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Abstract

The starting point of this paper is that instances of computational problems often do not
exist in isolation. Rather, multiple and correlated instances of the same problem arise naturally
in the real world. The challenge is how to gain computationally from instance correlations when
they exist. We will be interested in settings where significant computational gain can be made
in solving a single primary instance by having access to additional auxiliary instances which are
correlated to the primary instance via the solution space.

We focus on Constraint Satisfaction Problems (CSPs), a very expressive class of computa-
tional problems that is well-studied both in terms of approximation algorithms and NP-hardness
and in terms of average case hardness and usage for cryptography, e.g. Feige’s random 3-SAT
hypothesis, Goldreich’s one way function proposal, learning-parity-with-noise, and others.

To model correlations between instances, we consider generating processes over search prob-
lems, where a primary instance I is first selected according to some distribution D (e.g. worst
case, uniform, etc); then auxiliary instances I1, ..., IT are generated so that their underlying
solutions S1, ..., ST each are a “perturbation” of a primary solution S for I. For example, St
may be obtained by the probabilistic process of flipping each bit of S with a small constant
probability.

We consider a variety of naturally occurring worst case and average case CSPs, and show
how availability of a small number of auxiliary instances generated through a natural generating
process, radically changes the complexity of solving the primary instance, from intractable to
expected polynomial time. Indeed, at a high-level, knowing a logarithmic number of auxiliary
instances enables a close polynomial time approximation of the primary solution, and when in
addition the “difference vector” between the primary and the auxiliary solution is known, the
primary solution can be exactly found. Furthermore, knowing even a single auxiliary instance
already enables finding the exact primary solution for a large class of CSPs.
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1 Introduction

The integer factorization problem has fascinated mathematicians for centuries and computer sci-
entists for decades. It has helped us illucidate some of the key concepts at the heart of the theory
of computation, providing arguably the most elegant example of an NP problem which is hard to
solve but easy to verify by grade school mathematics, the basis for the first public key encryption
scheme, and the impetus for much of modern day research into the power of quantum over classical
computation.

Recently, [HDWH12] pointed out a simple but pervasive problem with using integer factorization
as a basis for public-key cryptography. Many composite and hard to factor numbers used in
practice, are obtained by first generating their prime divisors using the outputs of weak pseudo
random number generators with correlated seeds. As a result, one can obtain multiple instances of
composite numbers with correlated prime divisors, which render the composite number instances
trivial to factor. At the extreme, two instances n = pq and n′ = pq′ share a prime factor. It is
trivial to then factor n and n′ by computing their greatest common divisor.

This example of problem instances which are hard when they stand alone, but are easy when
given correlated instances, may seem anecdotal. Our thesis is that the situation may be quite to
the contrary. Instances of computational problems with correlated solutions seem to arise naturally
in many scenarios. The challenge is not to find settings which present correlated instances, but how
to take advantage of correlations when they exist.

To mention a few “real world” examples. In biology, the problem of learning the mapping from
DNA (genotype) to the observable characteristics (phenotype) of an organism, draws on data from
multiple specimens with highly correlated DNA providing multiple correlated inputs. In coding
theory, the objective is to recover from as many possible errors as possible: to this end, one may
well take advantage of the fact that a typical hard-drive contains error-correcting encodings of
multiple files that are within small edit-distance from each other. In learning theory, one well-
studied goal is to classify future examples from known examples of a hidden concept class. It is
likely, that many concepts to be learned are correlated, and access to examples from correlated
concepts can reduce the number of examples necessary to learn any one of them.

In this paper, we focus on the complexity of constraint satisfaction problems (CSPs) with ac-
cess to multiple instances with correlated solutions. The class of constraint satisfaction problems
is a very rich and well-studied class of computational problems. This class includes many NP-
hard problems (such as 3SAT, max-cut, 3-coloring) whose precise approximation behavior has been
extensively studied. It is also believed that random instances of CSPs (under an appropriately
defined distribution) are hard and this has been the content of several influential conjectures in-
cluding Goldreich’s one way function proposal [Gol00], Feige’s random 3SAT hypothesis [Fei02],
learning parity with noise hypothesis [McE78, BFKL93, Ale03], and various extensions and follow
up works e.g. [ABW10, BKS13, DLSS13]. We show that in various settings, hard CSP instances
become easy when correlated instances are available.

We view this work as a first step in a wider study of how to exploit correlations in available
inputs.

Correlation. To model correlation between problem instances, we think of a generating process
over search problems: In the process, a primary instance I (e.g., a CSP instance) with an underlying
hidden solution S (e.g., an assignment satisfying all constraints) is selected according to some
distribution Pri (e.g. worst case, uniform, etc.). Next, some auxiliary instances {I1, I2, . . .} are
selected according to another distribution Aux(I, S) depending on the primary instance I and
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solution S. The algorithmic goal is to recover a solution S̃ to the primary instance I, given
additionally the collection of auxiliary instances (but not their solutions).

What types of correlation between instances are interesting to study? We first observe that if the
auxiliary instances can be sampled efficiently given the primary instance but not the solution (that

is, Ij
$← Aux(I) can be sampled efficiently); then access to such auxiliary instances can at most lead

to a polynomial-time speedup. In this work, we are interested in qualitative computational gains so
we naturally consider correlation based also on the solution of the primary instance. Two natural
and interesting models are the randomly-perturbed-solution model and the known-differences model.
Below we explain the two models in the context of CSP.

CSPs. Formally, a constraint satisfaction problem (CSP) is parameterized by a predicate P :
{0, 1}d → {0, 1}, and a density parameter D ≥ 1. An instance of this problem on n input variables
x = x1, . . . xn is a set of m = nD constraints specified by a bi-partite graph G = ([n], [m], E) and
a string y ∈ {0, 1}m. The graph connects each “output vertex” yk (for k = 1, . . . ,m) to d “input
vertices” which we index by G(k, 1), G(k, 2), . . . , G(k, d). Each output vertex specifies an equation
constraint on the input variables,

∀k ∈ [m], P (xG(k,1), . . . , xG(k,d)) = yk

(see Section 4.1 for detailed definition). Given a CSP instance, represented succinctly as a pair
(G, y), the goal is to find a solution, i.e., an assignment x̃ maximizing the fraction of satisfied
constraints. Throughout this paper, we focus on CSPs whose solution satisfies all of the constraints.

This definition of a CSP is “functional” in the sense that the graph G and the predicate P
together define a function mapping inputs x to outputs y, such that the CSP problem is to invert
this function on a given output string y. This differs from the more standard definition of a P -CSP
(for example think of 3-SAT) where the instance is a collection of d-tuples of variables on which
the predicate P should evaluate always to true. The advantage in our functional definition is that
it allows efficient sampling of a pair of instance and solution while at the time remaining to be
(conjectured) hard. In contrast, sampling satisfiable 3-SAT formulae, for example, is a process that
is notoriously hard to analyze1.

Correlated CSPs. In the randomly-perturbed-solution model, the underlying solutions of the
auxiliary instances are “random perturbations” of the primary solution. In the context of CSP, in
addition to a primary instance (G, y), multiple auxiliary instances (G1, y1), . . . (GT , yT ) correlated
with (G, y) are generated according to the following process GenPri,Aux:

On input n, T, ε where N is the length of the primary instance, T the number of auxiliary
instances, and ε ∈ (0, 1/2] the perturbation parameter, do:

1. Choose a primary instance and solution (G, y, x) from the distribution Pri.

2. Perturb the solution: For each t = 1, 2, . . . , T , let xt be an ε-noisy copy of x derived
by flipping each bit of x with probability ε independently.

1There are two average case distributions for satisfiable SAT formulae that are studied in the literature: “condi-
tional” and “planted”. In the “conditional” distribution one samples a random k-SAT formula with given number of
clauses and variables, conditioned on it being satisfiable. In the “planted” distribution one chooses a random solu-
tion, and then samples satisfied clauses independently at random. The conditional distribution is notoriously hard
to analyze, so instead significant effort has been devoted to the planted distribution, resulting in polynomial time
algorithms for example for finding a solution in a 3-SAT instance with large enough constant clause-to-variable ratio
[Fla08]. This means that even without correlated inputs, the problem is easy; and this directs our efforts elsewhere.
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3. Choose T auxiliary instances: For each t = 1, 2, . . . , T , choose an instance (G, yt)
from the distribution Aux(xt) of instances with solution xt.

Output (G, y), (G, y1), (G, y2), . . . , (G, yT ).

Observe that in our model all instances have the exact same G. The distributions Pri and Aux(xt)
specify how the primary instance and auxiliary instance with solution xt are chosen in Step 1 and 3.
Naturally, different instantiations of these distributions lead to different variants of the randomly-
perturbed-solution model. For instance, Pri could be choosing a worst-case CSP instance or a
random one, leading to the question of solving worst-case or random CSP, given auxiliary instances2.
The algorithmic goal is to recover a solution x̃ for (G, y), given (G, y), (G, y1), (G, y2), . . . , (G, yT ).

A tampering-oriented3 model of correlated instances would allow the algorithm itself to control
the perturbation process (by algorithm we always mean the algorithm whose goal is to recover a
solution to the primary instance (G, y)). This however may give undue power to the algorithm
designer, and make results less interesting. We instead consider a second model which can be con-
sidered as an intermediate model between tampering and the randomly-perturbed-solution model
above. In this model the perturbation is still performed randomly, but the algorithm is given, in
addition to the auxiliary instance, the exact coordinates in which bits were flipped although not
the values of the bits. Formally, the algorithm is given {(G, yt)}t and {∆t = xt ⊕ x}t generated
by GenPri,Aux. The algorithmic task is easier in this model compared to the randomly-perturbed-
solution model and harder than the tampering model. This model turns out to be technically
interesting and useful because it pinpoints an intermediate step in a natural class of algorithms
that search for a solution x̃ by first trying to estimate the difference ∆t = x⊕ xt for each t.

Roadmap to the Introduction: In Section 1.1 we detail our main results on using correlated
instances in the CSP domain. We describe our techniques in Section 1.2. Section 1.3 contains
additional results: showing how access to examples of correlated learning with parity (LPN) in-
stances can speed up algorithms solving the underlying LPN, showing some limits on the benefit of
correlated instances, showing the need for some “diversity” as well as correlation, and a proposal
of a general complexity measure for algorithms which have access to auxiliary instances corre-
lated via the solution space; Section 1.3 also offers some discussion and interpretation of our work.
Section 1.4 contains a description of related work.

1.1 Main Results

Our main results are algorithms for solving CSP instances that come from widely-believed hard-
to-solve distributions, given a number of correlated instances. Our results suggest that significant
computational gains can be made when we can find multiple instances of search problems whose
solutions are highly correlated but not identical – diversity pays off. The phenomenon of turning
problems from intractable to efficiently solvable, goes way beyond exploiting coincidental algebraic
structure to a wide setting of correlations in the realm of combinatorial problems.

2We also remark that in the above model each auxiliary instance for t = 1, . . . , T is generated independently of the
others. Other models may allow different dependency structures, e.g. the t-th instance may “evolve” by perturbation
of the t− 1-st instance.

3In a cryptographic tampering attack, defined originally by Boneh, DeMillo and Lipton in 1997, an adversary is
given y = f(x) for a one-way function f ; the secret x may be stored say on a smart card, and the adversary can
induce a change on x without knowing it and then view y′ = f(x′); different variants of the tampering model grants
the adversary different degrees of control over the change induced. See Section 1.4 for more details on related work.
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We have different results for solving correlated instances of CSPs when the primary instance is
a worst case instance and when it is an average case instance. In both cases, we focus our attention
to CSP instances that are fully satisfiable. 4 The average case distribution is based on a proposed
one way function of Goldreich [Gol00]:

Random CSP distribution rCSP: Select at random a right-d-regular bipartite
graph G = ([n], [m], E), m = Dn, and an input string x ∈ {0, 1}n, and compute
y according to the mapping fG,P (x) = P ◦ G(x) that computes each output bit by
yk = P (xG(k,1), . . . , xG(k,d)) for k ∈ [m]. Pictorially, we place the bits of x as labels
to the input vertexes [n], and then compute each output bit k ∈ [m] of P ◦ G(x) by
applying the predicate P to the substring obtained from the labels of its d neighbors.

This is a natural distribution on pairs of CSP instance and solution (where the solution satisfies
all of the clauses) We point to an ongoing line of work studying average case CSPs as well as their
approximate version, either conjecturing their hardness [Fei02, Ale03, ABW10, App12, BKS13], or
studying various aspects of these problems [BQ12, App12, OW12, CEMT09, BQ12]. In particular,
Goldreich [Gol00] conjectured that for some predicates P , it is hard to invert the image fG,P (x)
with any non-negligible probability for a randomly chosen graph G and input x, and for D = 1.
Subsequent works [BQ12, CEMT09] also considered this construction for larger values of D.

The generating process we consider, GenPri,Aux, samples (G, y) from a primary distribution Pri
which will either be some arbitrary worst-case distribution over satisfiable instances, or the average-
case distribution rCSP. The generating process then generates each auxiliary instance (G, yt) by
perturbing x to obtain xt, and then setting yt = Aux(xt) = G ◦ P (xt).

Algorithms using many correlated instances

Our first result is that for a primary instance drawn at random, and for a large enough number of
correlated instances T = O(log n), there is a randomized polynomial time algorithm that recovers
a solution that satisfies 1 − δ fraction of the constraints in an average-case primary instance, for
arbitrarily small δ > 0.

Informal Theorem 1 - random CSP Fix any non-constant predicate P : {0, 1}d → {0, 1}
and constant δ > 0. For small enough constant ε = ε(d) > 0 and large enough D = D(d, ε, δ)
there is some T = O(log n) such that the following holds. There is a polynomial time algorithm
that on input (G, y), (G, y1), · · · , (G, yt) finds a string x̃ that satisfies at least 1− δ fraction of the
constraints in (G, y), with probability 1 − O(1/n). The instances G, y, y1, · · · yT are generated at
random by the process GenPri,Aux(n, T, ε) with Pri = rCSP and Aux = P ◦ G (this notation means
that Aux perturbs the solution x to get xt and then applies G ◦ P on xt). 5

Note that besides having sufficiently many correlated instances, the algorithm also requires
the correlation between instances to be sufficiently high (that is, ε is sufficiently small), and the
density D of the instances to be sufficiently large. The concrete ranges of parameters appear in
Theorem 4.1.

We next show that knowing the differences {∆t = xt ⊕ x}t=1,...,T between the hidden solutions
of the primary and auxiliary instances grants the algorithm surprising power. It allows the algo-
rithm to find an exact solution to any worst-case primary instance (with high probability over the

4The advantage of working with CSP instances that are 100% satisfiable is that it makes it easier to reason about
how perturbation on the optimal solution affects the constraints. Studying CSP instances that are only, say 99%,
satisfiable is an interesting open question.

5In fact, the algorithm additionally finds such an (1− δ)-approximate solution for each auxiliary instance.
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random coins for generating the auxiliary instances). Moreover, the algorithm works with arbitrary
correlation parameter 0 < ε < 1/2 and density D ≥ 1, as long as the number of auxiliary instances
T is sufficiently large, but still logarithmic. Needless to say, without auxiliary correlated instances
this problem is NP-hard even to approximate, due to the PCP theorem [AS98, ALM+98].

Informal Theorem 2 - worst case CSP, known differences For every ε ∈ (0, 1/2), there is a
polynomial time algorithm, such that for every predicate P , density D ≥ 1, graph G, y = P ◦G(x),
and constant r > 0, the algorithm on input (G, y, y1, · · · , yT ,∆1, · · · ,∆T ) finds a solution x̃ for
(G, y) with probability 1 − O(n−r), provided that T = O(log n) is a sufficiently large multiple of
log n. All instances are generated by the process GenPri,Aux(n, T, ε) with Pri is fixed to output (G, y)
and Aux = P ◦G and where ∆t = xt ⊕ x for each t.

The formal statement appears in Theorem 4.4.
The algorithm in Theorem 2 can be easily extended to inverting arbitrary computation y = f(x)

inNC0 given a logarithmic number of correlated instances (i.e. images y!, . . . , yt) and the differences
between hidden solutions (or pre-images). The intuition behind this is that finding a pre-image of
y with respect to f is equivalent to solving CSPs with a more general form where every constraint
is with respect to a possibly different predicate. More generally, in Section 4.4.2, we show an
algorithm that inverts any function f with low output locality d = O(log n) in the “worst case”, if
a sufficiently large number T = O(ε−d log n) of auxiliary instances and the difference between their
hidden solutions are available. The algorithm runs in poly(2dn) steps. From the perspective of
tampering, this result states that every function with low output locality, in particular Goldreich’s
OWF, is easy to invert under a very weak model of tampering; we refer the reader to Section 1.4
for a comparison with cryptographic tampering results.

Interestingly, the limitation of d ≤ O(log n) is optimal. Our next result shows that there is no
algorithm that solves worst case instances with larger arity, even with access to correlated instances,
unless NP ⊆ BPP .

Claim 1 - NP-hardness of solving worst case CSP with arity d = Ω(log n), known
differences There is a predicate P with arity O(log n) such that unless NP ⊆ BPP , there is no
probabilistic polynomial time algorithm for solving the P -CSP problem when given an additional
correlated instance.

The proof of the lemma is simple. Take an NP-hard CSP, and replace each Boolean variable
by a cloud of c log n new variables. Replace each predicate by a new one that reads all d · c log n
variables encoding the original d variables, and that accepts if the majority decoding of each cloud
would have satisfied the original predicate. One can see that any solution x0 for the original CSP
gives rise to a solution x to the new CSP, in which the value of all members of a cloud is the same.
A perturbation x′ of this solution would, with probability 1 − 1/poly(n) yield the exact same y,
i.e. with high probability P ◦ G(x′) = P ◦ G(x). Thus, under our randomly-perturbed-solution
correlation model, the correlated instance (G, y′) will be identical to the primary instance (G, y)
with probability 1/poly(n), in which case, it does not help to receive the correlated instance and the
difference between the hidden solutions x′ and x. This holds with high probability 1− 1/poly(n),
even when O(log n) auxiliary instances are available.

This lemma demonstrates an interesting threshold of log n in the arity of computations for
which correlation is helpful.
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Algorithms using a single auxiliary correlated instance

The previous two theorems demonstrate the power of having many correlated auxiliary instances.
The next natural question that arises is “does correlation help when only a few auxiliary instances
are available?” Our next two results investigate this case, and show that when the primary in-
stance is drawn from the random CSP distribution, then the availability of even one more auxiliary
instance, already gives a non-trivial computational advantage, albeit only for a subclass of predi-
cates. These results extend previous work by Bogdanov and Qiao [BQ12] who showed that in the
random CSP distribution certain classes of predicates can be solved or approximated (even with
no auxiliary correlated instances, and when the density is sufficiently high). Our results show that
the class of solvable predicates grows with the addition of an auxiliary correlated instance.

Again we separate two cases, depending on whether we know the difference ∆ = x′⊕x between
the primary solution x and the perturbed solution x′. Our results are based on derivatives of the
predicate P . The derivative in direction σ is defined by P σ(a) := P (a) + P (a + σ). We limit
ourselves to CSPs with predicates that come from the class P of predicates P : {0, 1}d → {0, 1} for
which there is some direction σ, and index i∗ ∈ [d] for which P σ is non-trivially correlated with its
i∗-th input bit, that is,

P = {P : {0, 1}d → {0, 1} | ∃ σ ∈ {0, 1}d, i∗ ∈ [d], γ > 0, such that Pr[P σ(a) = ai∗ ] ≥ 1/2 + γ}

We show that for this class P of special predicates, a random CSP instance becomes easy
to solve, given only a single auxiliary instance and the difference (between the two solutions).
Interestingly, this algorithm requires the hidden solutions to be either sufficiently correlated, or
sufficiently anti-correlated, depending on the predicate under consideration. More specifically, for
a special predicate P satisfying the above condition w.r.t. direction σ and index i∗, if σi∗ = 0,
the perturbation flipping probability p∗ = ε must be sufficiently small, and otherwise the flipping
probability p∗ = 1− ε must be sufficiently large.

Informal Theorem 3 - random CSP, with a single auxiliary instance and known differ-
ence Let P ∈ P be as above with parameters σ, i∗, and γ. For any ε ∈ (0, 1/2), let the flipping
probability p∗ be set as

p∗ =

{
ε if σi∗ = 0

1− ε else σi∗ = 1

Assume that ε is sufficiently small, and D is sufficiently large. For every constant r ≥ 1, there is a
polynomial time algorithm A that on input (G, y, y1∆) finds a solution x̃ for (G, y) with probability
1−O(n−r). All variables are generated by the process GenPri,Aux(n, 1) with Pri = rCSP and Aux =
P ◦G with perturbation parameter p∗ and ∆ = x1 ⊕ x.

The formal statement appears in Theorem 4.2.
Furthermore, we show that even when the difference is not given, correlation still helps to solve

random CSP with the above special predicates of the case σi∗ = 0. In this case, the algorithm
simply requires the correlation between the hidden solutions to be sufficiently large.

Informal Theorem 4 - random CSP, with a single auxiliary instance Let P be a special
predicate as defined above with parameters σ, i∗, and γ, and σi∗ = 0. Assume that ε is sufficiently
small, and D is sufficiently large. For every constant r ≥ 1, there is a polynomial time algorithm
A′ that on input (G, y, y1) finds a solution x̃ for (G, y) with probability 1−O(n−r). All variables are
generated by the process GenPri,Aux(n, 1) with Pri = rCSP and Aux = P ◦ G and with perturbation
parameter ε.

The formal statement appears in Theorem 4.3.
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Algorithms for well-known “hard-by-design” instances, using a single additional
correlated instance

The gain from one more auxiliary correlated instance is not limited only to solving random CSP
instances. We next show two algorithms for solving well-known families of CSP instances, with
the aid of a single auxiliary correlated instance. Our first result solves a family of NP-hard 3SAT
instances generated by H̊astad’s PCP reduction [H̊as01]. These instances are the hardest known
instances in terms of approximation, yet, they become easy in the presence of correlation.

Informal Theorem 5 - H̊astad’s 3SAT instances, with a single auxiliary instance Let
L ∈ NP and let δ, ε > 0. There is a polynomial time reduction H (due to H̊astad) mapping
instances of L to instances of 3SAT such that given a yes instance ϕ ∈ 3SAT it is NP-hard to
find an assignment x satisfying more than 7

8 + δ fraction of the clauses of ϕ. Nevertheless, given
also an auxiliary correlated instance ϕ′ ∈ 3SAT there is a polynomial time algorithm that finds
an assignment satisfying 99% of the clauses in ϕ with high probability over the choice of ϕ′. The
correlated instance ϕ′ is generated as follows

1. Let x ∈ {0, 1}n be a satisfying assignment for ϕ. Flip each bit of x independently with
probability ε, obtaining x′.

2. Let ϕ′ be the 3SAT formula obtained by deleting from ϕ all of the clauses that are unsatisfied
by the assignment x′.

Our focus on 3SAT is for explicitness only. Similar results probably hold for other predicates.
A formal statement of the above informal theorem appears in Theorem 5.1.

Our second result inverts randomized encodings of [AIK04]. The notion of randomized encodings
allows to “encode” a complex deterministic function f by a simple randomized function f̂ . From the
output of the randomized encoding f̂(x; r) one can reconstruct the output of f(x), and at the same
time no other information of x is revealed; the latter is called the privacy property. Applebaum,
Ishai, and Kushilevitz [AIK04] showed in a celebrated work how to represent any NC1 computable
function by an NC0 function with output locality 4, denoted by NC0

4. This encoding is referred
to as the AIK randomized encoding henceforth. By the privacy property, images f̂(x; r) of AIK
encodings are hard to invert on the average over the random choices of r, as long as the original
function image f(x) is hard to invert.

AIK thus constructs cryptographic primitives such as stream-ciphers and commitment-schemes
which have low depth and constant output locality yet are still hard to invert. (See the survey by
Applebaum [App11] for more details.)

If we view both x and r as the input variables to the encoded function f̂ , then inverting y =
f̂(x; r) corresponds exactly to solving a CSP instance, where every output bit is a constraint over 4
input bits that belong to x or r. The randomly-perturbed-solution model for CSP naturally extends
to this setting, where the generating process GenPri,Aux samples a primary instance (f̂ , y = f̂(x; r))

together with many auxiliary instances (f̂ , yt = f̂(xt; rt)) with (xt, rt) perturbed from (x, r) by
flipping each bit independently with probability ε. The algorithmic goal is still to invert the image
f(x) of the original function.

We show that if the original function f is “well formed” (see Section 6.4.1 for a precise definition,
we mention only that any function can easily be modified to possess this property) then, its encoding
is easy to invert in the worst-case when given a single auxiliary instance y1 = f̂(x1; r1)

Informal Theorem 6 - AIK randomized encodings, with a single auxiliary instance For
every function f in NC1, let f̂ be the AIK randomized encoding of f . Fix any ε ∈ (0, 1/2] and any

7



constant α > 0. There is a polynomial time algorithm, such that, for every well-formed function
f , string x, and sufficiently long r, the algorithm on input (f̂ , y, y1) inverts f(x) with probability
1 − n−α, where all variables are generated by the process GenPri,Aux(n, 1) with Pri fixed to output

(f̂ , y = f̂(x; r)) and Aux = f̂ .

