong chromatic number.

The authors of [BG16a] also undertook a more systematic investigation into the complex-
ity of Boolean promise CSPs in [BG16b]. A broad goal here would be to classify, for pairs
of predicate P, Q where P implies Q, whether the problem of distinguishing CSP instance
satisfiable according to P from those that are unsatisfiable even when constraints are relaxed
to Q, is tractable or NP-hard. The case when the involved predicates are all symmetric (i.e.,
membership in the predicate only depends on the Hamming weight of the string) is settled
in [BG16b] (even when the promise CSP allows several pairs of predicates (Pi, Qi)). Weak
polymorphisms are the crucial concept in this dichotomy result; in fact, this paper confirms
that weak polymorphisms precisely capture the complexity of a promise CSP by extending
the “Galois correspondence” known for usual CSPs (see, for instance, the excellent survey
[Che09]) to the world of promise CSPs. A simple and generic method to handle repeated lit-
erals is also presented in [BG16b]; we exploit this to simplify our original proofs, particularly
that of Theorem 1.2 where repetitions easily allow one to encode negations (which are not
available in the discrepancy setting).

1.4 Organization

An outline of the paper is as follows. We start with some definitions and preliminaries in
Section 2. As our main contribution is on the hardness side, we discuss the hardness results

2Note that such a hypergraph surely has a balanced 2-coloring, by merging b k
2 c colors into one group and the

remaining d k
2 e colors into another group, so such a result will indeed strengthen Theorem 1.2

6

first and defer the algorithmic results to Section 6 towards the end of the paper.
We start by presenting our hardness result for (1, g, 2g + 1)-SAT in Section 3. In Section 4

we then take a broad perspective and introduce the notion of “weak polymorphisms” and
show that the hardness result for (1, g, 2g + 1)-SAT is a special case of a more general theo-
rem saying that under certain conditions, a CSP that does not have weak polymorphisms of
arbitrary large arities must be NP-hard. We then discuss our results for discrepancy prob-
lems (Theorem 1.2) and improved inapproximability for hereditary discrepancy in Section 5.
Finally we end with some concluding remarks in Section 7.

2 Preliminaries

We start with some basic definitions.

Definition 2.1. A w-SAT formula is a CNF formula where each clause has width exactly w.

One detail to consider is whether we allow repeated literals or two literals correspond-
ing to the same variable in a clause. It turns out that this distinction does not change the
complexity of the problems we consider. Specifically, in the follow-up work by Brakensiek
and Guruswami [BG16b], Appendix C, it is shown that the complexity of a promise-CSP of
the kind studied here is not affected by allowing or disallowing repeated variables in con-
straints. Hence throughout the paper we will freely allow repeated variables, since this tends
to simplify the presentation.

Definition 2.2. A w-SAT formula Φ is strongly g-satisfiable if there is an assignment to the
variables such that at least g literals are true in every clause of Φ.

Definition 2.3. For 1 6 a 6 g < w, the (a, g, w)-SAT promise problem is as follows. The input
is a w-SAT formula Φ and the goal is to accept instances Φ that are strongly g-satisfiable and
reject instances that do not admit any assignment that strongly a-satisfies Φ.

We have defined the decision version above, and in the search version we are given a
w-SAT formula Φ that is guaranteed to be strongly g-satisfiable and the goal is to find an as-
signment that strongly a-satisfies Φ.

Note that (1, 1, w)-SAT is the usual w-SAT problem. Let us start with a couple of simple
observations.

Observation 2.4. There is a polynomial time reduction from (a, g, w)-SAT to (a, g, w + 1)-SAT

Proof. For each old clause, create two new clauses extending it by a variable and its comple-
ment.

Proposition 2.5. For a > 1, the problems (a, g, w)-SAT and (a + 1, g + 1, w + 1)-SAT are interre-
ducible to each other in polynomial time and in particular one of them is polynomial-time solvable iff
the other one is.

Proof. We establish two easy reductions and start with the obvious one.
By adding a shared dummy variable to all clauses of an (a, g, w)-SAT instance it follows

that (a, g, w)-SAT reduces to (a + 1, g + 1, w + 1)-SAT.

7

For the reduction in the other direction, take all subclauses of size w of each clause of size
w + 1. It is readily verified that this gives a correct reduction.

In view of the above proposition we can focus on the case a = 1, i.e., the problem of
finding a satisfying assignment in a w-CNF formula when we are guaranteed that there is an
assignment that satisfies at least g literals in each clause.

We now define the discrepancy problem underlying Theorem 1.2 formally. Let S be a
subset of size 2g + 1 of some universe U. We say that X ⊆ U splits S evenly if |X ∩ S| ∈
{g, g + 1}.

Definition 2.6. An instance of the g-DISCREPANCY problem consists of a collection of sets
S1, . . . , Sm ⊂ U each of size exactly 2g + 1, and the objective is to distinguish between

Yes: there is an X ⊆ U that splits each Si evenly.

No: for every X ⊆ U, some Si is not split by X at all (i.e., |X ∩ Si| ∈ {0, 2g + 1}).

Label Cover and Long Codes. Our reductions establishing hardness results fit in the standard
form for Probabilistically Checkable Proofs (PCPs), commonly used to establish inapproxima-
bility results for maximum constraint satisfaction problems. In particular our reductions start
from label cover and use the long code encoding of each label.

Definition 2.7. An instance Ψ = (U, V, E, {πe : LV → LU}) of Label Cover consists of a
bipartite graph (U, V, E), label sets LU and LV for U and V, and for each edge e ∈ E a map
πe : LV → LU .

A labeling σ is a map that assigns for each u ∈ U a label σ(u) ∈ LU and for each v ∈ V a
label σ(v) ∈ LV . The labeling σ satisfies an edge e = (u, v) if πe(σ(v)) = σ(u).

The value of a labeling σ is the fraction of edges satisfied by σ, and the value Opt(Ψ) of Ψ
is the maximum value of any labeling.

Theorem 2.8 ([ALM+98, Raz98]). For every ε > 0, there are LU , LV such that given a Label Cover
instance Ψ with label sets LU and LV it is NP-hard to distinguish between Opt(Ψ) = 1 and Opt(Ψ) 6
ε.

