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Abstract

We give the first super-polynomial separation in the power of bounded-depth boolean for-
mulas vs. circuits. Specifically, we consider the problem Distance k(n) Connectivity, which
asks whether two specified nodes in a graph of size n are connected by a path of length at
most k(n). This problem is solvable (by the recursive doubling technique) on circuits of depth
O(log k) and size O(kn3). In contrast, we show that solving this problem on formulas of depth
log n/(log log n)O(1) requires size nΩ(log k) for all k(n) ≤ log log n. As corollaries:

(i) It follows that polynomial-size circuits for Distance k(n) Connectivity require depth
Ω(log k) for all k(n) ≤ log log n. This matches the upper bound from recursive doubling and
improves a previous Ω(log log k) lower bound of Beame, Pitassi and Impagliazzo [BIP98].

(ii) We get a tight lower bound of sΩ(d) on the size required to simulate size-s depth-d circuits
by depth-d formulas for all s(n) = nO(1) and d(n) ≤ log log log n. No lower bound better
than sΩ(1) was previously known for any d(n) � O(1).

Our proof technique is centered on a new notion of pathset complexity, which roughly speaking
measures the minimum cost of constructing a set of (partial) paths in a universe of size n via the
operations of union and relational join, subject to certain density constraints. Half of our proof
shows that bounded-depth formulas solving Distance k(n) Connectivity imply upper bounds
on pathset complexity. The other half is a combinatorial lower bound on pathset complexity.
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1 Introduction

Understanding the relative power of formulas vs. circuits is a central challenge in complexity the-
ory, especially in the important boolean setting. Whereas boolean circuits are the most general
non-uniform model of computation (in particular, boolean circuits can efficiently simulate Turing
machines), there is a strong intuition that boolean formulas (= tree-like circuits with fan-out 1)
are a very weak model of computation. Many natural problems solvable by small circuits, such as
st-connectivity, are believed to require large formulas. However, no super-polynomial gap between
the formula complexity and circuit complexity of any problem has ever been established. The
existence of such a gap is a major open question.

Question 1.1. Are polynomial-size boolean circuits strictly more powerful than polynomial-size
boolean formulas?

There are two versions of Question 1.1 for the uniform and non-uniform settings.1 In terms
of complexity classes, this is equivalent to asking whether uniform-NC1 (resp. NC1) is a proper
subclass of P (resp. P/poly).2 Both the uniform and non-uniform versions of this question are wide
open:

• An obvious prerequisite of the separation of uniform-NC1 from P is a super-polynomial lower
bound on the formula complexity of any explicit boolean function. However, despite the fact
that almost all boolean functions have formula complexity Ω(2n/ log n) by a classic theorem
of Riordan and Shannon [RS42], the best lower bound for any explicit function, due to H̊astad
[H̊as98], is only Ω(n3−o(1)). Unfortunately, n3 is known to be the limit of existing techniques,
and it appears that any improvement will require a major breakthrough.

• The situation is no better in the non-uniform setting. By a striking theorem of Savický
and Woods [SW98], for every constant k > 1, almost all boolean functions with formula
complexity ≤ nk have circuit complexity ≥ nk/k. This shows that NC1 cannot be separated
from P/poly by a straightforward counting argument (in contrast with results like the Circuit
Size Hierarchy Theorem, see [Juk12]). Other than by counting arguments, it is not clear how
to take advantage of non-uniformity.

In short, it appears that we are a long way from answering Question 1.1. In the meantime, we
can hope to gain insight by studying the question of formulas vs. circuits in restricted settings where
strong lower bounds are available. In particular, Question 1.1 has natural analogues in both the
monotone setting and the bounded-depth (boolean) setting, where exponential lower bounds
have been around for decades. However, as we will explain, while question of monotone formulas
vs. circuits has been settled for 25 years, essentially nothing was known in bounded-depth setting
prior to the results of this paper.

1Whenever we speak of a circuit (or formula), this is understood to mean a sequence (Cn)∞n=1 of circuits, one
for each input size n. In the uniform setting, there is an underlying algorithm which, given 1n as input, outputs a
description of the circuit Cn. In the non-uniform setting, Cn are arbitrary. All bounds mentioned in this paper may
be interpreted in the stronger sense: uniform upper bounds and non-uniform lower bounds.

2By Spira’s Theorem [Spi71], NC1 is equivalent to the class of languages recognized by polynomial-size boolean
formulas (of unbounded depth).
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Monotone Formulas vs. Circuits: The separation of monotone formulas from monotone circuits
was shown by Karchmer and Wigderson [KW90] via a lower bound for directed st-connectivity
(STCONN).

Theorem 1.2. Monotone formulas solving STCONN require size nΩ(logn).

As it was already known that STCONN has polynomial-size monotone circuits, Theorem 1.2
implies the separation of monotone classes mNC1 and mP (in fact, it shows mNC1 6= mAC1).
(In a notable recent development, Potechin [Pot10] showed that monotone switching networks
for STCONN require size nΩ(logn). This result strengthens Theorem 1.2 and implies the sharper
separation mL 6= mNL.)

Bounded-Depth Formulas vs. Circuits: The bounded-depth setting refers to the class of un-
bounded fan-in boolean circuits and formulas of depth ≤ d(n) for some (not necessarily constant)
function d : N→ N. Unlike the monotone setting, the question of bounded-depth formulas vs. ques-
tions gives a natural approach to Question 1.1: by comparing the power of depth-d formulas vs.
depth-d circuits, we can hope to get a separation for as large a depth d(n) as possible, noting that
a super-polynomial separation for any d(n) = logn would imply NC1 6= AC1 (answering Question
1.1).

We write Circuit(s, d) (resp. Formula(s, d)) for the class of languages computable by unbounded
fan-in boolean circuits (resp. formulas) of size ≤ s(n) and depth ≤ d(n). Consider the elementary
fact that Circuit(s, d) ⊆ Formula(sd, d), that is, every depth-d circuit of size s is equivalent to a
depth-d formula of size ≤ sd. In the naive simulation of circuits by formulas, we simply replace
overlapping sub-circuits with non-overlapping copies until the circuit becomes a tree. Note that this
give a slightly better upper bound of fan-ind. It is natural to ask: is this naive simulation of depth-d
circuits by depth-d formulas asymptotically optimal? To make this question meaningful, we focus
on the case where s(n) is any nO(1) and d(n) ≤ log n. Thus, Circuit(nO(1), d) ⊆ Formula(nO(d), d)
and we can ask whether nO(d) can be improved to no(d).

Question 1.3. For which functions d(n) ≤ log n do we have

(∗) Circuit(nO(1), d) * Formula(no(d), d)?

On the basis of problems like STCONN, we conjecture that (∗) holds for all d(n) ≤ log n.
Of course, since this (more than) implies NC1 6= AC1, we should not expect to prove (∗) all the
way to depth log n anytime soon. On the other hand, more modest depths like O(log log n) are
well within the range of techniques like switching lemmas (after all, the super-polynomial lower
bounds for parity extend to depth o(log n/ log log n) [H̊as87]). For this reason, it might seem that
(∗) is the kind of statement that ought to be known (or follow from known results) for modest but
super-constant d(n). (Note that (∗) is trivial for constant d(n) ≤ O(1).) However, it turns out that
the status of (∗) was entirely unknown for all d(n) � O(1). Even the weakest possible separation
Circuit(nO(1), d) * Formula(nO(1), d) (i.e. Formula(nO(1), d) $ Circuit(nO(1), d)) was not known to
hold for any d(n) � O(1). In this paper, we improve this state of affairs by showing that (∗) holds
for all d(n) ≤ log log log n (Corollary 2.3).

At this point, we should ask: why do the previous techniques (in particular, switching lemmas
[H̊as87] and approximation by low-degree polynomials [Raz87, Smo87]) fail to distinguish formulas
from circuits? In other words, why don’t these techniques imply stronger lower bounds for depth-d
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formula complexity vis-à-vis depth-d circuit complexity of a given boolean function? We suggest
that this is the consequence of a certain kind of bottom-up depth-reduction argument.3 At the
same time, top-down lower bound techniques (in particular, Karchmer-Wigderson games [KW90])
have never been successful used in the boolean setting, in contrast to the monotone setting.4 Our
lower bound technique gets around the limitations of previous techniques by a novel combination
of bottom-up and top-down arguments. In particular, the part of our proof which distinguishes
formulas from circuits is a new top-down argument (Lemma 6.7).

Distance k(n) Connectivity: As with the separation of monotone formulas vs. circuits in
[KW90], our separation of bounded-depth formulas vs. circuits comes by way of a lower bound
for (a parameterized version of) st-connectivity. As Wigderson wrote in his excellent survey on
graph connectivity [Wig92], “Of all computational problems, graph connectivity is the one that has
been studied on the largest variety of computational models, such as Turing machines, PRAMs,
Boolean circuits, decision trees and communication complexity. It has proven a fertile test case for
comparing basic resources such as time vs. space, nondeterminism vs. randomness vs. determin-
ism, and sequential vs. parallel computation.” There has been some significant progress in the 20
years since [Wig92]. One notable result is Reingold’s theorem [Rei08] that USTCONN (undirected
st-connectivity) ∈ DSPACE(log n). However, many questions remain open. Chief among these is
the space complexity of STCONN. Savitch’s theorem [Sav70] that STCONN ∈ DSPACE(log2 n) is
still the best known upper bound.

As for lower bounds for STCONN, in addition to various results in monotone models of compu-
tation [KW90, Pot10, RW89, SS79, TT94], there are results on structured models of computations
whose basic operations manipulate pebblings on graphs. One result of this type, due to Edmonds,
Poon and Achlioptas [EPA99], gives a tight space lower bound of Ω(log2 n) on the NNJAG model.
Another interesting result, in the unusual restricted model of arithmetic circuits with × gates of
odd fan-in, is a tight lower bound of nΩ(logn) for STCONN (or more accurately its algebraic cousin,
iterated matrix multiplication) was shown by Nisan and Wigderson [NW96] using the method of
partial derivatives.

In this paper, we consider a version of STCONN parameterized by distance. For a function
k : N → N with k(n) ≤ n, distance k(n) connectivity, denoted STCONN(k(n)), is the following
problem: given a directed graph with n vertices and specified vertices s and t, determine whether
or not there is a path of length at most k(n) from s to t. Unlike STCONN and USTCONN, the

3 This style of lower bound has the following elements:

• For some notion of “simple” functions and some notion of “approximation”, there is a lemma of the form: if g is
the AND or OR of simple functions f1, . . . , fpoly(n), then g is approximated by a (slightly less) simple function.
(For example: if fi are small decision trees, then after a random restriction, g simplifies to a small decision tree
with high probability; if fi are low-degree polynomials, then g agrees with a low-degree polynomial up to small
error.)

• Given a polynomial-size depth-d circuit C sitting on top of a layer of input variables (themselves simple functions),
the approximation lemma is applied independently to all gates at the bottom level (directly above the inputs).
C is thus transformed into a circuit C′ of depth d− 1 sitting on top of a layer of simple functions. This depth-
reduction step is repeated d times. Finally, we have a function which is sufficiently simple to imply a lower
bound for whatever (non-simple) function one has in mind.

It is precisely because the approximation lemma is applied independently to all bottom-level gates that the distinct
between circuits and formulas is lost.

4One exception is a top-down lower bound for depth-3 circuits due to Jukna, Pudlák and H̊astad [HJP95], who
pose the problem of proving any super-polynomial lower bound at depth 4 by a purely top-down argument.
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directed and undirected versions of distance k(n) connectivity are essentially equivalent.5 It is easy
to show that STCONN(k(n)) has circuits (moreover, semi-unbounded monotone circuits) of size
O(kn3) and depth 2 log k using the recursive doubling (a.k.a. repeated squared) method of Savitch
[Sav70]. (At the expense of larger depth, one can get smaller circuits of size O(kn2.38) using fast
matrix multiplication.)

An important relationship between STCONN and its parameterized version STCONN(k(n))
is the fact every algorithm for STCONN(k(n)) “scales up” to an algorithm for STCONN by re-
cursive kth powering. (Conversely, every lower bound for STCONN “scales down” to a lower
bound for STCONN(k(n)). In particular, Theorem 1.2 implies that monotone formulas solving
STCONN(k(n)) require size nΩ(log k).) For circuits, we have the implication:

STCONN(k(n)) ∈ Circuit(s, d) =⇒ STCONN ∈ Circuit(nO(1) · s, log n
log k

· d).

As noted in [Wig92], if STCONN(k(n)) has polynomial-size circuits of depth o(log k), then STCONN
has polynomial-size circuits of depth o(log n) and hence STCONN ∈ DSPACE(o(log2 n)). This ob-
servation strongly motivates the following:

Question 1.4. What is the minimum depth of polynomial-size circuits solving STCONN(k(n))?

Furst, Saxe and Sipser [FSS84] showed that STCONN /∈ AC0 via the reduction from parity to
STCONN. Via the same reduction, it follows from the parity lower bound of H̊astad [H̊as87] that
STCONN(k(n)) /∈ AC0 for all k(n) � logO(1) n. However, this says nothing when k(n) ≤ logO(1) n.

Ajtai [Ajt89] proved the first lower bound for small distances k(n), showing that STCONN(k(n))
/∈ AC0 for all k(n) � O(1). Via an explicit vetsion of Ajtai’s originally non-constructive proof,
Bellantoni, Pitassi and Urquhart [BPU92] proved a lower bound of Ω(log∗ k) on the depth of
polynomial-size circuits solving STCONN(k(n)). This was subsequently improved to Ω(log log k)
for all k(n) ≤ logO(1) n by Beame, Impagliazzo and Pitassi [BIP98], using a special-purpose “con-
nectivity switching lemma” tailored to STCONN(k(n)). It was left as an open problem to further
narrow the gap between the O(log k) and Ω(log log k) upper and lower bounds. In this paper, we
completely close this gap by proving a lower bound of Ω(log k) for all k(n) ≤ log log n (Corollary
2.2). (While our current proof is restricted to k(n) ≤ log log n, we believe this can be extended
k(n) ≤ logO(1) log n as in [BIP98].) The significance of this result is that, for small but super-
constant k(n), we rule out the possibility of showing that STCONN ∈ DSPACE(o(log2 n)) by
constructing polynomial-size circuits for STCONN(k(n)) of depth o(log k).

2 Our Results

Our main theorem is a tight lower bound on the size of bounded-depth formulas solving distance
k(n) connectivity.

Theorem 2.1 (Main Result). Formulas of depth log n/(log log n)O(1) solving STCONN(k(n)) have
size nΩ(log k) for all k(n) ≤ log logn.

5The reduction from STCONN(k(n)) to USTCONN(k′(n′)) converts a directed graph on n vertices into a layered
undirected graph on n′ = (k + 1)n vertices where k′(n′) = k(n).
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To be precise, we get a lower bound of n(1/6) log k−O(1) for formulas of depth c log n/max{k3log2k,
k log k log log n} where c > 0 is an absolute constant. Moreover, this lower bound is not only worst-
case: it applies to formulas solving STCONN(k(n)) in the natural average-case sense (see §12).

The following two corollaries of Theorem 2.1 were already mentioned in the introduction. As
discussed, these corollaries answer Questions 1.3 and 1.4 for a limited range of d(n) and k(n).

Corollary 2.2. Polynomial-size circuits solving STCONN(k(n)) require depth Ω(log k) for all
k(n) ≤ log logn.

Proof. For contradiction, assume C is a circuit of size s(n) = nO(1) and depth d(n) = o(log k) solving
STCONN(k(n)) for some k(n) ≤ log log n. By the naive simulation of circuits by formulas, C is
equivalent to a depth-d formula of size at most sd = no(log k). But since d(n) = o(log log log n) �
log n/(log log n)O(1), we get contradiction with Theorem 2.1.

Corollary 2.3. It is impossible to simulate polynomial-size depth-dcircuits by depth-d formulas
of size no(d) (that is, we get the optimal separation Circuit(nO(1), d) * Formula(no(d), d)) for all
s(n) = nO(1) and d(n) ≤ log log log n.

Proof. The separating language is STCONN(k(n)) where k(n) = 2d(n)/2 (≤ log logn). We have
STCONN(k(n)) ∈ Circuit(nO(1), d) by the circuits (of depth 2 log k = d) which implement recursive
doubling. The lower bound STCONN(k(n)) /∈ Formula(no(d), d) is by Theorem 2.1, noting that
d(n) ≤ log log log n� log n/(log log n)O(1).

3 Proof Overview

Our proof technique is centered on a new notion of pathset complexity. Informally, a pathset is a
subset A ⊆ [n]k+1 whose elements represent potential paths of length k in a graph of size n. The
pathset complexity of A, denoted χ(A), measures of the minimum number of operations required
to construct A via unions (∪) and relational join (./), subject to certain density constraints. (The
formal definition of χ(A), given in §5, is not important for this overview.)