See Theorem 6.3 for a formal statement.
We compare this result with Theorem 3 and 4 for solving random CSPs with a single auxiliary

instance. There, the predicate under consideration comes from a special class, but the CSP graph is
chosen at random with the only constraint that it must have high density. Here, given the original
function f , the AIK encoding scheme determines the set of predicates and the graph based on f ; in
particular, the graph is not random and does not have high density. Therefore, Theorem 5 can be
view as another demonstration that even a single correlated instance helps solving special classes
of CSPs.

To summarize, these results demonstrate that access to several correlated instances gives sig-
nificant more algorithmic power than considering one instance alone, and it can turn a conjectured
intractable problem into a provably tractable one.

1.2 Techniques

We next describe the high-level techniques that we have used for the results outlined above.

The shift encoding. We start with the easiest algorithmic setting, where to solve a primary
instance G, y, the algorithm is given multiple auxiliary instances (G, y1, · · · , yT ) and the differences
(∆1, · · · ,∆T ) where ∆t = x⊕xt is the difference between the primary solution x and the perturbed
solution xt. In this setting, we are able to recover x completely even if the primary instance is a
worst case instance, and for any correlation ε ∈ (0, 1/2] and density D ≥ 1.

The key observation is that given sufficiently many correlated instances, a fixed output vertex
k ∈ [m] will eventually see all perturbation patterns: Its value in the tth instance is equal to

ytk = P (xtG(k)) = P (xG(k) ⊕∆t
G(k))

where we denote by xG(k) the restriction of x to the d indexes neighboring k. For every instance
t, the difference ∆t

G(k) (restricted to the neighbors of k) is a d-bit string, where every bit ∆t
G(k,l) is

independently Bernoulli distributed with probability ε of being 1. Given sufficiently many auxiliary
instances, every possible “shift” a ∈ {0, 1}d will appear (i.e., for every a ∈ {0, 1}d, ∃t s.t. ∆t

G(k) = a).

Since the differences {∆t
G(k)} are known, the algorithm can collect the values of P on every possible

shift a from xG(k), which form an encoding of xG(k); we call it the shift-P-encoding of xG(k). More
specifically, let

Encode(z) , (P (z ⊕ a))a∈{0,1}d ,

[
P (z ⊕ 0 · · · 0︸ ︷︷ ︸

d

), P (z ⊕ 0 · · · 0︸ ︷︷ ︸
d-1

1), · · · , P (z ⊕ 1 · · · 1︸ ︷︷ ︸
d

)

]
∈ {0, 1}2d

Given the shift-P -encoding Encode(xG(k)), if the predicate P satisfies that the encoding for every

z ∈ {0, 1}d is unique, then we can uniquely recover xG(k). (This can be done efficiently, since

the encoding has constant size 2d.) Then using the same procedure for every output bit k, the
algorithm uncovers the unique value of xG(k) for every k. By stitching them together, it obtains
the unique string x consistent with y as well as all {∆t}t and {yt}t.

Does this approach handle all predicates? No, there are predicates P for which the shift P
encoding is not unique. The next challenge is how to go beyond predicates that admit unique shift
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encoding and handle all non-constant predicates. The difficulty lies in that for a general predicate
P , there may exist different strings z 6= z′ that have the same encoding Encode(z) = Encode(z′).
Then, from the encoding Encode(xG(k)), the algorithm can only deduce that there are multiple
candidates for the value of xG(k). However, given a collection of candidates for all sub-strings
{xG(k)}, it is not clear how to find a single string x̃ that simultaneously satisfies all constraints on
all sub-strings {xG(k)}.

We overcome this problem by showing that given a valid encoding E (for which there exists a pre-
image), all the pre-images of E form a unique affine space Λ. Then, given encoding Encode(xG(k)),
the constraints on xG(k)—that is, {P (xG(k) ⊕ ∆t

G(k)) = ytk}t—are equivalent to a set of linear
constraints on xG(k), that is, xG(k) ∈ Λ. Now, given the collection of linear constraints for all k, the
algorithm can solve the linear system efficiently to recover a string x̃ consistent with all constraints.

These are the main ingredients in the proof of Theorem 2.

Estimating the differences, and then estimating the estimation error. For Theorem 1,
we adapt the algorithm above to the case where the differences ∆t are not given. Here the natural
approach is to estimate the differences, and obtain ∆̃1, . . . , ∆̃T such that ∆̃t ≈ ∆t for t = 1, . . . , T .
The estimation is possible because by knowing which output bits have flipped we get a reasonable
guess as to which input bits have flipped. The smaller the arity d, and the higher the density D,
the better this estimate is.

However, replacing ∆t by ∆̃t is reasonable only if our algorithm above is resilient to the noise
introduced by the approximation. This does not hold, unfortunately, because the second step of
the algorithm relies on solving linear equations, a procedure that is infamously non-robust to noise.
Nevertheless, we overcome this problem by taking advantage of the fact that our primary instance
comes from the random CSP distribution. We add an estimate-verification step that marks the
indices i ∈ [n] that suffered from unbounded estimation errors (informally, this refers to the case
where errors in the i-th bit occur for ∆t across too many t’s). Then, we prove that this verification
procedure will, with very high probability, not make mistakes, assuming that the primary instance
is drawn from the random CSP distribution. Finally, by avoiding these problematic indices we can
correctly recover most of the solution.

Directional derivatives. In case only a single auxiliary correlated instance is available, we
cannot expect to learn the shift-encoding of any substring of x. Instead, we observe that by getting
an evaluation, for each k ∈ [m], of P (xG(k)) and P (x′G(k)) = P (xG(k) + ∆G(k)), we can directly

compute P σ(xG(k)) for σ = ∆G(k). The extra information provided by P σ allows us, in Theorems
3 and 4, to solve a broader class of CSPs. We rely on the randomness of the primary instance to
ensure that our difference estimation is correct, without which the derivatives will be useless.

Solving NP-hard instances using the structure of the solution space. In Theorem 5 we
solve instances that come from PCP reductions, with the help of an extra correlated instance. Here
the given primary instance is not random and so difference estimation as in the previous results
will not necessarily work. Our approach is to rely on the fact that the satisfying assignment, if it
exists, is highly structured. In particular, the variables are partitioned into constant-size blocks
(corresponding to long code encodings) and on each block there is only a small number of possible
assignments. It is feasible to enumerate all possible legal assignments on a pair of blocks and to
check if they are likely to give rise to a given difference pattern. We prove that this works by
analyzing the precise long code test and showing that certain difference patterns are more likely
for certain assignments than for others.
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Inverting AIK randomized encoding by cascading from many break points. In Theorem
5, we invert the AIK randomized encoding given a single auxiliary instance. The first step of the
inverting algorithm is similar to the algorithms for solving CSP: By crucially relying on the low
output-locality feature of AIK, it recovers some “local” information about the hidden solution.
(In the case of CSP, the local information pieces pertain to the substrings

{
xG(k)

}
; similarly, in

AIK, these local information pieces are about subsets of bits in x and/or r influencing different
output bits.) However, unlike the case of CSP, these local information pieces are not sufficient for
generating the global solution. The graph corresponding to the AIK encoding is not random and
its density is very low, so this first step can only recover an ε fraction of the solution. In remedy,
the algorithm in a second phase, relying on the concrete structure of the AIK encoding, uses the
partial information as break points for starting many iterative cascading steps. In each step given
the appropriate information associated with one input bit, the value and associated information of
the input bit “next to” it are found; thus, the information recovered propagates, until the whole
input is found.

The concrete procedure for recovering the initial local information and cascading information
requires heavy engineering on the specifics of the AIK encoding. Nevertheless, the overall structure
of the inverting algorithm is the key and demonstrates that the ways to leverage correlation can
vary from problem to problem.

1.3 Additional Results and Discussion

A Complexity Measure for Correlated-Instances. One of the goals of research in the design
and analysis of algorithms is to develop algorithms which work well in practice, by taking into
account all available data. In the CSP domain, we demonstrated that access to multiple problem
instances with correlated solutions can change the complexity of problems from intractable to
tractable. It is similarly possible that access to correlated instances can lead to faster and different
algorithms for problems which are already solvable in polynomial time.

To this end, we propose a new correlated-instance complexity measure. Correlated-instance
complexity measures the performance of an algorithm on a primary instance given as auxiliary
input a tuple of correlated instances where the correlation is over the solution space. We emphasize
that the measure does not restrict the distribution of the primary instance, which can be worst-case
or average-case, but introduces the new dimension of correlation, and can be used to analyze the
behavior of algorithms that utilizes multiple correlated instances. See Section 2.

Correlation versus Diversity We have demonstrated that correlation between instances is
helpful. Yet, interestingly, “too much correlation” is not good either. Clearly, if the auxiliary
instance at hand is identical, thus 100% correlated, to the primary instance, it is of no use, as it
brings no additional information. Hence, some amount of diversity is necessary.

We further observe that in the randomly-perturbed solution model of CSP, the amount of “diver-
sity”, i.e. the perturbation parameter ε, should be some positive constant for the auxiliary instances
to be useful. Indeed, we observe that this follows from the exponential-time-hypothesis [IP01] which
conjectures that for every k > 2 the best algorithm for k-SAT requires time 2skn for some constant
sk.

Claim 2 - hardness of solving correlated kSAT, when correlation is too high Assuming
the exponential time hypothesis, there is no polynomial-time algorithm for solving a primary kSAT
instance ϕ even if given a randomly perturbed6 correlated instance ϕ′ obtained by perturbing the

6We remark that the distribution of ϕ′ conditioned on ϕ is not exactly the same as in our model, but this difference
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solution of ϕ with perturbation parameter ε = o(1) and then modifying the affected clauses to make
ϕ′ satisfiable.

The reason is that an algorithm can generate the correlated instance (G, y′) on its own in time
that is exp(õ(n)) (simply by cycling through all possibilities of having o(n) affected clauses).

Going back to our techniques, intuitively we are using the differences between the two instances
(i.e diversity) to our advantage, to get a handle on the derivative in addition to the original function,
which allows us to approximate it better. Too large a correlation would not yield enough information
about the derivative, whereas too little correlation is hard to tell apart from noise. We find the
non-monotonic behavior of the problem very interesting and worthy of more careful examination.

Does Correlation Always Help? We have demonstrated that significant computational gains
can be made for solving CSPs, given access to correlated instances. One basic question that arises
immediately is “do all search problem become easy, given I, I1, · · · , IT for sufficiently and naturally
correlated xi’s?”

Restricting the question to the context of CSPs, although we described a number of algorithms
for solving CSPs, these do not cover all possible cases. In particular, they do not address the case
of CSPs whose optimal solution does not satisfy all constraints. Here, for the 3LIN predicate, we
have the following hardness result.

Claim 3 - hardness of solving correlated 3LIN instances that are 1− δ satisfiable Unless
P = NP , there is no polynomial-time algorithm that gets as input a 3LIN instance (G, y) whose
optimal solution satisfies at least 1 − δ of the clauses, and a correlated instance (G, y′) generated
using Aux = P ◦G (where P = 3LIN), and finds a solution that satisfies more than 1/2 + δ of the
clauses.

Proof. We know [H̊as01] that it is NP-hard to decide if a given instance (G, y) has a solution
satisfying at least 1− δ of the clauses, or no more than 1/2 + δ. Given an instance G, y, we can use
A to solve it, by simulating the instance y′. First we generate a random difference vector ∆ ∈ {0, 1}n
by setting each bit independently to 1 with probability ε, and then we let y′ = y + P ◦G(∆). The
answer of A on (G, y, y′) is a solution to the original instance. It remains to observe that for
x′ := x+ ∆ we have y′ = P ◦G(x′) so (G, y′) is distributed exactly according to Aux = P ◦G.

One wonders whether a similar hardness result exists for a CSP with perfect completeness.
This result shows that there are some CSP-based problems for which there is no algorithmic gain

from looking at additional correlated instances. In contrast, we remark that for every function f ,
there is another “equivalent” function f ′ that is susceptible to correlated instances. More accurately,
f ′ is as hard to invert as f , and yet becomes easy to invert when given an additional auxiliary
instance. The reduction is as follows7. Given any function f(x), we define the corresponding
randomized function f ′(x; r, s) as follows: f ′ on input x and 2kn bits (k is set later) of random
coins r = {rij}i∈[n],j∈[k] and s = {sij}i∈[n],j∈[k], outputs f(x) and an “encoding” {yij , rij}i∈[n],j∈[k] of
the input x using the random coins r and s, where every input bit xi is encoded as {(yij , rij)}j∈[k]

with yij = xi · ri,j + si,j . It is easy to see that given uniform random coins rij ’s and sij ’s, the
encoding hides the input x information theoretically; thus, the randomized function f ′(x; r, s) has
the same inversion complexity as f(x) (when r, s are randomly chosen).

is not important. In particular, it is reasonable to expect the ETH to hold for CSPs (G, y) as in our definition, for
some predicate P , in which case an equivalent formulation could be made in which the correlated instances are exactly
as in our model.

7We thank an anonymous referee for pointing out a simpler proof of this claim.
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We show that f ′(x; r, s) becomes easy to invert given a single correlated instance f ′(x′; r′, s′)
with ε-perturbed x′, r′, s′, for a constant ε. The inversion procedure simply tries to recover the
x from the two input encodings {yij , rij} and {y′ij , r′ij} contained in the two instances as follows:
Collect the j’s for which ri,j = 1 but r′i,j = 0. For these j’s, the value yi,j ⊕ y′i,j = xi + si,j + s′i,j
is correlated with xi, and can be viewed as vote for the value of xi. Thus by taking a majority
vote, xi can be recovered with high probability 1 − O(1/n), provided that k is a sufficiently large
logarithmic number. Therefore, we are likely to recover all the bits of x.

We remark that key of the above transformation from f to f ′ is the encoding of the input,
which is information theoretically hiding given one encoding, but easy to decode given two. It is
easy to see that this encoding can also be used to transform any search problem to another search
problem with the same complexity (under an input distribution where the random coins used for
the encodings are indeed random), which becomes easy to solve given a correlated instance.

The Benefit of Correlation in Learning Theory Access to correlated instances is a wider
phenomenon beyond improving time complexity of algorithms. In particular, it seems that in sub-
areas as varied as learning theory, coding theory and biological experiments, correlated problem
instances come up naturally. Does the benefit of correlation extend as well? We suggest an
affirmative answer showing an example in learning theory.

The classical PAC learning [Val84], considers an underlying hidden concept C (for example,
C can be a DNF, a junta, or a parity function), a learning algorithm is given multiple labelled
examples of the form (x,C(x)), and the goal is finding a hypothesis that labels future examples
correctly with high probability (w.r.t. a distribution on examples). In the commonly used random-
query model, the learning algorithm sees only a sequence of examples (x1, C(x1)),(x2, C(x2)), . . .
where each xi is independently drawn from a probability distribution.

Two degrees of correlation may be incorporated into the random query model. First, the
examples may be correlated. Formally, a generating process GenC produces a sequence of pairs
(Ii, Si) where Si = C for all i, and Ii = (xi, C(xi)) for correlated xi’s. This model has been studied
in the learning literature (e.g.[BMOS05]). However, not only the examples may be correlated, in
actuality, many concepts to be learned are potentially correlated themselves, and leveraging this
correlation may reduce the complexity of learning any one of them in isolation. Think of multiple
specimens (the concepts to be learned) which are highly correlated but not identical, all exposed
to a battery of experimental conditions, as a researcher/learner is trying to learn hidden variables
governing their reaction. Put in our framework, there is a generating process Gen that generates
correlated concepts C0,C1,. . .,CT , and then provides a list of examples It = {xi, Ct(xi)}ki=1 for each
t = 1, . . . , T , with the corresponding solutions St = Ct. This is best imagined as a table whose rows
are indexed by the examples and whose columns are indexed by the various correlated concepts.
The learner gets to see the entries of this table, describing the behavior of each concept C1, . . . , CT
on the same set of examples {xi} (corresponding to the experimental conditions), and tries to find
a hypothesis for each of the hidden concepts.

We illustrate the strength of this model for the learning parity with noise (LPN) problem. In
the standard LPN, there is a hidden function C(x) = 〈s, x〉 mod 2 =

∑n
i=1 sixi mod 2, and the

learner gets noisy samples of the form x,C(x) + b for independently drawn x ∈ {0, 1}n and a
random biased bit b that equals 1 with probability 1

2 − δ. The goal is to find s ∈ {0, 1}n. In our
correlated concept model, there is a random string s0 and T ε-noisy copies of it, s1 . . . , sT ; these
strings describe T + 1 parity functions Ct(x) = 〈st, x〉 mod 2. The learning algorithm gets as
input a table Y whose rows are indexed by the queries x1, . . . , xk and whose columns are indexed
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by s0, . . . , sT such that Yit = 〈xi, st〉 + bit, where bit are independent biased noise bits8, and the
goal is to find the strings s0, . . . , sT .

We show that when the underlying parity functions are sufficiently correlated, with ε = 1/n,
the LPN problem becomes easy to solve. The same statement can also be shown for larger ε using
a similar approach, with the running time growing exponentially in εn. For simplicity, we only
analyze the case with ε = 1/n.

Claim 4 - learning correlated parities There is a polynomial-time algorithm that, given access
to k = O(log n) samples from T = O(n log n) parities with 1/n-noise, learns s0 with high probability.

Let us sketch a proof of this claim. Let Y be the input arranged in a table, so that Yit =
〈xi, st〉+ bit. Our first step will be to find the difference s0 + st for many t’s, by a guess-and-check
strategy. Note that by our choose of ε = 1/n, it is likely that s0 + st has very low weight. Let
vi = 〈xi, s0〉+ bi0 + 〈xi, st〉+ bit = 〈xi, s0 + st〉+ (bi0 + bit). Let ∆0,t be a guess for s0 + st. We will
check whether our guess is correct by computing v′ defined by v′i = vi − 〈xi,∆0,t〉. This vector will
be biased towards 0 only if the guess is correct (since in that case the i-th entry equals bi0 + bit
which is 1 with probability 1

2 − 2δ2). Searching among all difference vectors of weight 1 we will
succeed with constant probability and thus be able to find the difference for many “good” columns
t. For simplicity let us pretend all differences had weight 1.

Our second step will be to find s0. Fix i, and observe that for each “good” t we know s0 + st
so can check if 〈s0 + st, xi〉 = 0. For each such t, the entry Yit in the input is an independent noisy
copy of 〈s0, xi〉. Taking majority, we can get a guess for 〈s0, xi〉 that is correct with probability
1− 1/poly(n). Collecting such equations for various xi we can solve a linear system to recover s0.
This also immediately gives st for all good t’s.

A Possible Interpretation: Why do we Collaborate? Finally, we mention that the com-
putational benefit of access to instances which are correlated via the solution space may give
computational insight on a fundamental “human” question: why do we interact and collaborate
with each other?

Collaboration between different entities which have access to different information has been
an over riding theme in theoretical computer science research in the last few decades. Famous
examples include communication complexity and multi party secure computation. In both of these
examples, interaction and collaboration is built-in the definition of the problem, as the goal is to
compute a function of the information held by “the other party”. However, as individuals and
scientists it seems that we benefit from collaboration not only as a means to find out functions of
what our partners know but in order to be able to understand ourselves better and achieve more
than we could on our own. A fascinating question is: why and when is collaboration beneficial
from a computational point of view?

One interpretation of our results (and actually an initial motivator for our work) is that cor-
relation between the inputs of the different parties may be by itself a major driving force for
interaction and collaboration. We may view collaborating parties A and B as holding respectively
inputs y = f(x) and y′ = f(x′). Each party knows her own y (and y′ respectively) but doesn’t know
the hidden variables (or internal state) x (and x′ respectively). They collaborate by exchanging

8Note that if bit are identical for all t rather than being independent then this model reduces back to the standard
LPN problem. The reason is that upon receiving x,C1(x) the learner can always generate C1(x) + 〈x,∆s〉 + b1 for
any string ∆s of his choice. This clearly equals C2(x) + b2 for ∆s = s2 − s1.

13



f(x) and f ′(x′) to engage in “self discovery”. If their internal states are sufficiently similar (corre-
lated) but not identical, collaboration will result in successful computation of x and x′. Similarly,
collaboration with multiple entities can be of further benefit.

We do note that in our setting, once A and B exchange y = f(x) and y′ = f(x′) , they do
not need to interact further. It would be highly interesting to find examples where more complex
interaction would be useful for discovering the hidden internal state. In other words, settings in
which the algorithms of A and B would benefit from the adaptivity of the interaction. For example,
a variant of the above would be a setting in which the access to y is limited compared to the length
of x and y. Say x, y are exponentially long in the running time allowed to the recovery algorithm.
Then, the recovery algorithm may be given “oracle” access to the tuple (f, y, y′i). Given a set of
indices J = {j}, the goal would be to recover the j-th bit of x for all j ∈ J . We leave as an open
question to exhibit functions for which an adaptive inverting algorithm can be more powerful than
non-adaptive inverting algorithms, necessitating a multi-round interaction. The answer is far from
obvious.

1.4 Other Related Work

On Correlation in Cryptanalysis Throughout our work we assumed that the CSP-solving
algorithms magically have access to a generating process which produces instances with correlated
solutions. As alluded to earlier, in some settings, one may imagine being able to actively obtain
such instances. One such setting studied in the cryptographic literature is called tampering attacks.
The first tampering attack was introduced in a beautiful paper by Boneh, DeMillo and Lipton in
1997 “On the Importance of Checking Cryptographic Protocols for Faults” who asked whether one
may induce hardware faults which would result in viewing the results of running a cryptographic
algorithm with a “modified” (or tampered) secret key and thus help to recover the original un-
modified secret key. More recently, the works of [DOPS04, ACM+13] consider adaptive tampering
attacks on the randomness used by a cryptographic algorithm and show that achieving security is
impossible against such strongly adaptive attacks. We note that the correlation models we consid-
ered for CSPs are by and large, much weaker than the tampering considered in the cryptographic
literature.

Another body of cryptanalytic work in which correlated instances play a crucial role is dif-
ferential cryptanalysis [BS90, BS91c, BS91b, BS91a, BS92, BAB93] which has been extensively
applied to symmetric key encryption schemes such as AES, with the goal of recovering the se-
cret key. The analysis works on the premise that the cryptanalyst has access to many correlated
(plaintext, ciphertext) pairs. By analogy in our work the adversary sees instances (G, y), (G′, y′)
(which can be thought of as the “ciphertexts”) and does not see the correlated solutions x, x′ (which
can be thought of as the “plaintexts”).

Yet another related body of work is on related-key attacks in the cryptography literature, where
the adversary may even choose the correlation between the secret key or inputs [Bih94, Knu92,
BK03, GL10, BC10, BCM11, AHI11, Wee12].

On the flip side, Rosen and Segev [RS10] show that families of lossy trapdoor functions, intro-
duced by Peikert and Waters [PW11], are actually secure under natural correlated products. In
the same vein are the works on aux-input security [DKL09, DGK+10]. The goal is to design cryp-
tographic primitives with secret keys, which are secure even if the adversary has access to auxiliary
information on the secret key in the form of hard to invert computations computed over (e.g. one
way functions of) the secret key. In a sense, our results show that Goldreich one-way functions and
the AIK transformations are not auxiliary-input secure.
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Cryptanalysis on Goldreich’s OWF As mentioned earlier the work of Bogdanov and Qiao
[BQ12] on the (in)security of Goldreich’s OWFs is particularly relevant, and is a technical starting
point for our work. They show that Goldreich’s OWFs are easy to invert in the standard model
(where algorithm is given only one instance) in two restricted settings: The first is for arbitrary
predicates but assumes that the algorithm is given a ‘hint’ which is a string x′ that is correlated to
x. The second is an inversion algorithm that works for predicates correlated with one or two of their
input bits. In comparison, our first algorithm (for Theorem 1) addresses arbitrary predicates given
hints of a much weaker nature, that is f(x′) rather than x′. Our third algorithm (from Theorem
3) which takes a single f(x′) hint is limited to predicates in P. For the predicates in this class, not
covered in the first result of [BQ12], one additional correlated instance already makes a difference.

The Study of Correlated Examples in Learning Theory In section 1.3 we showed how
receiving examples of correlated concepts to be learned can be beneficial. Access to correlated
examples of the same concept have been previously studied. For example Bshouty et. al. [BMOS05]
show an efficient learning algorithm for DNFs in the, so called, random walk query model, where
the i + 1th query xi+1 is derived from xi by performing a random bit flip. In contrast, learning
DNFs in the random query model is a notoriously hard problem. Thus, the correlation between
the queries xi’s seems to give the learner significantly more power.

The Study of Correlated Examples in the Planted Independent Set Model In work
inspired by this paper, Holmogren (private communication) recently examines correlated instances
in the context of the planted independent-set semi-random graph model of Feige and Kilian [FK01].