For an alphabet L and symbol ` ∈ L, the long code encoding of ` is a function f : {0, 1}L →
{0, 1}, represented by its truth table, where f (x) = x`. Whenever negation is available in
the CSP for which we try to prove a lower bound we assume that tables are odd and respect
negation (in standard PCP terminology “are folded”) i.e. that f (¬x) = ¬ f (x) where ¬ is
a negation operator that works both on bits and strings (by negating each bit individually).
The oddness of f is ensured by storing, for each pair (x,¬x), only the value f (x) and if
f (¬x) is needed then ¬ f (x) is used instead. We note that this is possible for our results for
satisfiability but not for the hypergraph discrepancy problem which does not allow negations
in the constraints.

We use some standard notation in the paper. We let ei ∈ {0, 1}n be the unit vector with a
one in position i and use ⊕ to denote exclusive-or. Thus if x ∈ {0, 1}n is any assignment, x
and x⊕ ei differ in exactly coordinate i.

8

3 NP-hardness of (1, g, 2g + 1)-SAT

We now return to the goal of establishing that (1, g, 2g + 1)-SAT is NP-hard. In what follows
we write w = 2g + 1.

3.1 A Dictatorship Gadget

First, we construct a dictatorship gadget, which is an instance defined over 2n variables,
viewed as a function f : {0, 1}n → {0, 1}which is, as discussed in the preliminaries, assumed
to be folded.

The constraints on f are all clauses of the form (f (x1)∨ f (x2)∨ . . .∨ f (xw)) where x1, . . . , xw
are such that for each j ∈ [n], ∑w

i=1 xi,j > g. In other words there are at least g ones in each
coordinate.

The completeness of the gadget (stated below) follows by construction.

Lemma 3.1. If f is a dictatorship function then it strongly g-satisfies the dictatorship gadget.

The converse of the above lemma is only true in a weaker sense.

Lemma 3.2. Any assignment f which is odd and satisfies the dictatorship gadget depends on at most
2g− 1 variables.

In fact, this lemma is sharp – as we shall note in Section 4.1, the majority of 2g− 1 variables
does satisfy the gadget. The essential part of the above lemma is contained in the following
claim that we establish first.

Claim 3.3. Suppose f is odd, depends on g different variables i1, . . . , ig, and satisfies the dictatorship
gadget. Then f (z) = 1 for all inputs z such that zi1 = . . . = zig = 1.

Proof. Suppose for contradiction that there is an input z such that f (z) = 0 yet zij = 1 for all
j ∈ [g]. Since f depends on variables i1, . . . , ig, there are inputs x1, . . . , xg such that for each
j ∈ [g]

f (xj) = 1 and f (xj ⊕ eij) = 0 .

Now consider the clause

f (z) ∨ f (¬x1) ∨ f (x1 ⊕ ei1) ∨ . . . ∨ f (¬xg) ∨ f (xg ⊕ eig). (1)

Note that this clause might contain repeated literals but by [BG16b], Theorem C.1, allowing
this does not change the complexity of the problem. Clearly, this clause is not satisfied by f ,
so if this clause appears in the gadget we have our desired contradiction. In other words, we
have to show that in each coordinate i ∈ [n] we have at least g ones.

For any coordinate i 6∈ {i1, . . . , ig}we have that coordinate i is 1 in exactly one of {¬xj, xj⊕
eij}, for a total of at least g ones. For the coordinate ij, we have that for all j′ 6= j, at least one
of {¬xj′ , xj′ ⊕ eij′

} has a 1 in coordinate ij. Furthermore z has a one in coordinate j, for a total
of at least g ones.

It is now easy to prove Lemma 3.2.

9

Proof of Lemma 3.2. Suppose f depends on 2g distinct variables i1, . . . , ig, j1, . . . , jg. Let z be an
input such that zi1 = . . . = zig = 1 and zj1 = . . . = zjg = 0. By Claim 3.3, f (z) = 1 and
f (¬z) = 1, contradicting that f is odd.

3.2 Reduction from Label Cover

Let Ψ = (U, V, E, {πe : LV → LU}) be a Label Cover instance. To each vertex u ∈ U we
associate a function fu : {0, 1}LU → {0, 1} intended to be a dictator of the label `u of u, and
similarly fv : {0, 1}LV → {0, 1} for v ∈ V.

We add the following constraints:

• For each u ∈ U (resp. v ∈ V), the dictatorship gadget on fu (resp. fv).

• Fix an edge e = (u, v). Let x1, . . . , xg ∈ {0, 1}LU be g inputs on the U side and y1, . . . , yg+1 ∈
{0, 1}LV be g + 1 inputs on the V side. If for each l ∈ LV it holds that

g

∑
j=1

xj,πe(l) +
g+1

∑
j=1

yj,l > g

we add the constraint

fu(x1) ∨ . . . ∨ fu(xg) ∨ fv(y1) ∨ . . . fv(yg+1)

We also use folding to make sure that each fu (and fv) is odd.
Call the resulting formula Φ. The completeness is standard and follows immediately from

the construction and the completeness of the dictatorship gadget.

Lemma 3.4 (Completeness). If Opt(Ψ) = 1 then Φ is strongly g-satisfiable.

We turn to the more interesting case of soundness.

Lemma 3.5 (Soundness). If Φ is satisfiable then Opt(Ψ) > 1/(2g− 1)2.

Proof. Fix a satisfying assignment { fu}, { fv} to Φ. By the soundness of the dictatorship gadget
(Lemma 3.2) every fu and fv depends on at most 2g− 1 variables.

For each variable, let Su ⊆ LU (resp. Sv ⊆ LV) be the set of variables that fu (resp. fv)
depends on and we have the following claim.

Claim 3.6. For every edge e = (u, v) it holds that πe(Sv) ∩ Su 6= ∅.

Proof. Suppose for contradiction that Su ∩πe(Sv) = ∅. Let x1, . . . , xg ∈ {0, 1}LU be some set of
g inputs such that fu(xj) = 0 and xj,l′ = 1 for all l′ ∈ LU \ Su, and similarly let y1, . . . , yg+1 ∈
{0, 1}LV be g + 1 inputs such that fv(yj) = 0 and yj,l = 1 for all l ∈ LV \ Sv.

