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Abstract

We introduce a new concept, which we call partition expanders. The basic idea is
to study quantitative properties of graphs in a slightly different way than it is in the
standard definition of expanders. While in the definition of expanders it is required that
the number of edges between any pair of sufficiently large sets is close to the expected
number, we consider partitions and require this condition only for most of the pairs of
blocks. As a result, the blocks can be substantially smaller.

We show that for some range of parameters, to be a partition expander a random
graph needs exponentially smaller degree than any expander would require in order to
achieve similar expanding properties.

We apply the concept of partition expanders in communication complexity. First,
we give a PRG for the SMP model of the optimal seed length, n + O(log k). Second, we
compare the model of SMP to that of Simultaneous Two-Way Communication, and give a
new separation that is stronger both qualitatively and quantitatively than the previously
known ones.

1 Introduction

Expanders are a very interesting and useful concept and appear in many applications in
computer science. Therefore several related concepts have been introduced; e.g., lossless ex-
panders [CRVW02], monotone expanders and dimension expanders [DW10], superexpanders
[MN13].

In this paper we introduce yet another concept that we call partition expanders. The def-
inition is motivated by the following observation. The well-known Expander-Mixing Lemma
says, roughly speaking, that for every two sufficiently big sets of vertices A and B the number
of edges of the expander between A and B is close to d

n · |A| · |B|, where n is the number
of vertices and d is the degree. If we want to apply this lemma to smaller sets, we have to
increase the degree of expanders appropriately.

Now suppose we have a partition of the vertices of the graph and we only want to satisfy
the density condition for most of the pairs of sets. It turns out that a random graph with rel-
atively small degree is able to satisfy this condition for partitions with many blocks, although
the Expander-Mixing Lemma is not able to give any interesting estimate. So while expanders
are graphs with “typical connectivity” with respect to subsets of vertices, partition expanders
have “typical connectivity” with respect to partitions of vertices. Informally speaking, in the
context of expanders, partitions are “more structured” objects than subsets, and therefore

∗Institute of Mathematics, Academy of Sciences, Žitna 25, Praha 1, Czech Republic. Partially funded by
the grant P202/12/G061 of GA ČR and by RVO: 67985840.
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demanding the same “expanding performance” with respect to partitions can be viewed as a
relaxation of usual expanders. In return, we expect partition expanders to have considerably
smaller degree than usual expanders with the same expanding performance.

There are several possible ways to formally define a partition expander. We choose the
following definition as “canonical” due to its brevity and robustness. We will give alternative
definitions shortly.

Definition 1 (Partition expanders). Let G = (V,E) be an (undirected) graph. Let µ be the
uniform distribution over V × V , and let µG be the uniform distribution over E. For any
coloring c : V → [K], let νc and νc

G be the distributions of the pair (c(v1), c(v2)) when (v1, v2)
is chosen according to µ or µG, respectively.

For K ∈ N and δ ∈ (0, 1), we say that G is a (K, δ)-partition expander if for every coloring
c : V → [K] the statistical distance between νc and νc

G is at most δ.

It should be noted that this concept is interesting in the situations where the number K
of partitions is increasing with the number of vertices and the graphs are d-regular with d
increasing. We are mainly interested in the question of how small d can be for a given K,
assuming 0 < δ < 1 is a fixed constant.

1.1 Our results

We start by giving several equivalent definitions of partition expanders, which emphasize the
fact that they are a natural modification of usual expanders.

In Section 3 we analyze the behavior of random graphs as partition expanders. We prove
that random d-regular graphs almost always are good partition expanders – the dependence
of K on d is the best possible, namely exponential.

In Section 4 the notion of partition expanders is advocated through comparing it to
expanders. We show that the gap between the absolute values of the first two eigenvalues
does not ensure that the graph is a good partition expander. Namely, if only the spectral
gap is taken into account when a partition expander is constructed, then the degree has to
be exponentially larger than an optimal partition expander requires. Since the spectral gap
characterizes almost tightly the expander properties of a graph, this demonstrates exponential
advantage of partition expanders (in those scenarios when they are suitable) over expanders.
In other words, if “partition expansion” is the desired behavior, then using an expander
instead of an optimal partition expander would incur exponential loss in terms of the required
degree.

Based on the spectral properties only, we use the Hoffman-Wielandt inequality and get
a slightly better bound than what would follow from a direct application of the Expander-
Mixing Lemma.1 The fact that the spectral gap is incapable to characterize good partition
expanders partially explains why new methods are required for their construction.

In Section 5 we present another equivalent definition of partition expanders. We show that
a graph G = (V,E) is a partition expander if and only if the uniform distribution over E is a
Pseudo-Random Generator (PRG) in the setting of Simultaneous Message Passing (SMP) in
communication complexity. We use this fact to give a lower bound on the degree of partition
expanders, thus showing optimality of the randomized construction given in Section 3.

1We get quadratic improvement in terms of the partition size, and show that it is essentially optimal general
bound in terms of the spectral gap alone.

2



In the second part of Section 5 we show two applications of our randomized construction
of a partition expander. First, we construct a PRG against SMP protocols of communication
cost k that requires seed length n+O(log k) (see Theorem 5.1 and the comment thereafter).2

Second, we compare the model of SMP to that of Simultaneous Two-Way Communication,
and give a new separation that is stronger both qualitatively and quantitatively than the
previously known ones (see Theorem 5.4).