The semi-random graph model [FK01] was initially proposed to try to “mediate between the
unstructured “uninteresting” graphs produced by the purely random models and the worst-case
graphs that are seemingly beyond the heuristics’s ability to solve.” To this end, the model first
plants in their graphs a solution to an underlying graph problem (e.g. independent set, coloring,
graph bisection) as in the random graph world. Next, subject to this planted solution remaining
intact, the model adds edges to the graph in a random fashion followed by a final adversarial step in
which edges can be added arbitrarily. In the case of planted independent set of size αn for an n node
graph, [FK01] proves a sharp threshold between when it is easy to recover the planted independent
set and when it is NP-hard, depending on the probability of adding edges in the random step.

A natural question to ask in the context of studying correlations defined over solutions, is
whether access to two graphs with correlated planted independent sets (i.e correlated solutions),
change the complexity of the problem when it is NP-hard. Indeed, Holmogren presents an algorithm
that given a single auxiliary graph, finds an (1 − γ)-approximate independent set (of size at least
(1− γ)αn) in the primary graph, for any constant γ. There, the auxiliary graph is correlated with
the primary graph in the way that its planted independent set overlaps with that of the primary
graph for more than (1− δ)αn vertexes, for a sufficiently small δ = δ(γ) (and the rest of the graphs
are constructed independently according to the semi-random graph model above).

Correlated Instances in Smooth Analysis The celebrated work on smooth analysis by Spiel-
man and Teng[ST04] introduced a new measure on the complexity of algorithms, first illustrated via
the smooth analysis of the celebrated Simplex algorithm in the realm of real valued inputs. Smooth
analysis measure for an input x , is the expected behavior of the algorithm on correlated inputs
which are the result of subjecting x to perturbations (e.g. flip its bits with a certain probability).
The correlated instance complexity measure we introduce, is different in several aspects. First, we
don’t consider inputs which correlated to a primary input x, but rather inputs whose underling
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solutions correlated to the solution of x. Second, we deviate from the traditional paradigm of an
algorithm working on a single input x, toward the design of algorithms which receive input x as
well as in addition auxiliary inputs xi’s whose solutions are correlated to the solution to x, to assist
in the goal of computing the solution for x.

We mention that Spielman and Teng [ST03] in a follow up work to their original smooth analysis
paper observe that in the discrete input domain, perturbations of the input ”should probably
be restricted to those which preserve the most significant aspect input with respect to a given
situation”. To address this, they define property-preserving perturbations to inputs and relate this
measure to property testing work [GGR96] and the heuristics of Feige and Kilian [FK01] for finding
cliques on semi-random graphs with planted cliques.

1.5 Organization

In the rest of the paper, we first introduce some notions and definitions in Section 2. In Section 3,
we propose a complexity measure for solving correlated instances of general problems. In Section 4,
we design algorithms for solving (mostly) random CSPs; for ease of exposition, we first describe
the algorithms that are given the differences between hidden inputs (proving informal Theorem 2
and 3), and then describe algorithms that do not rely on knowing the differences (proving informal
Theorem 1 and 4). In Section 5, we show how to solve H̊astad’s 3SAT instances given a single
correlated instance. Finally, in Section 6, we show how to invert the randomized encodings of
well-formed functions given correlated instances.
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2 Preliminaries

Let X and Y be two random variables over {0, 1}. We say that X is ε-balanced if |Pr[X =
0]− 1/2| ≤ ε. The correlation between X and Y is the following value

Pr[X = Y ]− Pr[X 6= Y ] = 2 Pr[X = Y ]− 1

A bit string x ∈ {0, 1}n is ε-balanced if its ith bit is ε-balanced with i chosen at random from
[n]. The correlation between two bit strings x and y in {0, 1}n is defined as the correlation between
the ith bit of x and y, with i chosen at random from [n]. The Hamming weight Wt(x) of a bit string
x is the number of 1’s in x, and relative Hamming weight wt(x) of x is the fraction of 1’s in x,
wt(x) = Wt(x)/|x|. The Hamming distance Dis(x, x′) between two strings x and x′ of equal length
is the hamming weight of their difference Dis(x, x′) = Wt(x⊕x′), and the relative Hamming distance
dis(x, x′) is the Hamming distance normalized by the length of the strings dis(x, x′) = Dis(x, x′)/|x|.
If dis(x, x′) ≤ τ , we say that x′ is τ -close to x and vice versa. An ε-balanced string x satisfies
1/2 − ε ≤ wt(x) ≤ 1/2 + ε. The correlation between x and x′ is exactly the relative hamming
distance between them.

Function Notation. Let P be a predicate from {0, 1}d → {0, 1}. The correlation between P
and its ith input bit for i ∈ [d] is the correlation between the random variables P (x1, · · · , xd) and
xi, where x1, · · · , xd are sampled randomly and independently from {0, 1}. We say that P is ε-
balanced if the random variable P (x1, · · · , xd) is ε-balanced, and simply balanced when ε = 0. The
influence of a set I ⊆ [d] of input bits on the predicate, denoted as InfP (I) is the value

InfP (I) = Pr[x
$← {0, 1}d : P (x)⊕ P (x⊕I)]

where x⊕I is the string that differs from x at I. For simplicity of notation, we denote by InfP (i)
the influence of the ith input bit on P .

The derivative of P with respect to the ith input bit xi, denoted as P i, is the function

P i(x1, · · · , xi−1, xi+1, · · · , xd) = P (x1, · · · , xi−1, 0, xi+1, · · · , xd)⊕ P (x1, · · · , xi−1, 1, xi+1, · · · , xd)

The boundary β of P is defined as follows:

β = Pr
z

$←{0,1}d
[∃z′, Wt(z − z′) = 1 : P (z) 6= P (z′)]

A function µ : N→ R is said to be negligible if µ(n) < n−c for any constant c > 0 and sufficiently
large n. We say that a function f : {0, 1}∗ → {0, 1}∗ or a circuit C is d-local if every output bit
depends on at most d input variables, and d is called the output locality of f or C. For any function
f : {0, 1}∗ → {0, 1}∗, we denote by fn the function restricted to inputs of length n.

Probability Notation. Let Un denote a random variable that is uniformly distributed over

{0, 1}n. If X is a probability distribution, we write x
$← X to indicate that x is a sample taken

from X, and if S is a set, we write x
$← S to indicate that x is uniformly selected from S.

Similarly, if f be a randomized function, then we write y
$← f(x) as evaluating f on input x

with uniform random coins producing y; when we need to explicitly specify the random coins, we
write y = f(x; r). The statistical distance between two discrete probability distributions X and
Y is defined as ‖X − Y ‖ = 1

2Σz|Pr[X = z] − Pr[Y = z]|. Let Bernoulli(p) denote the Bernoulli
distribution with success probability p. Let x be a binary string, we denote by Dε(x) the distribution
over {0, 1}|x| produced by the random process of sampling a string x′ by flipping each bit of x
independently with probability ε.
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3 A Complexity Measure for Correlated-Instance

One of the goals of research in the design and analysis of algorithms is to develop algorithms which
work well in practice taking into account all available data. We have demonstrated that access to
multiple problem instances with correlated solutions in the CSP domain, can change the complexity
of problems from intractable to efficiently solvable. We believe that this research direction should
be explored further, for other problems and algorithms.

Our results lead us to propose a correlated complexity measure for search problems. Correlated-
instance complexity measures the performance of an algorithm on a worst case (or average case)
primary instance given as auxiliary input a tuple of correlated instances where the correlation is
over the solution space.

Briefly, let R be an NP relation consisting of over pairs (I, S) of instance I and solution S. Let
Rn ⊂ R be set of pairs (I, S) with instance size |I| = n.

In the correlated-instance setting a problem is specified by a triple P = (R,D, corrD) where R
is an NP relation, D is a family of distributions Dn called the primary-instance distributions, and
corrD is a family of distributions corrD(I, S;T )n parameterized by (I, S) ∈ Rn and a function T (n),
which we call the correlated-instance distributions. The distribution Dn is over pairs (I, S) ∈ Rn,
and the distribution corrD(I, S;T )n is over tuples of pairs (~I, ~S) ∈ (Rn)T (here n is implicitly given
through I).

An algorithm A is said to solve the problem P = (R,D, corrD) with T samples if for every n, and
every instance (I, S) ∈ Rn, and for every T (n)-tuple drawn from the distribution corrD(I, S;T )n,
the algorithm on input I, ~I outputs a solution S′ such that (I, S̃) ∈ Rn. A has correlated-instance
worst-case complexity of g(n) if

max
(I,S)∈Rn

E
(~I,~S)

[
CA(I, ~I)

]
= g(n)

where (~I, ~S) is a T -tuple sampled from corrD(I, S;T )n. A has correlated-instance average-case
complexity of g(n) if

E
(I,S)

E
(~I,~S)

[
CA(I, ~I)

]
= g(n)

where (I, S) is sampled from Dn and then (~I, ~S) is a T -tuple sampled from corrD(I, S;T )n.
This formalism may be viewed in the context of a long line of works that try to find a bridge

between worst case complexity and average case complexity. Worst case is successfully analyzed in
theory, but does not reflect the empirical nature of instances. On the other hand, it is very hard to
describe the distributions that occur in practice. This has lead to a line of works that try to find
a model blending worst case and average case. Smoothed analysis provides a very successful such
attempt, yet on discrete instances this seems more difficult. Our formalism suggests a new blend
between average case and worst case.

We note that extrapolating from the CSP results, if for a search problem, a (natural or forced)
underlying generating process is available of instances of correlated solutions, one would be well
advised to attempt the following two-step algorithm design strategy: first, derive the “difference”
between the solutions of the generated instances; then use these differences to find the solution.

Comparison with smooth analysis: The celebrated work on smooth analysis by Spielman
and Teng[ST04] introduced a new measure on the complexity of algorithms, first illustrated via the
smooth analysis of the celebrated Simplex algorithm in the realm of real valued inputs. Smooth
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analysis measure for an input x , is the expected behavior of the algorithm on correlated inputs
which are the result of subjecting x to perturbations (e.g. flip its bits with a certain probability).
The correlated instance complexity measure we introduce, is different in several aspects. First, we
don’t consider inputs which correlated to a primary input x, but rather inputs whose underling
solutions correlated to the solution of x. Second, we deviate from the traditional paradigm of an
algorithm working on a single input x, toward the design of algorithms which receive input x as
well as in addition auxiliary inputs xi’s whose solutions are correlated to the solution to x, to assist
in the goal of computing the solution for x.

We mention that Spielman and Teng [ST03] in a follow up work to their original smooth analysis
paper observe that in the discrete input domain, perturbations of the input ”should probably
be restricted to those which preserve the most significant aspect input with respect to a given
situation”. To address this, they define property-preserving perturbations to inputs and relate this
measure to property testing work [GGR96] and the heuristics of Feige and Kilian [FK01] for finding
cliques on semi-random graphs with planted cliques.

4 CSP with Correlated Instances

In this section, we demonstrate the benefits of correlation in the context of CSP, by considering
a natural distribution where multiple instances have ε-correlated solutions. We start by reviewing
the classical CSP and then introducing the problems with correlated instances.

4.1 Definitions

CSP A CSP graph is a mapping G : [m] × [d] → [n]. G can be viewed as indicating the d
neighbors in [n] of each j ∈ [m], so it is also conveniently depicted as a bipartite graph on “input”
vertexes [n] and “output” vertexes [m] such that each j ∈ [m] is connected to d neighbors in
[n]: G(j, 1), . . . , G(j, d). For brevity of notations, we also denote by G(j) the list of all neighbors
G(j, 1), · · · , G(j, d) of output vet ice j. A CSP predicate is simply P : {0, 1}d → {0, 1}, and d is
the arity of P . Given G and P we define the mapping fG,P = P ◦G : {0, 1}n → {0, 1}m taking an
input x ∈ {0, 1}n to an output y ∈ {0, 1}m by

∀j ∈ [m] yj = P (xG(j))

The classical worst-case CSP problem with predicate P and density D asks that, given a graph
G and an output y, how to find an input x that satisfies all constraints.

Definition 4.1 (Worst-case-CSP(P,D)). Let (G, y) be any graph G : [Dn] × [d] → [n] and image
y = P ◦G(x) for any x ∈ {0, 1}n. Find a solution x̃ consistent with y, that is, P ◦G(x̃) = y.

The average-case CSP asks how to solve the same problem for a random graph G and output
y of a random hidden input.

Definition 4.2 (Average-case-CSP(P,D)). Let (G, y) be generated by selecting at random a graph
G : [Dn]× [d]→ [n] and a string x ∈ {0, 1}n, and outputting G and y = P ◦G(x). Find a solution
x̃ consistent with y.
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Correlated CSP We consider a correlated-instance setting in which, in addition to (G, y), mul-
tiple auxiliary instances (G1, y1), . . . (GT , yT ) correlated with (G, y) are available; the algorithmic
goal is still to find a solution x to (G, y), referred to as the primary instance, or even to find solu-
tions x, x1, · · · , xT for all instances y, y1, · · · , yT . We investigate a specific correlation between the
auxiliary and primary instances, where all auxiliary instances share the same graph as the primary
instance, that is, Gt = G, and the hidden input xt of each auxiliary instance is a ε-noisy copy of
the hidden input x of the primary instance. More precisely, let coCSPε(P,G, x) be a distribution

that samples an instance correlated with (G, x, y) by selecting at random x′
$← Dε(x), computing

y′ = P ◦G(x′) and outputting (G, x′, y′).
Similar to the classical setting, one can consider either a worst-case primary instance or an

average-case one. Worst-case (ε, T )-correlated CSP with predicate P and density D considers the
following question:

Definition 4.3 (Worst-case (ε, T )-correlated-CSP(P,D)). Let the primary instance (G0, y0) be
any graph G0 : [Dn] × [d] → [n] and image y0 = P ◦ G0(x0) for any x0 ∈ {0, 1}n. Choose T

auxiliary instances (G1, y1), . . . , (GT , yT ) by selecting at random (Gt, xt, yt)
$← coCSP(P,G0, x0)

for all t ∈ [T ]. Given
{

(Gt, yt)
}

0≤t≤T , find solution x̃0 consistent with y0.

We say that an algorithm solves worst-case (ε, T )-correlated-CSP(P,D)) with probability p(n), if
for every primary instance, the algorithm finds a solution with probability p(n) over the randomness
for generating the auxiliary instances.

The average-case (ε, T )-correlated CSP with predicate P and density D considers the same
question for a randomly generated primary instances.

Definition 4.4 (Average-case (ε, T )-correlated-CSP(P,D)). Choose the primary instance (G0, y0)
by selecting at random a graph G0 : [Dn]× [d]→ [n] and a string x0 ∈ {0, 1}n, and outputting G0

and y0 = P ◦ G0(x0). Choose T auxiliary instances (G1, y1), . . . , (GT , yT ) by selecting at random

(Gt, xt, yt)
$← coCSP(P,G0, x0) for all t ∈ [T ]. Given

{
(Gt, yt)

}
0≤t≤T , find solution x̃0 consistent

with y0.
We say that an algorithm solves average-case (ε, T )-correlated-CSP(P,D)) with probability p(n),

if the algorithm finds a solution to the a randomly generated primary instance with probability p(n),
over the randomness for generating all instances.

Approximation In the classical setting, an (1− α)-approximation algorithm of the (worst-case
or average-case) CSP returns a solution that satisfies at least a (1− α) fraction of the constraints
in the CSP instance. Similarly, an (1−α)-approximation algorithm of the (worst-case and average-
case) correlated CSP returns a solution x̃0 that satisfies at least a (1−α) fraction of the constraints
in the primary instance.

Correlated CSP with Differences We also consider a relaxed correlated-instance setting,
where in addition to the auxiliary instances, the differences xt ⊕ x0 between their hidden inputs
xt and the hidden input x0 of the primary instance is known. Such a relaxed setting captures,
for instance, the scenario where the correlation between instances is created via tampering. The
algorithmic goal is still finding a solution to the primary instance. Formally,

Definition 4.5 (Worst-case/Average-case (ε, T )-correlated-CSP(P,D) with differences). Let (G0, x0, y0)
be a worst-case instance as defined in Definition 4.3 or an average-case instance sampled at random
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as in Definition 4.4. For every t ∈ [T ], let (Gt, xt, yt) be sampled at random as in Definition 4.3
and 4.4.

Given (G0, y0) and
{

(Gt, yt,∆t)
}
t∈[T ]

, where ∆t = xt ⊕ x0, find solution x̃0 consistent with y0.

4.2 Our Results

We start with designing algorithms in the simpler setting of correlated-CSP with differences and
then try to extend the algorithms to remove the dependence on knowing differences.

Algorithms for Correlated-CSP with Differences We start with the simpler setting of corre-
lated CSP with differences. In this relaxed setting, we first design an algorithms for solving worst-
case (ε, T )-correlated-CSP(P,D), for a generic ε ∈ (0, 1/2), any non-trivial (i.e., non-constant)
predicate P and density D, assuming that the number of auxiliary instances is sufficiently large.
Here, the number of auxiliary instances affects the the success probability of the algorithms; in
particular, for any constant r > 0, if a logarithmic number O(log n) of auxiliary instances are
available, the algorithms solves the worst-case primary instance with 1−n−r probability. Formally,

Theorem 4.1. For every ε ∈ (0, 1/2], there is a polynomial time algorithm C, such that for
every predicate P : {0, 1}d → {0, 1}, density D ≥ 1, and constant r > 0, C solves worst-case
(ε, T )-correlated-CSP(P,D) with differences, with success probability 1 − n−r, provided that T >
8(d+ log(Dnr+1))/εd.

In fact, since the above algorithm C handles any predicate P , it can be easily extended to
solving more general CSPs where every constraint is with respect to a different predicate P1, . . . , Pm,
m = Dn. Finding a solution to worst-case instances of such general CSPs is equivalent to inverting
arbitrary NC0 computation. We modify the algorithm C to invert Boolean functions with bounded
output-locality d, given a sufficiently large number T = Ω((log n)22d) of correlated instances as
described in the theorem below.

Corollary 4.1. For every ε ∈ (0, 1/2], there is an algorithm satisfying that, for every Boolean
function f : {0, 1}n → {0, 1}m with output locality d, string x ∈ {0, 1}n, and constant r > 0, the

algorithm on input f , y = f(x), yt = f(xt) and ∆t = x ⊕ xt where xt
$← Dε(x) for every t ∈ T ,

inverts y with probability 1− n−r in O(mn2T23d) steps, provided that T > 8(d+ log(Dnr+1))/εd.

If f can be computed in NC0, the output locality d is a constant, and thus the above theorem
establishes a polynomial time inverting algorithm for f , requiring a logarithmic number of correlated
samples. If f has a logarithmic output locality d = O(log n), the above theorem gives a polynomial
time inverting algorithm requiring a polynomial number of correlated samples.

Theorem 4.1 and Corollary 4.1 demonstrates the power of having many correlated instances
while knowing the differences between the hidden inputs. A question that arises immediately is
“does correlation help when only a few auxiliary instances are available?” Towards understanding
this question, we show a second algorithm in the relaxed setting (where the differences of hidden
inputs are known) that works with only a single auxiliary instance. However, this algorithm does
not handle generic predicate and parameters as the algorithm in Theorem 4.1 does. Instead, it only
handles a large class P of predicate P (a) satisfying that one of its derivative P σ(a) is γ-correlated
with one of the input bits ai∗ . Furthermore, it requires the flipping probability p∗ and density D
to lie within certain range. More precisely,
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Theorem 4.2. Let P (a) be any predicate satisfying that there exist σ ∈ {0, 1}d, γ > 0 and i∗ ∈ [d],
such that, the derivative P σ(a) is γ-correlated with the i∗th input bit ai∗. For any ε ∈ (0, 1/2), let
the flipping probability p∗ be set as

p∗ =

{
ε if σt = 0

1− ε else σt = 1

Assume that for a sufficiently large constant N ,

ε ≤ 1/N22dd6 and D ≥ N/ε5d.

For every r ≥ 1, there is a polynomial time algorithm A that solves average-case (p∗, 2)-correlated-
CSP(P,D) with differences, with probability 1−O(n−r).

In fact, depending on P and P σ, much weaker bounds on ε and D suffice: Let β be the
boundary of P , and κ the probability that a d-bit string a, whose each bit is independently Bernoulli
distributed with success probability p∗, matches σ at all bits but the i∗th. ε only needs to be smaller
than β2/Nd6 and D needs to be greater than N(d8/β2 + ln(1/ε)/γ2κ2). The more precise ranges
of ε and D can be found in Proposition 4.1.

Algorithms for Correlated-CSP without Differences Next, we establish two theorems sim-
ilar to Theorem 4.1 and 4.2 in the more stringent setting where the differences between the hidden
inputs are not known. To this end, we design two algorithms that given the primary and auxiliary
instances estimate the differences between their hidden inputs; then, to solve the primary instance,
we can simply apply algorithms in Theorem 4.1 and 4.2 using the estimated differences. Our first
difference estimation algorithm works with a randomly chosen primary instance (leading to an
algorithm for the average-case correlated CSP) and for a restricted range of parameters when ε
is sufficiently small (with respect to d) and the density D is sufficiently large (with respect to d
and ε). In these settings, given a pair of primary and auxiliary instances, the algorithm outputs
an estimated difference between their hidden inputs that is guaranteed to be α-close to the actual
difference for an arbitrarily small constant α. Combining this algorithm with Theorem 4.2 gives
the following theorem:

Theorem 4.3. Let P (a) be any predicate satisfying that there exist σ ∈ {0, 1}d, γ > 0 and i∗ ∈ [d],
such that, the derivative P σ(a) is γ-correlated with the i∗th input bit ai∗ and σi∗ = 0. Assume that
for some sufficiently large constant N ,

ε ≤ 1/N23dd6 and D ≥ N/ε5d.

For every r ≥ 1, there is a polynomial time algorithm A that solves average-case (ε, 2)-correlated-
CSP(P,D), with probability 1−O(n−r).

As Theorem 4.2, much weaker bounds on ε and D suffices, depending on properties of P , and P σ:
Let β, κ be defined as above, and let ρ be the maximum influence of different input bits of P , ρ =
max(InfP (i)); then it suffices to have ε ≤ ρβ2/Md6 and D ≥Md8(1/β2 +1/ρ2 +1/γ2κ2) ln(1/γκε),
for some sufficiently large constant M . The more precise bounds can be found in Proposition 4.3.

Towards establishing an analogy of Theorem 4.1, the first difference estimation algorithm is,
however, insufficient, for the reason that though the estimated differences is correct for most (a
(1 − α) fraction of) input bits, it is not known where the errors are. We thus design a second
difference estimation algorithm that utilizes multiple auxiliary instances to identify an α fraction
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of the input bits, for which the error probability is high, and outputs estimated differences for the
rest input bits for which the error probability is low and can be tolerated. Thus combining the
second difference estimation algorithm with Theorem 4.1 we obtain,

Theorem 4.4. Fix any non-trivial predicate P and constant α∗ ∈ (0, 1]. Assume that for a
sufficiently large constant N ,

ε < 1/4d2d, D >
Nd

ε2α∗
log

(
2

ε

)
, and T = T (n) ≥ Nd2 log(Dn)/ε2d.

There is a polynomial time algorithm B that finds (1− α∗)-approximate solutions for average-case
(ε, T )-correlated-CSP(P,D) with probability 1− 3/n, for sufficiently large n ∈ N.

Again, a weaker bound of ε, depending on the maximum influence ρ of P suffices. See Propo-
sition 4.4 for more details.

4.3 Overview of Techniques

We give an overview of our techniques for proving the above four theorem. Some part of this
overview repeats that in Section 1.2 in the introduction, but more details are provided.

Solving multiple correlated CSPs with difference We start with the most relaxed setting,
where to solve a primary instance G, y, multiple auxiliary instances (G, y1, · · · , yT ) are available and
the differences (∆1, · · · ,∆T ) between their hidden inputs (x1, · · · , xT ) and that x of the primary
instance are known. In this setting, we design an algorithm C that is able to solve any worst-
case primary instance, for generic predicate P , density D and setting of the correlation parameter
ε ∈ (0, 1/2].