The proof of Theorem 2.1 has two parts. Part 1 shows that every bounded-depth formula F
solving STCONN(k(n)) implies an upper bound on the pathset complexity of a certain (random)
pathset AΓ. Part 2 is a general lower bound on χ(A) for arbitrary pathsets A. Combining these
two parts, we get the desired nΩ(log k) lower bound on the size of F .

Before explaining Parts 1 and 2 in more detail, we state the key property of STCONN(k(n))
which our proof exploits. Instances for STCONN(k(n)) are directed graphs with vertex set [n] and
distinguished vertices s and t (without loss of generality s = 1 and t = 2). An st-path is a sequence
(x0, . . . , xk) ∈ [n]k+1 such that x0 = s and xk = t and xi 6= xj for all i 6= j.

Denote by Γ the random directed graph with edge probability 1/n. (Note that 1/n is below the
threshold for STCONN(k(n)), that is, almost surely Γ contains no st-path of length k.) Define AΓ

as the set of st-paths (x0, . . . , xk) ∈ [n]k+1 such that

• (x0, x1), . . . , (xk−1, xk) are non-edges of Γ,

• Γ ∪ {(x0, x1), . . . , (xk−1, xk)} contains a unique st-path of length k (namely, (x0, . . . , xk)).

Then the (average-case) property of STCONN(k(n)) that our proof exploits is:
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Key Property (§6.3): Almost surely, AΓ contains 99% of st-paths of length k.

We now state Parts 1 and 2 of the proof of Theorem 2.1 in more detail.

Part 1 (§6–7): Suppose F is a formula of depth log n/(log log n)O(1) solving STCONN(k(n)).
Then, almost surely (with respect to Γ),

(1) size(F ) ≥ 2−O(k2) · n−O(1) · χ(AΓ).

Part 2 (§8–11): For all pathsets A ⊆ [n]k+1, writing δ(A) := |A|/nk+1 for the density of A,

(2) χ(A) ≥ 2−O(2k) · nΩ(log k) · δ(A).

Combining (1) and (2) with δ(AΓ) ≥ .99n−2 (by the key property), we get the lower bound
size(F ) ≥ 2−O(2k) · nΩ(log k). Since 2−O(2k) is n−O(1) for k(n) ≤ log logn, Theorem 2.1 is proved.

Part 1 builds on the technique of [Ros08, Ros10]. An essential new ingredient, which distin-
guishes formulas from circuits, is a top-down argument (Lemma 6.7) relating formula size to pathset
complexity.

For Part 2, we develop a combinatorial framework for studying pathset complexity. This involves
analyzing the pattern of joins which predominates the construction of a given pathset A. In §8 we
define an auxiliary notion of pathset complexity with respect to a pattern, denoted χ̄(A). Part 2
then consists of 2a and 2b:

Part 2a (§9): For every pathset A, there exists A′ ⊆ A such that χ(A) ≥ χ̄(A′) and δ(A′) ≥
2−O(2k) · δ(A).

Part 2b (§11): For all pathsets A′, χ̄(A′) ≥ nΩ(log k) · δ(A′).

Part 2a is relatively straightforward. This move from χ to χ̄ is precisely where we lose the factor
of 2O(2k), which is the reason that our main theorem is limited to k(n) ≤ log logn. (If this factor
can be removed, which I believe is possible (with a lot more work) within the current framework,
then Theorem 2.1 and Corollary 2.2 would hold up to k(n) ≤ log1/3 n and Corollary 2.3 would hold
up to d(n) ≤ log logn.)

Part 2b is the true combinatorial lower bound at the heart the paper. The proof involves an
intricate induction on patterns.

Organization of the Paper: Section 4 sets out the basic terminology and notation for the paper.
Section 5 introduces the key notion of pathset complexity. Sections 6–7 contain Part 1 of the proof
of Theorem 2.1. Sections 8–11 contain Part 2 of the proof. We state some conclusions and discuss
future directions in Section 12. Three appendices (Sections A–C) contain supplementary material
including key examples and relatively easier special cases of our main lower bound.
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4 Preliminaries

Let n be an arbitrary positive integer (which we view as growing to infinity). Let [n] := {1, . . . , n}.
We note that, for all purposes in this paper, [n] may be regarded as an arbitrary fixed set of size
n. Let k = k(n) and d = d(n) be arbitrary functions of n. As parameters, k represents distance
and d represents depth. No bound on k or d is assumed throughout the paper; assumptions like
k(n) ≤ log logn are explicitly stated where needed. All constants in asymptotic notation (O(·),
etc.) are universal (with no dependence on n, k, d).

Circuits and Formulas: The circuits and formulas considered in this paper are unbounded fan-
in boolean circuits and formulas with a single output node and NOT gates at the bottom level.
Formally, a circuit is a finite acyclic directed graph with a unique output (node of out-degree 0)
where each input (node of in-degree 0) is labeled by a literal (i.e. Xi or Xi) and each gate (node of
in-degree ≥ 1) is labeled by AND or OR. A formula is a tree-like circuit in which every node other
than the output has out-degree 1. The size of a circuit is the number of gates, while the size of a
formula is the number of leaves. (For a formula F , the circuit-size of F equals the formula-size of
F minus 1.)

Graphs: All graphs in this paper are directed graph G = (VG, EG) where VG is a (possibly empty)
set and EG ⊆ VG × VG. The edge from v to w is written simply as vw to cut down on unnecessary
parentheses.

Two important graphs in this paper are Pk (the directed path of length k) and Pk,n (the
“complete k-layered graph” with k + 1 layers of n vertices and kn2 edges). Formally, let

Pk = (Vk, Ek) where Vk = {v0, . . . , vk} and Ek = {vivi+1 : 0 ≤ i < k}

where v0, . . . , vk are fixed abstract vertices. We will usually omit subscripts writing simply v and
vw for arbitrary elements of Vk and Ek. To define Pk,n, we create (k + 1)n fresh vertices denoted
vi for each v ∈ Vk and i ∈ [n]. Then

Pk,n = (Vk,n, Ek,n) where Vk,n = {vi : v ∈ Vk, i ∈ [n]} and Ek,n = {viwj : vw ∈ Ek, i, j ∈ [n]}.

We refer to subgraphs Γ ⊆ Pk,n with VΓ = Vk,n as k-layered graphs. Throughout the paper,
Γ consistently represents a (random) k-layered graph, while G,H,K are reserved for subgraphs of
Pk. We sometimes view Γ as the input to a circuit or formula; in this case, we identify the set of
layered graphs with {0, 1}N where N is a set of kn2 variables indexed by elements of Ek,n.

Layered Distance k(n) Connectivity: As with previous lower bounds for distance k(n) connec-
tivity [Ajt89, BIP98], we consider a variant of the problem on k-layered graphs. Let s, t denote ver-
tices v1

0, v
1
k respectively. Layered distance k(n) connectivity is the problem of determining whether a

layered graph Γ ∈ {0, 1}N contains a path from s to t. Following [BIP98], we denote this problem by
DISTCONN(k, n). The layered and unlayered versions of distance k(n) connectivity are essentially
equivalent.6 This allows us to restate Theorem 2.1 as a lower bound on DISTCONN(k, n):

6Since k-layered graphs are graphs with (k + 1)n vertices, there is a trivial reduction from DISTCONN(k, n) to
STCONN(k′(n′)) where n′ = (k + 1)n and k′(n′) = k. In the opposite direction, there is a simple reduction from
STCONN(k(n)) to DISTCONN(k, n) which converts graphs to k-layered graphs.
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Theorem 2.1. (restated) Solving DISTCONN(k, n) on formulas of depth logn
k3 log logn

requires size
n(1/6) log k−O(1) for all k(n) ≤ log logn.

This restatement includes explicit expressions n(1/6) log k−O(1) for nΩ(log k) and logn
k3 log logn

for
log n/(log log n)O(1).7

Boolean Functions and Restrictions: Let f : {0, 1}I → {0, 1} be a boolean function where I
is an arbitrary finite set (of “variables”). We say that a variable i ∈ I is live with respect to f if
there exists x ∈ {0, 1}N such that f(x) 6= f(x′) where x′ equals x with its ith coordinate flipped.
Let Live(f) := {i ∈ I : i is live w.r.t. f}.

A restriction on I is any function θ : I → {0, 1, ∗}. We denote by fdθ : {0, 1}θ−1(∗) → {0, 1} the
function (over the “unrestricted” variables i such that θ(i) = ∗) obtained from f by applying the
restriction θ.

Probabilistic Notation: For a finite set I and 0 ≤ p, q ≤ 1, we write:

• x ∈ {0, 1}Ip for the random tuple x ∈ {0, 1}I where P[xi = 1 ] = p independently for all i ∈ I
(in particular, we will consider the random layered graph Γ ∈ {0, 1}N1/n),

• R ⊆p I for the random subset R of I where i ∈ R independently with probability p for all
i ∈ I,

• θ ∈ R(p, q) for the random restriction θ : I → {0, 1, ∗} where P[ θ(i) = ∗ ] = q and P[ θ(i) =
1 ] = (1− q)p for all i ∈ I.

Whenever we say almost surely, this is understood to mean asymptotically almost surely as n→∞
(i.e. with probability that goes to 1 as n→∞).

Tuples and Relations: The following notation pertains to “V -ary” tuples x ∈ [n]V and relations
A ⊆ [n]V where V is an arbitrary finite set.

Definition 4.1 (V -tuples). For x ∈ [n]V and S ⊆ V , we denote by xS ∈ [n]S the restriction of x
to coordinates in S. For x ∈ [n]V and y ∈ [n]W where V ∩W = ∅, let xy ∈ [n]V ∪W denote the
unique z ∈ [n]V ∪W such that zi = xi for all i ∈ V and zj = yj for all j ∈W ; here xy = yx, as there
is no intrinsic linear order on V ∪W . We adopt the convention [n]∅ = {()} where () denotes the
unique ∅-tuple.

Definition 4.2 (Join). For finite sets V and W and A ⊆ [n]V and B ⊆ [n]W , the join of A and B
is the set

A ./ B := {x ∈ [n]V ∪W : xV ∈ A and xW ∈ B}.

The join operation ./ is a hybrid of intersection ∩ and cartesian product ×: if V = W then
A ./ B = A ∩ B, and if V ∩W = ∅ then A ./ B is the product A × B. Note that A ./ ∅ = ∅ and
A ./ {()} = A.

7As mentioned earlier, our proof actually extends to depth O(logn/max{k3log2k, k log k log logn}); in particular,
this is O( logn

k log k log logn
) for very small k(n) ≤ log1/3 logn. We state Theorem 2.1 with depth logn

k3 log logn
for the sake of

simplicity.
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Definition 4.3 (Density, Projection, Restriction). Let A ⊆ [n]V .

(i) The density of A is defined by δ(A) := |A| / n|V |.

(ii) For S ⊆ V , the S-projection and S-projection density of A are defined by

projS(A) := {xS : x ∈ A}, πS(A) := δ(projS(A)).

That is, πS(A) = |projS(A)| / n|S|, as δ here refers to the density of the S-ary relation
projS(A) ⊆ [n]S .

(iii) For S ⊆ V and z ∈ [n]V \S , the S-restriction of A at z and maximum S-restriction density of
A are defined by

A|zS := {y ∈ [n]S : yz ∈ A}, µS(A) := max
z∈[n]V \S

δ(A|zS).

It will be convenient (later on in §10) to extend this notation as follows: for any sets S and S
such that S ∩ S = ∅ and V ⊆ S ∪ S and any z ∈ [n]S , let A|zS be understood as A|z′V ∩S where
z′ = zV ∩S .

We conclude this section with a lemma which gives some basic inequalities relating the densities
of projections, restrictions and joins. In particular, inequality (c), bounding the density of a join,
will play a crucial role later on.

Lemma 4.4. For all A ⊆ [n]V and B ⊆ [n]W and S− ⊆ S ⊆ S+ ⊆ V and T ⊆W ,

(a) µS+(A) ≤ µS(A) ≤ µS(projS+(A)) ≤ πS(A) ≤ πS−(A),

(b) δ(A) ≤ πS(A) · µV \S(A),

(c) δ(A ./ B) ≤ πS(A) · µT\S(projT (B)) · µ(V ∪W )\(S∪T )(A ./ B).

Proof. Inequalities (a) and (b) are obvious once the notation is understood. Inequality (c) is mainly
derived by two applications of inequality (b). We first project A ./ B to S ∪ T :

δ(A ./ B) ≤ πS∪T (A ./ B) · µ(V ∪W )\(S∪T )(A ./ B).

We then project projS∪T (A ./ B) to S:

πS∪T (A ./ B) ≤ πS(A ./ B) · µT\S(projS∪T (A ./ B)).

Finally, we have πS(A ./ B) ≤ πS(A) and µT\S(projS∪T (A ./ B)) ≤ µT\S(projT (A ./ B)) ≤
µT\S(projT (B)). Combined, these inequalities give (c).
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5 Pathset Complexity

In this section, we define the key notion of pathset complexity, state our lower bound for pathset
complexity (Theorem 5.8, to be proved in §8–11), and present a matching upper bound (Proposition
5.11).

Definition 5.1 (Pattern Graph). Recall that Pk = (Vk, Ek) is the directed path of length k where
Vk = {vi : 0 ≤ i ≤ k} and Ek = {vivi+1 : 0 ≤ i < k}. A pattern graph is a subgraph of Pk
with no isolated vertices. That is, G = (VG, EG) is a pattern graph if, and only if, EG ⊆ Ek and
VG =

⋃
vw∈EG{v, w}. We write ℘k for the set of pattern graphs. (We appropriate the power set

notation, since pattern graphs are in 1-1 correspondence with subsets of Ek.)
Note that every pattern graph is a (possibly empty) disjoint union of directed paths of length

≥ 1. We refer to maximal connected subsets of VG simply as components of G. Two important
parameters of pattern graphs are the number of components (= the number of maximal paths)
and the length of the longest path (= the number of edges in the largest component). These are
denoted by

∆G := # of components in G (= |VG| − |EG|),
`G := length of the longest path in G.

Definition 5.2 (Pathset). For a pattern graph G, let PG denote the power set of [n]VG . We refer
to elements of PG as G-pathsets (or just pathsets if G is clear from context).

The intuition for pathsets is as follows. For a pattern graph G, we view each x ∈ [n]VG as
corresponding to a “lifting” of G inside the complete layered graph Pk,n, namely isomorphic copy
of G with vertex set {vi ∈ Vk,n : i = xv} and edge set {viwj ∈ Ek,n : i = xv and j = xw}. In this
view, a pathset A ⊆ [n]VG corresponds to a set of liftings of G. I have chosen to define pathset as
a relation (a subset of [n]VG) rather than a set of liftings (which better matches intuition) in order
to more naturally apply operations like ./ and projS and µS , etc.

Definition 5.3 (G-small).

(i) Let ε := 1/ log k and ñ := n1−ε.

(ii) A pathset A ∈ PG is G-small (we simply say small when G is understood from context) if,
for all 1 ≤ t ≤ ∆G and S ⊆ VG such that S is the union of t components of G, A satisfies the
density constraint

µS(A) ≤ ñ−t, that is,
|{x ∈ A : xVG\S = y}|

n|S|
≤ ñ−t for all y ∈ [n]VG\S .

(iii) The set of G-small pathsets is denoted P small
G .

A few quick remarks:

— As the terminology suggests, G-smallness is a monotone decreasing property (i.e. if A is G-small,
then so is every A′ ⊆ A).
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— G-smallness consists of 2∆G−1 density constraints on A, corresponding to the nonempty unions
of the ∆G components of G. Note that for t = ∆G and S = VG, the constraint µS(A) ≤ ñ−t is
equivalent to δ(A) ≤ ñ−∆G . In the special case that G is connected (i.e. ∆G = 1), A is G-small
⇐⇒ δ(A) ≤ ñ−1.

— The precise value of ε is not important: any ε between 1/k and 1/2 would suit our purposes,
modulo a slight weakening in the parameters of our main theorem.8

Example 5.4. Let G be the pattern graph with components U = {v1, v2, v3} and U ′ = {v5, v6}
(i.e. VG = {v1, v2, v3, v5, v6} and EG = {v1v2, v2v3, v5v6}). A pattern A ∈ PG is G-small if, and
only if,

δ(A) ≤ ñ−2, µU (A) ≤ ñ−1, µU ′(A) ≤ ñ−1.

For example, the pathset A1 := {x : x1 = x5 = 1} is G-small (here x ranges over [n]VG and we
write xi for xvi) since δ(A1) = n−2 < ñ−2 and µU (A1) = µU ′(A1) = n−1 < ñ−1. The pathset
A2 := {x : x1 = x5 and x2 = x6} is G-small as well since δ(A2) = µU (A2) = µU ′(A2) = n−2.
However, pathsets

A3 := {x : x1 = x2 = 1}, A4 := {x : x1 = x5}

are not G-small since µU ′(A3) = 1 > ñ−1 and δ(A4) = n−1 > ñ−2.

The next lemma shows that smallness is preserved under joins. (Note to the reader: Although
it natural to state Lemma 5.5 now, we will not use this lemma until §11.)