2 Notation and more

Unless stated otherwise, all sets are assumed to be finite, and all graphs are undirected and
simple (having no self loops or multiple edges).3 For two subsets S1, S2 ⊆ V , we denote by
E(S1, S2) the set of ordered pairs (v1, v2) such that (v1, v2) is an edge in E, v1 ∈ S1 and v2 ∈
S2, and write E(v1, v2) for E({v1} , {v2}).4 We will say that a set family σ = {C1, . . . , CK} is
a K-partition of a set X if ∪K

i=1Ci = X and C1, . . . , CK are pairwise disjoint and nonempty.
The statistical distance between two distributions µ1 and µ2 defined over a set X is

dst(µ1, µ2)
def
=

1

2

∑

x∈X

|µ1(x) − µ2(x)| .

Lemma 2.1. Let K ∈ N and δ ∈ R. The following statements are equivalent:

1. G = (V,E) is a (K, δ)-partition expander.

2. For every K-partition σ = {C1, . . . , CK} of V ,

δ ≥ 1

2

∑

i,j∈[K]

∣

∣

∣

∣

|E(Ci, Cj)|
|E| − |Ci| · |Cj|

|V |2
∣

∣

∣

∣

. (1)

3. For every K-partition σ and S ⊆ [K] × [K],

δ ≥
∑

(i,j)∈S

( |E(Ci, Cj)|
|E| − |Ci| · |Cj |

|V |2
)

=

∑

S |E(Ci, Cj)|
|E| −

∑

S |Ci| · |Cj|
|V |2

. (2)

4. Like 3, but only over symmetric S (i.e., (i, j) ∈ S ⇔ (j, i) ∈ S).

Proof. Equivalence between 1 and 2 is immediate from Definition 1. Equivalence between 3
and 4 follows from the fact that G is undirected. To see that 2 is equivalent to 3, note that

∑

i,j∈[K]

( |E(Ci, Cj)|
|E| − |Ci| · |Cj|

|V |2
)

=

∑

[K]×[K] |E(Ci, Cj)|
|E| −

∑

[K]×[K] |Ci| · |Cj|
|V |2

= 0.

�

2All previously known PRGs in communication complexity were given against stronger models, thus re-
quiring exponentially larger “overhead” over n in terms of seed length – for details, see Section 5.

3In those cases when we explicitly allow multiple edges, the edges of a graph will be viewed as a collection
with repetitions.

4Note that if v1, v2 ∈ S1 ∩ S2, then the edge (v1, v2) appears in E(S1, S2) twice: as ordered pairs (v1, v2)
and (v2, v1).
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There are many possible ways to define expanders. The standard definition is based on
the second largest absolute value of an eigenvalue of a graph G, which we will denote by
λ(G).

Definition 2 (Expanders). A regular graph G is an ℓ-expander if λ(G) ≤ ℓ.

We will denote the degree of a regular graph G by d(G), or simply by d when G is clear
from the context.

The most natural relation between expanders and partition expanders comes from the
following well-known fact (e.g., see [AS08]).

Lemma 2.2 (Expander-Mixing Lemma). Let (V,E) be an ℓ-expander. Then for every
S1, S2 ⊆ V ,

∣

∣

∣

∣

|E(S1, S2)|
|E| − |S1| · |S2|

|V |2
∣

∣

∣

∣

≤ ℓ ·
√

|S1| · |S2|
|E| =

ℓ

d
·
√

|S1| · |S2|
|V | .

One can show using this lemma that an ℓ-expander is a (K, δ)-partition expander for
constant δ > 0 and certain K ∈ Θ(d/ℓ) – however, this trivial arguments fails for K ≥ d/ℓ.
In Section 4 we will use the Hoffman-Wielandt inequality to show that an ℓ-expander is a
(K,Ω(1))-partition expander for certain K ∈ Θ

(

(d/ℓ)2
)

, and that will be shown to be optimal
up to the factor of log n.

Theorem 2.3 (Hoffman-Wielandt inequality [HW53]). If A and B are normal matrices with
respective eigenvalues λ1(A), . . . , λn(A) and λ1(B), . . . , λn(B), then

min
π

{

n
∑

i=1

∣

∣λi(A) − λπ(i)(B)
∣

∣

2

}

≤ ‖A − B‖2
F ,

where π runs over all permutations over [n] and ‖ . . . ‖2
F denotes the square of the Frobenius

norm (the sum of squares of the absolute values of the elements).

If A and B are symmetric real matrices, we can drop the absolute value and write the
terms as λi(A)2 + λπ(i)(B)2 − 2λi(A)λπ(i)(B). Since the sum of the squares of eigenvalues of
a matrix is the square of its Frobenius norm, the inequality is equivalent to

∑

i,j

aijbij ≤ max
π

{

n
∑

i=1

λi(A)λπ(i)(B)

}

. (3)

To prove the existence of good d-regular partition expanders, we will use the following
well-known bound on the concentration of probability measures. Recall that a sequence
X0, . . . ,Xn of real-valued random variables is called a martingale if for every 0 ≤ i < n,
E[Xi+1|Xi] = Xi.