To illustrate the idea behind C for finding a solution x̃ consistent with y, assume that an infinite
number of auxiliary instances are available y1, y2, · · · together with the corresponding differences
∆1,∆2, · · · between their hidden inputs and x. Then, consider an output vertex k ∈ [m]: Its value
in the tth instance is

ytk = P (xtG(k)) = P (xG(k) ⊕∆t
G(k))

For every instance t, the difference ∆t
G(k) (restricted to the neighbors of k) is a d-bit string, where

every bit ∆t
G(k,l) is independently Bernoulli distributed with probability ε of being 1. Given an

infinite number of auxiliary instances, every possible “shift” a ∈ {0, 1}d will appear (i.e., for every
a ∈ {0, 1}d, ∃t s.t. ∆t

G(k) = a). Since the differences {∆t
G(k)} are known, the algorithm C can

collect the values of P on every possible shift a from xG(k), which form an encoding of xG(k); we
call it the shift-P-encoding of xG(k). More specifically,

Encode(z) ,

[
P (z ⊕ 0 · · · 0︸ ︷︷ ︸

d

), P (z ⊕ 0 · · · 0︸ ︷︷ ︸
d-1

1), · · · , P (z ⊕ 1 · · · 1︸ ︷︷ ︸
d

)

]
∈ {0, 1}2d

Given encoding Encode(xG(k)), if the predicate P satisfies that the encoding for every z ∈ {0, 1}d
is unique, then we can uniquely recover xG(k). (This can be done efficiently, since the encoding has

constant size 2d.) Then using the same procedure for every output bit k, the algorithm uncovers
the unique value of xG(k) for every k. By stitching them together, it obtains the unique string x
consistent with y as well as all {∆t} and {yt}.
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To extend the above intuitive idea to the full-fledged algorithm, we first modify the algorithm to
work with a logarithmic number T = O(log n) number of auxiliary instances. It is easy to see that,
for a constant locality d, when T is sufficiently large (still logarithmic), the encoding Encode(xG(k))
for every input bit k can be recovered completely with high probability 1−n−r; then the algorithm
proceeds as before.

The real challenge is how to go beyond predicates that admit unique encoding and handle all
nontrivial predicates. The difficulty lies in that for a general predicate P , there may exist different
strings z 6= z′ that have the same encoding Encode(z) = Encode(z′). Then, from the encoding
Encode(xG(k)), the algorithm can only deduce that there are multiple candidates for the value of
xG(k). However, given a collection of candidates for all sub-strings {xG(k)}, it is not clear how to
find a single string x̃ that simultaneously satisfies all constraints on all sub-strings {xG(k)}.

We overcome this problem by showing that given a valid encoding E (for which there ex-
ists a pre-image), all the pre-images of E form a unique affine space Λ. Then, given encoding
Encode(xG(k)), the constraints on xG(k)—that is, {P (xG(k) ⊕∆t

G(k)) = ytk}t—is equivalent to a set
of linear constraints on xG(k), that is, xG(k) ∈ Λ. Now, given the collection of linear constraints for
all k, the algorithm can solve the linear system efficiently to recover a string x̃ consistent with all
constraints.

It is easy to see that this method goes through even if different output bits are evaluated using
different predicates, leading to an algorithm for inverting any NC0 functions. In fact, in its full
generality, this method can be used to invert any function with output locality d given a sufficiently
many T = O(log n/εd) auxiliary instances.

Solving two correlated CSPs with difference When only a single auxiliary instance is avail-
able, we cannot hope to collect enough statistical information about each output bit as discussed
above. Instead, if the CSP instances have high density D, then with very high probability over the
randomly choice of the primary instance graph G, most input bits participates in the calculation
of multiple output bits. Thus, we can collect statistical information about every input bit directly.
Below we describe how to use this method to solve average-case (G, y), (G, y′), provided that the
predicate P (a) has the property that one of its derivative P σ(a) is correlated with one of its input
bits ai∗ .

At a high-level, for any input bit i, the algorithm A tries to collect statistical information about
the value of xi from all the output bits k that have i as the i∗th input bit (i.e., G(k, i∗) = i); we
call such an output bit a t-neighbor of i. If it occurs that the differences ∆G(k) = σ, it holds that

yk ⊕ y′k = P (xG(k))⊕ P (xG(k) ⊕∆G(k)) = P (xG(k))⊕ P (xG(k) ⊕ σ) = P σ(xG(k))

Therefore, when ∆G(k) = σ occurs, A can efficiently compute P σ(xG(k)) = yk ⊕ y′k, and by the fact

that P σ is positively correlated with the i∗th input bit, A can use P σ(xG(k)) as a vote to the value of
xi = xG(k,i∗). Thus, to estimate xi, A collects all votes from i’s i∗-neighbors satisfying ∆G(k) = σ,
and check whether a large enough fraction of them vote for 1. We show that as long as sufficiently
many votes are collected from i’s t-neighbors, the voting scheme yields a correct estimation x̃i = xi
with high probability (≥ (1− β) for any β > 0). Furthermore, since the estimation for each i only
depends on “local information” related to its i∗-neighbors, via a careful analysis of the randomized
procedure for generating the pair of instances, we show that each estimation is independent of
others; thus, by Chernoff bound, a large fraction of these input bits that have enough votes are
estimated correctly. (We remark that the argument of independence relies crucially on the fact
that the graph G is random chosen; in a random graph, the choices of neighbors of every output
bit k and the values of neighbors are independent, conditioned on the weights of ∆ and x.)
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Now it only remains to argue that for most input bits, enough votes are collected. We rely on
the fact that the instances have high density to argue that most input bits have many t-neighbors;
however, this is not sufficient. Consider an input i and one of its i∗-neighbor k, for the event
∆G(k) = σ to occur, it must be that ∆i = ∆G(k,i∗) = σi∗ ; thus, input bits that have ∆i 6= σi∗ would
never collect any votes. This puts an interesting requirement on the correlation between x and x′

depending on the predicate P . Namely, if σi∗ = 0, the correlation between x and x′ needs to be
sufficiently large so that most input bits i have ∆i = 0 and thus its value can be estimated using
the voting strategy. On the other hand, if σi∗ = 1, the correlation needs to be sufficiently small so
that most input bits i have ∆i = 1. If the auxiliary instance is appropriately correlated with the
primary instance, the algorithm A can indeed collect enough votes for most input bits, and derive
correct estimation for most of them, leading to an “almost-correct” solution x̃ that is (1−β′)-close
to the hidden input x. Finally, we apply the procedure designed by Bogdanov and Qiao in [BQ12],
to turn an almost-correct solution x̃ into a true solution.

We remark that, unlike the algorithm C which solves worst-case primary instances, the algorithm
A only solves an average-case primary instance; this is because the analysis of A crucially relies
on the fact that the graph G and the primary hidden input x are chosen at random to argue that
G and x are “well formed”—with properties such as the number of t-neighbors of most input bits
are close to D, and x is relatively balanced, etc.—and that every t-neighbor of an input bit i has a
constant probability of generating a correct vote, independent of each other. One can potentially
characterize these (G, x) for which a solution can be found; however this is outside the scope of
this work, and we leave this as future work.

Solving two correlated CSPs without difference: In the more stringent setting where the
differences between the hidden inputs are not known, we design two algorithms analogous to the
algorithms C and A described above. Ideally, to remove the dependence on the differences, we
want to design sub-algorithms that given the primary and a single or multiple auxiliary instances
estimate the differences between the hidden inputs; then we can simply invoke the algorithms C and
A with the estimated differences. However, two algorithmic challenges exist: (1) How to estimate
the differences with potentially small errors? (2) Are algorithms C and A robust to small noises
in the differences they receive? and if not, how to adapt them to become robust? Below we start
with the simpler case where only a single auxiliary instance is available, and describe the intuition
on how to overcome these challenges in this case.

Assume that the predicate P has an input bit, say the `th, with high influence, that is, when
the `th input bit flips, with probability ρ over the uniform random choices of the other d− 1 input
bits, the output of the predicate also flips (i.e., ρ = Prx←Ud [P (x)⊕P (x⊕`)] where x⊕` is x with the
`th bit flipped); this assumption is without loss of generality, as any non-trivial predicate P must
have an input bit with influence at least 2−d. In other words, when the rest d−1 input bits remain
the same, whether the output flips or not is positively correlated with whether the `th input bit
flips or not.

Then, given a pair of correlated instances (G, y), (G, y′) generated at random, we can estimate
whether an input bit i flips or not by collecting votes from its `-neighbors: For every `-neighbor
k of i, vote that i flips or not depending on whether k flips or not respectively; if a large enough
fraction of i’s `-neighbors vote that i flips, estimate that i flips (set D̃eltai = 1), and otherwise,
estimate that i remains the same (set D̃eltai = 0). We argue that when the primary instance (G, y)
is chosen at random, the correlation parameter ε is sufficiently small and density D is sufficiently
high, the estimation D̃elta is “almost correct” (i.e., (1 − β)-close to the actual difference ∆) with
high probability.
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When ε is sufficiently small, x and x′ differ at a small fraction (close to ε) of the input bits.
Therefore, in a random graph where k’s d−1 non-`-neighbors are chosen uniformly randomly, with
high probability (close to (1− ε)d−1), all non-`-neighbors of k do not flip. In this case, by the fact
that `th input bit of P has high influence, whether yk 6= y′k is positively correlated with whether
xi 6= x′i. Thus the vote from k is correct with some constant probability. Then, by a similar
argument as that for algorithm A, with high probability a correct estimation is derived for every
input bit that has enough votes, and all estimation are independent. Then, given that the density
is high, in a random graph, most input bits have many ` neighbors and thus enough votes, leading
to the conclusion that the estimation is almost correct.

The next question is whether the algorithm A is robust to an almost correct difference D̃elta.
Recall that A uses a voting scheme to guess the value xi of each input bit, depending on the local
information related to its t-neighbors. The voting scheme can be naturally extended to tolerate a
small amount of errors in the neighborhood of its t-neighbors. Thus, when the total fraction of errors
is bounded, the fraction of input bits i for which there are too many errors in the neighborhood of
its t-neighbors is also bounded by a constant. Therefore, A is robust.

Solving many correlated CSPs without difference: When multiple auxiliary instances
(G, y1, · · · , yT ) are available, we hope to retain the capability of handling general predicates. The
first and straightforward approach is applying the above difference estimation algorithm A∆ to es-
timate the difference ∆t = x⊕ xt for each auxiliary instance yt by invoking A∆ with (G, y), (G, yt)

to obtain an estimated difference D̃elta
t
. As argued above, for every t, D̃elta

t
is correct for all but

a small constant fraction of the input bits, with high probability. We hope that the algorithm C is

or can be extended to be robust against such noisy estimated differences D̃elta
1
, · · · D̃eltaT .

However, this approach does not go through for the following reason: Although the error rate

in each estimated difference D̃elta
t

is bounded, the error rate in the estimation for each input bit
i, {∆t

i}, is not. (Think of the former as a row and the latter as a column). In fact it could happen

that there is a constant fraction of input bits for which the error rate in {D̃eltati} is not bounded.
Unfortunately, the algorithm C is not robust to such noises: Recall that C tries to construct the shift-
P-encoding of the neighborhood xG(k) of each output bit k, from the output bit values y1

k, · · · , yTk
and the differences D̃elta

1
G(k), · · · , D̃elta

T
G(k) on the neighborhood. If there is an input bit in the

neighborhood i ∈ G(k), whose estimated differences are mostly incorrect, the resulting encoding
Encode(xG(k)) is wrong, leading to a set of incorrect linear constraints on xG(k). Therefore, if the
estimated differences are wrong consistently on a constant fraction of the input bits, C derives a
linear equation system with a constant fraction of errors; it is well known that linear systems with
a constant fraction of errors are potentially computationally intractable.

To overcome this, we design a new difference estimation algorithm B. The key feature of the
new algorithm is that it can identify these (constant fraction of) input bits for which the estimation
error is not bounded; and for the rest, it outputs estimations with bounded errors. (We note that
the algorithm C can be extended naturally to accommodate bounded errors in each coordinate

{D̃eltati}.) The intuition behind the new algorithm is as follows: Fix an input bit i. Our method
for estimating the differences in the ith input bit follows the rationale that when i flips, we expect
to see a larger fraction of its `-neighbors flip, than the case where i does not flip. To examine this
condition, we say that i is “influential” to one of its `-neighbor k, if the value of k flips when i
flips and all other input bits of k remain the same. If ε is sufficiently small, and i is “influential”
to a large fraction of its `-neighbors k, then indeed the condition holds (that is, a larger fraction
of i’s `-neighbors flip values when i flips). Note that whether i is influential to k is decided by the
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choice of k’s non-`-neighbors and their values. Over the random choices of sampling G, x, with high
probability in proportion to ρ, i is influential to k. However, with a small constant probability, it
happens that i is not influential to most of its `-neighbors, in which case the estimation for i has
high error rate.

The algorithm B∆ tries to identify such input bits. To see that this is possible, consider two
extreme cases: (i) An input bit i is not influential to any of its `-neighbors, and (ii) i is influential
to all of its `-neighbors. Our analysis later shows that in the former case, the fraction of flips in i’s
`-neighbors would be consistently low across T instances no matter whether i flips or not, whereas
in the latter the fraction of flips would be high for a constant fraction of instances where i flips.
Therefore, by examining the pattern of flips in i’s `-neighbors across T instances, we can collect
statistical information about how influential i is to its `-neighbors. This allows us to spot these
input bits that would have high error rate, namely, ones whose `-neighbors mostly do not flip across
T instances; furthermore, for the rest input bits, the statistical information provides more accurate
threshold τi for deciding whether i flips or not (instead of using a universal threshold for all input
bits as in algorithm A∆ above).

Finally, since the fraction of input bits with high error rate is small, the final algorithm can
simply ignore them and invoke (an extended variant of) C on the “sub-problem” induced by the
rest of the input bits, for which reliable estimations is available, yielding an approximate solution
that satisfies all but a small constant fraction of the output constraints.

4.4 Solving Many Correlated CSP Instances with Differences

Towards proving Theorem 4.1, we present an algorithm C for correlated CSP with differences for
generic predicate P , density D and parameter ε, when a logarithmically many auxiliary instances is
available. Then we extend the algorithm C to invert any function with low output locality, leading
to Corollary 4.1.

Though the algorithm C requires knowing the exact differences between the hidden inputs of
the auxiliary and primary instances, at the end of this section, we show that this requirement can
be slightly relaxed and C can be extended to work with certain structured noisy differences. This
extension will be very useful for later handling the more stringent scenario where the differences
are hidden.

4.4.1 Construction and Analysis of the Algorithm C (Proof of Theorem 4.1)

On input a primary instance (G, y) and a logarithmic number T = O(log) of auxiliary instances
y1, · · · , yT together with the corresponding differences ∆1, · · · ,∆T , the algorithm C tries construct
the shift-P-encoding of the neighborhood xG(k) of every output bit k.

Encode(xG(k)) =

[
P (xG(k) ⊕ 0 · · · 0︸ ︷︷ ︸

d

), P (xG(k) ⊕ 0 · · · 0︸ ︷︷ ︸
d-1

1), · · · , P (xG(k) ⊕ 1 · · · 1︸ ︷︷ ︸
d

)

]
∈ {0, 1}2d

As we show below in Claim 4.1 that for every P , the set of pre-images of a valid encoding form an
affine space; moreover, the space is a shift of a universal affine space. Then the algorithm C can map
the encodings corresponding to each output bit k to a set of linear constraint on the neighborhood
xG(k) of k. Thus finding a consistent solution x̃ simply reduces down to solving the linear system.

A technical caveat in the above intuition is that it implicitly assumes that every output bit k
has d distinct neighbors; thus, given sufficiently many auxiliary instances, all possible shift a on
the d input bits of k appear with high probability. However, given a worst-case graph G, it could
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happen that some output bit k has repetitive neighbors, that is, ∃l 6= l′ such that G(k, l) = G(k, l′).
In this case, no matter how many auxiliary instances are available, all shifts a on input bits of k
have that al = al′ . To overcome this, instead of considering k as output of P on d input bits, we
can remove the repeating input bits and view k as the output of P ′ on d− 1 input bits, where

P ′(xG(k,1), · · · , xG(k,l′−1), xG(k,l′+1), · · · , xG(k,d)))

= P (xG(k,1), · · · , xG(k,l′−1), xG(k,l), xG(k,l′+1), · · · , xG(k,d))).

Then the same method above can be applied w.r.t. P ′ to discover the linear constraints over the
d− 1 non-repeating input bits of k.

For simplicity of exposition, below we first present our algorithm C and its analysis w.r.t. a
graph G that does not have repeating neighbors for any output bit (that is, for every k and every
l 6= l′ ∈ [d], G(k, l) 6= G(k, l′)); then at the end of the section, we note in Remark 4.1 how to handle
graphs with repeating neighbors.

Construction of C:

Claim 4.1. Fix any predicate P : {0, 1}d → {0, 1}. There is an affine space ΛP , called the invariant

space of P , satisfying that for every E ∈ {0, 1}2d such that there is a z∗ ∈ {0, 1}d with encoding
E = Encode(z∗), the set of pre-images of E, S =

{
z ∈ {0, 1}d|Encode(z) = E

}
, forms the affine

space Λ(E) = z∗ + ΛP .

Proof. We say that a value a∗ ∈ {0, 1}d is an “invariant” of a predicate P , if it satisfies that for
all a, P (a) = P (a + a∗). Every pair z 6= z′ that have the same encoding Encode(z) = Encode(z′)
defines an invariant a∗ = z′ − z of the predicate P .

Encode(z) = [P (z ⊕ 0 · · · 0), P (z ⊕ 0 · · · 01), · · · , P (z ⊕ 1 · · · 1)]

= Encode(z′) =
[
P (z′ ⊕ 0 · · · 0), P (z′ ⊕ 0 · · · 01), · · · , P (z′ ⊕ 1 · · · 1)

]
=⇒ ∀a ∈ {0, 1}d, P (a) = P (a+ (z′ − z))

Let ΛP be the affine space spanned by all the invariants of P . We show that S forms the affine
space Λ(E) = z∗ + ΛP .

1. S ⊆ Λ(E): For every z ∈ S, Encode(z) = E = Encode(z∗). Therefore, z − z∗ is an invariant
and belongs to ΛP . Thus z ∈ z∗ + ΛP = Λ(E).

2. Λ(E) ⊆ S: For every z ∈ Λ(E), z = z∗ + a, where a ∈ ΛP is a linear combination of the
invariants of P . As shifting z∗ by any invariant does not change its encoding, Encode(z) =
Encode(z∗) = E. Thus z ∈ E.

Given the claim, a formal description of algorithm C appears in Figure 1.
We analyze the time complexity of C: It takes O(23d) steps to find the invariant space ΛP using

brute force by comparing the encoding of every pair of input strings. It is easy to see that the
second and the third steps take O(Tm2d) and O(m22d) time. Finally, the complexity of solving
a system of m(d − d′) linear equations with n unknowns is bounded by O(n2md). Overall, the
algorithm runs in time µmn2T23d for some universal constant µ.
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C for solving worst-case CSP using many auxiliary instances and differences

Let P,D, ε be public parameters. On input G, y, y1, y2, . . . , yT , and the differences ∆1, . . . ,∆T ,
proceed in four steps:

1. Find the invariant space ΛP of P using brute force. Let d′ ≤ d be the dimension of ΛP .

2. For every output bit k ∈ [m], try to recover the encoding Ek = Encode(xG(k)) associated

with its corresponding input bits xG(k) as follows: For every t ∈ [T ], set the (∆t
G(k))

th entry

in Ek to ytk.

In the end, if there is an output bit k ∈ [m] whose encoding Ek is incomplete (i.e., for some
entry a, the value P (xG(k) ⊕ a) is not set), output ⊥.

3. For every output bit k ∈ [m], find a pre-image z∗ of Ek using brute force, which defines
the affine space Λ(Ek) = z∗ + ΛP that xG(k) lies in; write down the d− d′ linear equations
enforcing that xG(k) ∈ Λ(Ek).

4. Finally, find one solution x̃ to the system of m(d− d′) linear equations. Output x̃.

Figure 1: The algorithm C finds a consistent solution for every CSP instance (G, x, y) with high probability,
given a logarithmic number of auxiliary instances and information of differences between hidden inputs.

Analysis of C: To show that C indeed solves the primary instance with probability 1− n−r, we
first show that for every output bit k and every string a ∈ {0, 1}d, a appears as the difference
between xtG(k) and xG(k) for Ω(T ) times, with probability 1− n−r.

Claim 4.2. Let G be as described above. Fix any x ∈ {0, 1}n and y = P ◦ G(x). Sample T

auxiliary instances (G, xt, yt)
$← coCSP(P,G, x) independently. For any constant r, it holds that

with probability 1−n−r, for every output bit k ∈ [m] and string a ∈ {0, 1}d, the number of instances
t ∈ [T ] satisfying that ∆t

G(k) = a is at least (εd/2)T , provided that T > 8(d+ log(mnr))/εd.

Proof. For every output bit k, every a ∈ {0, 1}d and every instance t ∈ [T ], the probability that
∆t
G(k) = a is at least εd. Since the differences ∆t

G(k) are independently distributed across different

instances, the probability that less than a εd/2 fraction of the instances have ∆t
G(k) = a—denote this

Event as Evtk,a—is at most exp(−Tεd/8) by the Chernoff bound, which is smaller than 1/(2dmnr)
when T > 8(d+log(mnr))/εd. By a union bound, the probability that for the kth bit, Evtk,a occurs
for any a ∈ {0, 1}d is at most 1/mnr. Finally, by Markov inequality, the probability that there is
an output bit k ∈ [m] and that have Evtk,a occurring for some a is at most n−r.

Given the above claim, we show that the algorithm C on input P , (G, x, y), (G, xt, yt)
$←

coCSP(P,G, x) for t ∈ [T ], and {∆t = x0 ⊕ xt}t∈[T ], finds x̃ consistent with y with probability
1− n−r.

By Claim 4.2, when T > 8(d + log(mnr))/εd, it holds that for every output bit k and string
a ∈ {0, 1}d, there is at least one instance t satisfying ∆t

G(k) = a, with probability 1− n−r. In other

words, with probability 1−n−r, C recovers the encoding Ek for every output bit k completely. In this
case, by Claim 4.1, for every output bit k, the constraints regarding xG(k)—including P (xG(k)) = yk
and {P (xG(k) ⊕ ∆t

G(k)) = ytk}t∈[T ]—is equivalent to the linear constraints that xG(k) ∈ z∗ + ΛP
defined by Ek. Then, solving the system of linear constraints collected for all output bits k yields
a solution x̃ consistent with y, {yt} and {∆t}.

By the analysis of the time-complexity of C, when d = O(1) T = Θ(log(nm)), C runs in
polynomial time in n and m.
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Remark 4.1. The above presentation of C and analysis deals with a graph G that does not have
repeating neighbors for any of its output bits. It is easy to modify C to also handle arbitrary graphs
that have repeating neighbors for some of its output bits: For every output bit k that has repeating
neighbors, view k as the output of a predicate Pk on less than d input bits with the repeating neighbors
removed. This yields a graph G′ whose output vertexes have different degrees (all no greater than
d) and are computed using different predicates. Modify C to find the invariant space for every Pk
and find the linear constraints for every output bit k in G′ as described above. Finally, C solves
the linear equation system to recover a solution. The same analysis as above goes through for this
more general case. We omit the details here.

4.4.2 Inverting Arbitrary Functions with Small Output-locality

It is easy to observe that the algorithm C above does not require that all constraints (for different
output bits) are with respect to the same predicate P . In fact, we show that the algorithm can be
easily modified to handle the more general case where every output bit k is computed via a different
predicate Pk. In this more general case, solving a CSP instance (G, x, y), where yk = Pk(xG(k)) for

every k, is equivalent to inverting a NC0 computation f , and the ideas behind the algorithm C can
be directly applied to inverting any NC0 function in the worst case, given a logarithmic number of
auxiliary instances and information of differences between hidden inputs. Below, we present this
extension for inverting any function with low output locality.

The inverting algorithmM on input any function f : {0, 1}n → {0, 1}m with output locality d,
any f(x), and auxiliary instances {f(xt)}t∈[T ] whose pre-images are ε-noisy copies of x, proceeds as
follows: Represent f as graph G and predicates P1, . . . , Pm so that f(x)k = Pk(xG(k)); then proceed
as C does except that in the first step,M finds the invariant spaces ΛPk for every predicate Pk, and
correspondingly in the third step, for every output bit k, it finds the linear constraints on xG(k)

w.r.t. predicate Pk as xG(k) ∈ z∗+ ΛPk . We provide a formal description of the modified algorithm
M in Figure 2.

M for Inverting Functions with Small Output-Locality

On input f : {0, 1}n → {0, 1}m, y = f(x), {yt = f(xt)}t∈[T ] and {∆t = xt ⊕ x}t∈[T ], proceed in
following steps:

1. Represent f as graph G and predicates P1, . . . , Pm so that f(x)k = Pk(xG(k)).

2. For every k, Find the invariant space ΛPk of Pk using brute force. Let d′Pk ≤ d be the
dimension of ΛPk .

3. For every output bit k ∈ [m], try to recover the encoding Ek = EncodePk(xG(k)) associated

with its corresponding input bits xG(k) as follows: For every t ∈ [T ], set the (∆t
G(k))

th entry

in Ek to ytk.

In the end, if there is an output bit k ∈ [m] such that its corresponding encoding Ek is
incomplete, output ⊥.

4. For every output bit k ∈ [m], find a pre-image z∗ of Ek w.r.t. Pk using brute force, and write
down the d − d′Pk linear equations with unknown xG(k) enforcing that xG(k) ∈ ΛPk(Ek) =
z∗ + ΛPk .