Lemma 5.5. If A is a small G-pathset and B is a small H-pathset, then A ./ B is a small
G ∪H-pathset.

Proof. Assume A is a small G-pathset and B is a small H-pathset. To show that A ./ B is a small
G ∪ H-pathset, consider any 1 ≤ t ≤ ∆G∪H and S ⊆ VG ∪ VH such that S contains t distinct
components U1, . . . , Ut of G ∪H. We must show that µS(A ./ B) ≤ ñ−t.

Without loss of generality, assume U1, . . . , Ut are ordered such that, for some t′ ≤ t, we have
Ui ∩ VG 6= ∅ for all 1 ≤ i ≤ t′ and Uj ∩ VG = ∅ for all t′ < j ≤ t. Let S′ = S ∩ VG and
S′′ = Ut′+1 ∪ · · · ∪ Ut. Then S′ contains ≥ t′ components of G, since Ui ∩ VG contains ≥ 1
component of G for all 1 ≤ i ≤ t′. Next note that Uj is a component of H for all t′ < j ≤ t, hence
S′′ is a union of t− t′ components of H. By G-smallness of A and H-smallness of B, it follows that

µS′(A) ≤ ñ−t′ and µS′′(B) ≤ ñt′−t.

Now fix z ∈ [n](VG∪VH)\S which maximizes δ((A ./ B)|zS). Using the basic properties of restric-
tions and joins (Lemma 4.4(a,b)), we have

µS(A ./ B) = δ((A ./ B)|zS) = δ((A|zS′) ./ (B|zS∩VH ))
≤ δ(A|zS′) · µS\VG(B|zS∩VH )

≤ µS′(A) · µS′′(B).

It follows that µS(A ./ B) ≤ ñ−t, which completes the proof.

8We choose ε = 1/ log k so that ñΩ(log k) = nΩ(log k) with the same constant in the Ω(log k). The proof of Lemma
7.5 is the only place where ε really shows up. Outside this lemma, the difference between ñ and n may be ignored
(in particular, all statements in §8–11 are valid if ñ = n.).
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Definition 5.6 (Pathset Complexity). For every pattern graph G and pathset A ∈PG, the pathset
complexity χG(A) of A with respect to G is defined by the following induction:

(i) If G is the empty graph, then χG(A) := 0.

(ii) If G consists of a single edge, then χG(A) := |A|.

(iii) If G has ≥ 2 edges, then

χG(A) := min
(Hi,Ki,Bi,Ci)i

∑
i

χHi(Bi) + χKi(Ci)

where (Hi,Ki,Bi, Ci)i ranges over sequences9 where

Hi,Ki ⊂ G, Hi ∪Ki = G, Bi ∈P small
Hi , Ci ∈P small

Ki and A ⊆
⋃
i

Bi ./ Ci.

In plain language, we consider coverings of A by joins of small pathsets over proper subgraphs
of G. The pathset complexity χG(A) is the minimum possible value—over all such coverings—of
the sum of pathset complexities of the constituent small pathsets.

Note that pathset complexity satisfies the following inequalities:

χ∅({()}) ≤ 0 and χG(A) ≤ 1 if |EG| = |A| = 1,(base case)

χG(A′) ≤ χG(A) if A′ ⊆ A,(monotonicity)

χG(A1 ∪ A2) ≤ χG(A1) + χG(A2) for all A1,A2,(sub-additivity)

χG∪H(A ./ B) ≤ χG(A) + χH(B) if A ∈P small
G , B ∈P small

H .(join rule)

We will refer to these inequalities repeatedly throughout the paper.

Remark 5.7. Pathset complexity has a dual characterization as the unique pointwise maximal
function from pairs (G,A) to R which satisfies (base case), (monotonicity), (sub-additivity) and
(join rule). We will expand on this observation later in Remark 8.4.

We now state our lower bound on pathset complexity (to be proved in §8–11).

Theorem 5.8 (Pathset Complexity Lower Bound). For all A ∈PPk ,

χPk(A) ≥ n(1/6) log k

2O(2k)
· δ(A).

In particular, for k ≤ log logn and non-negligible δ(A) = n−O(1), Theorem 5.8 implies χPk(A) ≥
n(1/6) log k−O(1). In a moment, we will give an upper bound (Proposition 5.11) which shows that
Theorem 5.8 is tight in the regime of k ≤ log log n and non-negligible δ(A). First, a couple of
remarks which give a different perspective on the definition of χG(A):

9Without loss of generality, i ranges over N since Hi = Ki = G and Bi = Ci = ∅ can occur infinitely often.
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Remark 5.9 (Pathset Complexity as Construction Cost). Pathset complexity can be seen as a
minimum construction cost. In this view, the goal is to construct a pathset A ∈ PG out of the
fewest possible “atomic” pathsets (i.e., individual edges). The rules of construction are as follows:

(a) A single “atomic” pathset of the form A ∈ PG where |EG| = |A| = 1 may be bought for
unit cost.

(b) Once a pathset A has been constructed, we may freely discard elements from A (i.e. replace
A with any smaller A′ ⊆ A).

(c) Having constructed two G-pathsets A and A′, we may merge A and A′ into a single G-pathset
A ∪A′ (i.e. replace A and A′ with A ∪A′) at no additional cost.

(d) Having constructed a G-pathset A and a H-pathset B, provided both A and B are small, we
may join A and B into a single G ∪H-pathset A ./ B at no additional cost.

For a pathset A ∈ PG, χG(A) is equal to the minimum cost of constructing A according to
these rules. Construction rules (a), (b), (c), (d) respectively correspond to inequalities (base case),
(monotonicity), (sub-additivity), (join rule). Only applications of rule (a) increase cost (so mini-
mum construction cost = fewest application of rule (a)). Rule (b) can be used to convert a non-small
pathset into a small pathset (in order to use rule (d), for example). Note that only rule (c) can
increase the density of pathsets.

Remark 5.10 (The Role of Smallness). Suppose we modify construction rule (d) by dropping the
smallness constraint on A and B (this is equivalent to substituting PHi and PKi for P small

Hi
and

P small
Ki

in Definition 5.6(iii)). We could then construct the complete Pk-pathset [n]Vk at a total cost
of kn2 simply by joining pathsets [n]{vi,vi+1} for 0 ≤ i < k. This shows that the smallness constraint
on joins is essential to Theorem 5.8. Intuitively, smallness is responsible for bottlenecks which drive
up the cost of constructing sufficiently dense pathsets. However, smallness is not necessarily an
obstacle for very sparse pathsets like [

√
n]Pk : since [

√
n]{vi,vi+1} are small, we can take joins showing

χPk([
√
n]Pk) ≤ kn.

We conclude this section with an upper bound.

Proposition 5.11 (Pathset Complexity Upper Bound). For all A ∈PPk ,

χPk(A) ≤ O(kn(1/2)dlog ke+2).

For k ≤ log log n and A ∈ PPk with δ(A) = n−O(1), our lower and upper bounds show that
χPk(A) = nΘ(log k) where the constant in Θ(log k) is between 1

6 and 1
2 .

Notation 5.12. For a pattern graph G and an integer s, we denote by G.s the s-shifted pattern
graph with vertex set {vi+s : vi ∈ VG} and edge set {vi+svi+s+1 : vivi+1 ∈ EG}. For a pathset
A ∈ PG, we denote by A.s ∈ PG.s the corresponding s-shifted pathset. Note that pathset
complexity is invariant under shifts (i.e. χG(A) = χG.s(A.s)).

Proof of Proposition 5.11. For simplicity we assume
√
n is an integer. For all k ≥ 1, define Ak ∈

P small
Pk

by
Ak := {x ∈ [n]{0,...,k} : x0, xk ≤

√
n}.

(Note that δ(Ak) = 1/n < 1/ñ, so Ak is indeed Pk-small.)
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Letting j = dk/2e, we have

Aj ./ A.jk−j = {x ∈ [n]{0,...,k} : x0, xj , xk ≤
√
n}.

Note that Ak is covered by
√
n “copies” of Aj ./ A.jk−j where, for 1 ≤ t ≤

√
n,

Copyt(Aj ./ A
.j
k−j) := {x ∈ [n]{0,...,k} : x0, xk ≤

√
n and (t− 1)

√
n < xj ≤ t

√
n}.

Note that pathset complexity is invariant under “copies” in this sense (i.e. χG is invariant under
the action of coordinate-wise permutations of [n] on PG):

χPk(Copyt(Aj ./ A
.j
k−j)) = χPk(Aj ./ A.jk−j) (invariance under “copies”)

= χPj (Aj) + χ
P .jk−j

(A.jk−j) (join rule)

= χPj (Aj) + χPk−j (Ak−j) (invariance under shifts).

Since Ak ⊆
⋃

1≤t≤
√
n Copyt(Aj ./ A

.j
k−j), sub-additivity of χ implies

χPk(Ak) ≤
∑

1≤t≤
√
n

χPk(Copyt(Aj ./ A
.j
k−j)) =

√
n ·
(
χPj (Aj) + χPk−j (Ak−j)

)
.

This recurrence implies

χPk(Ak) ≤ (2
√
n)dlog ke · χP1(A1) = O(kn(1/2)dlog ke+1).

Now note that the complete Pk-pathset [n]Vk is covered by n “copies” of Pk. Therefore, by a
similar argument,

χPk([n]Vk) ≤ n · χPk(A) = O(kn(1/2)dlog ke+2).

Finally, monotonicity of χ implies that χPk(A) ≤ O(kn(1/2)dlog ke+2) for all A ∈PPk .

6 From Formulas to Pathset Complexity

In this section we derive our main result (Theorem 2.1) from our lower bound on pathset complexity
(Theorem 5.8). Let F0 be a formula of depth d(n) which solves DISTCONN(k, n) where k(n) ≤
log logn and d(n) ≤ log n/k3 log log n. We must show that F0 has size nΩ(log k).

As a first preliminary step: without loss of generality, we assume that F0 has minimal size
among all depth d(n) formulas solving DISTCONN(k, n). In particular, we have size(F0) ≤ knk−1

since DISTCONN(k, n) has DNFs of this size.
As a second preliminary step, we convert F0 into a fan-in 2 formula F by replacing each

unbounded fan-in AND/OR gate by a balanced binary tree of fan-in 2 AND/OR gates. We have

size(F ) = size(F0) ≤ nk and depth(F ) ≤ depth(F0) · log(size(F0)) ≤ log2 n.

We write Fin for the set of inputs (i.e. leaves) in F , and Fgate for the set of gates in F , and fout for
the output gate in F . Note that each f ∈ F is computed by an (unbounded fan-in) formula of size
≤ nk and depth ≤ d(n) (by collapsing all adjacent AND/OR gates below f).

In order to lower bound size(F ) in terms of pathset complexity, we define a family of pathsets
AΓ
f,G associated with each f ∈ F and G ∈ ℘k and Γ ∈ {0, 1}N . Recall that we identify {0, 1}N with

the set of k-layered graphs where N = Ek,n = {viwj : vw ∈ Ek, i, j ∈ [n]}.
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Definition 6.1 (Pathsets AΓ
f,G). For all G ∈ ℘k and x ∈ [n]VG and Γ ∈ {0, 1}N and f ∈ F :

(i) Let NG,x := {viwj ∈ N : i = xv and j = xw} (= {vxvwxw : vw ∈ EG}).

(ii) Let ρΓ
G,x : N → {0, 1, ∗} be the restriction which equals ∗ over NG,x and agrees with Γ over

N \ NG,x. In particular, applying ρΓ
G,x to f , we get a function fdρΓ

G,x : {0, 1}NG,x → {0, 1}
(whose variables correspond to edges of G via the bijection NG,x

∼= EG).

(iii) Let AΓ
f,G be the G-pathset defined by

AΓ
f,G := {x ∈ [n]VG : Live(fdρΓ

G,x) = NG,x}.

That is, AΓ
f,G is the set of x ∈ [n]VG such that the restricted function fdρΓ

G,x depends on all
|NG,x| (= |EG|) of its variables.

In the next three subsections, we prove a sequence of claims about pathsets AΓ
f,G in three cases

where f ∈ Fin and f ∈ Fgate and f = fout.

Remark 6.2. Claims 6.3, 6.4, 6.5 rely on few assumptions about F . In particular, these claims
do not depend on the assumption that F0 has bounded depth (i.e. F has bounded alternations),
nor even that F is a formula as opposed to a circuit. In fact, these claims are valid if F is any
B2-circuit computing DISTCONN(k, n) where B2 is the full binary basis.

Of course, we will eventually use both assumptions that (I) F0 has bounded depth (i.e. F has
bounded alternations), and (II) F is a formula as opposed to a circuit. Our main technical lemma
(Lemma 6.6) relies on (I) but not (II) (not surprisingly, since the proof uses the Switching Lemma,
which does not distinguish between circuits and formulas). A second key lemma (Lemma 6.7) relies
on (II) but not (I) (using a novel top-down argument which only works for formulas).

6.1 Inputs of F

Suppose f is an input in F labeled by a literal (i.e. a variable or its negation) corresponding to
some viwj ∈ N . Then we have the following explicit description of AΓ

f,G:

• if G is the empty graph, then AΓ
f,G = {()} (i.e. the singleton containing the 0-tuple),

• if EG = {vw}, then AΓ
f,G = {x} for the unique x ∈ [n]{v,w} with xv = i and xw = j,

• otherwise (i.e. if |EG| ≥ 2), AΓ
f,G = ∅.

By the base case conditions (i) and (ii) in Definition 5.6 of pathset complexity, we have χ∅(A) = 0
and χG(A) = |A| if G has a single edge. The upshot of these observations is the following claim.

Claim 6.3 (Inputs of F ). For all f ∈ Fin,
∑
G∈℘k

χG(AΓ
G,f ) = 1.
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6.2 Gates of F

Suppose f is an AND or OR gate in F with children f1 and f2. Consider any G ∈ ℘k and x ∈ AΓ
f,G

(assuming AΓ
f,G is nonempty). By definition of AΓ

f,G, the function fdρΓ
G,x : {0, 1}NG,x → {0, 1}

depends on all variables in NG,x. Since fdρΓ
G,x is the AND or OR of functions f1dρΓ

G,x and f2dρΓ
G,x,

each variable in NG,x is a live variable for one or both f1dρΓ
G,x and f2dρΓ

G,x.
Define sub-pattern graph G1 ⊆ G as follows: for each vw ∈ EG, let vw be an edge in G1 if and

only if vxvwxw (∈ NG,x) is a live variable for the function f1dρΓ
G,x. Define G2 ⊆ G in the same way

with respect to f2. Since

{vxvwxw : vw ∈ EG} = NG,x = Live(fdρΓ
G,x) = Live(f1dρΓ

G,x) ∪ Live(f2dρΓ
G,x),

it follows that G1 ∪G2 = G.
Let y = xVG1

be the restriction of x (∈ [n]VG) to coordinates in VG1 . By definition of G1, we
have

• vyvwyw = vxvwxw ∈ Live(f1dρΓ
G,x) for all vw ∈ EG1 , and

• vxvwxw /∈ Live(f1dρΓ
G,x) for all vw ∈ EG \ EG1 .

It follows that Live(f1dρΓ
G1,y

) = Live(f1dρΓ
G,x) = NG1,y, hence y ∈ AΓ

f1,G1
. Similarly, for z = xVG2

,
we have z ∈ AΓ

f2,G2
. This shows that x ∈ AΓ

f1,G1
./ AΓ

f2,G2
.

The observation may be succinctly expressed as

AΓ
f,G ⊆

⋃
G1,G2⊆G :G1∪G2=G

AΓ
f1,G1

./ AΓ
f2,G2

.

Splitting this union into the cases that G1 = G or G2 = G or G1, G2 ⊂ G, we have proved:

Claim 6.4 (Gates of F ). For every f ∈ Fgates with children f1, f2 and every G ∈ ℘k,

AΓ
f,G ⊆ AΓ

f1,G ∪ A
Γ
f2,G ∪

⋃
G1,G2⊂G :G1∪G2=G

AΓ
f1,G1

./ AΓ
f2,G2

.

6.3 Output of F

We now use the fact that F computes DISTCONN(k, n). Our previous Claims 6.3 and 6.4 applied
to arbitrary Γ ∈ {0, 1}N . We now shift perspective and consider random Γ ∈ {0, 1}N1/n. That is,
Γ is the random k-layered graph (i.e. subgraph of Pk,n) with edge probability 1/n. Recall that
Vk,n = {vi : v ∈ Vk and i ∈ [n]} and s, t are the vertices v1

0, v
1
k. Each x ∈ [n]Vk corresponds to a

path of length k in Pk,n, where x is an st-path if and only if x0 = xk = 0 (writing xi instead of xvi
for the coordinates of x).