Theorem 2.4 (Azuma Inequality [Azu67]). Let X0, . . . ,Xn be a martingale satisfying

∀i ∈ [n] : |Xi − Xi−1| ≤ c,

for some real c > 0. Then for any real t > 0,

Pr [Xn > X0 + t], Pr [Xn < X0 − t] ≤ exp

(

− t2

2nc2

)

.
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A typical situation in which this theorem is applied is when X0, . . . ,Xn is a Doob mar-
tingale, i.e., it is defined using n random variables Y1, . . . , Yn and a function f(y1, . . . , yn) as
follows:

Xi = EYi+1,...,Yn [f(Y1, . . . , Yi, Yi+1, . . . , Yn)],

for i = 0, . . . , n; in particular, X0 = E[f(Y1, . . . , Yn)] and Xn = f(Y1, . . . , Yn). (One can
easily check that this formula defines a martingale.) Hence we have:

Corollary 2.5. For m ∈ N, let Y1, . . . , Ym be random real variables and let f : R
m → R. Let

X0, . . . ,Xn be defined as above. Then for any real t > 0,

Pr [f(Y1, . . . , Ym) > ν + t], Pr [f(Y1, . . . , Ym) < ν − t] ≤ exp

(

− t2

2nc2

)

,

where ν
def
= E [f(Y1, . . . , Ym)] (= X0) and c satisfies |Xi − Xi−1| ≤ c.

Let d, n ∈ N be such that 2|dn, denote by Gn,d the uniform distribution on d-regular
(simple undirected) graphs on n vertices. In our analysis we will use the pairing method for
generating G ∼ Gn,d, due to Bollobás [Bol80] (also see [Wor99]).

Lemma 2.6 (Pairing method [Bol80]). The following procedure generates E ⊆ [n]× [n] such
that G = ([n], E) ∼ Gn,d.

1. Let π ⊂ [nd] × [nd] be a uniformly random perfect matching on [nd] (viewed as a

symmetric set of directed edges). For i ∈ [n], let celli
def
= {x | id − d < x ≤ id} and

dπ(v1, v2)
def
= |π(cellv1 , cellv2)|.

2. For every (v1, v2) ∈ [n] × [n], let (v1, v2) be dπ(v1, v2) times an element of E.

3. Return to Step 1 if G = ([n], E) is not simple.

In the analysis we will consider the distribution of ([n], E) resulting from dropping Step 3
off the above procedure; let us denote it by G′

n,d. Observe that a graph G ∼ G′
n,d is always

undirected, but doesn’t have to be simple.5

We will use the following estimate, due to McKay and Wormald [MW91]:

Lemma 2.7 ([MW91]). For d ∈ o(
√

n),

Pr
G∼G′

n,d

[G is simple] ∈ exp

(

1 − d2

4
− d3

12n
+ O

(

d2

n

))

⊆ exp(o(n)).

3 Random d-regular graphs as partition expanders

Let us see that a random regular graph is likely to form a partition expander.

Theorem 3.1. For d ∈ O
(

n1/3
)

, a random d-regular simple undirected graph on n vertices
is a (K, δ)-partition expander with probability at least 1 − exp

(

n log K + K2 − Ω
(

δ2nd
))

.

5Note also that the distribution G
′
n,d is not uniform over its support - e.g., G′

2,2 produces the graph with
two parallel edges with probability 2/3.
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Corollary 3.2. For any ε > 0 and B ∈ N there exists C ∈ N, such that the following holds:
A random d-regular graph on n vertices is a (K, δ)-partition expander with probability at least
1 − ε, as long as K ≤ B · √n and d ≥ C·log K

δ2 .

To prove the theorem, we will use the following lemma.

Lemma 3.3. Let 2|n and G = ([n], E) be a simple undirected graph. Let Mn be the uniform
distribution of perfect matchings on [n]. A universal constant C exists, such that for every
δ > 0,

Pr
π∼Mn

[

|π ∩ E| ≥ |E|
n − 1

+ δn

]

< exp

(

−δ2n

C

)

.

Note that E [|π ∩ E|] = |E|
n−1 , and therefore the lemma is a natural tail bound.

Proof of Lemma 3.3. Let m = n/2. Selecting π ∼ Mn can be achieved via repeating the
step

• Let vi ∼ U[n]\{v1,...,vi−1}

for i running from 1 to n, followed by setting

π
def
=

m
⋃

i=1

{(v2i−1, v2i), (v2i, v2i−1)} .

Let ei
def
= (v2i−1, v2i), and s(e) = 2 if e ∈ E and s(e) = 0 otherwise.6 Let S =

∑m
i=1 s(ei)

(thus S = |π ∩ E|). Define X0,X1, . . . ,Xm by

Xi = E[S|e1, . . . , ei].

According to Corollary 2.5, to prove the lemma we only need to show |Xi+1 − Xi| ∈ O(1).
Let 0 ≤ i < m and suppose that the vertices v1, . . . , v2i have been selected. Let k be the

number of remaining edges, i.e., k = |E ∩ ([n] \ {v1, . . . , v2i})2|. Then

Xi =

i
∑

j=1

s(ej) + 2(m − i) · k
(

n−2i
2

) =

i
∑

j=1

s(ej) +
2k

n − 2i − 1
.

First suppose that i < m − 1, and let k′ be the number of the remaining edges after
ei+1 = (v2i+1, v2i+2) has been selected. Then

Xi+1 =

i
∑

j=1

s(ej) + s(ei+1) +
2k′

n − 2i − 3
,

and

Xi+1 − Xi = s(ei+1) +
2k′

n − 2i − 3
− 2k

n − 2i − 1
.