Let us now check that

g

∑
j=1

xj,πe(l) +
g+1

∑
j=1

yj,l > g ∀ l ∈ LV . (2)

10

Note that this would imply that fu(x1) ∨ . . . ∨ fu(xg) ∨ . . . ∨ fv(y1) ∨ . . . fv(yg+1) is a clause
in Φ and by construction it is not satisfied, a contradiction. For l /∈ Sv, (2) holds because
yj,l = 1 for j = 1, 2, . . . , g + 1. For l ∈ Sv, we have πe(l) /∈ Su, and therefore xj,πe(l) = 1 for
j = 1, 2, . . . , g, and (2) again holds.

We now finish the proof of Lemma 3.5. We construct a random labeling by picking a
random label from Su (resp. Sv) for each variable u ∈ U (resp. v ∈ V) of Ψ. For each edge
e = (u, v) it follows from the claim that the probability that e is satisfied by this labeling is

1
|Su|·|Sv| > 1/(2g− 1)2 implying the bound on Opt(Ψ).

To finish the proof of Theorem 1.1 we now simply make sure to start with a Label Cover
instance with soundness at most (2g− 1)−2 and then invoke Theorem 2.8.

Remark 3.7. The above proof can also be used to show that in soundness case, there is no
assignment that satisfies more than 1− γ(g) fraction of clauses, for some γ(g) > 0. The re-
quired soundness 1/(2g− 1)2 for the Label Cover instance can be achieved with |LU |, |LV | 6
poly(g), and thus the tables fu, fv have sizes that only depend on g. Therefore, if γ(g) is
sufficiently small, then for any assignment to Ψ satisfying more than a 1− γ(g) fraction of
clauses, most of the tables fu, fv will have all clauses satisfied, and the constructed labeling
then satisfies enough Label Cover constraints.

3.3 Inapproximability under the Unique Games conjecture

We now note the following “approximation resistance” phenomenon associated with almost-
satisfiable instances of (1, g, 2g + 1)-SAT.

Theorem 3.8. Let g > 1 be an integer. Assuming the Unique Games conjecture [Kho02], the following
promise problem is hard for every ε > 0. Given an instance of (2g + 1)-SAT (with no repetitions of
variables allowed within a clause), distinguish between the following two cases:

1. There is an assignment that strongly g-satisfies (1− ε) of the clauses, and

2. There is no assignment that satisfies a fraction (1− 2−2g−1 + ε) of the clauses.

Note that we have a gap between the two cases both in terms of the predicate being imposed
on the clauses, and the fraction of clauses satisfiable according to the respective predicates.
Also, since a random assignment satisfies an expected fraction 1− 2−2g−1 of the clauses, the
inapproximability factor is tight.

Proof of Theorem 3.8. We observe that there is a pairwise independent distribution µ on {0, 1}2g+1

which is supported only on strings with at least g ones. This distribution appears in the proof
of Theorem 5.2 in [CHIS12], and as it is easy to describe, we recall it for completeness. Let
p = 1

2g+2 . We sample a string according to µ as follows: With probability p, sample the all 1’s
string, and with probability 1− p, sample a string uniformly from those with exactly g ones.
A simple argument (see [CHIS12, Thm 5.2]) shows that every pair of bits are uniformly dis-
tributed under µ. The existence of µ together with Theorem 1.3 of [AH13] (the hardness part of
which is based on [AM09]) shows the following: Given an instance of (2g + 1)-SAT admitting
an assignment that strongly g-satisfies a fraction (1− ε) of the constraints, it is Unique Games-
hard to find an assignment for which the distribution of (2g + 1)-bit substrings appearing in

11

the scope of various constraints in the instance is ε-far from uniform. In particular, this means
that it is Unique Games-hard to find an assignment satisfying a fraction (1− 2−2g−1 + ε) of the
clauses, as a random assignment satisfies an expected fraction (1− 2−2g−1) of the clauses.

4 General Framework

In this section, we show that the principle underlying our hardness result for (1, g, 2g+ 1)-SAT

applies more generally. Namely, the absence of certain “weak polymorphisms” of arbitrarily
large arities implies hardness for the associated promise CSP.

The hardness for (1, g, 2g + 1)-SAT from the previous section turns out to be a particular
case based on the result (established in Lemma 3.2) that there are no weak polymorphisms
of arity larger than 2g− 1 that take assignments strongly g-satisfying a width (2g + 1)-clause
and output assignments that satisfy the clause.

We present our result for constraint satisfaction problems over an arbitrary finite domain
allowing for folding. It is not clear whether or not this assumption is essential or whether it
can be removed (as we shall do for the case of discrepancy in Section 5)

Definition 4.1 (CSP). For integers q, k > 2, a constraint satisfaction problem over domain
[q] = {0, 1, . . . , q− 1} and arity k, denoted CSP(P), is specified by a predicate P : [q]k → {0, 1}.

An instance of this CSP is given by a set of variables V, and a collection of constraints, each
specified by (τ, a) for τ = (v1, . . . , vk) ∈ Vk and a = (a1, . . . , ak) ∈ [q]k (which requires that the
constraint P applied to the “literals” v1 + a1, . . . , vk + ak is met). Accordingly, the instance is
said to be satisfiable if there is an assignment σ : V → [q] such that P(σ(v1) + a1, . . . , σ(vk) +
ak) = 1 for all constraints (τ, a) of the instance, where σ(vi) + ai is to be understood mod q.

The following promise problem generalizes the (1, g, 2g + 1)-SAT problem to arbitrary
predicates.

Definition 4.2. For predicates P, Q : [q]k → {0, 1} such that P implies Q (i.e., ∀x, P(x) 6
Q(x)), the (P, Q)-CSP problem is the following promise problem:

Given an instance of CSP(P), distinguish between “Yes instances” which are sat-
isfiable as a CSP(P) instance, and “No instances” which are unsatisfiable even as
a CSP(Q) instance.

We now define the notion of weak polymorphisms that map satisfying assignments for one
predicate into one for a more relaxed predicate.

Definition 4.3. Let P, Q : [q]k → {0, 1} be predicates such that ∀x, P(x) 6 Q(x). For a
positive integer m, a function f : [q]m → [q] is said to be a folded (P, Q)-weak polymorphism if
the following properties hold:

1. (Polymorphism property) For all b1, b2, . . . , bm ∈ P−1(1), we have

(f (b1,1, b2,1, . . . , bm,1), f (b1,2, b2,2, . . . , bm,2), · · · , f (b1,k, b2,k, . . . , bm,k)) ∈ Q−1(1) .

2. (Foldedness)3 For every x ∈ [q]m and a ∈ [q], f (x + (a, a, . . . , a)) = f (x) + a where the
addition is mod q.