5. Finally, find one solution x̃ to the system of at most md linear equations. Output x̃.

Figure 2: The algorithm M inverts any function with small output locality in the worst-case, given suffi-
ciently many instances and information about the differences between hidden inputs.
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Time Complexity of M: Similar to the running time analysis of C, it takes O(m23d) steps to
find the invariant spaces ΛPk for each output bit k using brute force. The third and fourth steps
(corresponding to the second and third steps in C) take time O(Tm2d) and O(m22d) respectively.
Finally, the complexity of solving a system of at most md linear equations with n unknowns is
bounded by O(n2md). Overall, the algorithm runs in time µmn2T23d for a universal constant µ.

Finally, the correctness ofM follows syntactically the same proof of the correctness of C (proof
of Theorem 4.1). This concludes Corollary 4.1.

4.4.3 Handling Structured Noisy Differences

The algorithm C above requires knowing the exact differences between the hidden inputs. In this

section, we modify C to allow for using noisy differences {D̃eltat} with certain structured errors. The
modified algorithm C′ will be very instrumental later for solving correlated CSP without knowing
the differences between hidden inputs.

The noisy differences {D̃eltat}t∈T that the modified algorithm C′ can work with satisfy that for

every input bit i, the fraction of errors in the differences for that bit {D̃eltati}t∈T is bounded by a

sufficiently small constant γ—that is, the number of t ∈ [T ] s.t. D̃elta
t
i 6= ∆t

i is bounded by γT—in

this case, we say that {D̃eltat} have γ-bounded errors (w.r.t. {∆t}).
The algorithm C′ on input G, y, y1, . . . , yT , and noisy differences {D̃eltat} with γ-bounded errors,

proceeds identically to C, except in the second step. In the second step, algorithm C finds the
encoding Ek = Encode(xG(k)) for each output bit k, by filling in every entry Ek[a] = P (xG(k) ⊕ a)
in the encoding with the value ytk for some t such that ∆t

G(k) = a. However, C′ does not know the
actual differences, and following the same procedure would lead to incorrect encodings, which then
lead to an inconsistent solution. To overcome this, note that the noisy differences for each input

bit {D̃eltati} has bounded errors (by a fraction of γ), and so does {D̃eltatG(k)} (by a dγ fraction).

By taking majority of the values ytk for all t such that D̃elta
t
G(k) = a, the algorithm C′ still derives

the correct Ek[a] values with high probability. Therefore, with high probability, C′ recovers every
encoding Ek correctly in the second step, and the rest of the algorithm go through identically as
C. Below we describe only the modified second step formally.

Modified Step 2: For every output bit k, maintain an array Ak of sets, each initialized as

empty and then do: For every t ∈ [T ], add ytk to the (D̃elta
t
G(k))

th entry in Ak, that is,

Ak[D̃elta
t
G(k)] = Ak[D̃elta

t
G(k)] ∪

{
ytk
}

.

If there is an output bit k ∈ [m], such that, one of the entry in Ak[a] has less than (εd/2)T
elements, output ⊥. Otherwise, for every k ∈ [m], set the ath entry in its encoding Ek to the
majority of the bits in the set Ak[a].

Lemma 4.1. For every ε ∈ (0, 1/2], there is a polynomial time algorithm C′, such that for every
predicate P : {0, 1}d → {0, 1}, density D ≥ 1, and constant r > 0, C′ solves worst-case (ε, T )-
correlated-CSP(P,D), given noisy differences that have (γ = εd/5d)-bounded errors, with success
probability 1− n−r, provided that T > 8(d+ log(Dnr+1))/εd.

Proof. The proof of Theorem 4.1 shows that if for every output bit k, a complete and correct
encoding Ek is obtained, solving the linear system derived from these encodings as in Step 3 and
4 of C yields a consistent solution. Therefore, towards the theorem, it suffices to show that at the
end of the modified second step, the probability that any encoding Ek is incomplete or incorrect is
bounded by 1/n.
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Consider any output bit k. By the fact that {D̃eltat} has (γ = εd/5d)-bounded errors, for each

input bit i ∈ G(k), the fraction of instances s.t. D̃elta
t
i 6= ∆t

i is bounded by εd/5d. Therefore,

the fraction of instances s.t. D̃elta
t
G(k) 6= ∆t

G(k) is bounded by dγ = εd/5. By Claim 4.2, when

T ≥ 8(d+log(mnr))/εd, except with probability n−r, for every k and a, the fraction of instances t s.t.

∆t
G(k) = a is at least εd/2. Since the fraction of instances with the wrong differences D̃elta

t
G(k) 6=

∆t
G(k) is bounded by εd/5. Among all instances such that D̃elta

t
G(k) = a, more than half of

them are correct D̃elta
t
G(k) = ∆t

G(k) = a. Therefore, by taking majority of values ytk for all t

with D̃elta
t
G(k) = a, C recover the correct value for the ath entry in Ek. Overall, except with

probability n−r, every encoding Ek is computed correctly by the modified step 2, which concludes
the lemma.

Remark 4.2. It is easy to see that Lemma 4.1 can also be extended to invert arbitrary functions
with small output-locality with noisy differences: Simply replace the second step in the algorithm
M in Figure 2 with the modified second step above. We omit the details here.

4.5 Solving Two Correlated CSP Instances with Differences

The algorithm in the last section requires seeing a logarithmic number of auxiliary instances; in
this section, we investigate the more stringent scenario where only a single auxiliary instance is
available. We present an algorithm A for solving the average-case (p∗, 2)-correlated-CSP(P,D)
with differences. However, unlike the algorithm using many auxiliary instances and able to work
with generic predicates and parameters, A only handles a large class P of predicates, and requires
the flipping probability p∗ and density D to lie within certain range.

Overview of the Algorithm A A works with any predicate P ∈ P with the property that one
of its first derivative P σ(a) is correlated with one of its input bit ai∗ , that is,

∃ σ ∈ {0, 1}d, i∗ ∈ [d], γ > 0, such that P σ(a) = P (a)⊕ P (a⊕ σ) and

Pr[P σ(a) = ai∗ ] ≥ 1/2 + γ (1)

The construction of the algorithm A additionally depends on the boundary β of P , and the mean
ν of the derivative P σ.

β = Pr
z

$←{0,1}d
[∃z′, Wt(z − z′) = 1 : P (z) 6= P (z′)] (2)

ν = E
a

$←{0,1}d
[P σ(a)] (3)

Depending on P σ, the algorithm A requires the flipping probability p∗ for generating the auxil-
iary instance to be either sufficiently small if σt = 0, or sufficiently large if σt = 1, and the density
D of the CSP instances to be sufficiently large.

∃ a sufficiently small ε, such that, if σt = 0, p∗ = ε

else σt = 1, p∗ = 1− ε (4)

For any flipping probability p∗, define κ to be the probability that a d-bit string a, where each bit
is independently Bernoulli distributed with success probability p∗, matches σ at all but the i∗th bit.
That is,

κ = Pr[a1, · · · , ad ← Bernoulli(p∗) : a 6=t = σ6=t ] (5)
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Consider an experiment of average-case (p∗, 2)-correlated-CSP(P,D) with differences, where a
primary instance (G, y) and an auxiliary instance (G, y′) are randomly generated as (G, x, y) ←
rCSP(P,D), (G, y′), (G, x′, y′) ← coCSP(P,G, x), with ∆ = x ⊕ x′ the difference between the
hidden inputs. The algorithm A on input ((G, y), (G, y′),∆), tries to find a consistent solution x̃
to the primary instance. At a high level, it proceeds in two steps: First, we design an algorithm
A2 that on input (G, y), (G, y′) and ∆, finds an “almost-correct” solution x̃ which is δ-close to a
true solution x; then in a second step, we show that such an almost-correct solution can be turned
into a true solution by applying the algorithm designed by Bogdanov and Qiao in [BQ12].

Below we formally describe the algorithm A and prove the following proposition:

Proposition 4.1. Let P , γ, β, p∗ and κ be defined as above, and K a sufficiently large constant.

ε ≤ β2

4Kd6
and D ≥ Kd8

β2
+

(
8

γκ

)2

ln

(
6

ε

)
.

For every r ≥ 1, there is a polynomial time algorithm A that solves average-case (p∗, 2)-correlated-
CSP(P,D) with differences, with probability 1−O(n−r).

Note that for any non-trivial P , β ≥ 2−d, for any non-trivial correlation between P σ and its
i∗th input bit, γ > 2−d, and additionally κ ≥ ε−d. For a sufficiently large constant N (depending
on K), when ε ≤ 1/N22dd6 and D ≥ N(1/ε)5d, the proposition holds. Thus Theorem 4.2 follows
directly from this Proposition.

4.5.1 Construction and Analysis of the Algorithm A (Proof of Theorem 4.2)

To formally describe the algorithm A, we make use of the following notations: For every graph
G : [m] × [d] → [n], if G(j, l) = i, we say that the edge (i, j) has label l. Moreover, we define
Ḡ : [n] × [d] → 2[m] to be the “inverse mapping” that maps an input vertex i and a label l to the
set of output vertexes that are connected to i with label l; we call them the l-neighbors of i. For
brevity of notation, we also denote by Ḡ(i) the set of all neighbors of input vertex i.

Then, the algorithm A on input ((G, y), (G, y′),∆) proceeds in two stages:

Stage 1—Recover an almost-correct solution: For every output bit k ∈ [m], denote by Evtk
the event where the difference ∆G(k) restricted to the input bits xG(k) equals to σ; when Evtk
occurs, A tries to compute derivative P σ on k’s neighbors as follows:

zk = P σ(xG(k)) = P (xG(k))⊕ P (xG(k) ⊕ σ) = yk ⊕ y′k

Then, since the derivative P σ is positively correlated with its i∗th input bit, zk is positively
correlated with xG(k,i∗); thus the value of zk can be viewed as a vote to the value of xG(k,i∗).
Then, for every input bit, taking majority of all votes collected from its i∗-neighbors for which
Evtk holds yields a good estimation of its value. A formal description of the algorithm A2 in
the second stage is provided in Figure 3.

We show that A2 outputs a string x̃ that matches the hidden input x at all but a small
constant fraction of input bits.

Lemma 4.2. Let P , p∗ and κ be defined as above. Fix any constant δ2 ∈ (0, 1). Assume that
the density D ≥ ( 8

γκ)2 ln( 3
δ2

). A2 on input ((G, y), (G, y′),∆) outputs x̃ that is (δ2 + 3ε/2)-

close to x with overwhelming probability, where variables G, x, y, x′, y′,∆ are generated in an
experiment of average case (p∗, 2)-correlated-CSP(P,D) with differences.
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A2 for finding an almost-correct solution

Let P,D, ε be public parameters. On input (G, y), (G, y′), and difference ∆, proceed in two steps:

1. For every output bit k ∈ [m], if ∆G(k) = σ, compute zk = yk ⊕ y′k, and vote that xG(k,i∗)

has value zk; otherwise, vote ⊥ for xG(k,i∗).

2. For every input bit i ∈ [n], if more than a τ2 fraction of its i∗-neighbors vote for 1, set x̃i
to 1, and 0 otherwise. The threshold τ2 is set to κν, where κ is defined as in equation (5)
and ν is the mean of Pσ as in equation (3).

Output the estimated string x̃.

Figure 3: Procedure of Stage 1 of the algorithm A

Stage 2—Recover a solution: In this stage, the algorithm tries to turn an almost correct so-
lution x̃ into an fully correct solution. This stage follows the same procedure by Bogdanov
and Qiao in [BQ12]. They presented an algorithm for inverting Goldreich’s OWF given an
almost correct solution. Their algorithm works for any nontrivial predicate P and sufficiently
large D. Below we recall a simplified version of their proposition, rephrased in the language
of CSP.

Proposition 4.2 (Proposition 4.1 in [BQ12]). Let K be a sufficiently large constant, and β
be the boundary of P . Assume that D ≥ Kd8/β2 and τ ≤ β2/(2Kd6). For every r ≥ 1, there
is a polynomial time algorithm A3 that, for sufficiently large n ∈ N, on input (G, y) and x̃
that is τ -close to x, outputs x̂ consistent with y with probability 1 − O(n−r), where (G, x, y)

is selected at random (G, x, y)
$← rCSP(P,D)n.

Then, applying the algorithm of Bogdanov and Qiao on (G, y) and the output x̃ of Stage 2
yields x̂. By Lemma 4.4 and the above proposition, x̂ is consistent with y with probability
1−O(n−r).

Concluding Proposition 4.1: Combining Lemma 4.2 and Proposition 4.2, we conclude Propo-
sition 4.1. Set δ2 = ε/2. By the parameter setting of ε and D, we have,

ε ≤ β2

4Kd6
=⇒ δ2 +

3ε

2
= 2ε = τ ≤ β2

2Kd6

D =
Kd8

β2
+

(
8

γκ

)2

ln

(
6

ε

)
=⇒ D ≥ Kd8

β2
and D ≥

(
8

γκ

)2

ln

(
3

δ2

)
Then, the premises of Lemma 4.2 and Proposition 4.2 are satisfied. Thus, the final output x̂
generated in Stage 3 is indeed a true inverse of y with probability 1−O(n−r).

Remark 4.3. The algorithm A can be used to recover solutions to both the primary and auxiliary
instances. This follows since the primary and auxiliary instances (G, y) and (G, y′) are symmetric,
in the sense that the two instances could have been generated by sampling (G, y′) first and then
sampling (G, y) as the correlated instance, then the algorithm A could be applied to recover x̂′

consistent with y′. By a union bound, the probability that both x̂ and x̂′ are correct solutions to y
and y′ is at least 1−O(n−r).

Now it only remains to prove Lemma 4.2. Towards this, it will be helpful to consider the
following randomized procedure for sampling the instances (G, x, y) and (G, x′, y′) in an experiment
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of (p∗, 2)-correlated-CSP(P,D), and bound the probabilities that certain corner cases occur. We
present the formalization of the randomized procedure in Section 4.5.2 and then prove Lemma 4.2
in Section 4.5.3.

4.5.2 Procedure for Sampling the Primary and Auxiliary Instances

Consider the following procedure for sampling G, x, y, x′, y′,∆ in an experiment of average-case
(p∗, 2)-correlated-CSP(P,D) with differences.

1. A difference ∆ is sampled by selecting at random each bit ∆i according to a Bernoulli distri-
bution with success probability p∗. Below, for convenience, we sometimes overload ∆ and ∆̄
as the set of input bits with difference 1 and 0 respectively.

The first corner case—∆ unbalanced: Denote by Evt∆-unbalanced(µ), µ ∈ (0, p∗), the
event that the relative Hamming weight wt(∆) of ∆ falls outside the range [p∗ − µ, p∗ + µ].
Since each bit of ∆ is independently Bernoulli distributed with success probability p∗, by the
Chernoff bound, this event occurs with probability at most exp(−Ω(µ2n)).

2. Select at random sub-strings x∆
$← U|∆| and x∆̄

$← U|∆̄|, and set x′∆ = x∆⊕1|∆| and x′
∆̄

= x∆̄.

The second corner case—x unbalanced: Conditioned on the first corner case not
occurring, sub-strings x∆ and x∆̄ both have length O(n). Then since they are uniformly ran-
dom, with high probability, their relative Hamming weights wt(x∆) and wt(x∆̄) are centered
around 1/2. Denote by Evtx-unbalanced(ζ) the event that either x∆ or x∆̄ is not ζ-balanced,
that is, either wt(x∆) or wt(x∆̄) is outside the range [1/2− ζ, 1/2 + ζ].

Claim 4.3. Fix any constant ζ ∈ (0, 1/2). The probability that event Evtx-unbalanced(ζ) occurs
is at most exp(−Ω(εζ2n)).

3. Sample graph G by selecting each edge independently as follows: To choose the lth neighbor
of output vertex k, G(k, l), first decide whether G(k, l) falls into the set ∆ or not at random
with probability wt(∆); then, according to the decision, choose a random vertex in ∆ or ∆̄
as the neighbor. Finally, compute y = P ◦G(x) and y′ = P ◦G(x′).

Independence between choices of neighbors: In the above procedure, the choice of
each neighbor G(k, l) and its value xG(k,l) is independent from that of other neighbors G(k′, l′),
(k′, l′) 6= (k, l). This independence holds even when conditioned on wt(∆), wt(x∆) and wt(x∆̄),
and conditioned on these values, the probability that G(k, l) falls into ∆ is exactly wt(∆).
Furthermore, for any subset of neighbors {G(k, l)}, conditioned on the decisions that they
each belong to ∆ or ∆̄, their values {xG(k,l)} is 1 with respective probabilities wt(x∆) or
wt(x∆̄) independently.

The third corner case—Too few l neighbors: On average, each input vertex has D
l-neighbors (i.e., E[|Ḡ(i, l)|] = D). Since the lth neighbor of each output vertex is chosen
independently and randomly from all input vertexes, the set of input vertexes that have too
few or too many (comparing to D) l-neighbors are bounded. More precisely, let Sl ⊆ [n] be
the set of input bits i that have more than D/2 l-neighbors.

Sl =
{
i ∈ [n] s.t. |Ḡ(i, l)| ≥ D/2

}
(6)

Let Evtl-nbr(α) denote the event that Sl contains less than an 1−α fraction of the input ver-
texes. In [BQ12], Bogdanov and Qiao showed that this event occurs with only exponentially
small probability. Below we recall their claim with parameters relevant for our setting.
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Claim 4.4 (Lemma A.1 in [BQ12]). Fix any l ∈ [d] and α ∈ (0, 1). Assume that D >
32 log(1/α). The probability that more than an α fraction of the input vertexes have less than
D/2 (or more than 2D resp.) l-neighbors is exp(−Ω(αDn)).

The fourth corner case—Too few neighbors: Finally, we bound the number of
neighbors any small constant fraction of input vertexes have. Let Evtnbrs(β) denote the event
that there is a subset S ⊆ [n] of up a β fraction of input vertexes (i.e., |S| ≤ βn) that has
more than 2βdDn neighbors (i.e.,

∑
i∈S |Ḡ(i)| ≥ 2βdDn).

Claim 4.5. Fix any β ∈ (0, 1). Assume that D > 1/(β2d). Then, the probability that event
Evtnbrs(β) occurs is at most exp(−(2β2dD − 1)n).

We provide the proofs of Claim 4.3 and 4.5.

Proof of Claim 4.3. As analyzed in the first corner case, except with probability exp(−Ω(ε2n)),
the relative Hamming weight of ∆ is in the range [p∗ − ε

2 , p
∗ + ε

2 ], that is, Evt∆-unbalanced(µ) for
µ = ε/2 does not occur. Therefore, the relative hamming weights of ∆ and ∆̄ are at least Ω(ε),
that is wt(∆),wt(∆̄) = Ω(ε). Then, conditioning on this occurring, by the Chernoff bound and the
fact that x is chosen at uniformly random, the probability that x∆ is not ζ-balanced is at most
exp(−ζ2wt(∆)n) = exp(−Ω(εζ2n)). Similarly, the probability that x∆̄ is not ζ-balanced is at most
exp(−ζ2wt(∆̄)n) = exp(−Ω(εζ2n)). Then, the claim follows from the union bound.

Proof of Claim 4.5. We first show that for any particular subset S ∈ [n] such that |S| ≤ βn, the
probability that it has more than 2βdDn neighbors is exponentially small. In the random graph,
each neighbor of each output bit is chosen independently and randomly. Since |S| ≤ βn, the proba-
bility that an input bit in S is chosen is at most β. Therefore by the Chernoff bound, the probability
that input bits in S are chosen for more than 2βdDn times is bounded by exp(−2β2dDn).

Since the number of subsets of size no bigger than βn is
(
n
βn

)
< 2n. by the union bound, the prob-

ability that any such subset has more than 2βdDn neighbors is bounded by 2n exp(−2β2dDn) =
exp(−(2β2dD − 1)n), which is exponentially small when D ≥ 1/β2d.

Next we move to proving Lemma 4.2.

4.5.3 Proof of Lemma 4.2

Recall that the predicate P satisfies that its first derivative P σ is γ-correlated with the i∗th input
bit; ν is the mean of P σ and κ is the probability that a d-bit string a where each bit is sampled
from Bernoulli(p∗) matches σ at all but the i∗th bit (i.e. Pr[a 6=t = σ 6=i∗ ]).

We prove that A2 on input (G, y), (G, y′) and D̃elta = ∆ outputs x̃ that is (δ2 + 3ε/2)-
close to x with overwhelming probability. We prove this statement conditioned on that events
Evt∆-unbalanced(µ), Evtx-unbalanced(ζ) and Evtt-nbr(α) do not occur for µ = min(γκ/16d2, ε/2), ζ =
γ/4d and α = δ2/3. This is without loss of generality as the statement allows for a negligible error
probability, and below we analyze A2 conditioned on wt(∆) ∈ [p∗−µ, p∗+µ], wt(x∆) ∈ [1

2−ζ,
1
2 +ζ],

wt(x∆̄) ∈ [1
2 − ζ,

1
2 + ζ], and the size of the set of input vertexes with more than D/2 i∗-neighbors

|Si∗ | ≥ (1− α)n.
Recall that to estimate the value of xi, A2 examines each i∗-neighbor k ∈ Ḡ(i, i∗) of i to cast

a vote vk,i. If it satisfies that the difference ∆G(k) (restricted to the input bits of the kth output
bit) is exactly σ (i.e., ∆G(k) = σ)—denote this event by Evtk—A2 computes zk = yk⊕ y′k, and vote
vk,i = zk as the value of xi; otherwise, if Evtk does not occur, it votes vk,i = ⊥ for xi. A2 estimates
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x̃i = 1 if and only if more than a τ2 = κν fraction of the i∗-neighbors votes for 1. Towards bounding
the fraction of input vertexes for which this estimation is wrong, consider separately three different
types of input vertexes i:

1. Input bit i 6∈ Si∗ : Such input bits do not have enough t-neighbors, and their values can not be
recovered using the voting scheme of A2. However, they only account for at most an α = δ2/3
fraction of the input bits.

2. Input bit i ∈ Si∗ and ∆i 6= σi∗ : Such input bits have the property that for all its i∗-neighbors,
event Evtk never occurs (since ∆G(k,i∗) = ∆i 6= σi∗). Thus the voting scheme of A2 fails.
However, since the probability that ∆i 6= σi∗ is bounded by wt(∆) ≤ p∗ + µ if σi∗ = 0 and
wt(∆̄) ≤ 1 − p∗ + µ if σi∗ = 1. By the way that p∗ is set, this probability is bounded by
ε+ µ ≤ 3ε/2, since µ ≤ ε.

3. Input bit i ∈ Si∗ and ∆i = σt: As discussed above, the fraction of input bits of this type is
at least 1 − δ2/3 − 3ε/2. Thus it suffices to bound the fraction of such input bits for which
A2 gives a wrong estimation. Below, we show that the fraction is bounded by 2δ2/3 with
overwhelming probability.

Then, overall, the fraction of input vertexes with wrong estimations is bounded by δ2/3 + 3ε/2 +
2δ2/3 = δ2 + 3ε/2 with overwhelming probability.

Analyzing Input Bits of the Third Type We show that for every input vertex i ∈ Si∗ and
∆i = σi∗ , the probability that xi 6= x̃i is smaller than exp(−γ2κ2D/32). Consider any i∗-neighbor
k of i, the probability that k votes 1 to i is

Pr[vk,i = 1] = Pr[vk,i = 1 | Evtk]× Pr[Evtk]

= Pr[vk,i = 1 | Evtk]× Pr[∆G(k) = σ]

Given that ∆i = ∆G(k,i∗) = σi∗ , the second probability is exactly the probability that ∆G(k) equals

to σ at all but the i∗th bit; more precisely, conditioned on wt(∆), this probability equals to

Pr[∆G(k) = σ] = Pr[a1, · · · , ad ← Bernoulli(wt(∆)) : a6=i∗) = σ6=i∗ ]

∈ [κ− µd2, κ+ µd2]

The second line follows from the fact that wt(∆) ∈ [p∗ − µ, p∗ + µ] and that κ is defined as in
equation (5).