Almost surely, Γ satisfies the following properties:

(i) Γ contains no st-path, and

(ii) all vertices in Γ have total degree (in-degree plus out-degree) ≤ log2 n.
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Both (i) and (ii) follow from simple union bounds. For (i), the number of st-paths is nk−1, and
each st-path only has probability n−k of being in Γ. For (ii), the number of vertices is kn2, and the
probability of any given vertex having total degree ≥ log2 n is ≤

(
2n

log2 n

)
n− log2 n ≤ ( 2e

log2 n
)log2 n ≤

n−ω(1).
For an st-path x, we will say that x is Γ-independent if Γ contains no path from xi to xj for all

0 ≤ i < j ≤ k. We claim that, if Γ satisfies (i) and (ii), then 99% of st-paths are Γ-independent.
To see this, consider the following greedy procedure for constructing a Γ-independent st-path.
Sequentially, for i = 1, . . . , k − 1, choose any xi in the ith layer of Vk,n such that Γ contains no
path from s to xi (this kills ≤ log 2in choices for xi), nor a path from xi to t (this kills ≤ log 2(k−i)n
choices), nor a path from xi′ to xi for any 1 ≤ i′ < i (this kills ≤

∑i−1
i′=1 log 2(i−i′)n choices). Setting

x0 = s and xk = t, note that x is Γ-independent. In total we get ≥ (n − k2 log 2kn)k−1 ≥ .99nk−1

distinct Γ-independent st-paths.
Suppose x is a Γ-independent st-path and let e1, . . . , ek be the k edges in x. We claim that

Γ∪{e1, . . . , ei−1, ei+1, . . . , ek} contains no st-path for all 1 ≤ i ≤ k. To see this, assume for the sake
of contradiction that x′ is an st-path in Γ ∪ {e1, . . . , ei−1, ei+1, . . . , ek}. Let e′1, . . . , e

′
k be the edges

of x′. Since ei is a non-edge of Γ, we have ei 6= e′i. Starting at the endpoint of e′i, we can follow
the path x′ forwards until reaching a vertex in x; we can also follow x′ backwards from the initial
vertex of e′i until reaching a vertex in x. This segment of x′ is a path in Γ between two vertices of
x, contradiction Γ-independence of x.

Since fout computes DISTCONN(k, n), it follows that

fout(Γ ∪ {e1, . . . , ek}) = 1 and fout(Γ ∪ {e1, . . . , ei−1, ei+1, . . . , ek}) = 0 for all 1 ≤ i ≤ k.

This shows that the restricted function foutdρΓ
Pk,x

depends on all k unrestricted variables (corre-
sponding to the edges of x); in fact, foutdρΓ

Pk,x
is the AND function. Therefore, x ∈ AΓ

fout,Pk
for

every Γ-independent st-path x.
By this argument, we have proved:

Claim 6.5 (Output of F ). lim
n→∞

P
Γ∈{0,1}N

1/n

[ δ(AΓ
fout,Pk

) ≥ .99n−2 ] = 1.

6.4 Reduction to Pathset Complexity

We now present the two main lemmas in the reduction from formula size to pathset complexity.
Lemma 6.6, below, is the main technical lemma (the proof, which relies in part on the switching
lemma, is given in §7). This lemma is the only place in the overall proof of Theorem 5.8 which
depends on the assumption that F has bounded depth (though not on the fact that F is a formula
as opposed to a circuit).

Lemma 6.6 (Pathsets AΓ
f,G are Small). Suppose f : {0, 1}N → {0, 1} is computed by a circuit of

depth ≤ logn
k3 log logn

and size ≤ nk. Then, for all G ∈ ℘k,

P
Γ∈{0,1}N

1/n

[AΓ
f,G is not G-small ] ≤ O(n−2k).

Lemma 6.7, below, is the nexus between formula size and pathset complexity. The proof involves
a novel top-down argument, which is key to distinguishing formulas and circuits. (Though we will
apply Lemma 6.7 to the formula F which we have been considering so far, Lemma 6.7 is stated in
general terms for arbitrary boolean functions with fan-in 2.)
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Lemma 6.7 (“Top-Down Lemma”). Let F be any fan-in 2 formula and let Γ ∈ {0, 1}N . If
AΓ
f,G ∈P small

G for all f ∈ F and G ∈ ℘k, then

χPk(AΓ
fout,Pk

) ≤ 2O(k2) · depth(F )k · size(F ).

Proof. Assume AΓ
f,G ∈P small

G for all f ∈ F and G ∈ ℘k. Consider any f ∈ Fgates with children f1

and f2. By Claim 6.4, together with the key properties (monotonicity), (sub-additivity) and (join
rule) of pathset complexity, we have

χG(AΓ
f,G) ≤ χG

(
AΓ
f1,G ∪ A

Γ
f2,G ∪

⋃
G1,G2⊂G :G1∪G2=G

AΓ
f1,G1

./ AΓ
f2,G2

)
≤ χG(AΓ

f1,G) + χG(AΓ
f2,G) +

∑
G1,G2⊂G :G1∪G2=G

(
χG1(AΓ

f1,G1
) + χG2(AΓ

f2,G2
)
)

≤
(
χG(AΓ

f1,G) + 2k
∑
H⊂G

χH(AΓ
f1,H)

)
+
(
χG(AΓ

f2,G) + 2k
∑
H⊂G

χH(AΓ
f2,H)

)
.

If we start from χPk(AΓ
fout,Pk

) and repeatedly apply the above inequality until reaching the
inputs of F , we get a bound of the form

χPk(AΓ
fout,Pk

) ≤
∑

f∈Fin, G∈℘k

cf,G · χG(AΓ
f,G)

for some cf,G ∈ Z≥0. We claim that

cf,G ≤
∑

i,H0,...,Hi :Pk=H0⊃···⊃Hi=G
2ik ·

(
depth of f in F

i

)
≤ 2O(k2) · depth(F )k.

To see this, consider any f ∈ Fin and G ∈ ℘k and let fout = f0, . . . , fd = f be the branch in F
from the output gate down to f . Then in the expansion of χPk(AΓ

fout,Pk
), we get a contribution

of 2ik (≤ 2k
2
) from each sequence (i, t0, H0, t1, H1, . . . , ti, Hi) where 0 = t0 < · · · < ti = d and

Pk = H0 ⊃ · · · ⊃ Hi = G; here ti is the location where the expansion of χPk(AΓ
fout,Pk

) branches as
we move from χHi−1(AΓ

fi−1,Hi−1
) to 2kχHi(AΓ

fi,Hi
). Finally, we bound the number of (t0, . . . , ti) by(

d
i

)
(≤ depth(F )k) and the number of (H0, . . . ,Hi) by 2ik (≤ 2k

2
). Summing over i adds only a

factor of k, so in total we get cf,G ≤ 2O(k2) · depth(F )k.
We now use the fact that

∑
G∈℘k χG(AΓ

f,G) = 1 for all f ∈ Fin (Claim 6.3) and size(F ) = |Fin|
(since F is a formula!). Concluding the proof, we have

χPk(AΓ
fout,Pk

) ≤ 2O(k2) · depth(F )k · size(F ).

We conclude this section by giving the proof of Theorem 2.1 assuming our pathset complexity
lower bound (Theorem 5.8) and main technical lemma (Lemma 6.6).

Reduction 6.8. Theorem 5.8 and Lemma 6.6 =⇒ Theorem 2.1.

Proof. Assuming Theorem 5.8 and Lemma 6.6, we must show that size(F ) ≥ nΩ(log k). By Claim
6.5 and Lemma 6.6, there exists Γ ∈ {0, 1}N such that δ(AΓ

fout,Pk
) ≥ .99n−2 and AΓ

f,G ∈P small
G for

20



all f ∈ F and G ∈ ℘k. Fix any such Γ. We now have

size(F ) ≥ 1
2O(k2) · depth(f)k

· χPk(AΓ
fout,Pk

) (Lemma 6.7)

≥ 1
2O(k2) · depth(f)k

· n
(1/6) log k

2O(2k)
· δ(AΓ

fout,Pk
) (Theorem 5.8).

Using inequalities

depth(F ) ≤ log2 n, δ(AΓ
fout,Pk

) ≥ .99n−2, k ≤ log logn,

we get the desired bound size(F ) ≥ n(1/6) log k−O(1).

7 Small Pathsets from Random Restrictions

In this section, we prove Lemma 6.6 showing that, with high probability over random Γ ∈ {0, 1}N1/n,
pathsets AΓ

f,G are small for all f ∈ F and G ∈ ℘k. The proof has the following scheme:

Janson’s Inequality [Jan90]
⇓

Lemma 7.3

Switching Lemma [H̊as87]
⇓

Lemma 7.4︸ ︷︷ ︸
⇓

Preliminary Lemma 7.5
⇓

Main Technical Lemma 6.6

The central argument is contained in the proof of Preliminary Lemma 7.5 (from which Lemma
6.6 essentially follows as a corollary). In the interest of presenting this central argument first, the
proofs of Lemmas 7.3 and 7.4 are given afterwards in §7.1 and §7.2.

Remark 7.1. Lemma 6.6 is similar to the main technical lemma in the k-clique lower bound
of [Ros08, Ros10]. One important difference is that here we require a concentration of measure
inequality in a place where a mere expectation bound sufficed for the k-clique result.10 This makes
the proof of Lemma 6.6 somewhat more complicated.

Recall that G-smallness consists of 2∆G − 1 density constraints corresponding to the nonempty
unions of components of G. We say that non-small pathset A is G-critical if it violates only the
“top” constraint δ(A) > ñ−∆G . Formally:

10Consider the fact that functions f : {0, 1}n → {0, 1} in AC0 have low average sensitivity. This is a statement
of the form Px∈{0,1}n, i∈[n][i ∈ S(f, x)] ≤ ε where S(f, x) is the set {i ∈ [n] : f(x) 6= f(x ⊕ i)}. The main technical
lemma of [Ros08] is an inequality of the same form; the difference is that S(f, x), rather than the set of sensitive
coordinates, is instead the set of sensitive G-shaped sets of coordinates where G is a pattern graph (which, in the
context of k-clique, means a subgraph of Kk). By contrast, Lemma 6.6 is a concentration of measure inequality
analogous to showing Px[Pi[i ∈ S(f, x)] > ε] ≤ δ.
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Definition 7.2 (Critical Pathsets). For a pattern graph G and pathset A ∈ PG, we say that A
is G-critical if δ(A) > ñ−∆G and µVG\S(A) ≤ ñs−∆G for all 1 ≤ s < ∆G and S ⊆ VG such that S
intersects exactly s components of G.

Our first lemma, proved in §7.1, gives a concentration of measure inequality for critical pathsets.
(Recall that ε = 1/ log k from Def. 5.3(i).)

Lemma 7.3. Let G be a pattern graph and suppose A is a G-critical pathset. Let q = (1/n)1+(ε/2k).
Then

P
R⊆qN

[
#
{
x ∈ A : NG,x ⊆ R

}
≤ nε/2

2

]
≤ exp

(
−Ω
(nε/2

2k
))
.

Our second lemma, proved in §7.2, is a straightforward corollary of H̊astad’s Switching Lemma
[H̊as87].

Lemma 7.4. Suppose f is a boolean function11 computed by a circuit of size s and depth d. For
all 0 < q ≤ p ≤ 1/2 and τ, r > 0,

d ≤ log(p/q)
r−1 log(s/τ) + log(5r)

=⇒ P
θ∈R(p,q)

[
|Live(fdθ)| > 2r

]
≤ τ.

We now give the core argument in the proof of Lemma 6.6.

Lemma 7.5. Suppose f : {0, 1}N → {0, 1} is computed by a circuit of size ≤ nk and depth
≤ logn

k3 log logn
. Let G,H be pattern graphs with VG ∩ VH = ∅ and let y ∈ [n]VH . For Γ ∈ {0, 1}N ,

define G-pathset AΓ by

AΓ :=
{
x ∈ [n]VG : NG,x ⊆ Live(fdρΓ

G∪H,xy)
}
.

Then P
Γ∈{0,1}N

1/n

[AΓ is G-critical ] ≤ O(n−10k).

Note that Lemma 7.5 does not rely on the assumption that k ≤ log logn. It holds up to
k ≤ log1/3 n (at which point the statement is trivial). We also remark that, while the bound
O(n−10k) is sufficient for our purposes, we could easily get a stronger bound like O(n−k log k).

Proof. Define I ⊆ {0, 1}N by

I :=
{
I ∈ {0, 1}N : Iν = 0 for all ν ∈ N \NH,y

}
.

Note that |I| = 2|NH,y | = 2|EH | ≤ 2k.
For I ∈ I, define fI : {0, 1}N → {0, 1} by fI(Γ) = f(Γ⊕ I). For all x ∈ [n]VG and Γ ∈ {0, 1}N ,

we have

Live(fdρΓ
G∪H,xy) =

⋃
I∈I

Live(fIdρΓ
G,x).(3)

11This statement is independent of the number of variables of f .
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For R ⊆ N , let θΓ
R : N → {0, 1, ∗} be the restriction taking value ∗ over R and equal to Γ over

N \R. Define pathsets BR and CΓ
R by

BR :=
{
x ∈ [n]VG : NG,x ⊆ R

}
,

CΓ
R :=

{
x ∈ [n]VG : NG,x ⊆

⋃
I∈I Live(fIdθΓ

R)
}
.

It follows from (3) that AΓ ∩ BR ⊆ CΓ
R. Also, since |NG,x| = |EG| ≤ k and |I| ≤ 2k,∣∣CΓ

R

∣∣1/k ≤ ∣∣∣ ⋃
I∈I

Live(fIdθΓ
R)
∣∣∣ ≤ 2k ·max

I∈I

∣∣Live(fIdθΓ
R)
∣∣.(4)

We now consider independent random Γ ∈ {0, 1}N1/n and randomR ⊆q N where q = (1/n)1+(ε/2k).
Note that θΓ

R has distributionR(1/n, q). Also, note thatAΓ and BR are independent, asAΓ depends
only on Γ and BR depends only on R.

We may assume that k ≤ log1/3 n, since otherwise the lemma is trivial. In particular, 2k =
o(nε/2) (recall that ε = 1/ log k) and hence exp(−Ω(nε/2/2k)) = o(1). We have

P
Γ

[
AΓ is G-critical

]
≤ P

Γ

[
P
R

[
|AΓ ∩ BR| ≤

nε/2

2

]
≤ exp

(
−Ω
(nε/2

2k
)) ]

(Lemma 7.3)

= P
Γ

[
P
R

[
|AΓ ∩ BR| >

nε/2

2

]
≥ 1− o(1)

]
≤ (1 + o(1)) P

Γ,R

[
|AΓ ∩ BR| >

nε/2

2

]
(Markov ineq.)

≤ (1 + o(1)) P
Γ,R

[
|CΓ
R| >

nε/2

2

]
(AΓ ∩ BR ⊆ CΓ

R)

≤ (1 + o(1)) P
Γ,R

[
max
I∈I

∣∣Live(fIdθΓ
R)
∣∣ > nε/2k

2k+1

]
(by (4))

≤ (1 + o(1))
∑
I∈I

P
Γ,R

[ ∣∣Live(fIdθΓ
R)
∣∣ > nε/2k

2k+1

]
.

Using |I| ≤ 2k and the fact that θΓ
R has distribution R(1/n, q), it suffices to show that for every

I ∈ I and sufficiently large n,

P
θ∈R(1/n,q)

[ ∣∣Live(fIdθ)
∣∣ > nε/2k

2k+1

]
≤ n−11k.(5)

In order to apply Lemma 7.4, let

p = n−1, s = nk, d =
log n

k3 log log n
, τ = n−11k, r = log

(nε/2k
2k+1

)
.

Recall that q = (1/n)1+(ε/2k) and k ≤ log1/3 n. We have log(p/q) = (ε/2k) log n and log(5r) =
O(log log n) and r−1 log(s/τ) = ((ε/2k) log n− k− 1)−112k log n = O(k2/ε). Since ε = 1/ log k, we
have

log(p/q)
r−1 log(s/τ) + log(5r)

≥ Ω
( log n

(k3/ε2) + (k/ε) log log n

)
≥ ω(d).
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Note that fI has circuits of the same size (≤ s) and depth (≤ d) as f , since the operation Γ 7→ Γ⊕I
simply exchanges the positive and negative literals for variables corresponding to coordinates of
I with value 1. Therefore, for sufficiently large n, Lemma 7.4 implies (5). This completes the
proof.

Finally, we derive Lemma 6.6 from Lemma 7.5.

Proof of Lemma 6.6. Suppose f : {0, 1}N → {0, 1} is computed by circuits of size ≤ nk and depth
≤ log n/k3 log logn. Fix a pattern graph G. We must show

P
Γ∈{0,1}N

1/n

[AΓ
f,G is not G-small ] ≤ O(n−2k).

Suppose Γ ∈ {0, 1}N is any layered graph such that AΓ
f,G is not G-small. We claim that there

exist S ⊆ VG and z ∈ [n]VG\S such that S is a nonempty union of components of G and the pathset
BΓ
S,z is G|S-critical where G|S is the induced subgraph of G on S and

BΓ
S,z :=

{
y ∈ [n]S : NG|S ,y ⊆ Live(fdρΓ

G,yz)
}
.