3This is the generalization to larger domains of the concept of oddness of Boolean functions.

12

In what follows, we define the arity of a function f : [q]m → [q] to be the smallest integer t
for which f is a t-junta (i.e., depends only on t input coordinates); formally, the smallest t for
which there exists a subset S ⊆ {1, 2, . . . , m} with |S| = t and a function g : [q]t → [q] such
that for every x ∈ [q]m, f (x) = g(x|S). Thus dictator functions have arity 1.

4.1 (1, g, w)-SAT through the polymorphic lens

Before proceeding with stating our general NP-hardness result, let us briefly revisit the (1, g, 2g+
1)-SAT problem using the framework of weak polymorphisms in order to shed additional
light on the problem.

The (1, g, 2g+ 1)-SAT problem is the same as the (P, Q)-CSP problem where P : {0, 1}2g+1 →
{0, 1} accepts all inputs with at least g ones, and Q : {0, 1}2g+1 → {0, 1} accepts all inputs
with at least 1 one. What non-trivial folded (P, Q)-weak polymorphisms does this pair of
predicates admit?

A natural family of polymorphisms are majority operations on some m number of vari-
ables.

Proposition 4.4. For the predicates P and Q from the (1, g, 2g + 1)-SAT problem, the majority on m
variables for odd m is a folded (P, Q)-weak polymorphism if and only if m 6 2g− 1.

Proof. Consider m bit strings of length 2g + 1 with weight at least g. There are in total g · m
ones, meaning that in some coordinate, at least d g·m

2g+1e of the m strings has a one. Thus if
d g·m

2g+1e > dm/2e then the majority of one of the 2g+ 1 coordinates will be true, so the (2g+ 1)-
bit string of majorities satisfies Q and m-bit majority is a weak polymorphism. Conversely
if d g·m

2g+1e < m/2 then it is possible to make m inputs of length 2g + 1 and weight g such
that in each coordinate there are less than m/2 ones, and m-bit majority is then not a weak
polymorphism.

Since m is odd, the condition d g·m
2g+1e > dm/2e can be rewritten as g·m

2g+1 > m−1
2 or equiva-

lently m < 2g + 1. Using again that m is odd, this is equivalent with m 6 2g− 1.

With this perspective, Lemma 3.2 is a strengthening of the “only if” direction of Propo-
sition 4.4 – it says that not only are majorities of large arities not weak polymorphisms for
this pair of predicates, in fact no operations that depend on more than 2g− 1 variables can
be weak polymorphisms. It is this lack of complicated polymorphisms that directly drives
the NP-hardness result for (1, g, 2g + 1)-SAT. This is in contrast to (1, g, 2g)-SAT, where it is
readily verified that majorities of all odd arities are weak polymorphisms.

However, while (1, g, 2g + 1)-SAT does not have arbitrarily large weak polymorphisms, it
does have some non-trivial polymorphisms – majorities up to 2g− 1 variables. As we note
next, even the existence of these polymorphisms has algorithmic implications. In particular,
they imply that there is no simple gadget reduction from 3-SAT to (1, g, 2g + 1)-SAT.

Consider the possibility of such a gadget reduction. For each clause, say (x1 ∨ x2 ∨ x3),
this hypothetical reduction introduces a number of auxiliary variables ai (which are particular
to this clause) and forms a number of constraints in the form of clauses of width 2g + 1. This
reduction must satisfy:

13

1. Completeness: for each assignment to (x1, x2, x3) that satisfies the original clause there
is an assignment to the auxiliary variables such that at least g literals in each new clause
are true, and

2. Soundness: if x1, x2, x3 are all set to false, no assignment to the auxiliary variables satis-
fies all the new clauses.

If we do not allow repeated literals in a clause, then, as pointed out to us by John Wright,
it easy to see that no such reduction can exist. Namely take the assignment to the auxiliary
variables when x1 is true and x2 and x3 are false and use the same assignment when all the
three variables are false. As x1 only appears once in each clause this change can only decrease
the number of true literals in a clause by one and hence each clause remains satisfied. It
turns out that allowing repeated literals does not help and we have the following proposition
pointed out to us by Dominik Scheder.

Proposition 4.5. There is no gadget reduction from 3-SAT to (1, g, 2g + 1)-SAT.

Proof. Consider the three cases when (x1, x2, x3) takes the values (1, 0, 0), (0, 1, 0) and (0, 0, 1),
respectively. Consider the good assignment to the auxiliary variables in each of these three
cases, satisfying at least g literals in each (2g + 1)-clause. Define a new assignment to the
xi’s and the auxiliary variables as the majority of these three assignments; note that x1, x2, x3
are assigned 0 under this majority assignment. We claim that this new assignment satisfies at
least one literal in each created clause even when the xi’s are all false.

To see this, look at a single clause of width 2g + 1 and consider the values of these 2g + 1
literals under the three assignments. Since majority of 3 variables is a weak polymorphism, it
follows that at least one of the 2g + 1 literals must be true after applying majority, and since
each of the original variables x1, x2, x3 is set to false in the majority assignment, the true literal
must be one of the auxiliary variables.

It is not difficult to see that the argument can be extended to prove that there is no gadget
reduction from (1, g, 2g + 1)-SAT to (1, g′, 2g′ + 1)-SAT for g′ > g, meaning that these in some
sense form a strict hierarchy of problems. Instead of the assignments (1, 0, 0), (0, 1, 0) and
(0, 0, 1), we now take take 2g + 1 assignments, each assignment having g true literals, and
each literal being true in g of the assignments. A majority of these assignments does the trick
as in the above argument.

4.2 General NP-hardness result

We now state our general theorem (Theorem 4.7 below) connecting (the lack of) polymor-
phisms to the hardness of (P, Q)-CSP. This generalizes a similar well-known statement for
the case P = Q, namely that if the only polymorphisms for the constraint P are dictators, then
the CSP(P) problem is NP-hard. The converse of this statement would imply the algebraic
dichotomy conjecture of [BJK05] that precisely ties the tractability of a CSP to the existence of
non-trivial polymorphisms. Establishing the converse of Theorem 4.7 for the promise version
is only harder, but an interesting question would be to try to prove it for Boolean CSPs where
the complexity dichotomy was shown long ago by Schaefer [Sch78] (see the survey [Che09]
for a modern algebraic treatment of Schaefer’s dichotomy theorem).