On the other hand, when Evtk occurs, vk,i = zk = yk ⊕ y′k equals to the derivative P σ(xG(k)) =
P (xG(k))⊕P (xG(k)⊕σ). Moreover, conditioned on Evtk (as well as wt(∆), wt(x∆), wt(x∆̄) and |Si∗ |),
each xG(k,l) with l 6= i∗ is independently Bernoulli distributed with probability wt(x∆) of being 1 if
σl = 1 or with probability wt(x∆̄) of being 1 if σ = 0; thus, they are independent and ζ-balanced.
Therefore, the value of zk is (d−2)ζ close to the derivative P σ(u1, · · · , ui∗−1, xG(k,i∗), ui∗+1, · · · , ud)
computed on uniformly random u1, · · · , ui∗−1, ui∗+1, · · · , ud. Since P σ is γ-positively correlated
with its i∗th input bit, and has mean ν, we have that,

if xi = xG(k,i∗) = 1, Pr[P σ(u1, · · · , ui∗−1, 1, ui∗+1, · · · , ud) = 1] = ν + γ/2

if xi = xG(k,i∗) = 0, Pr[P σ(u1, · · · , ui∗−1, 0, ui∗+1, · · · , ud) = 1] = ν − γ/2
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Then, since ζ = γ/4d,

if xi = 1, Pr[zk = 1 | Evtk] ≥ ν + γ/2− (d− 2)ζ = ν + γ/4

if xi = 0, Pr[zk = 1 | Evtk] ≤ ν − γ/2 + (d− 2)ζ = ν − γ/4

As Pr[vk,i = 1 |Evtk] = Pr[zk = 1 | Evtk], we have that,

if xi = 1, Pr[vk,i = 1] ≥ (ν + γ/4)(κ− µd2) ≥ νκ+ γκ/8

if xi = 0, Pr[vk,i = 1] ≤ (ν − γ/4)(κ+ µd2) ≤ νκ− γκ/8

where the last inequalities follow since µ ≤ γκ/16d2.
Since the votes from a i∗-neighbor k of i depends only on the choices of k’s non-i∗-neighbors

and their values, which are independent (when conditioned on wt(∆), wt(x∆), wt(x∆̄) and |Si∗ |),
by the Chernoff bound, when xi = 1 (or xi = 0 resp.), the probability that less than (or more than
resp.) a τ2 = κν fraction of its 2-neighbors vote for 1 is at most exp(−γ2κ2D/64). Therefore, the
estimation x̃i is wrong with probability at most exp(−γ2κ2D/64).

Finally, we bound the fraction of i of the third type that has a wrong estimation. Let T be the set
of i such that i ∈ Si∗ and ∆i = σi∗ . As discussed above T contains at least a 1−δ2/3−3ε/2 fraction of
the input bits. For every i ∈ T , whether the estimation is wrong x̃i 6= xi depends only on the random
choices related to its i∗-neighbors (namely, the choices and values of their non-2-neighbors); since
the i∗-neighbors of different input bits are disjoint, the correctness of the estimations is independent.
Thus by the Chernoff bound, the probability that more than an exp(−γ2κ2D/64) + δ2/3 fraction
of input vertexes of the third type has the estimation wrong is bounded by exp(−Ω(δ2

2 |T |)) =
exp(−Ω(δ2

2n)). When when D ≥ 64
γ2κ2

ln( 3
δ2

), the fraction of wrong estimation is bounded by

exp(−γ2κ2D/64) + δ2/3 ≤ 2δ2/3,

with overwhelming probability. This concludes Lemma 4.2.

4.6 Solving Two Correlated CSP Instances without Differences

In this section, we show that the requirement of knowing the differences between the hidden inputs
can be removed, by designing an algorithm A1 that given only the primary and auxiliary instances
((G, y), (G, y′)) (generated in an experiment of average-case (p∗, 2)-correlated-CSP(P,D)), esti-
mates the differences D̃elta between the hidden inputs x and x′. Our algorithm A1 works with any
non-trivial predicate P ; it additionally requires the flipping probability p∗ to be sufficiently small,
and the density D to be sufficiently large.

Given such a difference-estimation algorithm A1, we obtain an algorithm A′ for solving solving
average-case (p∗, 2)-correlated-CSP(P,D) (without differences), by combining A1 and A designed
in the last section that requires knowing the differences. However, since A′ requires the flipping
probability to be sufficiently small, the combined algorithm A′ only handles predicate P satisfying
condition (1) w.r.t. a derivative P σ and input bit ai∗ , such that, σi∗ = 0. (This is because, if
σi∗ = 1, A requires the flipping probability p∗ = 1 − ε to be sufficiently large, which contradicts
with the requirement by A1. On the other hand, if σi∗ = 0, A requires the flipping probability
p∗ = ε to be sufficiently small as A1 does.) Below, we restrict our attention to such predicates,
and use ε directly as the flipping probability. The construction of A′, particularly A1, additionally
depends on the maximal influence ρ of different input bits of P , defined as:

` = arg max
l∈[d]

(InfP (l)) ρ = InfP (`)

Below we first formally describe A′ and then prove the following proposition.
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Proposition 4.3. Let P , β, ρ and κ be defined as above. Let M be a sufficiently large constant.
Assume that

ε ≤ ρβ2

Md6
and D ≥M

(
d8

β2
+

1

ρ2
+

1

γ2κ2

)
ln

d

γκε

For every r ≥ 1, there is a polynomial time algorithm A′ that solves average-case (ε, 2)-correlated-
CSP(P,D), with probability 1−O(n−r).

Since for any non-trivial predicate, ρ, β ≥ 2−d, for any non-trivial correlation γ ≥ 2−d, and κ ≥ εd,
when ε ≤ 1/N23dd6 and D ≥ N/ε5d for a sufficiently large N , the proposition holds. Thus,
Theorem 4.3 follows directly from the above proposition.

4.6.1 Construction and Analysis of the Algorithm A′ (Proof of Theorem 4.3)

On input ((G, y), (G, y′)), A′ proceeds in the following three stages:

Stage 1—Estimate the difference: This stage tries to uncover the difference ∆ = x⊕x′ between
x and x′. Intuitively, since the `th input bit of P has high influence ρ, if (the value of) an
output bit k ∈ [m], m = Dn, flips in y and y′, it indicates that its `th neighbor G(k, `) flips
in x and x′ with some probability. For every input bit i, viewing such an indication as a vote
and computing the majority of all votes collected from its `-neighbors Ḡ(i, `) yields a good
estimation on whether i flips or not. If input vertex i has sufficiently many `-neighbors, the
estimation will be correct with high probability. A formal description of the algorithm A1 in
this stage is provided in Figure 4.

A1 for estimating the difference ∆

Let P,D, ε be public parameters. On input (G, y) and (G, y′), where G : [m]× [d]→ [n], m = Dn,
proceed in two steps:

1. For every output bit k ∈ [m], if yk 6= y′k, vote 1 for its `th neighbor G(k, `).

2. For every input bit i ∈ [n], among all its `-neighbors Ḡ(i, `), if more than a τ1 = ρ/5 fraction
of them vote 1, set D̃elta = 1; otherwise, set D̃elta = 0. Output the estimated difference
D̃elta.

Figure 4: Procedure of Stage 1 of the algorithm A′

Let D̃elta be the estimated difference. We show that if ε is sufficiently small and D is suffi-
ciently large, D̃elta is correct for all but a small constant fraction of bits, with overwhelming
probability.

Lemma 4.3. Let P be any non-trivial predicate and ρ be as defined above. Fix any constant
δ1 ∈ (0, 1). Assume that ε ≤ ρ/15d, and D ≥ 100

ρ2
ln( 3

δ1
). For every n ∈ N, A1 on input

(G, y), (G, y′) outputs D̃elta that is δ1-close to ∆ with overwhelming probability, where vari-
ables G, x, y, x′, y′ are generated in an experiment of average-case (ε, 2)-correlated-CSP(P,D),
and ∆ = x⊕ x′.

Stage 2—Recover an almost-correct solution: Invoke algorithm A2 in Section 4.5 with input
(G, y), (G, y′), D̃elta, to obtain a solution x̃. We show that even though the estimated differ-
ence D̃elta has some errors, the error rate is so small that it only influences the correctness
of a small constant fraction of input bits. Thus, even when receiving a noisy difference D̃elta,
A2 still outputs an almost-correct solution.
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Lemma 4.4. Let P , γ, κ and ρ be defined as above. Fix any constant δ3 ∈ (0, 1). Assume
that ε ≤ ρ/15d and

D ≥

((
10

ρ

)2

+

(
40

γκ

)2
)

ln
123d

γκδ3
.

A2 on input ((G, y), (G, y′), D̃elta) outputs x̃ that is (δ3 + 3ε/2)-close to x with overwhelming
probability, where variables G, x, y, x′, y′ are generated in an experiment of average case (ε, 2)-
correlated-CSP(P,D) with differences, and D̃elta = A1((G, y), (G, y′)).

Stage 3—Recover a solution: Apply the algorithm of Bogdanov and Qiao [BQ12] on (G, y) and
the almost-correct solution x̃ produced in Stage 2, to obtain a true solution x̂.

Concluding Proposition 4.3: We conclude Proposition 4.3 by combining Lemma 4.4 and Propo-
sition 4.2. Set δ3 = ε/2. We have that for a sufficiently large M .

ε ≤ ρβ2

Md6
and D ≥M

(
d8

β2
+

1

ρ2
+

1

γ2κ2

)
ln

d

γκε

=⇒ δ2 +
3ε

2
= 2ε = τ ≤ β2

2Kd6
and D ≥ Kd8

β2

=⇒ ε ≤ ρ/15d and D ≥

((
10

ρ

)2

+

(
40

γκ

)2
)

ln
123d

γκδ3

Thus, the premises of Lemma 4.4 and Proposition 4.2 are satisfied. Then, the premises of Lemma 4.2
and Proposition 4.2 are satisfied. Thus, the final output x̂ generated in Stage 3 is indeed a true
inverse of y with probability 1−O(n−r).

Below we provide proofs of Lemma 4.3 and 4.4. Both proofs considers the same randomized
procedure for generating the primary and auxiliary instances as described in Section 4.5.2.

4.6.2 Proof of Lemma 4.3

We prove that A1 on input (G, y), (G, y′) outputs D̃elta that is δ1-close to ∆ with overwhelming
probability. We prove this statement conditioned on that events Evt∆-unbalanced(µ), Evtx-unbalanced(ζ)
and Evt`-nbr(α) do not occur for µ = ε/2, ζ = ρ/2d and α = δ1/3. This is without loss of generality,
since the statement allows for a negligible error probability, and these events only occur with expo-
nentially small probabilities. Below, we analyze A1 conditioned on the relative Hamming weights
wt(∆), wt(x∆), and wt(x∆̄), as well as the number of input vertexes with more than D/2 `-neighbors
|S`|. When the above events do not occur, it holds that wt(∆) ∈ [ ε2 ,

3ε
2 ], wt(x∆) ∈ [1

2 − ζ,
1
2 + ζ],

wt(x∆̄) ∈ [1
2 − ζ,

1
2 + ζ], and |S`| ≥ (1− α)n.

Recall that each input vertex i is estimated to be flipped, and D̃eltai is set to 1, if and only
if more than a τ1 = ρ/5 fraction of its ` neighbors voted 1 for it, where each ` neighbor k votes 1
if its value flips yk 6= y′k. To bound the fraction of input bits i for which this estimation is wrong,
we consider separately these that have more than D/2 `-neighbors (i.e., i ∈ S`) and these that do
not. Since the latter ones only accounts for a δ1/3 fraction, it suffices to bound the probability
that the estimation is wrong D̃eltai 6= ∆i for these input vertexes in S`. Towards this, consider the
following two cases: The value of input bit i actually flips or not.
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Case 1—i ∈ S` and ∆i = 1: We show that for every `-neighbor k of i (i.e., k ∈ Ḡ(i, `)), the
probability that k votes for i is at least τ1 + ρ/10.

Pr[k votes for i] = Pr[yk 6= y′k]

≥ Pr[yk 6= y′k ∧ ∀l 6= `, xG(k,l) does not flip]

= Pr[yk 6= y′k | ∀l 6= `, xG(k,l) does not flip] Pr[∀l 6= `, xG(k,l) does not flip]

The second probability is (1 − wt(∆))d−1 ≥ (1 − 3ε
2 )d−1. Next, we lower bound the first

probability. Conditioned on that a neighbor G(k, l) does not flip, its value xG(k,l) is 1 with
probability wt(x∆̄); thus, xG(k,l) is ζ-balanced for ζ = ρ/2d. Since the first probability depends
only on the values xG(k,l) for l 6= `, it is (d− 1)ζ close to the same probability when all xG(k,l)

were uniformly random, which is at least ρ as InfP (`) ≥ ρ. Therefore,

Pr[yk 6= y′k | ∀l 6= `, xG(k,l) does not flip] ≥ ρ− dζ =
ρ

2

Therefore, we have that

Pr[k votes for i] ≥ ρ

2

(
1− 3ε

2

)d−1

≥ ρ

2

(
1− (d− 1)

3ε

2

)
≥ 3ρ

10
≥ τ1 +

ρ

10

where the last inequalities follow from the fact that ε < ρ/15d and τ1 = ρ/5.

Case 2—i ∈ S` and ∆i = 0: We show that for every `-neighbor k ∈ Ḡ(i, `) of i, the probability
that it votes for i is at most τ1 − ρ/10. This follows easily as

Pr[k votes for i] = 1− Pr[yk does not flip]

≤ 1− Pr[∀l 6= `, xG(k,l) does not flip]

= 1− (1− wt(∆))d−1

≤ 1− (1− 3ε

2
)d−1 ≤ (d− 1)

3ε

2
≤ ρ

10
≤ τ1 −

ρ

10

where the last inequalities follow again from the fact that ε < ρ/15d and τ1 = ρ/5.
Note that the probability that each of `-neighbor k votes for i or not depends only on the

choice of k’s non-`-neighbors and their values, which are independent (when conditioned on wt(∆),
wt(x∆), wt(x∆̄) and |S`|). Then by the Chernoff bound, for every input bit i ∈ S` that has more
than D/2 ` neighbors, the probability that less than a τ1 fraction of its `-neighbors k votes correctly
for i (i.e., k votes 1 for i if ∆i = 1 and does not vote for i otherwise) is smaller than exp(−Dρ2/100).
Thus, for every i ∈ S`, the probability that ∆i 6= D̃eltai is smaller than exp(−Dρ2/100).

Furthermore, for every i ∈ S`, whether ∆i = D̃eltai holds or not depends only on the random
choices related to its `-neighbors (namely, the choices of their neighbors and the values of their
neighbors). Since the `-neighbors of different input bits i and i′ are disjoint, these random choices
are independent (when conditioned on wt(∆), wt(x∆), wt(x∆̄) and |S`|). Therefore, by the Chernoff
bound, the probability that more than a exp(−Dρ2/100) + δ1/3 fraction of i ∈ S` has ∆i 6= D̃eltai
is no more than exp(−Ω(δ2

1 |S`|)), which is in turn bounded by exp(−Ω(δ2
1(1− δ1/3)n)) since |S`| >
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(1− δ1/3)n. Overall, except with negligible probability, the fraction of i such that ∆i 6= D̃eltai is
at most

(exp(−Dρ2/100) + δ1/3) |S`|n + n−|S`|
n

≤ (δ1/3 + δ1/3)(1− δ1/3) + δ1/3 < δ1 [for D ≥ 100 ln(3/δ1)

ρ2
]

4.6.3 Proof of Lemma 4.4

We show that A2 on input (G, y), (G, y′) and D̃elta produced by A1, outputs x̃ that is (δ3 +ε)-close
to x with overwhelming probability. Towards this, as a warm-up, below we first show that by
simply combining Lemma 4.2 and 4.3, we can already bound the fraction of errors by a slightly
worse bound than δ3 + ε. After that, we improve the bound to δ3 + ε by slightly modifying the
analysis of Lemma 4.2. In the analysis below, we set δ1 = δ2 = δ = κγ

41dδ3; thus, we have that,

D =

((
10

ρ

)2

+

(
40

γκ

)2
)

ln
123d

κγδ3
=⇒ D ≥

(
10

ρ

)2

ln
3

δ1
and D ≥

(
40

γκ

)2

ln
3

δ2

Warm-up: Since ε ≤ ρ/15d and D ≥
(

10
ρ

)2
ln 3

δ1
, by Lemma 4.3, the estimated difference D̃elta

is δ1-close to ∆; let E be the set of input vertexes for which the estimated difference is wrong
(i.e., E = {i s.t. D̃eltai 6= ∆i}) and it holds that |E| ≤ δ1n. Moreover, since ε ≤ 1/2d and

D ≥
(

8
γκ

)2
ln 3

δ2
, by Lemma 4.2, if A2 were given the actual difference ∆, it would output x̃ that is

(δ2 + 3ε/2)-close to the actual pre-image x. However, when replacing ∆ with the noisy difference
D̃elta, the correctness of x̃ may be affected. We argue that this affect is limited. Note that by
construction of A2, the estimated value x̃i of the ith input vertex only depends on the choices and
values of the neighbors of its i∗-neighbors (i.e., the set G(Ḡ(i, i∗))). If D̃elta were correct on all
relevant 2-hop neighbors, that is, D̃eltaG(Ḡ(i,i∗)) = ∆G(Ḡ(i,i∗)), the estimated value x̃i output by A2

remains the same no matter it receives D̃elta or ∆ as input.
Next, we bound the number of input vertexes i that has a i∗-neighbor that is connected to E.

By Claim 4.5, with overwhelming probability, event Evtnbrs(δ1) does not occur, that is, every set
of input bits of size smaller than or equal to δ1n has at most 2δ1dDn neighbors. Since |E| ≤ δ1n,
the set E has at most 2δ1dDn neighbors. Therefore, at most 2δ1dDn input vertexes would have
a i∗-neighbor that is connected to E. As argued above, only the estimation x̃i for these input
vertexes may be affected when replacing ∆ with D̃elta, while the estimation of the rest input
vertexes remains the same. As a result, A2 when receiving D̃elta as input outputs x̃ that is at most
a (δ2 + 3ε/2 + 2δ1dD)-close to x.

Full Analysis: In the above analysis, for each i, as long as one of its i∗-neighbor is connected
with E, the estimated value x̃i is counted as wrong. However, A2 computes x̃i by taking majority
of votes from all i∗-neighbors of i. Such a voting scheme is much more fault tolerant, in particular,
we show that for a large δ2 + ε fraction of input vertexes, it holds that as long as the number of
i∗-neighbors connected to E is below κγD/24, then the estimated value x̃i remains the same when
replacing ∆ with D̃elta. This leads to a tighter bound on the fraction of estimations {x̃i} whose
values (potentially) change when D̃elta is used.

Towards this, we modify the analysis in the proof of Lemma 4.2 as follows. Recall that the proof
of Lemma 4.2 showed the following intermediate statement: When A2 receives the actual difference
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D̃elta = ∆, for every i ∈ T of the third type—recall that T = {i : i ∈ Si∗ and ∆i = σi∗}, which
equals to (Si∗ ∩ ∆̄) since σi∗ = 0 for this lemma—the probability that a i∗-neighbors k of i votes 1
is

if xi = 1, Pr[vk,i = 1] ≥ νκ+ γκ/8

if xi = 0, Pr[vk,i = 1] ≤ νκ− γκ/8

and all votes are independent (when conditioned on wt(∆) ∈ [ε− µ, ε+ µ], wt(x∆) ∈ [1
2 − ζ,

1
2 + ζ],

wt(x∆̄) ∈ [1
2−ζ,

1
2 +ζ], and |Si∗ | ≥ (1−α)n, for µ = γκ/16d2, ζ = γ/4d and α = δ2/3). Then by the

Chernoff bound, the probability that the fraction of i∗-neighbors of i that vote 1 is equal to or more
than γκ/40 offset the expectation is bounded by exp(−(γκ40 )2D); in other words, except with this
probability, the fraction of votes of 1 is more than νκ+ γκ/10 if xi = 1, and less than νκ+ γκ/10
if xi = 0. In this case, if i has up to γκD/20 i∗-neighbors connected to E, when replacing ∆
with D̃elta, as argued above at most γκD/20 votes, that is, at most a γκ/10 fraction, of these
i∗-neighbors may change. Thus, if xi = 1, the fraction of votes of 1 is still above the threshold
τ2 = νκ, whereas if xi = 0, the fraction is still below the threshold, leading to the correct estimation
x̃i = xi. In summary, for every input vertex i of the third type, with probability 1−exp(−(γκ40 )2D),
the estimation x̃i remains correct even if up to γκD/20 of its 2-neighbors are connected to E.

Next, following syntactically the same argument as in the proof of Lemma 4.2, we lower bound
the fraction of input vertexes that can tolerate having up to γκD/20 of its i∗-neighbors connected
to E. Since the estimation for different i ∈ T is independent, by the Chernoff bound, at least a
1− exp(−(γκ40 )2D)− δ2/3 fraction of i ∈ T are tolerant, with probability 1− exp(−Ω(δ2

2 |T |)) = 1−
exp(−Ω(δ2

2n)). Since D ≥ ( 40
γκ)2 ln 3

δ2
, this fraction is at least 1−2δ2/3. Overall, with overwhelming

probability, for at least a large fraction p of the input vertexes as described below, the estimation
remains correct when replacing ∆ with D̃elta, provided that no more than γκD/20 of its i∗-
neighbors are connected to E, where

p = (1− 2δ2/3)
|T |
n
≥ (1− δ2 − 3ε/2) as |T | ≥ (1− δ2/3− 3ε/2)n

Finally, we bound the fraction of i that have more than γκD/20 i∗-neighbors connected to E.
Conditioned on Evtnbrs(δ1) not occurring, the number of vertexes that have a i∗-neighbor connected
to E is at most 2δ1dDn. Thus, at most a fraction p′ = 2δ1dD/(κγD/20) ≤ 40δ1d/κγ of vertexes
have up to κγD/20 i∗-neighbors connected to E. Therefore, at least a p− p′ fraction of the input
vertexes are tolerant to and indeed satisfy having at most κγD/20 i∗-neighbors connected to E;
for these input vertexes, the estimation remains correct when using D̃elta to replace ∆. Therefore,
with overwhelming probability, the fraction of wrong estimation is bounded by 1− (p− p′),

1− (p− p′) ≤ δ2 + 3ε/2 + 40δ1d/κγ ≤ δ3 + 3ε/2

where the last inequality follows as δ3 = 41d
κγ δ ≥

40d
κγ δ1 + δ2 with δ1 = δ2 = δ.

4.7 Solving Many Correlated CSP Instances without Differences

In this section, we revisit our first algorithm C that solves worst-case (ε, T )-correlated-CSP(P,D)
with differences in Section 4.4 and show that provided that ε is sufficiently small, D is sufficiently
large, and a sufficiently large logarithmic T number of auxiliary instances are available, then the re-
quirement for knowing the differences can be removed, leading to an algorithm B for approximating
average-case (ε, T )-correlated-CSP(P,D) without differences.
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Overview of the Algorithm B: Consider an experiment of average-case (ε, T )-correlated-
CSP(P,D), where a primary instance (G, y) with hidden input x, together with T correlated
instances {G, yt}t∈[T ] with hidden inputs {xt}t∈[T ] are generated; let

{
∆t
}

be the actual differ-
ences between the hidden inputs ∆t = xt⊕ x. Given (G, y, y1, · · · , yT ), the algorithm B (similar to
algorithm A′ in Section 4.6) proceeds in two stages: In the first stage, B starts by estimating the
differences ∆t = xt ⊕ x between xt and x for every t ∈ [T ]. Then in the second stage, it invokes

the algorithm C in Section 4.4 with input (G, y, y1, · · · , yT ) and the estimated differences {D̃eltat}
produced in the first stage. The challenge is to show that the noises (or errors) in the estimated
differences are small and C is “robust” to such noises, so that, when invoked with the estimated
differences, C still outputs an approximate solution x̃ that satisfies almost all output constraints
(i.e., f(x̃) matches y at all but a small constant fraction of locations).

Towards this, recall that as shown already in Section 4.4, the algorithm C can be modified
into another algorithm C′ that tolerates certain structured noises in the differences: In particular,

as long as the noisy differences {D̃eltat} have γ-bounded errors (i.e., for every i, the number of

instances t such that D̃elta
t
i 6= ∆t

i is bounded by γT ) and the number of correlated instances
is sufficiently large, then C′ finds a consistent solution x̃ of the primary instance with probability
1−1/n. (See Lemma 4.1). Ideally, to apply C′, we would like to have an algorithm that can estimate
the differences with γ-bounded errors; then, B can simply invoke C′ with the estimated differences
to find a solution. Unfortunately, as we discuss later, there is always a constant fraction of “bad”

input bits i, for which the noises in their corresponding estimated differences
{
D̃elta

t
i

}
are not

bounded by any constant fraction. Furthermore, recall that the algorithm C eventually reduces the
task of finding a solution to the primary instance to the task of solving a system of linear equations;
if the constant fraction of “bad” input bits cannot be identified and excluded, the resulting linear
equation system has a constant fraction of error, which becomes computationally intractable to
solve. To overcome this, we design a new difference-estimation algorithm B∆ which can identify a
small constant fraction of the input bits for which reliable estimation cannot be derived, and for the
rest of the input bits it outputs estimation of differences with γ-bounded errors. Then combining
B∆ and C′ gives the algorithm B for approximating average-case (ε, T )-correlated-CSP(P,D).

Fix any predicate P . Let ρ = ρ(P ) denote the maximal influence of different input bits of P ,
achieved by the `th input bit as in the last section. Below we first present the new algorithm B∆ for
estimating the difference, and then show how to combine it with the worst-case inverting algorithm
C′ to obtain the final approximation algorithm B, and prove the following proposition.

Proposition 4.4. Fix any integer α∗ ∈ (0, 1]. Assume that for a sufficiently large constant N ,

ε < ρ/(d(ρ+ 2) + 1/2), D >
Nd

ε2α∗
log

(
2

ε

)
, and T = T (n) ≥ Nd2 log(Dn)/ε2d.