We first note that it suffices to prove this claim. Since there are 2∆G − 1 (≤ 2k) choices for S and
≤ nk choices for z, assuming the claim we have

P
Γ∈{0,1}N

1/n

[AΓ
f,G is not G-small ] ≤ P

Γ∈{0,1}N
1/n

[ ∨
S,z

BΓ
S,z is G|S-critical

]
≤ 2knkO(n−10k) (by Lemma 7.5)

≤ O(n−2k).

To see why the claim holds, assume that AΓ
f,G is not G-small and consider the following proce-

dure. Initially set S ← VG and z ← () (the empty tuple). If BΓ
S,z is G|S-critical, then we are done.

Otherwise, since BΓ
S,z is neither G|S-small nor G|S-critical, there is a proper subset T ⊂ S such that

T is a union of t ≥ 1 components of VG|S and µT (BΓ
S,z) > ñ−t. By definition of µT , there exists

y ∈ [n]S\T such that δ(BΓ
S,z|

y
T ) > ñ−t. Note that T is a union of components of G and yz ∈ [n]VG\T .

Also, for all u ∈ [n]T , we have NG|T ,u ⊆ NG|S ,uy and hence

u ∈ BΓ
S,z|

y
T =⇒ uy ∈ BΓ

S,z

=⇒ NG|S ,uy ⊆ Live(fdρΓ
G,uyz)

=⇒ NG|T ,u ⊆ Live(fdρΓ
G,uyz)

=⇒ u ∈ BΓ
T,yz.

Therefore, BΓ
S,z|

y
T ⊆ BΓ

T,yz. It follows that δ(BΓ
T,yz) > ñ−t and, hence, BΓ

T,yz is not G|T -small. We
now update S ← T and z ← yz. Since BΓ

S,z is not G|S-small, we may repeat this process so long
as BΓ

S,z is not G|S-critical. Since S shrinks with every step, eventually this process will terminate,
at which point BΓ

S,z is G|S-critical (and S is nonempty by definition of G|S-criticality). Thus, the
claim holds and the lemma is proved.
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7.1 Proof of Lemma 7.3

For the proof of Lemma 7.3 we use a concentration of measure inequality due to Janson [Jan90].

Lemma 7.6 (Janson’s Inequality [Jan90]). Let Ω be a finite universal set and let R be a random
subset of Ω given by P[ r ∈ R ] = pr, these events mutually independent over r ∈ Ω. Let {Si}i∈I be
an indexed family of subsets of Ω. Define λ and Υ by

λ :=
∑
i∈I
P
[
Si ⊆ R

]
, Υ :=

∑
(i,j)∈I2 : i 6=j, Si∩Sj 6=∅

P
[
Si ∪ Sj ⊆ R

]
.

Then, for all 0 ≤ t ≤ λ, P
[

#
{
i ∈ I : Si ⊆ R

}
≤ λ− t

]
≤ exp

(
− t2

2(λ+ Υ)

)
.

Proof of Lemma 7.3. Let G be a nonempty pattern graph, let A be a G-critical pathset, and let
q = (1/n)1+(ε/2k). We must show

P
R⊆qN

[
#
{
x ∈ A : NG,x ⊆ R

}
≤ nε/2

2

]
≤ exp

(
−Ω
(nε/2

2k
))
.

As in Janson’s Inequality, define λ and Υ by

λ :=
∑
x∈A

P
[
NG,x ⊆ R

]
, Υ :=

∑
(x,y)∈A2 :x6=y,NG,x∩NG,y 6=∅

P
[
NG,x ∪NG,y ⊆ R

]
.

Taking t = λ/2 in Lemma 7.6, we get

(6) P
[

#
{
x ∈ A : NG,x ⊆ R

}
≤ λ

2

]
≤ exp

(
− 1

16
min

{
λ,

λ2

Υ

})
.

Recall that ∆G = |VG| − |EG| and ñ = n1−ε. By G-criticality of A,

|A| = n|VG|δ(A) > n|VG|ñ−∆G = n|EG|+ε∆G .

Note that P[NG,x ⊆ R ] = q|EG| for all x ∈ A. Since |EG| ≤ k and ∆G ≥ 1, it follows that

λ = |A| · q|EG| > nε(∆G−|EG|/2k) ≥ nε(∆G−(1/2)) ≥ nε/2.(7)

To complete the proof, it suffices to show that
λ2

Υ
≥ nε/2

2k
.

For all (x, y) ∈ A2, let

Tx,y :=
{
vw ∈ EG : xv = yv and xw = yw

}
.

Note that x = y iff Tx,y = EG, and NG,x ∩NG,y 6= ∅ iff Tx,y 6= ∅, and |NG,x ∪NG,y| = 2|EG|− |Tx,y|.
Next, note that Υ =

∑
T : ∅⊂T⊂EG ΥT where

ΥT :=
∑

(x,y)∈A2 :Tx,y=T

P
[
NG,x ∪NG,y ⊆ R

]
= #

{
(x, y) ∈ A2 : Tx,y = T

}
· q2|EG|−|T |.
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Now consider any fixed ∅ ⊂ T ⊂ EG. Let S =
⋃
vw∈T {v, w} and let s be the number of

components of G which S intersects. Note that 1 ≤ s ≤ |S|− |T |, since |S|− |T | equals the number
of components in the induced subgraph G|S . We have

#
{

(x, y) ∈ A2 : Tx,y = T
}

=
∑
z∈[n]S

∣∣A|zVG\S∣∣2
≤
( ∑
z∈[n]S

∣∣A|zVG\S∣∣)( max
z∈[n]S

∣∣A|zVG\S∣∣)
= |A| · n|VG|−|S| · µVG\S(A)

≤ |A| · n|VG|−|S| · ñs−∆G (by G-criticality of A)

= |A| · n|EG|−|S|+s+ε(∆G−s).

It follows that

ΥT = #
{

(x, y) ∈ A2 : Tx,y = T
}
· q2|EG|−|T |

≤ |A| · n|EG|−|S|+s+ε(∆G−s) · q2|EG|−|T |

≤ λ · n|T |−|S|+s+ε(∆G−s) (using λ = |A| · q|EG| and q ≤ n−1)

≤ λ · nε(∆G−1) (using 1 ≤ s ≤ |S| − |T |).

We now have

λ2

Υ
=

λ2∑
T : ∅⊂T⊂EG ΥT

≥ λ · n−ε(∆G−1)

2k
(by the above)(8)

≥ nε/2

2k
(since λ ≥ nε(∆G−(1/2)) by (7)).

Plugging (7) and (8) into (6) completes the proof.

7.2 Proof of Lemma 7.4

For a boolean function f , we write D(f) for the decision-tree depth of f (i.e. the minimum depth
of a decision tree computing f). Note that |Live(f)| ≤ 2D(f).

The following lemma is a special case of the original Switching Lemma of H̊astad [H̊as87]. (For
simplicity, we consider depth-r decision trees as opposed to r-DNFs and s-CNFs.)

Lemma 7.7 (Switching Lemma [H̊as87]). Suppose f is a boolean function which is an AND or OR
of (arbitrary many) depth-r decision trees. Then for all q ∈ [0, 1/2],

P
θ∈R(1/2,q)

[D(fdθ) > r ] ≤ (5qr)r.

Lemma 7.4 follows directly from the following lemma via the fact that |Live(f)| ≤ 2D(f). (This
lemma originally appeared in the author’s Ph.D. thesis [Ros10].)

Lemma 7.8. Suppose f is a boolean function computed by a circuit of size s and depth d. For all
0 < q ≤ p ≤ 1/2 and τ, r > 0,

d ≤ log(p/q)
r−1 log(s/τ) + log(5r)

=⇒ P
θ∈R(p,q)

[
D(fdθ) > r

]
≤ τ.
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This lemma originally appeared in the author’s Ph.D. thesis [Ros10]. The proof is included here
for completeness.

Proof. We generate a sequence θ0, . . . , θd of random restrictions as follows:

• let θ0 ∈ R(p0, p) where p0 =
1

1− p

(p+ q

2
− pq

)
(note that 0 < p0 ≤ 1),

• for i ∈ {1, . . . , d}, let θi ∈ R(1/2, (q/p)1/d) applied to the variables left unrestricted by
θ0, . . . , θi−1.

For i ∈ {0, . . . , d}, let Θi denote the composition of restrictions θ0, . . . , θi. Note that Θd has
distribution R(p, q):

P
[

Θd = ∗
]

= P
[
θ0 = · · · = θd = ∗

]
= p
((q

p

)1/d)d
= q,

P
[

Θd = 1
]

= P
[
θ0 = 1

]
+

d∑
i=1

P
[
θ0 = · · · = θi−1 = ∗ and θi = 1

]
= p0(1− p) +

d∑
i=1

p

2

(q
p

)(i−1)/d(
1−

(q
p

)1/d)
= p0(1− p) +

p− q
2

= (1− q)p.

Therefore, Θd has distribution R(p, q).
Let C be the circuit of size s and depth d computing f . For each input/gate g ∈ C at height i

from the bottom (where inputs have height 0 and the output gate gout has height d), let Xg denote
the event that D(gdΘi) ≤ r. Let C<g denote the set of g′ ∈ C such that g′ lies below g.

If g has height 0, then P[Xg ] = 1. If g has height i ≥ 1, then

P
[
¬Xg

∣∣∣ ∧
g′∈C<g

Xg′

]
= P

[
D((gdΘi−1)dθi) > r

∣∣∣ ∧
g′∈C<g

D(g′dΘi−1) ≤ r
]

≤
(

5r
(q
p

)1/d)r
(Lemma 7.7)

≤ τ

s
(d ≤ log(p/q)

log(5r(s/τ)1/r)
).

Completing the proof, we have

P
θ∈R(p,q)

[
D(fdθ) > r

]
= P

[
¬Xgout

]
≤ P

[ ∨
g∈C
¬Xg

]
≤
∑
g∈C

P
[
¬Xg

∣∣∣ ∧
g′∈C<g

Xg

]
≤ τ.
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8 Patterns

At this point in the paper, it only remains to prove Theorem 5.8, our lower bound on pathset
complexity χ. As the first step in the proof, we introduce the notion of patterns and pathset
complexity w.r.t. patterns, denoted χ̄. Intuitively, a pattern is a blueprint for constructing a pattern
graph via pairwise unions starting from individual edges. This leads to a more constrained notion
of pathset complexity where the allowable joins are prescribed by a given pattern.

Fixing the pattern of allowable joins can only increase the cost of constructing a pathset, hence
χ ≤ χ̄. Counterintuitively, the lower bound on χ is derived from a lower bound on χ̄. This lower
bound on χ̄ is the true combinatorial lower bound in this paper. (Unfortunately, in the shift
from χ to χ̄ we lose a factor of 2O(2k), which is the reason that Theorem 5.8 only holds up to
k(n) ≤ log logn.)

In this section, we present the definition of χ̄ and state our lower bound for χ̄ (Theorem 8.3).
The reduction from Theorem 8.3 to Theorem 5.8 is given in §9. In §10 we prove some preliminary
lemmas (on properties of χ̄ with respect to projection and restriction). Finally we prove Theorem
8.3 in §11.

Definition 8.1 (Patterns). A pattern is a (rooted, unordered) binary tree whose leaves are labeled
by edges of Pk (i.e. elements of Ek = {vivi+1 : 0 ≤ i < k}). Every pattern A is associated with a
pattern graph denoted GA = (VA, EA) where EA is the set of edges of Pk which label leaves in A.

The empty pattern (of size 0) is denoted ∅. Patterns of size 1 (corresponding to elements of
Ek) are said to be atomic. Patterns of size ≥ 2 are non-atomic. Throughout, A and B represent
non-empty patterns. Let {A,B} (= {B,A}) denote the pattern with children A and B. Note that
every non-atomic pattern has the form {A,B} for some A and B; also, G{A,B} = GA ∪GB.

For a pattern A, sub-patterns of A are sub-trees of A consisting a node in A and all nodes below
that node with the inherited labeling of leaves. The sub-pattern and strict sub-pattern relations
are denoted by � and ≺ respectively.

To simplify notation, for a pattern A we write PA for PGA and projA for projVA and `A for
`GA , etc. We consistently write A,B, C for pathsets with underlying patterns A,B,C respectively.

Definition 8.2 (Pathset Complexity w.r.t. Patterns). For every pattern A and pathset A ∈PA,
the pathset complexity of A with respect to A, denoted χ̄A(A), is defined by the following induction:

(i) χ̄∅({()}) := 0, that is, the pathset complexity of {()} w.r.t. the empty pattern ∅ is 0.

(ii) If A is atomic and |A| = 1, then χ̄A(A) := 1.

(iii) For non-atomic A = {B,C},

χ̄A(A) := min
(Bi,Ci)i

∑
i

χ̄B(Bi) + χ̄C(Ci)

where (Bi, Ci)i ranges over sequences such that Bi ∈P small
B , Ci ∈P small

C and A ⊆
⋃
i Bi ./ Ci.

In Appendices A–C we present some key examples of patterns and prove upper and lower
bounds for χ̄ with respect to some special classes of patterns. The material in these appendices
is not directly needed for our main results. However, these appendices serve as a warm-up and
motivation for the lower bound that follows.
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The following inequalities (analogous to the inequalities following Definition 5.6 of χ) are es-
sentially built into Definition 8.2 of χ̄:

χ̄∅({()}) ≤ 0 and χ̄A(A) ≤ 1 if A is atomic and |A| = 1,(base case)

χ̄A(A′) ≤ χ̄A(A) if A′ ⊆ A,(monotonicity)

χ̄A(A1 ∪ A2) ≤ χ̄A(A1) + χ̄A(A2) for all A1,A2,(sub-additivity)

χ̄{A,B}(A ./ B) ≤ χ̄A(A) + χ̄B(B) if A ∈P small
A , B ∈P small

B .(join rule)

The essential difference between χ and χ̄ is that χ allows arbitrary joins, while χ̄ only allows joins
as prescribed by the given pattern. Viewed as a minimum construction cost (see Remark 5.9), this
means that χ̄ has more highly constrained rules of construction compared with χ. Consequently,
χGA(A) ≤ χ̄A(A) for every pattern A and A ∈ PG. Note that this inequality goes in the wrong
direction for the purpose of proving a lower bound on χ. In §9 we give a different inequality between
χ and χ̄ in the right direction.

Theorem 8.3 (Lower Bound for χ̄). For every pattern A and pathset A ∈PA,

χ̄A(A) ≥ ñ(1/6) log(`A)+∆A · δ(A).

The game plan for the rest of the paper is as follows: in §9 we derive our lower bound for χ
(Theorem 5.8) from Thereom 8.3. In §10 we establish some important properties of χ̄. Finally, in
§11 we give the proof of Theorem 8.3.

Remark 8.4 (Dual Characterization of χ̄). Similar to the dual characterization of χ mentioned
in Remark 5.7, χ̄ has a dual characterization as the unique pointwise maximal function from
{(A,A) : A is a pattern and A ∈PA} to R which satisfies inequalities (base case), (monotonicity),
(sub-additivity) and (join rule). This fact is established by a straightforward induction on patterns
(omitted here since we don’t actually use this dual characterization in our lower bound).

This dual characterization suggests an obvious “direct method” for proving a lower bound on
χ̄: find an explicit function from pairs (A,A) to R and show that this function satisfies inequalities
(base case), (monotonicity), (sub-additivity) and (join rule). This is analogous to the “direct
method” of proving a formula size lower bound via a complexity measure, defined as a function
M from {boolean functions on n variables} to R satisfying inequalities M(f ∧ g) ≤ M(f) +M(g)
and M(f ∨ g) ≤M(f) +M(g) in addition to base case inequalities M(f) ≤ 0 if f is constant and
M(f) ≤ 1 if f is a coordinate function.

Using the direct method, we were only able to prove lower bounds on χ̄ for a few restricted
classes patterns (see Appendix B). For general patterns, we could not prove a lower bound along
the lines of Theorem 8.3 using the direct method. We still do not know of any explicit function
which satisfies (base case), (monotonicity), (sub-additivity) and (join rule) and maps (A, [n]Pk) to
nΩ(log k) for all patterns A with graph Pk. A priori, it is not even clear whether any such nice
explicit function exists.12

12A natural approach is to consider functions of the form ncA · ν(A) where cA is a constant depending only on

A and ν : PA → R is a monotone sub-additive function, such as δ or µS or πS or any norm on R[n]VA
(viewing

PA
∼= {0, 1}[n]VA

as a subset of R[n]VA
). For such functions, one only needs to show (join rule); (base case) can be

handled by appropriate scaling.

29



The proof of Theorem 8.3 which we present in §11 does not proceed via the direct method.
In particular, neither the function ñ(1/6) log(`A)+∆A ·δ(A) nor ñΦA ·δ(A) (defined in §11.1) satisfies
inequality (join rule). Rather, our proof involves a more subtle induction on patterns.