14

The statement of the theorem imposes the following technical condition on P.

Definition 4.6. A predicate P : [q]k → {0, 1} is said to be full-domain-using if for every i ∈
{1, 2, . . . , k} and a ∈ [q], there is a satisfying assignment to P that sets the i’th variable to a.

Note that if P is not full-domain-using, say P(x1, x2, . . . , xk) = 1 implies xi ∈ T, then the
range of any variable that appears in the i’th position of any constraint can be reduced. In the
case of Boolean variables this would determine the value of any such variable, but also in the
general case simplifications can be made. Therefore, the full-domain-using property of P is a
natural non-degeneracy condition to assume.

We are now ready to state the main result of this section, which we prove in the rest of the
section.

Theorem 4.7 (Large arity polymorphisms are necessary for tractability). Suppose P, Q : [q]k →
{0, 1} are predicates such that every folded (P, Q)-weak polymorphism has arity bounded by a finite
constant B, and assume that P is full-domain-using. Then (P, Q)-CSP is NP-hard.

4.3 Dictatorship test

As usual, we start with a dictatorship test for a function f : [q]m → [q] with constraints cor-
responding to the (P, Q)-CSP problem. We assume that f is folded, i.e., f (x + (a, a, . . . , a)) =
f (x) + a for every x ∈ [q]m and a ∈ [q]. The constraints of this test are as follows:

For all x1, x2, . . . , xk ∈ [q]m such that P(x1,j, x2,j, . . . , xk,j) = 1 for each j ∈ {1, 2, . . . , m},
check that

Q(f (x1), f (x2), · · · , f (xk)) = 1 . (3)

The completeness of the test is obvious by design.

Lemma 4.8. If f is a dictatorship function, then it satisfies all the constraints (3) (even if the predicate
Q is replaced with P in those constraints).

It follows pretty much from definition that a function f which passes all the checks (3) is
a (P, Q)-weak polymorphism. Indeed we can take m arbitrary satisfying assignments to P
as the j’th entries of x1, x2, . . . , xk for j = 1, 2, . . . , m, and the output (f (x1), . . . , f (xk)) must
satisfy Q. Therefore, we also have the soundness property, similar to Lemma 3.2:

Lemma 4.9. If every folded (P, Q)-weak polymorphism has arity bounded by B, then any folded f
that satisfies all constraints (3) of the dictatorship gadget depends on at most B variables.

4.4 NP-hardness reduction

We now turn to using the above construction in a NP-hardness reduction. Instead of the “nor-
mal” bipartite Label Cover, we reduce from a k-partite version of Label Cover (where k is the
arity of the predicates P, Q). This version was originally proposed and used by Feige [Fei98]
for his tight inapproximability result for set cover.

15

Definition 4.10 (Multi-partite Label Cover). An instance of k-partite Label Cover consists
of a k-partite k-uniform hypergraph (U1, U2, . . . , Uk, E), label sets L and L̃, and constraint
functions π

(e)
i : L→ L̃ for each hyperedge e ∈ E and 1 6 i 6 k.

A labeling solution to such an instance consists of assignments σi : Ui → L.
We say a hyperedge e = (u1, u2, . . . , uk) is strongly satisfied by such a labeling if

π
(e)
1 (σ1(u1)) = π

(e)
2 (σ2(u2)) = · · · = π

(e)
k (σk(uk)) ,

and weakly satisfied if for some pair (i, j), 1 6 i < j 6 k,

π
(e)
i (σi(ui)) = π

(e)
j (σj(uj)) .

The following inapproximability result for k-partite Label Cover was shown by Feige [Fei98].

Theorem 4.11. Let k > 2 be an integer. For all ε > 0, there exists ` = `(k, ε) such that given a
k-partite Label Cover instance with label sets of size at most `, it is NP-hard to distinguish between the
following two cases:

1. (Yes instance) There exists a labeling solution that strongly satisfies every edge.

2. (No instance) Every labeling solution weakly satisfies at most a fraction ε of the hyperedges.

We now describe the reduction from k-partite Label Cover to (P, Q)-CSP. Suppose we are
given an instance with hypergraph (U1, U2, . . . , Uk, E), label sets L, L̃, and constraint functions
π
(e)
i . For each ui ∈ Ui, we associate a function fui : [q]L → [q], which we assume to be

folded, and which is intended to be a dictator of the label σi(ui) of ui. We add the following
constraints:

• For each ui ∈ Ui, i = 1, 2, . . . , k, the dictatorship gadget from Section 4.3 on fui .

• For each hyperedge e = (u1, u2, . . . , uk) ∈ E add the constraint

Q(fu1(x1), fu2(x2), . . . , fuk(xk)) = 1 , (4)

for every choice of x1, x2, . . . , xk which satisfy

P(x1,l1 , x2,l2 , . . . , xk,lk) = 1

for all tuples (l1, l2, . . . , lk) ∈ Lk with π
(e)
1 (l1) = π

(e)
2 (l2) = · · ·π(e)

k (lk).

The completeness of the reduction follows immediately from the construction, by taking
fui to be the dictatorship functions corresponding to the label of ui.

Lemma 4.12. If there is a labeling to the k-partite Label Cover instance which strongly satisfies ev-
ery hyperedge, then the above instance is satisfiable even as a CSP(P) instance (i.e., when replacing
predicate Q with P in all the constraints).

It remains to analyze the soundness of the reduction. This is established in Lemma 4.13
below. Note that by picking the soundness ε of the Label Cover instance to be � 1/B2,
Theorem 4.7 would follow from Theorem 4.11, and Lemmas 4.12 and 4.13.

16

Lemma 4.13. Suppose every folded (P, Q)-weak polymorphism has arity at most B, and P is full-
domain-using. Then, if the CSP(Q) instance produced by the above reduction is satisfiable, there
is a labeling to the original k-partite Label Cover instance that weakly satisfies at least 1/B2 of the
hyperedges.

Proof. Suppose we have folded tables fui : [q]L → [q] for ui ∈ Ui, 1 6 i 6 k, that satisfy all the
constraints. Then by the soundness of the dictatorship tests, there must be subsets Sui ⊂ L for
each vertex ui with |Sui | 6 B such that fui only depends on variables in Sui .