There is a polynomial time algorithm B that finds (1− α∗)-approximate solutions for average-case
(ε, T )-correlated-CSP(P,D) with probability 1− 3/n, for sufficiently large n ∈ N.

For every non-constant predicate P , ρ ≥ 1/2d. Therefore, when ε < 1/4d2d, the above propo-
sition holds, and thus Theorem 4.4 follows directly from the proposition.

4.7.1 The Sub-Algorithm B∆ for Estimating the Differences

We present and analyze the algorithm B∆ in two steps. In the first step, we identify certain special
properties for every input bit that are efficiently checkable; we present B∆ and show that for every
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input bit that satisfies this special property, B∆ estimates the differences on this input bit with
γ-bounded errors with 1 − 1/poly(n) probability. In the next step, we show that for almost all
pairs of graph G and input x, it holds that all but a small constant fraction of the input bits satisfy
these special properties, with probability 1− 1/poly(n). Then combining the two steps, we derive
that the algorithm B∆ outputs ⊥ for every input bit that does not satisfy the special properties
(by checking them efficiently), and outputs estimated differences with γ-bounded errors for every
input bit that satisfy the special properties, with 1− 1/poly(n) probability.

Consider any ε ∈ (0, 1/2), any hidden input x ∈ {0, 1}n, and any bipartite graph G : [n]× [d]→
[m] for m = Dn. Recall that the strings

{
xt
}

are derived by randomly and independently flipping
each bit of x with probability ε; it is equivalent to first sample the differences {∆t} by sampling every
bit ∆t

i from a Bernoulli distribution with success probability ε independently, and then compute
xt = x⊕∆t. When the graph G and input x is fixed, the only randomness comes from the sampling
of {∆t}. Below we define several properties of an input node.

1. We say that an input node i is admissible if it has at least D/2 and at most 2D `-neighbors,
that is, D/2 ≤ |Ḡ(i, `)| ≤ 2D; let S∗ denote this set of input bits.

2. For every input bit i ∈ [n] and instance t ∈ [T ], let F (i, t) ∈ [0, 1] be the random variable
representing the fraction of output bits in i’s `-neighbors that have their values flip from y to
yt, that is, the fraction of k ∈ Ḡ(i, `), such that yk 6= ytk.

3. Furthermore, let E(i, 1) be the expectation of F (i, t) conditioned on that the ith input bit
flips (i.e., ∆t

i = 1) and similarly E(i, 0) be the expectation of the fraction of flips conditioned
on that the ith input bit does not flip (i.e., ∆t

i = 0).

E(i, b) = E[F (i, t) | ∆t
i = b]

Note that these two expectations only depend on the graph G and input x.

Intuitively, if for an input node i, the expected fraction of flips E(i, 1) conditioned on i flipping
is bigger than the expected fraction E(i, 0) conditioned on i not flipping with a reasonable margin,
then there is a way of estimating the differences on that input bit across different instances. Roughly
speaking, we show later that when i is admissible, it holds with (1−1/poly(n)) probability that the
actual numbers of flips F (i, t) in most instances t lie in a small region R1 = [E(i, 1)−µ,E(i, 1) +µ]
centered around E(i, 1) if i flips in that instance, and in region R0 = [E(i, 0) − µ,E(i, 0) + µ]
otherwise. When E(i, 1) is sufficiently larger than E(i, 0), R0 and R1 are disjoint. If one can
approximate the average of the expectations τi = (E(i, 0) + E(i, 1))/2, then τi can be used as a
threshold for estimating whether i flips or not in an instance: In particular, every instance where
the actual fraction of flips is above τi is categorized as one in which i flips, and every instance where
the fraction of flip is below τi as one in which i does not flip.

To approximate the average of the expectations, choose an appropriately small constant µ.
Partition the range [0, 1] into small regions of size of 2µ—regions {Bq = [2qµ, 2(q + 1)µ)} for
0 ≤ q < 1/2µ; we call them buckets. We say that a instance t falls into a bucket, if the fraction of
flips F (i, t) in that instance lies in that bucket; and we say that a bucket is heavy if there are more
than (ε/2)T instances in that bucket. When E(i, 1) > E(i, 0) + 8µ, the two regions R0 and R1 are
far apart, and with high probability, R0 contains most instances in which i does not flip (close to
1− ε fraction), and R1 contains most instances in which i does not flip (close to ε fraction). Since
R0 and R1 are both of size 2µ, we expect the following event to hold.
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Event Evtbckt(i, µ): There are at most four heavy buckets forming two consecutive pairs (Bq−1, Bq)
and (Bq′ , Bq′+1); they are at least one bucket apart, that is, q′ > q, and (Bq′ , Bq′+1) contains
fewer instances than (Bq, Bq+1).

(Jumping ahead, we will show later that (Bq−1, Bq) intersects with R0, and (Bq′ , Bq′+1) intersecting
with R1 with high probability). It is easy to see that event Evtbckt(i, µ) is efficiently checkable.
Furthermore, when the event occurs, we can approximate the average of E(i, 0) and E(i, 1), using
the middle point in between (Bq−1, Bq) and (Bq′ , Bq′+1), that is, set τi = (q + q′)µ.

We formally present the algorithm B∆ in Figure 5.

Algorithm B∆ for estimating the differences between {xt} and x

Let P,D, ε be public parameters. On input G, y, y1, y2, . . . , yT , and µ proceed as follows: The
algorithm maintains an array A of estimated differences for every input bit i.

1. Let S∗ ⊆ [n] be the set of admissible input bits i, that is, all i that has at least D/2 and
at most 2D `-neighbors, or S∗ =

{
i ∈ [n] s.t. D/2 ≤ |Ḡ(i, `)| ≤ 2D

}
. For every input node

i 6∈ S∗; set the estimated differences A[i] for input bit i to ⊥.

2. For every input node i ∈ S∗, do:

For every instance t ∈ [T ], count the fraction of flips F (i, t) in the `-neighbors of i, that is,
the fraction of k ∈ Ḡ(i, `) s.t. yk 6= ytk.

For each bucket Bq = [2qµ, (2q + 2)µ) that intersects with [0, 1], count the number of
instances t that fall into that bucket, that is, the number of t ∈ [T ] s.t. F (i, t) ∈ Bq. If
event Evtbckt(i, µ) occurs w.r.t. buckets Bq−1, Bq, Bq′ , Bq′+1, set τi = (q + q′)µ; otherwise,
set the estimated differences A[i] for input bit i to ⊥.

3. For every input node i ∈ S∗ for which event Evtbckt(i, µ) occurs, set the estimated differences

A[i] to {D̃eltati} as follows: D̃elta
t

i = 1 if F (i, t) ≥ τi, and D̃elta
t

i = 0 if F (i, t) < τi.

4. Finally, output array A.

Figure 5: The algorithm B∆ estimates the differences between the hidden solution x of y and that {xt} of
the correlated instances {yx}.

Analysis of B∆: Let P , ρ, ` be defined as above. Consider an experiment of average-case (ε, T )-
correlated-CSP(P,D), where variables G, x, y, x1, y1, · · · , xT , yT are generated and ∆t = xt ⊕ x for
all t ∈ [T ]. In the analysis below, we set the following parameters as

η = η(ε) = 1− (1− ε)d−1, µ = (ρ− (ρ+ 2)η)/16, γ < min((1− 2ε)/4, ε/4)

We show that B∆ satisfies the following property:

Lemma 4.5. Fix any α ∈ (0, 1). Assume that ε is sufficiently small such that η ≤ ρ/(ρ + 2),
D > 4 log(4/γ)/µ2 + 12 and T = T (n) > 5 log n/γ2. For every sufficiently large n ∈ N, the
algorithm B∆ on input µ and (G, y, y1, · · · , yT ), outputs an array A satisfying the following two
conditions with probability 1− 1/n.

Condition 1: For every admissible input bit i for which Evtbckt(i, µ) occurs, A[i] equals to a set of

estimated differences {D̃eltati}t∈[T ] with γ-bound errors w.r.t. the actual differences {∆t
i}t∈[T ]

for input i.
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Condition 2: For the rest input bits, A[i] = ⊥, and there are at most a α fraction of such input
bits.

Towards proving the lemma, we first prove two instrumental claims. The first claim shows that
over the random choices of the graph G, for every admissible i, except with probability O(1/n2),
most of its `-neighbors do not have any repetitive neighbors, and do not share any neighbor other
than i.

Claim 4.6. For every n ∈ N, over the random choice of the graph G, the probability that there is
an input bit i ∈ S∗ with the following property is O(1/n2): Input bit i has more than 6 `-neighbors
k, such that, either k has duplicate neighbors (i.e., ∃l 6= l′ ∈ [d] s.t. G(k, l) = G(k, l′)), or it shares
a neighbor different from i with another `-neighbor of i (i.e., ∃k′ 6= k ∈ Ḡ(i, `), l, l′ ∈ [d] s.t.
G(k, l) = G(k′, l′) 6= i).

Proof. For every i ∈ S∗, we show that the probability that the above event occurs w.r.t. i is bounded
by O(1/n3): Conditioned on the set of `-neighbors k ∈ Ḡ(i, `) of i, the choices of their neighbors
that are not labelled as ` are uniformly random over [n] and independent. Consider an experiment
where these non-`-neighbors are chosen one by one in sequence, if the above event occurs, there are
at least 3 times, a newly selected neighbor coincides with one of the previously selected neighbors
or i, which occurs with probability at most 2Dd/n. Therefore, the probability that this occurs 3
times is bounded by (2Dd/n)3 = O(1/n3).

Therefore by a union bound, the probability that there is an i ∈ S∗ such that the above event
occurs is O(1/n2).

The second claim shows that for every input bit i ∈ [n], the following events occur with (1 −
1/poly(n)) probability.

• Event Evtxi-flip(i, γ): The fraction of instances t ∈ [T ] in which xi flips (i.e., ∆t
i = 1) lies in

[ε− γ, ε+ γ]. Correspondingly, the fraction of instances t ∈ [T ] in which xi does not flip (i.e.,
∆t
i = 0) lies in [1− ε− γ, 1− ε+ γ].

• Event Evtnbr-flip(i, γ, µ): For all but a γ fraction of the instances t ∈ [T ], it holds that if xi
flips in the tth instance, the fraction of flips F (i, t) lies in R1, and if xi does not flip, the
fraction of flips F (i, t) lies in R0.

Claim 4.7. Let parameters ε, n, and P be defined as above. Fix any µ, γ > 0. Assume that
D > 4 log(4/γ)/µ2 + 12, and T > 5 log n/γ2. For every x and a randomly chosen graph G, it holds
that the probability that events Evtxi-flip(i, γ) and Evtnbr-flip(i, γ, µ) occur for every admissible i ∈ [n]
is at least 1− 1/3n, over the random choices of G and {∆t}t∈[T ].

Proof. Since in every instance t, every input bit xi flips with probability ε independently, by
Hoeffding’s inequality, the probability that the fraction of instances in which xi flips lies in [ε −
γ, ε+ γ] is at least 1− 3 exp(−2Tγ2). When T > 5 log n/γ2, this probability is at least 1− 1/6n2.

To lower bound the probability that Evtnbr-flip(i, γ, µ) occurs, we first show that for every
instance t ∈ [T ], the probability that F (i, t) 6∈ Rb where b = ∆t

i is at most γ/2. For every
k ∈ Ḡ(i, `), let random variable V t

k denote whether output bit k flips or not in the tth instance.
Then, the fraction of flips in Ḡ(i, `) is the average of these random variables.

F (i, t) =
1

|Ḡ(i, `)|

(
Σk∈Ḡ(i,`)V

t
k

)
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Therefore conditioned on ∆t
i = b,

E(i, b) = E
[
F (i, t) | ∆t

i = b
]

=
1

|Ḡ(i, `)|

(
Σk∈Ḡ(i,`) Pr[V t

k = 1 | ∆t
i = b]

)
let Ḡ∗(i, `) ⊆ Ḡ(i, `) be a set that contains the maximal number of the `-neighbors of i satisfying

that the only neighbor they share with each other is i, and none of them have repetitive neighbors,
that is, for every k ∈ Ḡ∗(i, `) and l 6= l′ ∈ [d], it holds that G(k, l) 6= G(k, l′) and for every
k 6= k′ ∈ Ḡ∗(i, `) it holds that G(k) ∩ G(k′) = {i}. We call Ḡ∗(i, `) the set of non-overlapping
`-neighbors of i. By Claim 4.6, except with probability O(1/n2), for every input node i ∈ S∗, the
number of the non-overlapping `-neighbors of i is at least the number of `-neighbors of i minus
6. Condition on such a graph G; since i ∈ S∗ has at least D/2 `-neighbors, the quantities F (i, t)
and E(i, b) are at most (12/D)-far from their counterparts that are restricted to the set of non-
overlapping `-neighbors.

F̃ (i, t) =
1

|Ḡ∗(i, `)|

(
Σk∈Ḡ∗(i,`)V

t
k

)
Ẽ(i, b) =

1

|Ḡ∗(i, `)|

(
Σk∈Ḡ∗(i,`) Pr[V t

k = 1 | ∆t
i = b]

)
Then, further conditioning on ∆t

i = b (besides G and x), the value of each random variable V t
k

only depends on the value of ∆t on the neighbors of k other than i. Since every k in Ḡ∗(i, `)
do not share any neighbors other than i, we have that {V t

k} are all independent. Therefore by
Hoeffding’s inequality and the fact that |Ḡ∗(i, `)| ≥ D/2 − 6, we have that the average F̃ (i, t)
of these independent random variables is µ/2-close to its mean Ẽ(i, b), with probability at least
1−2 exp(−(D/2−6)µ2/2). When D > 4 log(4/γ)/µ2 + 12, this probability is greater than 1−γ/2.

Since the quantities F (i, t) and E(i, b) are 12/D-close to F̃ (i, t) and Ẽ(i, b), we have that for
every i ∈ S∗ and every t, conditioned on ∆t

i = b, the actual fraction of flips F (i, t) is (µ/2 + 24/D)-
close to its mean E(i, b), with probability 1 − γ/2; when µ < 1/6 and D > 4 log(4/γ)/µ2 + 12,
this implies that F (i, t) is µ-close to its mean E(i, b), or equivalently, F (i, t) ∈ Rb, with probability
1− γ/2.

Moreover, the random variables F (i, t) depends only on the value ∆t, which is independent for
different instances, the event whether F (i, t) falls outside Rb for b = ∆t

i is independent for different
t. Thus by Hoeffding’s inequality again, the fraction of instances t ∈ [T ] such that this even occurs
is at most γ with probability 1 − exp(−Tγ2/2). When T > 5 log n/γ2, this probability is at least
1− 1/6n2.

Finally, by a union bound the probability that events Evtxi-flip(i, γ) and Evtnbr-flip(i, γ, µ) occur
is at least 1− 1/3n2. Then, by a union bound over all admissible i ∈ [n], the probability that these
two events occur for all admissible input is at 1− 1/3n.

Now we are ready to prove Lemma 4.5.

Proof of Lemma 4.5. Toward proving the lemma, we analyze the two conditions below:

Analysis of Condition 1: By Claim 4.7, when D > 4 log(4/γ)/µ2 + 12 and T > 5 log n/γ2,
events Evtxi-flip(i, γ) and Evtnbr-flip(i, γ, µ) occur for all admissible i ∈ [n] with probability 1−1/3n.
Therefore, it suffices to prove that conditioned on this holds, B∆ outputs estimated differences

{D̃eltati} with γ-bounded errors for every admissible i with Evtbckt(i, µ) occurring.
Fix one such i, the fact that events Evtxi-flip(i, γ) and Evtnbr-flip(i, γ, µ) hold means,
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1. For at most a γ fraction of t ∈ T , F (i, t) is outside Rb for b = ∆t
i; let Q denote this set of t.

2. For instances t 6∈ Q and ∆t
i = 1, F (i, t) ∈ R1. By the fact that at least ε− γ fraction of t has

∆t
i = 1, R1 contains at least ε− 2γ > ε/2 fraction of the instances, when γ < ε/4.

3. For instances t 6∈ Q and ∆t
i = 0, F (i, t) ∈ R0. By the fact that at least 1− ε− γ fraction of t

has ∆t
i = 0, R0 contains at least 1− ε− 2γ > ε/2 fraction of the instances, when γ < ε/4.

Therefore, only buckets Bq = [2qµ, (2q+ 2)µ) that intersects with R0 or R1 may be heavy, whereas
all other buckets contains at most a γ < ε/4 fraction of instances. Let the four buckets be (Bq−1, Bq)
and (Bq′ , Bq′+1). When Evtbckt(i, µ) occurs, the two pairs are at least one bucket apart, that is,
q′ > q, and (Bq′ , Bq′+1) contains more instances than (Bq−1, Bq). Since the pair that intersects
with R0 contains at most ε+ 2γ fraction of the instances, whereas the pair that interacts with R1

contains at least 1− ε− 2γ fraction of the instances, when γ > (1− 2ε)/4, this means (Bq′ , Bq′+1)
contains R1 and (Bq−1, Bq) contains R0. Therefore by setting the threshold τi to the middle point
of these two pairs, every instance in the second and third cases above is categorized correctly, that

is D̃elta
t
i = ∆t

i. Only instances in the first case above may have an invalid estimation. Thus,

the fraction of errors in {D̃eltati} is bounded by γ. This establishes that with probability at least
1− 1/3n, condition 1 holds.

Analysis of Condition 2: We show that over the random choices of graph G and input x, it
holds with 1 − 1/n2 probability, the fraction of input bits that is not admissible or w.r.t. which
Evtbckt(i, µ) does not occur is bounded by a small constant. We first bind the probabilities of the
following events:

Event 1: The randomly sampled x
$← {0, 1}n is not (ρ/2d)-balanced. By Chernoff bound, the

probability that this event occurs is bounded by exp(−Ω(nρ2/d2)).

Event 2: Less than an 1 − α fraction of the input bits are admissible, that is |S∗| < (1 − α)n.
In other words, more than α fraction of the input bits have less than D/2 or more than 2D
`-neighbors. It follows from the same proof as in Claim 4.4 that this occurs with probability
exp(−Ω(αDn)).

Since the above two events occur with exponentially small probability, it suffices to prove the lemma
conditioned on that they do not occur, as we do below.

Next, we bound the fraction of input nodes for which Evtbckt(i, µ) does not occur.
By Claim 4.7, (when D > 4 log(4/γ)/µ2 + 12, and T > 5 log n/γ2,) it holds that except with

probability 1/3n, for every i ∈ S∗, Evtxi-flip(i, γ) and Evtnbr-flip(i, γ, µ) occur. We show that
conditioned on this happening, if E(i, 1) ≥ E(i, 0) + 8µ, event Evtbckt(i, µ) must happen. It follows
from the same argument as in the analysis for condition 1 that conditioned on Evtxi-flip(i, γ) and
Evtnbr-flip(i, γ, µ) occurring, (when γ < min((1−2ε)/4, ε/4),) there are at most four heavy buckets—
(Bq−1, Bq) intersecting with R0 and (Bq′ , Bq′+1) intersecting with R1—and if they are disjoint, the
latter pair contains fewer instances than the former. Thus to show that Evtbckt(i, µ) occurs, it only
remains to show that the two pairs of buckets are at least one bucket apart. This is true when
E(i, 1) ≥ E(i, 0) + 8µ: Bq′ intersects with R1, and thus 2q′µ ≥ E(i, 1)− 3µ; Bq intersects with R0

and thus (2q+2)µ ≤ E(i, 0)+3µ, which shows Bq and Bq are at least one bucket (of size 2µ) away.
Therefore, to lower bound the fraction of input bits for which Evtbckt(i, µ) does not occur, it

suffices to lower bound the fraction of input bits for which E(i, 1) ≥ E(i, 0) + 8µ holds. We show
the following claim:
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Claim 4.8. Let ρ be defined as above and η = 1 − (1 − ε)d−1. Assume that ε is sufficiently small
such that η < ρ/(ρ + 2) and µ < (ρ − (ρ + 2)η)/16. It holds that conditioned on Event 1, every
input bits i ∈ S∗ has E(i, 1) ≥ E(i, 0) + 8µ, with probability 1−O(1/n2).

Proof. For every i and b, recall that E(i, b) = E[F (i, t)|∆t
i = b] for any t ∈ [T ]. In other words,

E(i, 1) (or E(i, 0) respectively) is the expected fraction of flips in i’s `-neighbors Ḡ(i, `) when each
bit in x is flipped with probability ε, conditioned on i flips (or i does not flip respectively). Then,

E(i, 1) =
1

|Ḡ(i, `)|
Σk∈Ḡ(i,`) (Pr[k flips | i flips])

E(i, 0) =
1

|Ḡ(i, `)|
Σk∈Ḡ(i,`) (Pr[k flips | i does not flips])

Next we bound the distance between E(i, 1) and E(i, 0) for every i ∈ [n], conditioned on Event
1 occurring. We say that an input bit i is influential to its ` neighbor k w.r.t. a graph G and an
input x, if the value of yk flips, when xi flips and all other neighbors of k remain the same, that is,
P (xG(k))⊕ P ((xG(k))

⊕`) = 1. We then have that:

Pr
∆

[k flips | i flips ∧ i influential to k]

≥ Pr
∆

[∀l 6= `, xG(k,l) does not flip | i flips ∧ i influential to k]

≥ (1− ε)d−1 = 1− η

On the other hand, when the graph G and x is chosen at random, for every i ∈ [n] and every
k ∈ Ḡ(i, `),

Pr
G,x

[i influential to k] = Pr
G,x

[P (xG(k))⊕ P ((xG(k))
⊕`) = 1]

Conditioned on Event 1 occurring, that is, x is (ρ/2d)-balanced, and the fact that every non-`-
neighbor of k is chosen at random over [n] independently, we have that for every l 6= ` ∈ [d], xG(k,l)

is ρ/2d balanced. Thus, the right hand side probability is at most ρ/2-far from the probability that
P (z)⊕ P (z⊕`) = 1 for a uniformly chosen z, which equals to InfP (`) = ρ. Therefore, we have that
the

Pr
G,x

[i influential to k | Event 1] ≥ InfP (`)− ρ/2 = ρ/2

Therefore,

Pr[k flips | i flips ∧ Event 1]

≥ Pr
∆

[k flips | i flips ∧ i influential to k]× Pr
G,x

[i influential to k | Event 1]

≥ (1− η)ρ/2

On the other hand,

Pr[k flips | i does not flips]

≤ 1− Pr[∀l 6= `, xG(k,l) does not flip | i does not flips]

≤ 1− (1− ε)d−1 = η

Since the above inequalities hold for all i and `-neighbor k of i when Event 1 occurs, we have that
E(i, 1) ≥ (1− η)ρ/2 and E(i, 0) ≤ η, and when ε is sufficiently small such that η < ρ/(ρ+ 2) and
µ ≤ (ρ − (ρ + 2)η)/16, it indeed holds that E(i, 1) ≥ E(i, 0) + 8µ, when Event 1 occurs. This
concludes the claim.
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Given the above claim, by a union bound, for every sufficiently large n ∈ N, except with
probability 1/2n, Event 1, 2 and Claim 4.7 and 4.8 hold, in which case all but an α fraction of the
input nodes are admissible and has Evtbckt(i, `) occurring.

Concluding the lemma: Overall, by construction, B∆ sets A[i] = ⊥ for every input bit that is
not admissible or for which Evtbckt(i, δ) does not occur. Then combining the analysis of condition
1 and 2, we conclude that, with probability 1− 1/n, B∆ satisfies that for all but a small constant
fraction of the input bits, it outputs estimated differences with small bounded errors, and for the
rest, it outputs ⊥. This concludes the lemma.

4.7.2 Construction and Analysis of the Combined Algorithm B (Proof of Theo-
rem 4.4)

We now present the algorithm B that combines algorithms B∆ and C′, and prove Proposition 4.4.
On input a constant α∗ ∈ (0, 1] and (G, y, y1, · · · , yT ), B works with parameters in the following
ranges so that the premises of Lemma 4.5 and Lemma 4.1 with r = 1 are satisfied. For a sufficiently
large N ,

η = 1− (1− ε)d−1, µ = (ρ− (ρ+ 2)η)/16, α = α∗/(2d)

γ = εd/5d =⇒ γ ≤ min((1− 2ε)/4, ε/4)

ε ≤ ρ/(d(ρ+ 2) + 1/2) =⇒ η < ρ/(ρ+ 2) ≤ 1/3 and µ ≥ ε/32

D >
Nd

ε2α∗
log

(
2

ε

)
, =⇒ D > 1/(α2d) and D > 4 log(4/γ)/µ2 + 12

T > Nd2 log(Dn)/ε2d =⇒ T > 5 log n/γ2 and T > 8(d+ log(Dn2))/εd

B proceeds in the following two stages:

Stage 1–Estimate the difference: Estimates the difference ∆t = x ⊕ xt for every instance t.
Invoke algorithm B∆ with input (µ,G, y, y1, · · · , yT ), which returns an array A. Let Q ⊆ [n]
be the set of input bits i s.t. A[i] 6= ⊥.

By Lemma 4.5, with high probability, it holds that for every i ∈ Q, A[i] = {D̃eltati} contains
the estimated differences for i with γ-bounded errors and |Q| > (1− α)n.