On the one hand,

Xi+1 − Xi < 2 + k ·
(

2

n − 2i − 3
− 2

n − 2i − 1

)

≤ 2 +
4(n − 2i)(n − 2i − 1)

(n − 2i − 1)(n − 2i − 3)
∈ O(1).

6Note that if e = (v2i−1, v2i) ∈ E then (v2i, v2i−1) ∈ E as well.
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On the other hand,

Xi+1 − Xi ≥
2(k′ − k)

n − 2i − 3
> −4(n − 2i − 2) + 1

n − 2i − 3
∈ O(1).

The case of i = m − 1 can be treated similarly, and the result follows. �Lemma 3.3

We are ready to prove the main result of this section.

Proof of Theorem 3.1. Let the graph G = ([n], E) be sampled from Gn,d. Consider an arbi-
trary K-partition σ = {C1, . . . , CK} of [n] and a symmetric set X+ ⊆ [K] × [K], and let us
bound the probability of the event

E(σ,X+)
def
=

〈
∑

(i1,i2)∈X+
|E(Ci1 , Ci2)|

nd
>

∑

(i1,i2)∈X+
|Ci1 | · |Ci2|

n2
+ δ

〉

.

Assume that the pairing method (Claim 2.6) was used to generate G ∼ Gn,d. In order to
analyze PrGn,d

[E(σ,X+)], we first look at the corresponding event for G′ = ([n], E′) ∼ G′
n,d,

namely:

E ′(σ,X+)
def
=

〈
∑

(i1,i2)∈X+
|π(Si1 , Si2)|

nd
>

∑

(i1,i2)∈X+
|Si1| · |Si2 |

(nd)2
+ δ

〉

,

where Si
def
= ∪x∈Ci

cellx and π is the perfect matching that has been used for producing E′.
From the construction and Lemma 2.7 it follows that

Pr
Gn,d

[E(σ,X+)] ≤
PrG′

n,d
[E ′(σ,X+)]

PrG′
n,d

[G is simple]
∈ Pr

G′
n,d

[

E ′(σ,X+)
]

· exp(o(n)). (4)

Let
Eσ,X+

def
= ∪(i1,i2)∈X+

Si1 × Si2 \ {(v, v) | v ∈ [nd]} ,

and note that ([nd], Eσ,X+) is a simple graph. Then

E ′(σ,X+) =

〈

∣

∣π ∩ Eσ,X+

∣

∣ >

∣

∣Eσ,X+

∣

∣

nd
+ δnd

〉

.

By Lemma 3.3,

Pr
G′

n,d

[

E ′(σ,X+)
]

= Pr
π

[

∣

∣π ∩ Eσ,X+

∣

∣ >

∣

∣Eσ,X+

∣

∣

nd
+ δnd

]

∈ exp
(

−Ω
(

δ2nd
))

.

From (4) and our assumption about d,

Pr
Gn,d

[E(σ,X+)] ∈ exp
(

o(n) − Ω
(

δ2nd
))

= exp
(

−Ω
(

δ2nd
))

.

By Lemma 2.1, G is not a (K, δ)-partition expander if an only if for some K-partition σ
and a symmetric set X+ ⊆ [K] × [K], the event E(σ,X+) holds. By the union bound, this
probability is at most

exp
(

n log K + K2 − Ω
(

δ2nd
))

,

as required. �Theorem 3.1
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4 Partition expanders vs. expanders

Let us compare the notions of expanders and partition expanders in more detail.

Theorem 4.1. Let G be a d-regular ℓ-expander on n vertices. Then it is a (K,
√

Kℓ/d)-
partition expander for every K < d2/ℓ2.

Note that the Expander-Mixing Lemma (Lemma 2.2) only gives that G is a (K, δ) par-
tition expander for δ = O(Kℓ/d), which is meaningful only for K < d/ℓ. The statement
of the above theorem is essentially tight (cf. Theorem 4.3), and this means that only small
(quadratic, in terms of K vs. d) improvement can result from using partition expanders in-
stead of expanders, as long as the construction of a partition expanders relies on the spectral
gap. On the other hand, we will see soon that good partition expanders offer exponential
improvement in terms of the dependence of K on d.

Proof. Let a d-regular graph G on [n] be given. Let E be its adjacency matrix. We will
use the equivalent definition of partition expanders from Lemma 2.1-(4) based on symmetric
sets S. Let a K-partition {C1, . . . , CK} be given and let S ⊆ [K] × [K] be a symmetric set.
Let A be the adjacency matrix of the graph that S induces on [n]; i.e.,

Aij = 1 if i ∈ Ck, j ∈ Cl for some (k, l) ∈ S, and = 0 otherwise.

Note that rank(A) ≤ K.
Sampling uniformly from the edges of G is represented by the matrix 1

ndE. Sampling
uniformly from all the edges is represented by the matrix 1

n2 J , where J is the matrix of 1s.
Hence we need to bound the scalar product of the matrices A and B (viewed as vectors of
dimension n2) where

B :=
1

nd
E − 1

n2
J.