Fix an hyperedge e = (u1, u2, . . . , uk) ∈ E. For notational simplicity, denote Sui by Si. We
now prove that in order to satisfy all the constraints (4), we must have

π
(e)
i (Si) ∩ π

(e)
j (Sj) 6= ∅ for some i 6= j . (5)

Once we prove this, the labeling strategy of assigning to each ui a random label from Sui

will weakly satisfy at least 1/B2 of the hyperedges in expectation, implying the existence of
a labeling that weakly satisfies at least 1/B2 of the hyperedges of the k-partite Label Cover
instance.

Suppose for contradiction that (5) is not the case and we have

∀ i, j; 1 6 i < j 6 k; π
(e)
i (Si) ∩ π

(e)
j (Sj) = ∅ . (6)

Pick an assignment β = (β1, β2, . . . , βk) ∈ Q−1(0). (The absence of (P, Q)-weak polymor-
phisms of arbitrary arity implies that Q cannot be the trivial predicate always outputting 1.)
For i = 1, 2, . . . , k, pick xi ∈ [q]L such that

1. xi is constant on Si, say xi,l = bi for all l ∈ Si, and

2. fui(xi) = βi

Such a choice is possible as the fui are folded. Note that by choice

Q(fu1(x1), fu2(x2), . . . , fuk(xk)) = 0 . (7)

Therefore, to get a contradiction we need to ensure that xi’s can be completed in other coor-
dinates in a manner so that the test (4) is made with this choice of xi’s.

Define Ti = (π
(e)
i)−1(π

(e)
i (Si)), i.e., the labels l′ that collide with some l ∈ Si under π

(e)
i .

Since fui(x) only depends on x|Si
, we can further assume that the chosen xi takes the constant

value bi for every coordinate in Ti. By (6), we have

π
(e)
i (Ti) ∩ π

(e)
j (Tj) = ∅ for all 1 6 i < j 6 k . (8)

By the full-domain-using property of P, for 1 6 i 6 k, we can find assignments θ(i) ∈ P−1(1)
such that θ(i) takes value bi in the i’th coordinate. We can now fill in the coordinates outside
Ti in xi, for each i = 1, 2, . . . , k, as follows.

• For coordinates l of xi such that π
(e)
i (l) /∈ ⋃

j π
(e)
j (Tj), we set xi,l = ai where (a1, a1, . . . , ak)

is some fixed satisfying assignment of P.

17

• For the coordinates l of xi such that π
(e)
i (l) ∈ π

(e)
j (Tj) for some j 6= i (note that such a j,

if it exists, is unique by (8)), we set xi,l to be the i’th coordinate of θ(j).

One can check by a quick inspection that this construction creates a tuple (x1, x2, . . . , xk) obey-
ing the conditions under which the constraint (4) is added, which is in contradiction with
(7).

5 Hardness for Discrepancy Problems

The main result of this section is the following theorem, which is of course just an alternate
statement of Theorem 1.2.

Theorem 5.1. g-DISCREPANCY is NP-hard for every constant g > 1.

The reduction and proof follows along the same lines as the hardness proof for (1, g, 2g +
1)-SAT in Section 3, though some minor modifications in the constructions are needed since
“true” and “false” are now treated symmetrically.

There are two differences between (1, g, 2g + 1)-SAT and g-DISCREPANCY. The first one is
that we no longer have the concept of negated literals and so we can no longer assume that
our long codes are folded. Using repeated elements in our sets, this problem can be solved
very simply by adding a constraint with g copies of f (x) and g + 1 copies of f (¬x) for all x.
Using the generic method to eliminate repeated literals presented in [BG16b], we can convert
this to a collection of (2g + 1)-sized sets with no repetitions.

The second difference is that in the YES case in g-discrepancy, we want every (2g +
1)-bit string to have weight either g or g + 1, whereas in (1, g, 2g + 1)-SAT the inputs just
have weight at least g. Thus we adjust the dictatorship from Section 3.1 as follows. Recall
that previously we would add a clause of the form (f (x1) ∨ f (x2) ∨ . . . ∨ f (xw)) whenever
x1, . . . , xw are such that for each j ∈ [n], ∑w

i=1 xi,j > g. Now we instead add a (multi)set
{ f (x1), . . . , f (xw)} to our set family whenever x1, . . . , xw are such that for each j ∈ [n], ∑w

i=1 xi,j ∈
{g, g + 1}.

Note that in the new dictatorship gadget, multisets with g copies of f (x) and g + 1 copies
of f (¬x) are included. This implies that any function f which does not leave any of the sets in
the gadget monochromatic must be odd. The analysis of the dictatorship gadget now follows
very closely along the lines of the previous analysis in Section 3.1. In particular we have the
following analogue of Claim 3.3.

Claim 5.2. Suppose f depends on g different variables i1, . . . , ig and does not leave any set of the
discrepancy dictatorship gadget monochromatic. Then there are constants c1, . . . , cg ∈ {0, 1} such
that f (z) = 1 for all inputs z such that (zi1 , . . . , zig) = (c1, . . . , cg).

Proof. Since f depends on the g variables i1 to ig, there are inputs x1, . . . , xg such that for each
1 6 j 6 g

f (xj) = 1 f (xj ⊕ eij) = 0

Now define cj = xj,ij , the ij’th bit of xj. We claim that these values satisfy the desired
property. To see this, suppose for contradiction that there is a z such that (zi1 , . . . , zig) =
(c1, . . . , cg) but f (z) = 0.

18

Consider the multiset

{ f (z), f (¬x1), f (x1 ⊕ ei1), . . . , f (¬xg), f (xg ⊕ eig)}

Clearly, this multiset is left monochromatic by f . However, it is also included in the dicta-
torship gadget: for any coordinate not among i1, . . . , ig each pair (¬xj, xj ⊕ eij) contributes 1
zero, and 1 one, for a total of at least g of each. For coordinate ij for some 1 6 j 6 g, the
pairs (¬xj′ , xj′ ⊕ eij′

) for j′ 6= j contribute g− 1 zeros and g− 1 ones, and then the pair (z,¬xj)

contribute 1 zero and 1 one.

Using this claim we immediately obtain a direct analogue of Lemma 3.2

Lemma 5.3. Any assignment f which does not leave any set in the dictatorship gadget monochromatic
depends on at most 2g− 1 variables.

Using this gadget, we can now obtain a NP-hardness reduction from Label Cover. Since
the proof is identical to the proof in Section 3.2, we leave the details to the reader.