9 From χ to χ̄

In this section, we prove:

Reduction 9.1. Theorem 8.3 (lower bound on χ̄) =⇒ Theorem 5.8 (lower bound on χ).

The following definition of strict pattern is only needed in this section. Rather than A,B,C,
we write α, β, γ for this special class of patterns.

Definition 9.2. A pattern α is strict if Gα′′ ⊂ Gα′ for all α′′ ≺ α′ � α. For a pattern graph G, let
Strict(G) denote the set of strict patterns α with graph G.

It is important that the number of strict patterns with a given pattern graph is bounded (though
doubly exponential in |EG|).

Lemma 9.3. For every pattern graph G with r edges, there are only 2O(2r) strict patterns with
graph G.

Proof. Denote by s(r) the number of strict patterns supported on any fixed set of r edges. (Note
that |Strict(G)| depends only on |EG|.) Then we have s(1) = 1 and s(r) ≤ (r · s(r − 1))2 for all
r ≥ 2. Therefore,

s(r) ≤ r2(r − 1)4(r − 2)8 · · · 32r−2
22r−1

12r = 2O(2r).

We now give the main lemma needed for Reduction 9.1.

Lemma 9.4. For every pattern graph G and pathset A ∈PG, there is an indexed family {A(α)}α∈Strict(G)

of sub-pathsets A(α) ⊆ A such that

A =
⋃

α∈Strict(G)

A(α) and ∀α ∈ Strict(G), χ̄α(A(α)) ≤ χG(A).

Proof. By induction on |EG|. The lemma is trivial if |EG| ≤ 1 (since in this case |Strict(G)| = 1).
For the induction step, suppose G is a pattern graph with ≥ 2 edges. By Definition 5.6 of χ, there
exists a sequence (Hi,Ki,Bi, Ci)i with

Hi,Ki ⊂ G, Hi ∪Ki = G, Bi ∈P small
Hi , Ci ∈P small

Ki

such that
A ⊆

⋃
i

Bi ./ Ci and χG(A) =
∑
i

χHi(Bi) + χKi(Ci).

For each α = {β, γ} ∈ Strict(G), define A(α) inductively by

A(α) := A ∩
⋃

i :Hi=Gβ ,Ki=Gγ

B(β)
i ./ C(γ)

i .
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First, we show that A =
⋃
α∈Strict(G)A(α). The inclusion ⊇ is obvious. For the inclusion ⊆,

consider any x ∈ A. Then x belongs to Bi ./ Ci for some i. This means that xVHi ∈ Bi and
xVKi ∈ Ci. By the induction hypothesis, there exist β ∈ Strict(Hi) and γ ∈ Strict(Ki) such that

xVHi ∈ B
(β)
i and xVKi ∈ C

(γ)
i . Let α = {β, γ} and note that α ∈ Strict(G). Since x ∈ B(β)

i ./ C(γ)
i ,

it follows that x ∈ A(α), proving the inclusion ⊆.
Finally, for all α ∈ Strict(G), we show χ̄α(A) ≤ χG(A) as follows:

χ̄α(A) ≤ χ̄α(
⋃

i :Hi=Gβ ,Ki=Gγ

B(β)
i ./ C(γ)

i ) (monotonicity)

≤
∑

i :Hi=Gβ ,Ki=Gγ

χ̄α(B(β)
i ./ C(γ)

i ) (sub-additivity)

Noting that B(β)
i and C(γ)

i are small (since B(β)
i ⊆ Bi ∈P small

Hi
and C(γ)

i ⊆ Ci ∈P small
Ki

), we continue:

≤
∑

i :Hi=Gβ ,Ki=Gγ

χ̄β(B(β)
i ) + χ̄γ(C(γ)

i ) (join rule)

≤
∑

i :Hi=Gβ ,Ki=Gγ

χHi(Bi) + χKi(Ci) (ind. hyp.)

≤ χG(A).

The next corollary follows directly from Lemma 9.4.

Corollary 9.5. For every pattern graph G and pathset A ∈ PG, there is a strict pattern α ∈
Strict(G) and a sub-pathset A′ ⊆ A such that χ̄α(A′) ≤ χG(A) and δ(A) ≤ |Strict(G)| · δ(A′).

We conclude this section with the proof of Reduction 9.1.

Proof of Reduction 9.1. Assume Theorem 8.3 and consider arbitrary A ∈ PPk . By Corollary 9.5,
there exist α ∈ Strict(Pk) and A′ ⊆ A such that χα(A′) ≤ χPk(A) and δ(A) ≤ |Strict(Pk)| ·δ(A′) ≤
2O(2k) · δ(A′) (Lemma 9.3). We now have

χPk(A) ≥ χα(A′) ≥ ñ(1/6) log(`α)+∆α · δ(A′) (Theorem 8.3)

≥ ñ(1/6) log(k)+1

2O(2k)
· δ(A)

≥ n(1/6) log k

2O(2k)
· δ(A) (as ñ = n1−ε = n1−(1/ log k)).

This shows that Theorem 5.8 holds, which completes the proof of the reduction.

10 Projection and Restriction

In this section we establish two key properties of χ̄: it is monotone decreasing with respect to
projection to sub-patterns (Lemma 10.2) and restriction to unions of components (Lemma 10.4).
We also introduce an operation on patterns A 	 B (Definition 10.7), read as “A restricted away
from B”. This notation will be extremely convenient in §11.
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10.1 χ̄ Decreases Under Projection

Claim 10.1. For every non-atomic pattern {A,B} and pathset C ∈P{A,B}, we have χ̄A(projA(C)) ≤
χ̄{A,B}(C).

Proof. By Definition 8.2(iii) of χ̄{A,B}(C), there is a sequence (Ai,Bi)i such that

Ai ∈P small
A , Bi ∈P small

B , C ⊆
⋃
i

Ai ./ Bi and χ̄{A,B}(C) =
∑
i

χ̄A(Ai) + χ̄B(Bi).

Note that projA(C) ⊆ projA(
⋃
iAi ./ Bi) ⊆

⋃
iAi. By monotonicity and sub-additivity of χ̄A, it

follows that

χ̄A(projA(C)) ≤ χ̄A(
⋃
i

Ai) ≤
∑
i

χ̄A(Ai) ≤ χ̄{A,B}(C).

Lemma 10.2 (χ̄ decreases under projections). For every pattern A and pathset A ∈ PA and
sub-pattern A′ � A, χ̄A′(projA′(A)) ≤ χ̄A(A).

Proof. Induction using Claim 10.1.

10.2 χ̄ Decreases Under Restriction

For a pattern A and a pathset A ∈ PA, Lemma 10.2 concerns projections of A of the form
projA′(A) where A′ is a sub-pattern of A. The restrictions of A that we consider next are not
restrictions of the form A|zA′ where z ∈ [n]VA\VA′ . Note that A|zA′ ⊆ projA′(A), so we already have
χ̄A′(A|zA′) ≤ χ̄A(A) by Lemma 10.2 and monotonicity of χ̄A′ .

Rather than restrictions over sub-patterns, we instead consider restrictions of the form A|zS
where z ∈ [n]VA\S and S ⊆ VA is a union of components of GA. We define an operation of
restriction on patterns; the restriction A�S is a pattern with VA�S = S. Even though A�S is not
necessarily a sub-pattern of A, we will show that χ̄A�S(A|zS) ≤ χ̄A(A).

Definition 10.3 (Restriction of Patterns).

(i) For all S ⊆ Vk, let S denote the complement Vk \ S of S in Vk.

(ii) For a pattern A, we say that S is A-respecting if VA ∩ S is a union of components of GA.

Note that S is A-respecting ⇐⇒ S is A-respecting ⇐⇒ every leaf in A is labeled by an edge
vivi+1 ∈ Ek such that {vi, vi+1} ⊆ S or {vi, vi+1} ⊆ S. Also note that if S is {A,B}-respecting,
then it is both A-respecting and B-respecting and {A,B}�S = {A�S,B�S}.

(iii) If S is A-respecting, we denote by A�S the pattern obtained from A by pruning all leaves
labeled by elements of S × S.

For example, if A is the pattern {{v1v2, v5v6}, {v2v3, v6v7}} and S is the A-respecting set
{v1, v2, v3}, then A�S = {v1v2, v2v3}. Note that A�S = {v1v2, v2v3} also when S is the A-
respecting set {v1, v2, v3, v4}; in general, A�S = A�(VA ∩ S). Also note that A�S is not a
sub-pattern of A in this example.

Before stating the main lemma of this subsection, recall our convention concerning notation
A|zS (see Definition 4.3): for every pattern A and pathset A ∈ PA and S ⊆ Vk and z ∈ [n]S , the
pathset A|zS ∈PA�S is defined by A|zS := A|z′VA∩S = {y ∈ VA ∩ S : yz′ ∈ A} where z′ = zVA\S .
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Lemma 10.4 (χ̄ decreases under restrictions). For every pattern A and pathset A ∈ PA and
A-respecting S ⊆ Vk and z ∈ [n]S, we have χ̄A�S(A|zS) ≤ χ̄A(A).

Proof. By induction on patterns. The lemma is trivial for empty and atomic patterns. For the
induction step, consider a non-atomic pattern {A,B} and assume the lemma holds for A and B.
Let C ∈ P{A,B}, let S be a {A,B}-respecting subset of Vk, and let z ∈ [n]S . By Def. 8.2(iii) of
χ̄{A,B}(C), there is a sequence (Ai,Bi)i such that

Ai ∈P small
A , Bi ∈P small

B , C ⊆
⋃
i

Ai ./ Bi and χ̄{A,B}(C) =
∑
i

χ̄A(Ai) + χ̄B(Bi).

By Lemma 10.5, Ai|zS ∈P small
A�S and Bi|zS ∈P small

B�S . We now have

χ̄{A,B}�S(C|zS) ≤ χ̄{A,B}�S
(⋃

i

(Ai ./ Bi)|zS
)

(monotonicity)

≤
∑
i

χ̄{A,B}�S((Ai ./ Bi)|zS) (sub-additivity)

=
∑
i

χ̄{A�S,B�S}(Ai|zS ./ Bi|zS)

≤
∑
i

χ̄A�S(Ai|zS) + χ̄B�S(Bi|zS) (join rule)

≤
∑
i

χ̄A(Ai) + χ̄B(Bi) (ind. hyp.)

= χ̄{A,B}(C).

Lemma 10.5 (Smallness is preserved under restriction). For every pattern A and small pathset
A ∈P small

A and A-respecting S ⊆ Vk and z ∈ [n]S, we have A|zS ∈P small
A�S .

Proof. Immediate from Definition 5.3 of small pathsets.

Remark 10.6. Smallness is preserved under joins (Lemma 5.5) and restrictions to union of com-
ponents (Lemma 10.5). However, smallness is not preserved under projection to unions of com-
ponents. A counterexample is the pattern A = {v1v2, v3v4} and pathset A = {x ∈ [n]VA : x1 =
x3 and x2 = x4} ∈ P small

A . Letting A′ be the atomic sub-pattern v1v2 of A, we have πA′(A) = 1,
hence projA′(A) /∈P small

A′ .

10.3 The Operation A	B

As a convenient notation, we introduce an operation A	B on patterns, read as A restricted away
from B.

Definition 10.7. For patterns A and B, we write A	B for the pattern A�S where S ⊆ VA consists
of the components of GA which do not intersect VB. For example, if A = {{v1v2, v4v5}, {v2v3, v5v6}}
(so GA is the union of paths v1v2v3 and v4v5v6) and B = {v6v7}, then A	B = {v1v2, v2v3}.

We conclude this section with two basic lemmas about this operation.
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Lemma 10.8. For all patterns C = {A,B} and A′ � A and B′ � B,

∆C ≤ ∆A′ + ∆B′	A′ + ∆C	{A′,B′}.

Proof. Each component of GC contains at least one component from at least one of the three
vertex-disjoint graphs GA′ , GB′	A′ and GC	{A′,B′}.

Lemma 10.9. For all patterns C = {A,B} and A′ � A and B′ � B and pathsets A ∈ PA and
B ∈PB,

δ(A ./ B) ≤ πA′(A) · µB′	A′(projB′(B)) · µC	{A′,B′}(A ./ B).

Proof. By Lemma 4.4(c),

δ(A ./ B) ≤ πA′(A) · µVB′\VA′ (projB′(B)) · µVC\(VA′∪VB′ )(A ./ B).

Since VB′	A′ ⊆ VB′ \ VA′ and VC	{A′,B′} ⊆ VC \ (VA′ ∪ VB′), by Lemma 4.4(a),

µVB′\VA′ (projB′(B)) ≤ µB′	A′(projB′(B)),

µVC\(VA′∪VB′ )(A ./ B) ≤ µC	{A′,B′}(A ./ B).

Combining these inequalities finishes the proof.

11 Lower Bound for χ̄

In this section we prove Theorem 8.3, our lower bound for χ̄. Recall that `A denote the length of
the longest path in GA, i.e., the number of edges in the largest component of GA.

Theorem 8.3. (restated) For every pattern A and pathset A ∈PA,

χ̄A(A) ≥ ñ(1/6) log(`A)+∆A · δ(A).

To prove Theorem 8.3, first we define an auxiliary function Φ : {patterns} → R. We then prove
two lemmas: χ̄A(A) ≥ ñΦAδ(A) (Lemma 11.2) and ΦA ≥ 1

6 log(`A) + ∆A (Lemma 11.4).

11.1 Definition of ΦA

Definition 11.1. Let Φ : {patterns} → R be the unique minimal function such that the following
hold:

• ΦA = 0 if A is empty, and ΦA = 2 if A is atomic,

• for every non-atomic pattern C = {A,B} and sub-patterns A′ � A and B′ � B,

(†)CA′,B ΦC ≥ ΦA′ + ∆B	A′ + ∆C	{A′,B},

(‡)CA′,B′ ΦC ≥
ΦA′ + ΦB′	A′ + ∆C + ∆C	{A′,B′}

2
.

We refer to (†) and (‡) as the “one-sided” and “balanced” inequalities. Note that since {A,B}
and {B,A} are considered to be the same pattern, we also have the reverse inequalities (†)CB′,A and
(‡)CB′,A′ . For better readability, we write ΦA inline and Φ(A) in superscripts.
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Some brief remarks on this definition:

— Minimality of Φ among functions satisfying these inequalities means that for every non-atomic
pattern C = {A,B}, at least one of the four inequalities (†)CA′,B, (†)CB′,A, (‡)CA′,B′ , (‡)CB′,A′ is
tight (i.e. holds with equality) for some A′ � A and B′ � B.

— Note that Φ is monotone decreasing with respect to sub-patterns, that is, ΦA′ ≤ ΦA for all
A′ � A (by inequalities (†)).

— Φ increases by means of the contribution of ∆’s: if we remove the ∆’s from (†)CA′,B and (‡)CA′,B′
(replacing these inequalities by ΦC ≥ ΦA′ and ΦC ≥ 1

2(ΦA′ + ΦB′) respectively), then we would
have ΦA = 2 for every nonempty pattern A. Intuitively, in the attempt to lower bound ΦA, the
objective of the game is to pick up as many ∆’s as possible.

— For the patterns Ak and Bk defined in Appendix A, we have ΦAk ≥ ΦAdk/4e + 1 by (†) and
ΦBk ≥ ΦBd(k−1)/2e + 1

2 by (‡) for all k ≥ 4. It follows that ΦAk ≥ 1
2 log k − O(1) and ΦBk ≥

1
2 log k −O(1).

11.2 Showing χ̄A(A) ≥ ñΦAδ(A)

We now prove the most important lemma in the overall proof of Theorem 8.3. Lemma 11.2 accounts
for the definition of ΦA (essentially ΦA is the maximum function for which the argument of Lemma
11.2 is valid). The two cases (†) and (‡) in the proof are inspired by the special cases proved in
Appendix B.

Lemma 11.2. For every pattern A and pathset A ∈PA, χ̄A(A) ≥ ñΦ(A)δ(A).

Proof. We argue by induction on patterns. The base case where A is empty or atomic is trivial.
For the induction step, consider a non-atomic pattern C = {A,B} and assume the lemma holds
for all smaller patterns.

We claim that it suffices to show that

(9) ñΦ(C)δ(A ./ B) ≤ χ̄A(A) + χ̄B(B)

for all A ∈ P small
A , B ∈ P small

B . To see that this suffices, consider any C ∈ PC . By the dual
characterization of pathset complexity, there exists a covering C ⊆

⋃
iAi ./ Bi by joins of small

pathsets Ai and Bi such that χ̄C(C) =
∑

i χ̄A(Ai) + χ̄B(Bi). Note that

δ(C) ≤ δ(
⋃
i

Ai ./ Bi) ≤
∑
i

δ(Ai ./ Bi).

Assuming (9) holds for all Ai and Bi, we have

ñΦ(C)δ(C) ≤
∑
i

ñΦ(C)δ(Ai ./ Bi) ≤
∑
i

χ̄A(Ai) + χ̄B(Bi) = χ̄C(C).