An upper bound δ on this product means that G is a (K, δ)-partition expander.
We will use the Hoffman-Wielandt inequality (Theorem 2.3). To this end we need to

know the spectra of A and B.
The matrix A has spectrum (a1, . . . , aK , 0, . . . , 0), because rank(A) ≤ K. Note that

K
∑

i=1

a2
i = ‖A‖2

F ≤ n2. (5)

Let d, λ2, . . . , λn be the spectrum of E. The spectrum of J is (n, 0, . . . , 0). The eigenspaces
of d and n are the same and all eigenspaces of λi, i = 2, . . . , n are in the eigenspace of 0 of
J . Hence the spectrum of B is 1

nd(0, λ2, . . . , λn).
Applying the Hoffman-Wielandt inequality we get

(A,B) ≤ 1

nd
max

π

K
∑

i=1

aiλπ(i) ≤
1

nd

K
∑

i=1

|ai|λ2 ≤ 1

nd
n
√

Kλ2 =
√

Kλ2/d,

where λ1 = 0. The first inequality follows from the Hoffman-Wielandt inequality in the
form (3) and the last one follows from (5) and the Cauchy-Schwarz inequality.
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Now we will show that the bound proved above is essentially optimal, and therefore, in
general expanders are not good partition expanders. We will use the following result of Alon
and Roichman [AR94]. (For a simpler proof, and an explicit and better bound, see [LR04].)

Theorem 4.2 ([AR94, LR04]). There exists an absolute constant c such that for every finite
group Γ and any d ≤ |Γ|, the following is true. If we pick uniformly at random the elements
g1, . . . , gd ∈ Γ, then the resulting Cayley-graph has the second largest eigenvalue λ satisfying

λ ≤ c ·
√

d log |Γ|

with probability going to 1 as |Γ| → ∞.

This theorem is not stated explicitly in those papers, but it is an immediate corollary of
Theorem 2 of [LR04]. (One can take any constant c such that c > 2 ln 2.)

Let m > 0 be a natural number and let Γ be the symmetric group on m elements
represented by permutations of [m]. Let π1, . . . , πd be some permutations for which the
bound on the eigenvalue is satisfied. W.l.o.g. we will assume that for every i ∈ [d] there is a
j ∈ [d] such that πj = π−1

i . Let G be the Cayley graph determined by Γ and π1, . . . , πd.
Let 1 ≤ t ≤ m. We will consider the partition {C1, . . . , CK} defined by the following

equivalence relation on G
ρ|[t] = σ|[t],

where ρ, σ ∈ G are permutations and |[t] denote their restriction to the first t elements. Thus
the number of blocks is K = m(m− 1) . . . (m− t + 1). Consider the symmetric set S defined
by

(i, j) ∈ S ≡ ∃ρ ∈ Ci, σ ∈ Cj ∃s ∈ [d] ρ|[t] = πsσ|[t] (6)

Note that if for some i and j the condition is satisfied by some s = s0, then for all ρ ∈ Ci, σ ∈
Cj, we have ρ|[t] = πs0σ|[t].

Consider the equation (2) that defines partition expanders. The first term is in our case
equal to 1. To bound the second term, note that for a given s ∈ [d] the number of pairs ρ, σ
satisfying the condition ρ|[t] = πℓσ|[t] is m!(m − t)!. Hence the second term is bounded by

d · m!(m − t)!

(m!)2
=

d

m(m − 1) . . . (m − t + 1)
=

d

K
.

This proves that if d/K < 1 − δ, then G is not a (K, δ)-partition expander.
Thus we have proved:

Theorem 4.3. There exist a constant c such that for infinitely many n and every d ≤ n,
there are d-regular c

√
d log n-expanders on n vertices which are not (K, 1 − d+1

K )-partition
expanders.

Comparing this statement to the bound given by Theorem 4.1 in the most natural regime
when a (K, 1 − Ω(1))-partition expander is required, we can see that the upper and the
lower bounds match up to the factor of log n in the spectral gap. In particular, since the

second eigenvalue of a graph is always Ω
(√

d
)

, K can be at most linear in d, as long as

our only assumption about G is the absolute value of its second eigenvalue. In contrast to
this, according to Corollary 3.2, there exist (K, 1−Ω(1)) partition expanders whose degree is
O(log K). Thus any construction of such partition expanders must rely on some properties
of G, other than the spectral gap.
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5 Partition expanders as PRGs in communication complexity

Let us turn to the realm of communication complexity, where we give an equivalent formula-
tion of partition expanders. First, we use this equivalence to give a nearly-tight lower bound
on the degree of good partition expanders, thus arguing near-optimality of the randomized
construction given in Section 3. Second, we use the same construction to obtain a new sepa-
ration between two models of communication complexity, which is qualitatively stronger than
the previously known one.

We will use the following models of two-party communication complexity.

Definition 3 (Models of communication complexity). Two players whose names are Alice
and Bob each receive a binary string of length n, respectively denoted by x and y. Players’
goal is to compute the value of f(x, y), where f : {0, 1}n × {0, 1}n → {0, 1} is fixed. The
players obey the following scenario:

• In the model of Simultaneous Message Passing (SMP), denoted by R‖, both Alice and
Bob send a message to the third participant, the referee. The referee does not know the
values of x and y, so his only input are the messages received from the players, and he
has to produce the answer using the information received from the players. All three
participants are allowed to use private randomness.

• The model of SMP with shared randomness, denoted by R‖,pub , is similar to R‖ but
the players are allowed to use public randomness.