5.1 Application to hereditary discrepancy

Given a family of sets F = {S1, . . . , Sm} over some universe U, and a subuniverse U′ ⊆ U,
let F|U′ = {S ∩U′ | S ∈ F} denote the set family where each set in F is restricted to U′. For
each U′ ⊆ U, let disc(F|U′) denote the discrepancy of the restricted set family. The hereditary
discrepancy of F is defined as maxU′⊆U disc(F|U′), the worst discrepancy of any restriction of
F .

The problem of computing hereditary discrepancy was considered in [NTZ13] where it
was proved to be hard to approximate within a factor 3

2 . It follows more or less immediately
from Theorem 5.1 that we can improve this inapproximability factor to 2g+1

g+1 for any integer g
and thus arbitrarily close to 2. Both the reduction of [NTZ13] and here actually gives a family
such that either the discrepancy ofF is large (in our case 2g+ 1) or the hereditary discrepancy
is small (in our case g + 1).

To see this let F be set system constructed to prove Theorem 5.1. In the yes case F has a
near-balanced 2-coloring, and since each set in F has size 2g + 1, this 2-coloring shows that
any restriction of F has discrepancy at most g + 1 and hence this is an upper bound on the
hereditary discrepancy. In the no case F itself has discrepancy 2g + 1 and thus also this large
hereditary discrepancy.

6 Algorithms for (1, g, 2g)-SAT

We now present efficient algorithms to find a satisfying assignment when at least half the
literals in each clause are promised to be true under some assignment.

6.1 A randomized algorithm

Let us first describe a simple randomized algorithm closely following Papadimitriou’s algo-
rithm [Pap91] for 2-Sat.

19

Algorithm 1: Randomized algorithm for (1, g, w)-SAT.
(1) x ← arbitrary assignment
(2) while x is not satisfying
(3) Pick (arbitrarily) a falsified clause φ
(4) Flip the value of a randomly chosen literal of φ
(5) return x

The analysis of this algorithm is essentially equivalent with that of Papadimitriou.

Proposition 6.1. If Φ is a strongly g-satisfiable width-w CNF formula and w 6 2g, then Algorithm 1
finds a satisfying assignment in O(tn2) steps with probability at least 1− 2−t.

Proof. Let x∗ be any g-satisfying assignment, and let xi be the value of x in the i’th iteration
of Algorithm 1 and φi be the clause chosen. Define the random variable Di = d(xi, x∗) where
d(x, y) is the Hamming distance between x and y. Clearly, Di+1 − Di = ±1. Furthermore,
since x∗ satisfies g literals of φi and it contains at most 2g literals we have

Pr[Di+1 = Di − 1] > 1/2

so that E[Di+1 − Di|Di] 6 0. In other words D1, D2, . . . describes a random walk starting
at some point between 0 and n where each step is unbiased or biased towards 0. This is a
“gambler’s ruin” chain with reflecting barrier (because the distance cannot increase beyond
n). In such a walk, the gambler is broke (i.e., the distance hits 0) in n2 steps with constant
probability. The probability that it fails to hit 0 with ctn2 steps is thus at most 2−t for a suitable
chosen constant c.

Note that this algorithm is not affected by the presence of multiple copies of the same
literal within a clause. Also note that if w < 2g the walk is in fact biased towards 0 and a
satisfying assignment is, with high probability, found in O(n) steps.

We next present a deterministic algorithm that is based on linear programming.

6.2 A deterministic algorithm

There is a very natural linear program connected to a w-Sat formula. Namely, relax each
Boolean variable xi to a real-valued variable yi which takes values in [0, 1]. In the formula
replace xi by yi and ¬xi by 1− yi and require that the sum over each clause is at least g. As an
example in (1, 2, 4)-SAT we replace the clause (x1 ∨ x2 ∨ ¬x3 ∨ ¬x4) by the linear inequality

y1 + y2 + (1− y3) + (1− y4) > 2

This might not seem like a very useful linear program as yi = 1/2 for all i satisfy all the
inequalities when w = 2g, but forcing a single variable to take the value 0 or 1 does give useful
information. Consider the procedure described in Algorithm 2 where we let bye denote the
integer closest to y (we only apply this operation to numbers whose fractional part is not 1/2
and hence this number is unique). We establish in the below proposition that the algorithm is
indeed correct.

20

Algorithm 2: Deterministic algorithm for (1, g, w)-SAT.
(1) repeat
(2) Let xi be some unassigned variable
(3) Choose b ∈ {0, 1} such that the basic LP with yi forced to b is feasible

(4) if the LP is infeasible for both choices of b
(5) return “Not strongly g-satisfiable”
(6) Let y1, . . . , yn be the LP solution when yi is forced to b
(7) foreach i such that yi 6= 1

2
(8) Assign xi ← byie
(9) Remove all satisfied clauses from the formula
(10) until all variables are assigned
(11) return x

Proposition 6.2. Given a strongly g-satisfiable w-SAT instance, where w 6 2g, Algorithm 2 finds a
satisfying assignment.

Proof. Note first that if w < 2g then in the LP solution any clause must contain a literal whose
value is greater than 1/2 and thus in fact the tentative assignment to xi in line 3 is not needed.

When w = 2g each clause that contains a literal that is not exactly 1/2 must, in each
feasible solution, contain a literal that is of value strictly greater than 1/2. This implies that
if we assign the value of some variable in a clause then in the same round we set one of
its literals to true and satisfy the clause. Thus there is no risk of falsifying a clause during
this process. In addition, the clauses that remain after each round consist only of unassigned
variables and thus the remaining set of clauses still forms a strongly g-satisfiable instance.

7 Conclusions

We have given a sharp classification for a natural promise version of CNF-Sat. As CNF-Sat
is a favorite starting point for many reductions we hope that this can give quantitatively
improved results in many situations. We gave a rather modest example in Section 5.1 but one
might hope that there are many other possibilities.

As general framework from Section 4 showed, the non-existence of weak polymorphisms
whose outputs satisfy a weaker predicate Q than the predicate P obeyed by its inputs implies
the hardness of finding a Q-satisfying assignment to a P-satisfiable CSP instance. Can one
establish results in the converse direction, obtaining algorithms based on the existence of non-
trivial weak polymorphisms, at least for the case of Boolean predicates P, Q? (We recall that
when P = Q, we have Schaefer’s dichotomy theorem in the Boolean case [Sch78], and the
existence of non-trivial polymorphisms precisely governs the tractability of the associated
CSP.) In a follow-up work, a dichotomy theorem for promise Boolean CSPs was established
in the special case when the predicates involved are symmetric [BG16b], and the tractable cases
are governed by essentially three different classes of non-trivial weak polymorphisms.