We now turn to proving inequality (9). Fix small pathsets A ∈ P small
A and B ∈ P small

B . Note
that A ./ B ∈ P small

C by Lemma 5.5. Recall that at least one of the four inequalities (†)CA′,B,
(‡)CA′,B′ , (†)CB′,A, (‡)CB′,A′ is tight for some A′ � A and B′ � B. By symmetry of the argument, we
consider only the first two possibilities without loss of generality .
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Case (†) (one-sided induction case): Assume that there exists A′ � A such that (†)CA′,B is
tight, that is,

(10) ΦC = ΦA′ + ∆B	A′ + ∆C	{A′,B}.

By Lemma 10.9, we have

δ(A ./ B) ≤ πA′(A) · µB	A′(B) · µC	{A′,B}(A ./ B).

Since B is B-small and A ./ B is C-small, we have

µB	A′(B) ≤ ñ−∆(B	A′) and µC	{A′,B}(A ./ B) ≤ ñ−∆(C	{A′,B}).

Combining these inequalities (and substituting δ(projA′(A)) for πA′(A)), we have

(11) δ(A ./ B) ≤ ñ−∆(B	A′)−∆(C	{A′,B})δ(projA′(A)).

Using the fact that χ̄ decreases under projections, together with the induction hypothesis, we have

ñΦ(C)δ(A ./ B) = ñΦ(A′)+∆(B	A′)+∆(C	{A′,B})δ(A ./ B) (by (10))

≤ ñΦ(A′)δ(projA′(A)) (by (11))
≤ χ̄A′(projA′(A)) (ind. hyp.)
≤ χ̄A(A) (Lemma 10.2).

Therefore, (9) holds in this case.

Case (‡) (balanced induction case): Assume that there exist A′ � A and B′ � B such that
(‡)CA′,B′ is tight, that is,

(12) ΦC =
ΦA′ + ΦB′	A′ + ∆C + ∆C	{A′,B′}

2
.

By Lemma 10.9, we have

δ(A ./ B) ≤ πA′(A) · µB′	A′(projB′(B)) · µC	{A′,B′}(A ./ B).

By definition of µB′	A′ , there exists z ∈ [n]VB′\VB′	A′ such that

µB′	A′(projB′(B)) = δ(projB′(B)|zB′	A′).

C-smallness of A ./ B implies both

δ(A ./ B) ≤ ñ−∆(C) and µC	{A′,B′}(A ./ B) ≤ ñ−∆(C	{A′,B′}).

Taking square roots and combining these inequalities, we have

(13) δ(A ./ B) ≤
√
ñ−∆(C)−∆(C	{A′,B′}) · πA′(A) · δ(projB′(B)|zB′	A′).
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Using the fact that χ̄ decreases under projections and restrictions (Lemmas 10.2 and 10.4),
together with the induction hypothesis, we have

ñΦ(A′)πA′(A) = ñΦ(A′)δ(projA′(A)) ≤ χ̄A′(projA′(A)) (ind. hyp.)(14)
≤ χ̄A(A) (Lemma 10.2)

and also

ñΦ(B′	A′)δ(projB′(B)|zB′	A′) ≤ χ̄B′	A′(projB′(B)|zB′	A′) (ind. hyp.)(15)
≤ χ̄B′(projB′(B)) (Lemma 10.4)
≤ χ̄B(B) (Lemma 10.2).

We now finish the proof using the inequality of arithmetic and geometric means (AM-GM
inequality):

ñΦ(C)δ(A ./ B) =
√
ñΦ(A′)+Φ(B′	A′)+∆(C)+∆(C	{A′,B′}) · δ(A ./ B) (by (12))

≤
√
ñΦ(A′)+Φ(B′	A′) · πA′(A) · δ(projB′(B)|zB′	A′) (by (13))

≤ 1
2

(
ñΦ(A′)πA′(A) + ñΦ(B′	A′)δ(projB′(B)|zB′	A′)

)
(AM-GM ineq.)

≤ 1
2

(
χ̄A(A) + χ̄B(B)

)
(by (14), (15)).

Therefore, (9) holds in this case also, which concludes the proof.

11.3 Showing ΦA ≥ 1
6

log(`A) + ∆A

We now complete the proof of Theorem 8.3 by proving Lemma 11.4 (ΦA ≥ 1
6 log(`A) + ∆A for all

patterns A). We require one preliminary lemma.

Lemma 11.3. For every pattern A and A-respecting S ⊆ Vk, we have ΦA ≥ ΦA�S + ∆A�S.

Proof. We argue by induction on patterns. The lemma is trivial when A is empty or atomic. For
the induction step, consider any non-atomic pattern C = {A,B} and assume the lemma holds for
all smaller patterns. Let S be any C-respecting subset of Vk.

Noting that C�S = {A�S,B�S} and every sub-pattern of A�S has the form A′�S where A′ � A
(and similarly for B�S), it follows that that at least one the four inequalities

(†)C�S
A′�S,B�S , (‡)C�S

A′�S,B′�S , (†)C�S
B′�S,A�S , (‡)C�S

B′�S,A′�S

is tight for some A′ � A and B′ � B. Once again, without loss of generality, we consider just the
first two possibilities.

First, consider the case that there exists A′ � A for which (†)C�S
A′�S,B�S is tight, that is,

(16) ΦC�S = ΦA′�S + ∆(B	A′)�S + ∆(C	{A′,B})�S .
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In this case, we have

ΦC ≥ ΦA′ + ∆B	A′ + ∆C	{A′,B} (by (†)CA′,B)

≥ ΦA′ + ∆B	A′ + ∆C	{A′,B}

+∆C�S −∆A′�S −∆(B	A′)�S −∆(C	{A′,B})�S (Lemma 10.8)
= ΦA′ −∆A′�S + ∆B	A′�S + ∆C	{A′,B}�S + ∆C�S

≥ ΦA′�S + ∆B	A′�S + ∆C	{A′,B}�S + ∆C�S (ind. hyp.)
≥ ΦC�S + ∆C�S (by (16)).

Finally, consider the alternative that there exist A′ � A and B′ � B for which (‡)C�S
A′�S,B′�S is

tight, that is,

(17) ΦC�S =
ΦA′�S + Φ(B′	A′)�S + ∆C�S + ∆(C	{A′,B′})�S

2
.

In this case, we have

ΦC ≥ 1
2

(
ΦA′ + ΦB′	A′ + ∆C + ∆C	{A′,B′}

)
(by (‡)CA′,B′)

≥ 1
2

(
ΦA′ + ΦB′	A′ + (∆C�S + ∆C�S) + ∆C	{A′,B′}

)
+

1
2

(
∆C�S −∆A′�S −∆(B′	A′)�S −∆(C	{A′,B′})�S

)
(Lemma 10.8)

= 1
2

(
ΦA′ −∆A′�S + ΦB′	A′ −∆(B′	A′)�S + ∆C�S + ∆(C	{A′,B′})�S

)
+ ∆C�S

≥ 1
2

(
ΦA′�S + Φ(B′	A′)�S + ∆C�S + ∆(C	{A′,B′})�S

)
+ ∆C�S (ind. hyp.)

≥ ΦC�S + ∆C�S (by (17)).

Having shown ΦC ≥ ΦC�S + ∆C�S in both cases, we are done.

Lemma 11.4. For every pattern A, ΦA ≥ 1
6 log(`A) + ∆A.

Proof. We argue by induction on patterns. The base case where A is empty or atomic is trivial.
For the induction step, let A be a non-atomic pattern and assume the lemma holds for all smaller
patterns. We will consider a sequence of cases. In each case, after showing that ΦA ≥ 1

6 log(`A)+∆A

under a given hypothesis, we will proceed assuming the negation of that hypothesis. The sequences
of cases is summarized at the end of the proof.

First, consider the case that GA is disconnected (i.e. ∆A ≥ 2). Let S be the largest component
of GA. We have

ΦA ≥ ΦA�S + ∆A�S (Lemma 11.3)
≥ 1

6 log(`A�S) + ∆A�S + ∆A�S (ind. hyp.)
= 1

6 log(`A) + ∆A.

This proves the lemma in the case where GA is disconnected.
Therefore, we proceed under the assumption that GA is connected (i.e. ∆A = 1). Without loss

of generality, we assume that GA = Pk (i.e. `A = k). Our goal is to show that

ΦA ≥ 1
6 log(k) + 1.
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Since ΦA ≥ 2 for all nonempty patterns, we may further assume that k > 26. (Below, we will only
need the assumption that k > 8.)

Consider the case that there exists a sub-pattern A′ � A such that |EA′ | ≥ k/8 and ∆A′ ≥ 2.
Note that `A′ ≥ |EA′ |/∆A′ (i.e. the number of edges in the largest component of GA′ is at least the
number of edges in GA′ divided by the number of components in GA′). We have

ΦA ≥ ΦA′ ≥ 1
6 log(`A′) + ∆A′ (ind. hyp.)

≥ 1
6 log(k)− 1

2 −
1
6 log(∆A′) + ∆A′ (`A′ ≥ |EA′ |/∆A′ ≥ k/8∆A′)

≥ 1
6 log(k)− 1

2 −
1
6 log(2) + 2 (∆A′ ≥ 2)

= 1
6 log(k) + 4

3

> 1
6 log(k) + 1.

This proves the lemma in this case.
Therefore, we proceed under the following assumption:

(>) for all A′ � A, if |EA′ | ≥ k/8 then ∆A′ = 1.

Going forward, the following notation will be convenient: for a proper sub-pattern B ≺ A, let B↑

denote the parent of B in A, and let B∼ denote the sibling of B in A. Note that B↑ = {B,B∼} � A.
It is easy to see that there exist proper sub-patterns B,Z ≺ A such that

v0 ∈ VB, vk ∈ VZ , |EB|, |EZ | < k/8, |EB↑ |, |EZ↑ | ≥ k/8.

Fix any choice of such B and Z. Note that GB↑ and GZ↑ are connected by (>). In particular,
GB↑ is a path of length |EB↑ | with initial endpoint v0, and GZ↑ is a path of length |EZ↑ | with final
endpoint vk.

Consider the case that `B↑ < k/2 and `Z↑ < k/2. Note that VB↑ and VZ↑ are disjoint and hence
Z↑ 	B↑ = Z↑. Let Y denote the least common ancestor of B↑ and Z↑ in A. We have

ΦA ≥ ΦY ≥ 1
2

(
ΦB↑ + ΦZ↑	B↑ + ∆Y + ∆Y	{B↑,Z↑}

)
(by (‡)YB↑,Z↑)

= 1
2

(
ΦB↑ + ΦZ↑

)
+ 1

2 (∆Y ≥ 1)
≥ 1

2

(
1
6 log(`B↑) + ∆B↑ + 1

6 log(`Z↑) + ∆Z↑
)

+ 1
2 (ind. hyp.)

≥ 1
6 log(k/8) + 3

2

= 1
6 log(k) + 1.

(We remark that this is the only place in the proof where the inequality (‡) is used and the only
tight case which forces 1/6.)

Therefore, we proceed under the assumption that `B↑ ≥ k/2 or `Z↑ ≥ k/2. Without loss of
generality, we assume that `B↑ ≥ k/2. (We now forget about Z and Z↑.)

Before continuing, let’s take stock of the assumptions we have made so far:

GA = Pk, (>), B � A, v0 ∈ VB, |EB| < k/8, |EB↑ | = `B↑ ≥ k/2.

Going forward, we will define vertices vr, vs, vt where 0 < r < s < t ≤ k.
We first define vr ∈ B and vt ∈ B∼ as follows: Let {v0, . . . , vr} be the component of GB

containing v0. (That is, the component of v0 in GB is a path whose initial vertex is v0; let vr be

39



the final vertex in this path.) Let vt be the vertex in VB∼ with maximal index t (i.e. furthest away
from v0).

Note that EB contains edges vivi+1 for all i ∈ {0, . . . , r − 1} ∪ {t, . . . , dk/2e − 1}. (In the
event that t < k/2, since GB↑ = GB ∪ GB∼ is a path of length ≥ k/2 and GB∼ does not contain
vertices vt+1, . . . , vdk/2e, it follows that GB contains all edges between vt and vdk/2e.) Therefore,
r + (k/2)− t ≤ |EB| < k/8. It follows that

t− r > 3k/8.

Next, note that |EB∼ | ≥ |EB↑ | − |EB| ≥ (k/2) − (k/8) > k/8. It follows that there exists a
proper sub-pattern C ≺ B∼ such that

vt ∈ VC , |EC | < k/8, |EC↑ | ≥ k/8.

Fix any choice of such C.
Consider the case that `C↑ < 3k/8. Since GC↑ is connected (by (>)) and vt ∈ VC↑ and t− r >

3k/8, it follows that VC↑ ∩ {v0, . . . , vr} = ∅ and hence ∆B	C↑ ≥ 1. We have

ΦA ≥ ΦB↑ ≥ ΦC↑ + ∆B	C↑ + ∆B↑	{B,C↑} (by (†)B↑C↑,B)

≥ ΦC↑ + 1
≥ 1

6 log(`C↑) + ∆C↑ + 1 (ind. hyp.)
≥ 1

6 log(k/8) + 2
> 1

6 log(k) + 1.

Therefore, we proceed under the assumption that `C↑ ≥ 3k/8. Since EC↑ = EC ∪EC∼ , we have

|EC∼ | ≥ |EC↑ | − |EC | > (3k/8)− (k/8) = k/4.

We now define vertex vs ∈ VC . Since vt is the vertex of GB∼ with maximal index, it follows that
vtvt+1 /∈ EB∼ and hence vtvt+1 /∈ EC (since C ≺ B∼). Therefore, the component of GC containing
vt is a path with final vertex vt; let vs be the initial vertex in this path. That is, {vs, . . . , vt} is the
component of GC which contains vt.

Recall that t− r > 3k/8 and note that t− s ≤ |EC | < k/8. Therefore,

s− r = (t− r)− (t− s) > (3k/8)− (k/8) = k/4.

We now claim that there exists a proper sub-pattern D ≺ C∼ such that

k/8 ≤ |ED| < k/4.

To see this, note that there exists a chain of sub-patterns C∼ = D0 � D1 � · · · � Dj such that Dj

is atomic and Di = D↑i−1 and |EDi | ≥ |ED∼i | for all i ∈ {1, . . . , j}. Since |ED0 | > k/4 and |EDj | = 1
and |EDi−1 | = |EDi |+ |ED∼i | ≤ 2|EDi |, it must be the case that there exists i ∈ {1, . . . , j} such that
k/8 ≤ |EDi | < k/4.

Since |ED| ≥ k/8, (>) implies that GD is connected. Since |ED| < k/4 and s − r > k/4, it
follows that VD cannot contain both vr and vs. We are now down to our final two cases: either
vr /∈ VD or vs /∈ VD.
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First, suppose that vr /∈ VD. We have ∆B	D ≥ 1 and hence

ΦA ≥ ΦB↑ ≥ ΦD + ∆B	D + ∆B↑	{B,D} (by (†)B↑D,B)

≥ ΦD + 1
≥ 1

6 log(`D) + ∆D + 1 (ind. hyp.)
≥ 1

6 log(k/8) + 2
> 1

6 log(k) + 1.

Finally, we are left with the alternative that vs /∈ VD. In this case ∆C	D ≥ 1 and hence (substituting
C for B in the above), we have

ΦA ≥ ΦC↑ ≥ ΦD + ∆C	D + ∆C↑	{C,D} ≥ ΦD + 1 > 1
6 log(k) + 1.

We have now covered all cases. In summary, we considered cases in the following sequence:

1. ∆A ≥ 2 else assume wlog GA = Pk,

2. ∃A′ ≺ A with ∆A′ ≥ 2 and `A′ ≥ k/8 else assume (>),

3. |EB↑ | < k/2 and |EZ↑ | < k/2 else assume wlog |EB↑ | ≥ k/2,

4. |EC↑ | < 3k/8 else assume |EC↑ | ≥ 3k/8,

5. vr /∈ ED or vs /∈ ED.

Since ΦA ≥ 1
6 log(`A) + ∆A in each case, the proof is complete.

As we have now proved Lemmas 11.2 and 11.4, this completes the proof of Theorem 8.3 and
hence also of Theorem 2.1.

12 Conclusion

We proved the first super-polynomial separation in the power of bounded-depth boolean formulas
vs. circuits via technique based on the notion of pathset complexity. The most obvious question
for future research is whether pathset complexity can be used to derive lower bounds for distance
k(n) connectivity in other models of computation.