• In the model of One-Way Communication, denoted by R1 , Alice sends her message to
Bob, who has to produce the answer using his part of the input and the information
received from Alice.

• In the model of Simultaneous Two-Way Communication, denoted by R↔, Alice and
Bob send their messages simultaneously, similarly to the case of SMP. But here the
recipient of Alice’s message is Bob, and the recipient of Bob’s message is Alice. Upon
receiving the partner’s message, each player must produce an answer.

We say that a communication protocol solves the problem represented by f if it produces
the correct answer(s) with probability at least 2/3 for every possible input. The communi-
cation cost of a protocol is the maximal total number of bits sent by the players, and the
communication cost of a function f is the minimal communication cost of a protocol that
solves it in the given model.

The models R‖, R‖,pub and R1 have been studied widely and the corresponding notation
is commonly used; the Simultaneous Two-Way model has been considered in several works
(see below), but no specific name was assigned to it. Note that when we say that an R↔-
protocol has produced the answer “a”, we refer to the situation when both the players have
produced the same answer.

Definition 4 (Pseudo-randomness in communication complexity). Let M be a communica-
tion complexity model, and let µ be a distribution defined over {0, 1}n×{0, 1}n. We say that
µ is k-pseudo-random for M if for any protocol P of communication cost at most k it holds
that

Pr
(X,Y )∼µ

[P(X,Y ) outputs “1”] − Pr
(X,Y )∼U{0,1}n×{0,1}n

[P(X,Y ) outputs “1”] <
1

3
.
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We say that g : {0, 1}s → {0, 1}n × {0, 1}n is a k-Pseudo-Random Generator (k-PRG) of
seed length s against M if the distribution of g(X) when X ∼ U{0,1}s is k-pseudo-random
for M.

Pseudo-randomness in the context of communication complexity has been introduced in
[INW94]. Intuitively, both pseudo-randomness and lower bounds on communication cost can
be viewed as claims that certain problem is hard for the model under consideration.

Given a d-regular graph G = ({0, 1}n , E), let µG be the uniformly random distribution
of the edges from E. Note that in order to choose (v1, v2) ∼ µG, a “seed” of length n + log d
is both necessary and sufficient.

Theorem 5.1. Let k, n ∈ N and G = ({0, 1}n , E). The following statements are equivalent:

1. G is a (2Θ(k), δ)-partition expander for some δ < 1/3.

2. µG is Θ(k)-pseudo-random for R‖.

In particular, our construction in Section 3 corresponds to a k-PRG against R‖ of seed
length n+O(log k). Note that due to the fact that in the context of communication complexity
the players are computationally unlimited, a randomized construction of a PRG is neither
meaningless nor trivial.7 Note also that a distribution is pseudo-random against R‖ if and
only if it is pseudo-random against R‖,pub , as for any distribution-distinguishing task there
exists an optimal protocol that does not use randomness.

Proof. Let C be a constant. First, suppose that G is a (2Ck, δ)-partition expander. Let P
be an R‖-protocol of cost at most Ck, and let us show that it cannot distinguish with high
confidence µG from U{0,1}n×{0,1}n . Without loss of generality assume that P is deterministic,

and let α : {0, 1}n → {0, 1}Ck be the mapping from x to the concatenation of Alice’s and Bob’s
messages in response to the input (x, x). Let νU and νG be the distributions of (α(X), α(Y ))
when, respectively, (X,Y ) ∼ U{0,1}n×{0,1}n and (X,Y ) ∼ µG. Clearly,

Pr
(X,Y )∼µG

[P(X,Y ) outputs “1”] − Pr
(X,Y )∼U{0,1}n×{0,1}n

[P(X,Y ) outputs “1”] ≤ dst(νG, νU ).

Note that α defines a partition of {0, 1}n into at most 2Ck blocks, and by the definition of
partition expanders,

dst(νG, νU ) ≤ δ < 1/3.

Therefore, µG “fools” P and thus it is Ck-pseudo-random for R‖.
Now assume that µG is 2Ck-pseudo-random for R‖, and let us show that G is a partition

expander. Let σ = {S1, . . . , S2Ck} be a partition of {0, 1}n, and for x ∈ {0, 1}n, define

σ(x)
def
= i for i such that x ∈ Si. Let Pσ be an R‖-protocol, where upon receiving input (X,Y ),

Alice sends σ(X) and Bob sends σ(Y ). Let τU and τG be the distributions of (σ(X), σ(Y ))

7For example, the models R
1 and R

↔ (and more generally, any two-party model where a k-bit message
from one player reaches the other player, who also receives his own n bits of input) require seed length at least
n + k − O(1) even with a non-uniform PRG, as witnessed by the protocol where the sender sends the first k
bits of his input and the computationally-unlimited recipient outputs “1” only if the message together with
his own n bits of input have Kolmogorov complexity n + k − O(1).
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when, respectively, (X,Y ) ∼ U{0,1}n×{0,1}n and (X,Y ) ∼ µG. Note that Pσ is of cost 2Ck,
and therefore

dst(τU , τG) < 1/3,

since otherwise the referee would be able to distinguish the two cases with confidence high
enough to contradict pseudo-randomness of µG. Let δ be the maximum value of dst(τU , τG)
possible under any choice of 2Ck-partition σ, then δ < 1/3 and G is a (2Ck, δ)-partition
expander, as required. �

5.1 Lower bound on the degree of partition expanders

Let us use the correspondence between partition expanders and pseudo-random generators
given by Theorem 5.1 in order to get a lower bound on the degree of partition expanders.