One may also consider an approximate version of (a, g, w)-SAT where we are guaran-
teed that there is an assignment that strongly g-satisfies a fraction c of clauses and the goal

21

is to find an assignment that strongly a-satisfies a fraction s of clauses. As mentioned in Sec-
tion 3.3, we have a strong hardness result under the Unique Games Conjecture, wherein given
a (2g + 1)-SAT instance admitting an assignment that strongly g-satisfies a fraction 1− ε of
the constraints, it is hard to find an assignment that satisfies a fraction 1− 2−(2g+1) + ε of the
constraints (which is what a random assignment would achieve). Obtaining such a result
without relying on the Unique Games Conjecture seems out of reach with current techniques.
It is also an interesting goal to obtain a strong inapproximability result for this problem with
perfect completeness, i.e., when the instance admits a strongly g-satisfying assignment.

Acknowledgments

We are indebted to Dominik Scheder for the claim about the non-existence of gadget reduc-
tions described in Section 4.1 and to John Wright for pointing out that the argument can be
made very simple if we have no repeated literals. We thank the anonymous reviewers and
the handling editor for their careful reading of the paper and several useful comments on the
presentation.

References

[AGH14] Per Austrin, Venkatesan Guruswami, and Johan Håstad. (2 + ε)-Sat is NP-hard.
In Proceedings of 55th Annual IEEE Symposium of Foundations of Computer Science,
pages 1–10, 2014. 1

[AH13] Per Austrin and Johan Håstad. On the usefulness of predicates. ACM Transactions
on Computation Theory, 5:1–24, 2013. 3, 11

[AKKK01] Dimitris Achlioptas, Lefteris M. Kirousis, Evangelos Kranakis, and Danny
Krizanc. Rigorous results for random (2+p)-sat. Theor. Comput. Sci., 265(1-2):109–
129, 2001. 2

[ALM+98] Sanjeev Arora, Carsten Lund, Rajeev Motwani, Madhu Sudan, and Mario
Szegedy. Proof verification and intractability of approximation problems. Jour-
nal of the ACM, 45:501–555, 1998. 8

[AM09] Per Austrin and Elchanan Mossel. Approximation resistant predicates from pair-
wise independence. Computational Complexity, 18:249–271, 2009. 11

[BG16a] Joshua Brakensiek and Venkatesan Guruswami. New hardness results for graph
and hypergraph colorings. In Proceedings of the 31st Conference on Computational
Complexity (CCC), pages 14:1–14:27, 2016. 6

[BG16b] Joshua Brakensiek and Venkatesan Guruswami. Promise constraint satisfaction:
Algebraic structure and a symmetric Boolean dichotomy. Electronic Colloquium on
Computational Complexity (ECCC), 23:183, 2016. 6, 7, 9, 18, 21

[BJK05] Andrei A. Bulatov, Peter Jeavons, and Andrei A. Krokhin. Classifying the com-
plexity of constraints using finite algebras. SIAM J. Comput., 34(3):720–742, 2005.
14

22

[Che09] Hubie Chen. A rendezvous of logic, complexity, and algebra. ACM Comput. Surv.,
42(1), 2009. 6, 14

[CHIS12] Mahdi Cheraghchi, Johan Håstad, Marcus Isaksson, and Ola Svensson. Approxi-
mating linear threshold predicates. TOCT, 4(1):2, 2012. 11

[CNN11] Moses Charikar, Alantha Newman, and Aleksandar Nikolov. Tight hardness re-
sults for minimizing discrepancy. In Proceedings of the 22nd Annual ACM-SIAM
Symposium on Discrete Algorithms, pages 1607–1614, 2011. 4

[Fei98] Uri Feige. A threshold of ln n for approximating set cover. Journal of the ACM,
45:634–652, 1998. 15, 16

[FMS+14] Esteban Feuerstein, Alberto Marchetti-Spaccamela, Frans Schalekamp, René Sit-
ters, Suzanne van der Ster, Leen Stougie, and Anke van Zuylen. Scheduling over
scenarios on two machines. In Proceedings of the 20th International Conference on
Computing and Combinatorics, COCOON ’14, pages 559–571, 2014. 4

[GL15] Venkatesan Guruswami and Euiwoong Lee. Strong inapproximability results on
balanced rainbow-colorable hypergraphs. In Proceedings of the Twenty-Sixth An-
nual ACM-SIAM Symposium on Discrete Algorithms, pages 822–836, 2015. Full ver-
sion to appear in Combinatorica. 6

[Hås01] Johan Håstad. Some optimal inapproximability results. Journal of the ACM, 48:798–
859, 2001. 4

[Kho02] Subhash Khot. On the power of unique 2-prover 1-round games. In Proceedings of
34th ACM Symposium on Theory of Computing, pages 767–775, 2002. 11

[Mos10] Elchanan Mossel. Gaussian bounds for noise correlation of functions. Geometric
and Functional Analysis, 19(6):1713–1756, 2010. 6

[NTZ13] Aleksandar Nikolov, Kunal Talwar, and Li Zhang. The geometry of differential
privacy: the sparse and approximate cases. In Proceedings of the 45th annual ACM
Symposium on Theory of Computing, STOC ’13, pages 351–360, New York, NY, USA,
2013. ACM. 19

[Pap91] Christos H. Papadimitriou. On selecting a satisfying truth assignment. In Pro-
ceedings of the 32nd annual symposium on Foundations of computer science, FOCS ’91,
pages 163–169, 1991. 2, 19

[Raz98] Ran Raz. A parallel repetition theorem. SIAM J. on Computing, 27:763–803, 1998. 8

[Sch78] Thomas J. Schaefer. The complexity of satisfiability problems. In Proceedings of the
Tenth annual ACM Symposium on Theory of Computing, pages 216–226, 1978. 14, 21

[Wen13] Cenny Wenner. Circumventing d-to-1 for approximation resistance of satisfiable
predicates strictly containing parity of width at least four. Theory of Computing,
9(23):703–757, 2013. 6

23 ECCC ISSN 1433-8092

https://eccc.weizmann.ac.il