We conclude with a comment extending our results to the average-case setting. Let p(n) =
Θ(n−

k+1
k ) be the exact threshold function such that

P
G=G(n,p)

[G ∈ STCONN(k(n)) ] =
1
2

where G(n, p) is the Erdős-Rényi random graph with edge probability p(n). Our proof of Theorem
2.1 is easily adapted to give the same n(1/6) log k−O(1) lower bound for bounded-depth formulas F
which satisfy

P
G=G(n,p)

[F (G) = 1 ⇐⇒ G ∈ STCONN(k(n)) ] ≥ 1
2

+ ε
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for any constant ε > 0. Using the idea behind Proposition 5.11, we can construct formulas F of size
n(1/2) log k+O(1) (the best worst-case upper bound I know of is size nlog k+O(1)) and depth O(log k)
which solve STCONN(k(n)) in a strong average-case sense:

P
G=G(n,p)

[F (G) = 1 ⇐⇒ G ∈ STCONN(k(n)) ] ≥ 1− exp(−nΩ(1)).

It would be interesting to close the gap between 1
6 log k and 1

2 log k in these bounds.
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A Key Examples

We introduce two key examples of patterns, denoted Ak and Bk, and present upper bounds for
χ̄ with respect to these patterns. In the next section, we prove lower bounds for two classes of
patterns which generalize Ak and Bk. The arguments in these special cases show up in the two
cases (†) and (‡) of our main lower bound (Theorem 8.3).

Notation A.1. Recall Notation 5.12 for s-shifted pattern graphs G.s and pathsets A.s. For a
pattern A and integer s, we define the s-shifted pattern A.s analogously by replacing each label
vivi+1 with the label vi+svi+s+1.

Definition A.2 (Patterns Ak and Bk). We define patterns Ak and Bk for all k ≥ 1 by the following
induction. Let A1 = B1 := the atomic pattern labeled by v0v1. For k ≥ 2, let Ak := {Aj , A

.j
k−j}

where j = dk/2e, and let Bk := {Bk−1, B
.1
k−1}. For example, the explicit pictures of A8 and B4 are:

A8

v0v1 v1v2 v2v3 v3v4 v4v5 v5v6 v6v7 v7v8

B4

v0v1 v1v2 v1v2 v2v3 v1v2 v2v3 v2v3 v3v4

Intuitively, the patternAk corresponds to the recursive doubling algorithm for DISTCONN(k, n).
Note that we have essentially already encountered this pattern in the proof of Proposition 5.11 (our
upper bound for χPk). In fact, this proof shows:

Corollary A.3. For all A ∈PAk , χ̄Ak(A) ≤ O(kn(1/2)dlog ke+2).

The pattern Bk has a different nature than Ak. Whereas sub-patterns Aj and A.jk−j of Ak
overlap at only a single vertex vj , sub-patterns Bk−1 and B.1

k−1 of Bk overlap to the maximum
possible extent. Despite this difference, it turns out that there is also a reasonable upper bound
for χ̄Bk .

Proposition A.4. For all B ∈PBk , χ̄Bk(B) ≤ 2knln(k+1)+1.

Proof. We present a similar argument to the proof of Proposition 5.11. For all k ≥ 1, define
Bk ∈PBk by

Bk := {x ∈ [n]Vk : x0, . . . , xk ≤ n1−1/(k+1)}.

We have Bk−1 ./ B.1k−1 = {x ∈ [n]Vk : x0, . . . , xk ≤ n1−1/k}. For all 1 ≤ t0, . . . , tk ≤ n1/k(k+1), let

Copyt0,...,tk(Bk−1 ./ B.1k−1) :=
{
x ∈ [n]Vk : ti − 1 <

xi

n1−1/k
≤ ti for all 0 ≤ i ≤ k

}
.

Note that
Bk =

⋃
1≤t0,...,tk≤n1/k(k+1)

Copyt0,...,tk(Bk−1 ./ B.1k−1).

Using (sub-additivity) and (join rule), together with the invariance of χ̄ under coordinate-wise
permutations of [n] and under shifts, we have

χ̄Bk(Bk) ≤ 2n1/kχ̄Bk−1
(Bk−1).
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This recurrence, together with the base case χ̄B1(B1) = n, implies

χ̄Bk(Bk) ≤ 2k−1n1+(1/2)+···+(1/k) ≤ 2knln(k+1).

Noting that [n]Vk is covered by n copies of Bk, we have χ̄Bk([n]Vk) ≤ 2knln(k+1)+1. The proposition
then follows using (monotonicity).

In Appendix B we prove matching lower bounds for χ̄Ak and χ̄Bk . In fact, these lower bounds
apply to two classes of patterns which include Ak and Bk. While the upper bounds for χ̄Ak and χ̄Bk
are quite similar, our lower bound arguments are significantly different. The arguments in these
two special cases—a “one-sided” induction for χ̄Ak and a “balanced” induction using the AM-GM
inequality for χ̄Bk—show up in the two cases (†) and (‡) of our general lower bound (Theorem 8.3).
For this reason, the reader might find the results in Appendix B to be a helpful warm-up.

Remark A.5. The pathsets Ak and Bk which show up in the proofs of our upper bounds are of a
particularly simple form: they are rectangular subsets of [n]Vk . In Appendix C we discuss a notion
of rectangular pathset complexity χ̄rect. Proving lower bounds for χ̄rect turns our to be much easier
than for χ̄. We present an example (the “palindrome pathset”) which illustrates the difficulty in
attempting to generalize this easier lower bound to the non-rectangular setting.

B Lower Bound for χ̄: Special Cases

We prove easier special cases of our lower bound for χ̄ with respect to two classes of patterns which
include the key examples Ak and Bk introduced in §A. Although the results of this appendix are
not used in the main body of the paper, the arguments in the proof show up in the two cases (†)
and (‡) of our general lower bound.

Definition B.1.

(i) For a pattern A,

— let Ends(A) ⊆ VA denote the set of endpoints in GA (i.e. vertices of in-degree or out-degree
zero), and let Interior(A) := VA \ Ends(A) denote the set of interior vertices in GA,

— let I(A) denote the set of intervals in GA (i.e. subsets of VA which are connected in GA).

Note that `A = max
I∈I(A)

|A| − 1 and ∆A = |Ends(A)| / 2.

(ii) The classes of end-joining and fully connected patterns are defined as follows:

— A is end-joining if no edge of Pk labels more than one leaf of A (equivalently, EA1∩EA2 = ∅
for all non-atomic sub-patterns {A1, A2} � A),

— A is fully connected if GA′ is connected (i.e. ∆A′ = 1) for all sub-patterns A′ � A.

Note that patterns Ak and Bk are both fully connected, while only Ak is end-joining (for
k ≥ 3).

(iii) Functions ψA, ξA : PA → R are defined as follows:
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— for end-joining patterns A,

ψA(A) := ñ
1
2

(
log(`A)+∆A

)√
Ez∈[n]Ends(A)

[
δ(A|zInterior(A))

2
]
,

— for fully connected patterns A,

ξA(A) := max
I∈I(A)

ñ
1
4

(
log(|I|+1)+|I∩Ends(A)|

)
· πI(A).

For non-end-joining patterns A, we set ψA(A) := 0, and for non-fully connected patterns A,
we set ξA(A) := 0.

Proposition B.2. Both ψ and ξ are lower bounds on pathset complexity. That is, for every pattern
A and pathset A ∈PA, we have ψA(A) ≤ χ̄A(A) and ξA(A) ≤ χ̄A(A). In particular,

χ̄Ak([n]Vk) ≥ ψAk([n]Vk) ≥ ñ
1
2

(log(k)+1) ≥ n
1
2

log k,

χ̄Bk([n]Vk) ≥ ξBk([n]Vk) ≥ ñ
1
4

(log(k+1)+2) ≥ n
1
4

log k.

Recall from Remark 8.4 the dual characterization of χ̄ as the unique coordinate-wise maximal
function from pairs (A,A) to R which satisfies inequalities (base case), (monotone), (sub-additive)
and (join rule). It is easy to see that ψ and ξ satisfy the first three of these inequalities. To prove
Proposition B.2, it suffices to show that ψ and ξ also satisfy inequality (join rule). We begin with
ψ.

Lemma B.3. For every non-atomic end-joining pattern C = {A,B} and small pathsets A ∈P small
A

and B ∈P small
B ,

ψC(A ./ B) ≤ max{ψA(A), ψB(B)}.

Proof. Without loss of generality, assume that `A ≥ `B. After making three observations, will show
that ψC(A ./ B) ≤ ψA(A).

First, note that each connected component of GC (= GA ∪GB) is the union of at most ∆A +
∆B −∆C + 1 components of GA and GB. It follows that `C ≤ (∆A + ∆B −∆C + 1) · `A.

Since C is end-joining, Ends(C) is the symmetric difference of Ends(A) and Ends(B). By the
Cauchy-Schwartz inequality,

E
c∈[n]Ends(C)

[
δ((A ./ B)|cInterior(C))

2
]

= E
x∈[n]Ends(A)\Ends(B)

y∈[n]Ends(B)\Ends(A)

[ (
E

z∈[n]Ends(A)∩Ends(B)

[
δ(A|xzInterior(A)) · δ(B|

yz
Interior(B))

])2 ]
≤ E

x∈[n]Ends(A)\Ends(B)

z∈[n]Ends(A)∩Ends(B)

[
δ(A|xzInterior(A))

2
]

E
y∈[n]Ends(B)\Ends(A)

z∈[n]Ends(A)∩Ends(B)

[
δ(B|yzInterior(B))

2
]

= E
a∈[n]Ends(A)

[
δ(A|aInterior(A))

2
]

E
b∈[n]Ends(B)

[
δ(B|bInterior(B))

2
]
.

We next note that B-smallness of B implies

E
b∈[n]Ends(B)

[
δ(B|bInterior(B))

2
]
≤ E

b∈[n]Ends(B)

[
δ(B|bInterior(B))

]
= δ(B) ≤ ñ−∆B .
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Putting these inequalities together, we have

ψC(A ./ B) = ñ
1
2

(
log(`C)+∆C

)√
Ec∈[n]Ends(C)

[
δ(A ./ B|cInterior(C))

2
]

≤ ñ
1
2

(
log(`A)+log(∆A+∆B−∆C+1)+∆C−∆B

)√
Ea∈[n]Ends(A)

[
δ(A|aInterior(A))

2
]

= ñ
1
2

(
log(∆A+∆B−∆C+1)+∆C−∆B−∆A

)
· ψA(A)

≤ ψA(A)

using the fact that log(s+1) ≤ s for every integer s ≥ 0. We get ψC(A ./ B) ≤ max{ψA(A), ψB(B)}
as required.

We next show that ξ satisfies inequality (join rule).

Lemma B.4. For every non-atomic fully connected pattern C = {A,B} and small pathsets A ∈
P small
A and B ∈P small

B ,

ξC(A ./ B) ≤ ξA(A) + ξB(B)
2

.

Proof. Fix I ∈ I(A) such that

ξC(A ./ B) = ñ
1
4

(
log(|I|+1)+|I∩Ends(C)|

)
πI(A ./ B).

We consider various cases depending on |I∩Ends(C)| ∈ {0, 1, 2}. The most important case is where
|I ∩Ends(C)| = 2 (i.e. I contains both endpoints of GC). Because GC is connected, this means that
I = VC (= VA ∪ VB) and hence πI(A ./ B) = δ(A ./ B).

Within this case, the most important sub-case is where |EA|, |EB| ≥ 1
2 |EC |. In this sub-case,

we argue as follows. Without loss of generality, VC = {v0, . . . , vk} (i.e. GC is the path Pk) and
v0 ∈ VA and vk ∈ VB. Let j = bk−1

2 c and J = {v0, . . . , vj} and K = {vk−j , . . . , vk} and note that
J ∈ I(A) and K ∈ I(B). Since v0 ∈ J ∩ Ends(A) and vk ∈ K ∩ Ends(B), we have

(18) log(k + 2) ≤ log(|J |+ 1) + |J ∩ Ends(A)| and log(k + 2) ≤ log(|K|+ 1) + |K ∩ Ends(B)|.

Next, observe that δ(A ./ B) ≤ ñ−1 by C-smallness of A ./ B. We also have the bound
δ(A ./ B) ≤ πJ(A) ·πK(B) (since J ∩K = ∅). Taking the geometric mean of these two inequalities,
we have

δ(A ./ B) ≤ ñ−1/2
√
πJ(A) · πK(B).

Putting these pieces together, we have

ξC(A ./ B) = ñ
1
4

(
log(k+2)+2

)
δ(A ./ B)

≤ ñ
1
4

log(k+2)
√
πJ(A) · πK(B)

≤ 1
2

(
ñ

1
4

log(k+2)πJ(A) + ñ
1
4

log(k+2)πK(B)
)

(AM-GM ineq.)

≤ 1
2

(
ñ

1
4

(
log(|J |+1)+|J∩Ends(A)|

)
πJ(A) + ñ

1
4

(
log(|K|+1)+|K∩Ends(B)|

)
πK(B)

)
(by (18))

≤ 1
2

(
ξA(A) + ξB(B)

)
(ind. hyp.)
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In all other cases (i.e. when |I ∩ Ends(C)| < 2 or min{|EA|, |EB|} < |EC |/2), the inequality is
proved by finding J ∈ I(A) or K ∈ I(B) such that |I ∩Ends(C)| < |J ∩Ends(A)| or |K ∈ Ends(B)|.
We omit the analysis of these cases, since the arguments are not relevant to our main pathset
complexity lower bound.

Having shown that ψ and ξ both satisfying (join rule), the proof of Proposition B.2 is complete.
Combining our upper and lower bounds for χ̄Ak and χ̄Bk (Corollary A.3 and Propositions A.4 and
B.2), we have

Corollary B.5. With respect to patterns Ak and Bk, the pathset complexity of the complete Pk-
pathset [n]Vk has the following bounds:

n
1
2

log k−O(1) ≤ χ̄Ak([n]Vk) ≤ kn
1
2

log k+O(1),

n
1
4

log k−O(1) ≤ χ̄Bk([n]Vk) ≤ 2knln k+O(1).

Since ΦBk = 1
2 log k − O(1) (as noted in §11.1), Theorem 8.3 gives the stronger lower bound

χ̄Bk([n]Vk) ≥ ñ(1/2) log k−O(1) = n(1/2) log k−O(1). Even after extensively studying this special case,
we were unable to narrow the gap between 1

2 log k and ln k (≈ 0.69 log k) in the exponent of n in
χ̄Bk([n]Vk).

C Rectangular Pathsets

A set X ⊆ [n]V is rectangular if there exist sets Si ⊆ [n], i ∈ V , such that X = {x ∈ [n]V : xi ∈ Si for
all i ∈ V }. For a pattern graphG, let RG = {A ∈PG : A is rectangular} and Rsmall

G = RG∩P small
G .

For A ∈ RG, we define rectangular pathset complexity χ̄rect
G (A) exactly like pathset complexity

χ̄G(A) (Definition 5.6) except with RG and Rsmall
G replacing PG and P small

G . Analogously, we
define χ̄rect

A (A) for patterns A. Note that χ̄A(A) ≤ χ̄rect
A (A) for all A ∈ RA.

Remark C.1. I venture to guess that χ̄A(A) = χ̄rect
A (A) for all A ∈ RA, but have no idea how to

prove this.

We have remarked that our upper bounds on χ̄Ak and χ̄Bk (Corollary A.3 and Proposition A.4)
involved only rectangular pathsets. It follows that the same upper bounds apply to χ̄rect

Ak
and χ̄rect

Bk
.

As for lower bounds on χ̄rect, this turns out to be significantly easier than our lower bound for
χ̄. Similar to our lower bound for fully connected patterns in Appendix B, we can lower bound
χ̄rect
G (A) for all A ∈ RG in terms of the projection densities πS(A) where S ∈ I(G) via a function

similar to ψ.
A key difference when it comes rectangular pathsets is that πS = µS (projection density =

maximum restriction density) and hence smallness of rectangular pathsets is preserved under pro-
jections to a union of components (cp. Remark 10.6). This fact turns out to greatly simplify the
task of proving a lower bound for χ̄rect.

The next example shows that projections of non-rectangular pathsets can be tricky. This
illustrates the difficulty in generalizing the lower bound for χ̄rect to the non-rectangular setting.

Example C.2. For k ≥ 1, let Pal2k ∈PP2k
be the “palindrome pathset”

Pal2k =
{
x ∈ [n]0,...,2k : xk−i = xk+i for all 0 ≤ i ≤ k

}
.
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The palindrome pathset Pal2k has low density, while having the maximum projection over
vertices v0, . . . , vk:

δ(Pal2k) = n−k and π{v0,...,vk}(Pal2k) = 1.

It turns out that Pal2k is inexpensive to construct, given the right pattern. Let M2k be the pattern

M2k

...

vk−1vk vkvk+1 vk−2vk−1 vk+1vk+2

vk−3vk−2 vk+2vk+3

v0v1 v2k−1v2k

It is easy to show that
χ̄M2k

(Pal2k) ≤ O(kn2).

On the other hand, for any fully connected pattern C with graph P2k (such as A2k or B2k), the
lower bound of Appendix B implies

ξC(Pal2k) ≥ ξC(Pal2k) ≥ ñ
1
4

(
log(|{v0,...,vk}|+1)+|{v0,...,vk}∩Ends(A)|

)
· π{v0,...,vk}(A) = nΩ(log k).
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