Theorem 5.2. For any δ < 1/3, if a d-regular graph G is a (K, δ)-partition expander then

d ∈ Ω
(

log K
log log K

)

.

In particular, the randomized construction given in Section 3 is optimal, up to the mul-
tiplicative log log K factor.

Proof. For convenience, let n and d be powers of 2. Let G = ([n], E), and assume it is
a (K, δ)-partition expander. On the one hand, according to Theorem 5.1, µG is Ω(log K)-
pseudo-random for the SMP model. On the other hand, we will see below that an SMP
protocol of cost O(d log d) can distinguish µG from the uniform distribution with error at

most 1/4, and therefore d ∈ Ω
(

log K
log log K

)

, as required.

The distinguishing protocol is as follows. When her input is v ∈ V , Alice sends to the
referee the first log d+2 bits of the indices of the d neighbors of v. On input u ∈ V , Bob sends
to the referee the first log d+ 2 bits of the index of u. The referee guesses that the input pair
(v, u) has been drawn from the distribution µG if the index-prefix received from Bob appears
in the list of d index-prefixes received from Alice. This protocol is always correct if the input
comes from the support of µG, and errs with probability at most 1/4 when the input comes
from the uniform distribution. �

5.2 Model separations based on PRGs

Model separation in computational complexity usually means demonstrating existence of a
computational problem that can be solved efficiently in one model, but not in the other. If
several classes of problems can be handled by the models under consideration, one can define
the corresponding types of model separations. When one problem class is a special case of
another, separation via an element of the smaller class can be viewed as a stronger indication
that the compared models have different computational power than separation via an element
of the bigger class. These ideas can be pushed further, resulting in various “hierarchies” of
model separations.

In the case of communication complexity, there are at least four natural classes of com-
putational problems8, namely:

8The same applies to many other fields of complexity, where also most of the following discussion remains
valid – e.g., in the field of circuit complexity.
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• Total functions f : A × B → Z

• Partial functions f : C → Z, C ⊆ A × B

• Relations P ⊆ A × B × Z

• Distinguishing some distribution µ defined on A×B from the uniform (cf. Definition 4)

Consider the four types of model separations corresponding to these four classes. We
will call the fourth type separation via a PRG. Obviously, if two communication models are
separable via a total function they are also separated via a partial function, and separability
via a partial function implies separability via a relation. On the other hand, there are pairs
of communication models that can be separated via a relation but not via a partial function
(e.g., see [GRdW08]), and there are many pairs of models that have been separated via partial
functions, but are conjectured not to be separable via total functions (e.g., most of quantum
communication models form such pairs with their natural classical counterparts). Therefore,
in communication complexity it is always desirable to separate models via the “most limited”
possible type of separation, as that gives the “strongest” possible indication of difference in
the computational power of those models.

To the best of our knowledge, separation via a PRG has not been studied in the context of
communication complexity. It is probably incomparable to the first three types of separation:
On the one hand, it is straightforward to get a separation via a PRG by modifying slightly
one of the known separations via a partial function between quantum and classical one-way
models, but it is conjectured that those two models cannot be separated via a total function.
Therefore, modulo that conjecture, separation via a PRG cannot, in general, be as limited
as separation via a total function. On the other hand, the models R‖ and R‖,pub cannot be
separated via a PRG (because for any distribution-distinguishing task there exists an optimal
protocol that does not use randomness), but they can be separated via a total function –
e.g., the equality function. Therefore, separation via a total function cannot, in general, be
as limited as separation via a PRG.

Is there a type of model separation that would be the most limited, and therefore sepa-
rations demonstrated through it would be the most “convincing” indication of difference in
the computational power of the compared models?

Take a total Boolean function f : A×B → {0, 1}, let M be a communication complexity
model, and consider the following two claims:

• No protocol in M of cost less than k can compute f .

• The distributions Uf−1(0) and Uf−1(1) are k-PRGs for M.

We will say that f is k-hard for M in the first case, and that f is k-pseudo-random for M
in the second.9 If f is k-pseudo-random for M, then it is also k-hard for M; the converse is
not necessarily true, as follows from the same example of the equality function in R‖.

As usual in communication complexity, we will say that a communication problem is easy
for a given model if it can be solved by a protocol of cost (log n)O(1).

9Note that we required both Uf−1(0) and Uf−1(1) to be k-PRGs for M when f is k-pseudo-random in order
not to require f to be balanced; if it is balanced, either condition implies the other.
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Definition 5 (Ultra-separation). Complexity models M1 and M2 are ultra-separated if there
is a total Boolean function f that is easy for M1 and nΩ(1)-pseudo-random for M2.

Ultra-separation is a very limited type of model separation – in fact, the most limited
“reasonable” one we came up with.

Claim5.3. For any two models that allow efficient error reduction for total functions, ultra-
separability implies separability both via a total function and via a PRG.

Here by efficient error reduction we mean that if f can be solved efficiently, then for any
constant ε there exists an efficient protocol that solves f with error at most ε. Probably all
studied communication complexity models satisfy this very natural property.

Proof. If f is nΩ(1)-pseudo-random for M2, then it is also nΩ(1)-hard for M2, and therefore
ultra-separability implies separability via a total function.

If f is easy for M1, then the elements of f−1(1) can be distinguished from the elements
of f−1(0) with worst-case error at most 1/10 by a protocol of cost (log n)O(1). Without loss of
generality, let Pr [f(X,Y ) = 1] ≤ 1/2 when (X,Y ) is uniformly random. Then there exist an
efficient protocol in M1 that outputs “1” with probability at least 9/10 when (X,Y ) ∼ Uf−1(1),
and with probability at most 11/20 when (X,Y ) is uniformly random. So, Uf−1(1) can be
distinguished from the uniform with “bias” more than 1/3 by an efficient protocol in M1, and
thus it is not a PRG. Therefore, ultra-separability implies separability via a PRG. �

5.3 Ultra-separation of R‖,pub and R↔

We have seen that ultra-separability of two models is a stronger evidence of difference in their
computational power than separability via a function (total or partial), via a relation, or via
a PRG. We are not aware of any type of model separation that would not be subsumed by
ultra-separation. Therefore, it is interesting to demonstrate ultra-separations even for those
pairs of models that have been separated previously via some “less convincing” methods.

For long time, it had been believed that the models R‖,pub and R↔ were equivalent.
In 2002 Bar-Yossef, Jayram, Kumar and Sivakumar [BYJKS02] demonstrated a separation
between these models via a cleverly constructed total function g, for which R↔(g) ∈ O(log n)
and R‖,pub(g) ∈ Ω(

√
n). The ideas used in their construction seem to be insufficient to yield

separation via a PRG.

Theorem 5.4. The models R‖,pub and R↔ can be ultra-separated. Namely, there exists a
total Boolean function f , such that R↔(f) ∈ O(log n) and Uf−1(1) cannot be distinguished

from U{0,1}n×{0,1}n by any R‖,pub-protocol of cost o(n).

The new separation is stronger not only qualitatively, but quantitatively as well – the
improvement results from the (optimal) lower bound of Ω(n) on the R‖,pub -complexity of f .

Proof. From Corollary 3.2 it follows that for any constant δ there exists a graph G on 2n

vertices of degree d ∈ Θ(n), which is a (2n/2, δ)-partition expander. According to Theorem 5.1,
the corresponding µG is Θ(n)-pseudo-random for R‖. Clearly, the same is true for µḠ, where
Ḡ is the complement graph. If we define fG : {0, 1}n × {0, 1}n → {0, 1} to be the “edge
function” of G, then it is Θ(n)-pseudo random for R‖.

14



Let us see that R↔(fG) ∈ O(log d) = O(log n). Consider a protocol where the players use
shared randomness10 to choose a hash function from {0, 1}n to {0, 1}2 log d, then Alice sends
the hash-value of x and Bob answers “1” if the received value equals the hash-value of one
of the neighbors of y in G, and “0” otherwise (if Bob is the sender, they act symmetrically).
This protocol has communication cost O(d) and computes fG with error o(1). The result
follows. �

6 Discussion

The most interesting open problem is to find an explicit construction of a good partition
expander; more precisely, to construct a family of (K, δ)-partition expanders in which δ < 1
is constant, K goes to infinity, and the degrees are d = O(log K). We will call informally
such families of graphs good partition expanders. As we have shown in this paper, expanders
are, in general, not good partition expanders and it seems unlikely that the property would
be implied by a property of the spectrum of a graph. One possible way of constructing
good partition expanders could be by using zig-zag product or a similar kind of product.
Indeed, in a recent paper [MN13] Mendel and Naor have shown that zig-zag product can be
used for constructing various types of generalizations of expanders. These constructions start
with a small object, which can be found by brute force, and which are enlarged by applying
products repeatedly. They work well when one needs constant degree, but in our case we
need increasing degree and to satisfy a certain property for partitions with exponentially
increasing number of blocks. It is not totally excluded that some kind of product will work,
but it will require a new kind of argument to prove it.

We demonstrated some applications of partition expanders in communication complexity.
In particular, we defined the notion of ultra-separation and argued that it is one of the
weakest model-separating methods, thus applying it provides a very strong (probably, the
strongest known) evidence that the two separated models have different computational power.
We gave an example of such separation. It would be interesting to find more examples of
ultra-separations, not only in communication complexity.

We believe that partition expanders will be useful in many other areas of complexity
theory, especially when explicit constructions are found. For example, one could use good
partition expanders instead of expanders in the pseudorandom generators of Impagliazzo,
Nisan and Wigderson [INW94], provided that an explicit construction of good partition
expanders is found. Since the number of partitions corresponds to the exponential of space
complexity, they would certainly have better parameters. This, however, requires further
research, because the direct application of partition expanders in INW generators does not
seem to give substantially better results than the use of expanders.
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[MW91] B. D. McKay and N. C. Wormald. Asymptotic Enumeration by Degree Sequence
of Graphs with Degrees o(n1/2). Combinatorica 11(4), pages 369–382, 1991.

[Wor99] N. C. Wormald. Models of Random Regular Graphs. Surveys in Combinatorics.
Lecture Note Series 276, pages 239–298, 1999.

16

 

ECCC                 ISSN 1433-8092 

http://eccc.hpi-web.de 