Stage 2–Recover an approximate solution: Apply algorithm C′ on the sub-problem induced
by Q with the estimated differences returned in Stage 1. More precisely, let Ĝ be the graph
induced by Q: Ĝ includes all the output vertexes that have all d neighbors in Q, and all
the input vertexes in Q that are connected to one of these output vertexes. Let ŷ be the
projection of y on the output vertexes of Ĝ, and ŷt be the projection of yt for every t ∈ [T ];

similarly let ∆̂t the projection of D̃elta
t

on the input vertexes of Ĝ. Invoke C′ with input
(P, Ĝ, ŷ, {ŷt}, {∆̂t}), which returns x̂. Finally, set string x̃ ∈ {0, 1}n as follows: for every
input vertex i in Ĝ, set x̃i to the value of the corresponding bit in x̂; for the rest of the bits
that do not appear in Ĝ, set x̃i to a randomly chosen bit. Output x̃.

We show that with probability at least 1 − 3/n, x̃ satisfies a (1 − α∗) fraction of the output
constraints, which concludes Proposition 4.4.

Claim 4.9. Let all parameters be set as above. For every n ∈ N, the probability that
B(α∗, G, P, y, {yt}) outputs x̃ s.t. f(x̃) matches y at a (1 − α∗) fraction of the output bits
is at least (1− 1/3n).
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Proof. Since the graph Ĝ is induced by Q, by Lemma 4.5, with probability 1− 1/n, {∆̂t} has
γ-bounded errors w.r.t. the true differences {∆t} and |Q| ≥ (1 − α)n. Then by Lemma 4.1,
C′ returns a valid pre-image of ŷ with probability 1− 1/n.

It only remains to show that ŷ contains at least a (1− α∗) fraction of the output bits. Since
the set Q̄ = [n] \ Q contains at most an α fraction of the input bit, by Claim 4.5, when
D > 1/(α2d), the fraction of output bits that are connected with any input bit in Q̄ is
bounded by 2dα except with probability exp(−(2α2dD − 1)n). Thus, the fraction of output
bits that are only connected with input bits in Q is at least 1 − 2dα. Thus, the graph Ĝ
contains at least a (1− 2dα) = 1− α∗ fraction of the output vertexes of G, as α = α∗/2d.

Overall, by a union bound, x̂ satisfies at least a 1 − α∗ fraction of the output constraints,
with probability at least 1− 3/n.

5 NP-hard CSPs are easy when given correlated instances

In this section, we show that CSP instances that are generated in the LCLC (label cover and long
code) paradigm are easy under correlation, despite being the hardest known instances in terms of
approximation. In particular, we show that the satisfiable 3SAT instances generated by H̊astad’s
reduction, while being ”hard to invert” even approximately, become ”easy to invert” if given one
additional correlated instance.

H̊astad showed a reduction that maps any NP language to 3SAT, such that yes instances are
mapped to satisfiable 3SAT instances, and such that given a satisfiable instance it is NP-hard
to find an assignment that satisfies even a 7

8 + ε fraction of the clauses. We show that given a
satisfiable instance ϕ with, in addition, a correlated instance ϕ′, finding a satisfying assignment for
ϕ becomes easy.

Theorem 5.1. Let L ∈ NP and let δ, ε > 0. There is a polynomial time reduction H (due to
H̊astad) mapping instances of L to instances of 3SAT such that given a yes instance ϕ ∈ 3SAT
it is NP-hard to find an assignment x satisfying more than 7

8 + δ fraction of the clauses of ϕ.
Nevertheless, given also an auxiliary correlated instance ϕ′ ∈ 3SAT there is a polynomial time
algorithm that finds a satisfying assignment for ϕ with high probability over the choice of ϕ′. The
correlated instance ϕ′ is generated as follows

1. Let x ∈ {0, 1}n be a satisfying assignment for ϕ. Flip each bit of x independently with
probability ε, obtaining x′.

2. Let ϕ′ be the 3SAT formula obtained by deleting from ϕ all of the clauses that are unsatisfied
by the assignment x′.

Proof. The reduction H is exactly H̊astad’s reduction [H̊as01], which we describe next. First
observe that H̊astad’s theorem implies our first assertion of NP-hardness. The reduction first maps
the instance of L to a LabelCover instance, namely, a bipartite graph G = (U, V,E) such that
each edge uv ∈ E is decorated by a constraint πuv : Σ1 → Σ1 and Σ1,Σ2 are some finite alphabets.
This part of the reduction has the property that if the initial instance is satisfiable then there is
a labeling of the vertexes that satisfies all of the constraints; and otherwise every labeling satisfies
all but a δ fraction of the constraints. Next, replace each vertex u ∈ U by a cloud of 2m1 Boolean
variables for m1 = |Σ1| and each vertex v ∈ V is replaced by a cloud of 2m2 variables where
m2 = |Σ2|. For each edge uv ∈ E we place a collection of 3SAT clauses on the variables as
follows. Let f : {0, 1}m1 → {0, 1} and g : {0, 1}m2 → {0, 1} be Boolean functions whose values are
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the assignment to the cloud of u and v respectively. The clauses are described by the following
randomized process

1. Choose δ randomly in some set of constant number of small values for δ.

2. Choose a random x ∈ {0, 1}m1 and independently choose y1 ∈ {0, 1}m2

3. For each coordinate j ∈ [m2] do: if x[πuv(j)] = 0 choose y2[j] = 1− y1[j] and if x[πuv(j)] = 1
choose y2[j] = y2[j] with probability 1− δ and y2[j] = 1− y2[j] with probability δ.

4. Accept if f(x) ∨ g(y1) ∨ g(y2).

Satisfying assignments for ϕ all have the following ”blockwise-dictatorship-form”. Each cloud
is assigned a dictatorship Boolean function, i.e. a function of the form h(x1, . . . , xm) = xi for
some i such that this collection of i’s form a perfectly satisfying labeling for the LabelCover
instance G. Let A be a satisfying assignment for ϕ. It is best to describe A as a collection
{fu : {0, 1}m1 → {0, 1}}u ∪ {gv : {0, 1}m2 → {0, 1}}v of Boolean functions, one per cloud. Let A′

be a perturbation of A used for generating ϕ′. We will use the auxiliary input ϕ′ to recover an
assignment very close to A, that satisfies almost all of the clauses in ϕ (and in particular, much
more than 7/8 fraction).

The crucial extra information we get from ϕ′ is an approximation about which clauses are
satisfied in ϕ by only one literal. These clauses are much more likely to become unsatisfiable
(because they require one bit flip as opposed to two or more bit flips). This information will help
us uncover a labeling for G and therefore an assignment satisfying most of ϕ.

For a fixed edge uv, let f : {0, 1}m1 → {0, 1} and g : {0, 1}m2 → {0, 1} be Boolean functions
representing the assignment to the clouds of u and v respectively. A clause on these two clouds has
the form f(x)b1 ∨ g(y1)b2 ∨ g(y2)b3 (notation: we let f(x)b = f(x) if b = 0 and f(x)b = ¬f(x) if
b = 1)9. In a dictatorship-form assignment, this clause is satisfied by only one literal in two cases.
Either when f(x)b1 = 0, or when f(x)b1 = 1 with probability (1 − δ)/2 (over the choices of the
randomized process generating y1, y2 conditioned on x). This means that if f(x1, . . . , xm1)b1 = xb1i
then this occurs either when xb1i = 0, or when xb1i = 1 with probability slightly less than half. So

if we know that the clause is satisfied by one literal only it is more likely that xb1i = 0, and this
suggests the following algorithm.

For every i ∈ [m1] let C0(i) be all clauses that contain f(x) for an x with xi = 0 and let C1(i)
be all clauses containing ¬f(x) for an x with xi = 1. Let Cviolated be the collection of clauses that
belong to ϕ but not ϕ′, so they are violated by the perturbed assignment. Let p(i) be the fraction
of clauses in Cviolated that are in C0(i) ∪ C1(i).

We expect p(i) ≈ 3/4 (ignoring ε, δ fractions) for the correct label i, and p(i) ≈ 1/2 for all other
labels. It is not hard to see that this random variable is quite concentrated which means that by
taking i to be the label with the highest p(i) we will succeed with probability close to 1.

6 Inverting Randomized Encoding

A randomized encoding [IK02] allows to represent a “complex” (deterministic) function f by a
“simple” (randomized) function f̂ . The output f̂(x; r) of the new function encodes the output
f(x) of the original function, and no more information—the output distribution f̂(x, U) can be

9The negations arise from folding, a subtlety that was glossed over in the presentation above.
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emulated using only f(x). One measure of complexity that has been studied in the literature is
the depth of the circuit computing the function. In [AIK04], Applebaum, Ishai, and Kushilevitz
presented a construction of randomized encoding for representing any NC1 computable function
by a NC0 function, with only output locality 4. 10 Since many candidate one-way functions, based
on most number theoretic or algebraic intractability assumptions commonly used in cryptography
(such as factoring and discrete logarithm), are computable in NC1, the AIK randomized encoding
allows to represent these one-way functions using very “simple”, NC0

4 (randomized) functions,
while retaining the one-wayness (as the output distribution of the new function reveals no more
information other than the output of the original one-way function). However, in this section,
we show that functions produced by the AIK randomized encoding are easy to invert given two
correlated instances, f̂(x; r), f̂(x′; r), that encodes the outputs of two different strings using the
same random coins. This stands in contrast with the previous observation that the AIK represented
one-way functions are still one-way.

Below we first review the definition of the randomized encoding and the AIK construction, and
then show how to invert this particular randomized encoding, using correlated instances.

6.1 Definition of Randomized Encoding and Branching Programs

Randomized Encoding: Below we recall the definition of a prefect randomized encoding for
efficiently computable functions from [AIK04].

Definition 6.1 ([AIK04]). Let f : {0, 1}∗ → {0, 1}∗ be a polynomial time computable function,
and l(n) an output length function such that |f(x)| = l(|x|) for every x ∈ {0, 1}∗. We say that
f̂ : {0, 1}∗ × {0, 1}∗ → {0, 1}∗ is a perfect randomized encoding of f , if it satisfies the following:

Length Regularity: There exists polynomially-bounded and efficiently computable functions m(n),
s(n), such that for every x ∈ {0, 1}n and r ∈ bitsetm(n), we have |f̂(x, r)| = s(n). Call m and
s the randomness-length and output-length polynomials.

Efficient Evaluation: There exists a polynomial-time evaluation algorithm that on input x ∈
{0, 1}∗ and r ∈ {0, 1}m(|x|) outputs f̂(x, r).

Perfect Correctness: There exists a polynomial-time algorithm C, called a decoder, such that,
for every input x ∈ {0, 1}n, Pr[C(f̂(x, Um(n))) = f(x)] = 1.

Perfect Privacy: There exists a randomized polynomial-time algorithm S, called a simulator, such
that, for every input x ∈ {0, 1}n, ‖S(f(x))− f̂(x, Um(n))‖ = 0.

When saying that a uniform encoding f̂ is in a (uniform) circuit complexity class, it means that
its evaluation algorithm can be implemented by circuits in this class. For instance, we say that f̂
is in NC0

d if there exists a polynomial-time circuit generator G such that G(1n) outputs a d-local
circuit computing f̂(x; r) on all x ∈ {0, 1}n and r ∈ {0, 1}m(n).

Below by randomized encoding, we mean perfect randomized encodings.

Branching Programs: A basic Branching Program (BP) for n input variables x1, · · ·xn is de-
fined by a tuple BP = (G,φ, src, tA, tR). G = (V,E) is a directed acyclic graph with three
distinguished nodes, a source node src and two sink nodes tA for Accept and tR for Reject. φ is a

10In fact, the AIK randomized encoding can handle functions computable by any polynomial-sized mod-2 BPs. In
this work, we focus on NC1 only.
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labelling function assigning every edge a label, which is 1, a positive literal xi or a negative literal
x̄i. We consider layered BPs of length `. Here the nodes are partitioned into `+ 1 sets V1, · · ·V`+1

and edges only go from one layer to the next. The start node is in layer 1 and the sink nodes in
layer `+1. Every layer θ ∈ [`] (except from the last one) depends on an input variable xil , meaning
that all edges leaving layer θ are labelled as either xil , x̄il or 1.

Additionally, we assume the following canonical form of the layered BPs:

Property 1: Except from the last layer, every node has two out-going edges, one is labeled with
a positive literal xi, and the other with the corresponding negative literal x̄i. (In particular,
no edge is labelled by 1.)

Property 2: Except from the first and last layers, every node has two in-coming edges, one is
labeled with a positive literal xi, and the other with the corresponding negative literal x̄i.

In such a canonical BP, every assignment w ∈ {0, 1}n to the input variables {x1, · · · , xn} induces
a unique path in G from the source node to one of the node in the last layer, and it is accepted if
and only if the path it induces leads to tA.

Remark 6.1. We note that the work of [AIK04] considered a more general definition of BPs,
where an assignment w may induce a subgraph Gw (by including all edges e ∈ E such that φ(e)
is satisfied by w) instead of just a unique path. Furthermore, in [AIK04] BPs may be assigned
different semantics: in a non-deterministic BP, an assignment w is accepted if there is at least one
path from src to tA; in a (counting) mod-2 BP, the BP computes the number of paths from src to
tA modulo 2. A construction of randomized encoding for mod-2 BPs is presented in [AIK04], which
can also be extended to handle non-deterministic BPs.

When focusing on canonical BPs as described above, since every x induces a unique path, both
non-deterministic BP and mod-2 BP accept the same set of inputs. Therefore, we do not distin-
guish between the two semantics, and the construction of [AIK04] directly applies to BPs with the
canonical form.

In the rest of the paper, by BP, we mean BPs with the canonical form. We say that the size
of a BP is the number of nodes in G, the length is the length of the longest path in G, and the
width is the maximum number of vertexes in any layer. We show that it follows essentially from
Barrington’s theorem that every function in NC1 can be implemented using a canonical BP of
polynomial size.

Theorem 6.1 (Implied by Barrington’s Theorem). Every Boolean function f : {0, 1}∗ → {0, 1} in
NC1 can be computed by a family of polynomial-sized canonical BPs.

Proof. The Barlington’s Theorem showed that Boolean function that can be computed by a circuit
with depth d can also be computed using a layered BP of length ` = 4d and width 5. Furthermore,
for every layer θ ∈ [`] depending on an input variable xiθ , all edges induced by an assignment
xiθ = 1 form a permutation from nodes in layer θ to nodes in layer θ+ 1, and all edges induced by
an assignment xiθ = 0 form another permutation. Such layered BPs almost have the canonical form
except that some nodes may have only one out-going edge (or only one in-coming edge) labelled
by 1.

This problem can be easily fixed by simply duplicating the nodes in every layer, except from
the first and the last layers; let V 0

θ be the original set of nodes in layer θ, and V 1
θ the duplicated set.

Every out-going edge from V 0
θ with label x̄iθ or 1, which is originally connected to a node in V 0

θ+1, is
now re-wired to the corresponding node in V 1

θ+1 and labelled by x̄iθ ; similarly, every such out-going
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edge from V 1
θ is re-wired to the corresponding node in V 0

θ+1 and labelled by x̄iθ . (Edges from V 0
θ

labelled by xiθ or 1 remain to connect to nodes in V 0
θ+1, and such edges from V 1

θ are connected to
corresponding nodes in V 1

θ .) After this modification, every edge with label 1 is duplicated to two
edges with label xiθ and x̄iθ respectively. Thus, the resulting BP has the canonical form.

6.2 The AIK Randomized Encoding

The construction of AIK randomized encoding in NC0
4 for functions computable in NC1 relies on

the construction of degree-3 randomizing polynomials for mod-2 BPs from [IK02], and a locality
reduction technique. Below we start with reviewing each part.

Degree-3 Randomizing Polynomials: Let BP = (G,φ, s, tA, tR) be a BP of length ` and size
η computing Boolean function f : {0, 1}n → {0, 1}, that is, f(x) = 1 if and only if the unique path
induced by x in G leads to tA, or equivalently, the number of paths from src to tA induced by x
equals to 1 mod 2. Fix some topological ordering over nodes in G, where the source node is labelled
by 1 and tA is labelled by η. Let A(x) be the η× η adjacency matrix of the graph G, where A(x)ij
is non-zero if and only if there is an edge from node i to j in G and equals to the labelling φ((i, j))
on that edge. Hence, A(x) contains the constant 0 on and below the main diagonal, and degree-1
polynomials in a single input variable xi above the main diagonal. Define L(x) as the submatrix
of A(x) − I obtained by deleting the first column and the last row. As before, each entry of L(x)
is a degree-1 polynomial in a single input variable xi; moreover, L(x) contains the constant -1 in
each entry of its second diagonal (the one below the main diagonal) and the constant 0 below this
diagonal. The following fact was shown in [IK02].

Fact 6.1. f(x) = det(L(x)), where the determinant is computed over GF (2).

Therefore, to hide the input x while still allowing the computation of f(x), it suffices to
randomize the matrix L(x) to a random matrix with the same determinant. Towards this, let
r(1) = {r(1)

ij}1≤i<j≤η−1 and r(2) = {r(2)
k}1≤k≤η−2 be bit vectors of size Γ = (η − 1)(η − 2)/2 and

(η − 2) respectively. Let R1(r(1)) be an (η − 1)× (η − 1) matrix with 1’s on the main diagonal, 0’s
below it, and r(1)

ij on entry (i, j) above the diagonal. Let R2(r(2)) be an (η − 1)× (η − 1) matrix
with 1’s on the main diagonal, r(2)

k on entries (k, η − 1) in the last column, and 0’s in each of the
remaining entries.

Fact 6.2. Let M,M ′ be (η − 1) × (η − 1) matrices that contain the constant −1 in each entry of
their second diagonal and the constant 0 below this diagonal. Then det(M) = det(M ′) if and only
if there exists r(1) and r(2) such that R1(r(1))MR2(r(2)) = M ′.

Therefore, to randomize L(x) it suffices to sample r(1) and r(2) at random and outputR1(r(1))L(x)R2(r(2)).
As shown in [IK02, AIK04], this indeed yields a randomized encoding.

Lemma 6.1 ([IK02, AIK04]). Let BP be a branching program computing the Boolean function f .
Define a degree-3 function RP (x; r(1), r(2)) whose output contains the Γ = (η − 1)(η − 2)/2 entries
above the diagonal of the matrix M = R1(r(1))L(x)R2(r(2)). RP is a randomized encoding for BP .

Every entry in M is a degree-3 polynomial in variables {xi}, {r(1)
ij} and {r(2)

k}.

Mij(x; r(1), r(2)) = Σt,k

(
R1(r(1))itL(x)tkR2(r(2))kj

)
= Σt,k

(
R1(r(1))it(A(x)t,k+1 − It,k+1)R2(r(2))kj

)
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Denote by {Titkj} the set of degree-3 monomials in Mij ’s.

Titkj = Titkj(x, r
(1), r(2)) = R1(r(1))itL(x)tkR2(r(2))kj

Although the degree of each bit of output of RP is low, the locality is not, in particular every
output bit depends on many monomials as above and many variables.

Reducing Locality: To reduce a degree-3 encoding into one in NC0
4. [AIK04] constructed for

any degree-d function (where d is a constant greater than 1) a locality d+ 1 randomized encoding.
The idea is to represent a degree-d polynomial as a sum of monomials, each having locality d, and
randomize this sum as follows: Let g : {0, 1}n → {0, 1} be a Boolean function with degree d; then
g(x) = T1(x)+· · · , Tk(x) over GF (2) where {Tj} are Boolean functions representing the monomials
in f and each have locality d. The local encoding LR : {0, 1}n ×{0, 1}2k−1 → {0, 1}2k is define by:

LR(x; (r1, · · · , rk, r′1, · · · , r′k−1)) = (T1(x) + r1, · · · , Tk(x) + rk,

−r1 − r′1, r′1 − r2 − r′2, · · · , r′k−2 − rk−1 − r′k−1, r
′
k−1 − rk)

As shown in [AIK04], LR is a randomized encoding for f and has locality d+ 1 when d > 1.

Locality-4 Randomized Encoding Combining degree-3 randomizing polynomials with the lo-
cality reduction technique gives a locality-4 randomized encoding for functions f : {0, 1}n →
{0, 1} ∈ NC1. By Barrington’s Theorem, every Boolean function in NC1 can be computed by a
(uniform) family of BPs {BPn}n∈N of polynomial size η(n). Let RPn : {0, 1}n×{0, 1}Γ×{0, 1}η−2 →
{0, 1}Γ be the randomizing polynomial for BPn. Since each output bit Mij of RPn has degree-3,
applying the locality reduction on it yields a locality-4 encoding LRij , where every monomial Titkj
in Mij is hidden using random strings (r(3)

ij , r
(4)

ij). In particular,

LRij(x, r
(1), r(2); (r(3)

ij , r
(4)

ij)) =
{

(Titkj + r(3)
itkj)

}
tk
,
{
r(4)

ij,t+k−1, r
(3)

itkj − r(4)
ij,t+k

}
where r(3)

itkj denote the t+kth bit in r(3)
ij . The final randomized encoding f̂(x; r(1), r(2), (r(3), r(4)))

outputs the concatenation of all the local encodings {LRij(x, r(1), r(2); (r(3)
ij , r

(4)
ij))}ij .

It was shown in [AIK04] that the composition and concatenation of randomized encodings is
still a randomized encoding. Thus f̂ is a randomized encoding of f and is computable in NC0

4.
If the original function f have multiple output bits, one can obtain a randomized encoding by
concatenating the randomized encodings for functions f1, · · · , fl, where fi outputs the ith output
bit of f .

In general, the randomized encoding can be instantiated with any construction of BPs for NC1

functions. In this work, we will focus on the special case of using canonical BPs.

6.3 Inverting AIK Randomized Encoding with Shared Randomness

In this section, we show that for every function f ∈ NC1, the AIK encoding f̂ is easy to invert
given two instances f̂(w; r) and f̂(w′; r) using shared randomness. More specifically, for arbitrary
w 6= w′, partial information of the assignments can be recovered, and when w′ is derived from w
probabilistically by flipping each bit of w with a small constant probability ε, w and w′ can be
recovered completely.
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Theorem 6.2. For every function f in NC1, let f̂ be the AIK randomized encoding of f using
m(·)-bit randomness. Fix any ε ∈ (0, 1/2] and any constant α > 0. There is a polynomial time
algorithm, such that for every function f ∈ NC1, n ∈ N, w ∈ {0, 1}n, and r ∈ {0, 1}m(n), the

algorithm on input (1n, fn, y = f̂(w, r), y′ = f̂(w′, r)) with w′
$← Dε(w), inverts f(w) and f(w′)

with probability 1− n−α.

Towards proving the theorem, we first consider the simpler case of Boolean functions, and then
discuss about non-Boolean functions.

6.3.1 Handling Boolean Functions

Given a Boolean function f : {0, 1}∗ → {0, 1} in NC1, let f̂ : {0, 1}∗ × {0, 1}∗ → {0, 1}∗ be the
AIK randomized encoding of f that on input a n-bit string x uses m(n) random coins and outputs
a s(n)-bit encoding, and {BPn}n∈N the underlying family of canonical BPs for computing f of
size η(n) < s(n) and length `(n). Recall that each layer θ ∈ [`(n)] in the branching program BPn
depends on an input variable xiθ . We order the input variables according to the sequence in which
they appear in the branching program (from the first layer to the last), xπ(1), · · · , xπ(n). (Each
variable xi must appear in at least one layer; thus π is a permutation). Given the randomized
encoding of any two different assignments w and w′ of x using shared randomness r, we show that
partial information of w and w′ can be recovered.

Lemma 6.2. For every Boolean function f in NC1, let f̂ be the AIK randomized encoding of f using
m(·)-bit randomness, and {BPn} the underlying canonical BPs. There is an algorithm D such that
for every f ∈ NC1, n ∈ N, w,w′ ∈ {0, 1}n, and r ∈ {0, 1}m(n), it holds that D on input (1n, fn, y =
f̂(w, r), y′ = f̂(w′, r)) recovers (wπ(u∗−1), wπ(u∗−2), · · · , wπ(1)) and (w′π(u∗−1), w

′
π(u∗−2), · · · , w

′
π(1)),

where π is a permutation describing the order of sequence in which input variables appear in BPn
and u∗ is the largest u ∈ [n] such that wπ(u) 6= w′π(u).

Lemma 6.2 considers two arbitrary assignments w and w′. When the assignments are correlated
in the sense that w′ is derived by flipping each bit in w with probability ε, the probability that
n − u∗ = a for any a ∈ [n] is (1 − ε)aε. Thus, for every constant α, it holds that except with
probability 1/nα, the number of variables whose values are not recovered is n−u∗+1 ≤ α logn

− log(1−ε) =

O(log n); in this case, the algorithm D in proof of Lemma 6.2 recovers all but O(log n) bits of w
and w′.

Corollary 6.1. For every Boolean function f in NC1, let f̂ be the AIK randomized encoding of
f using m(·)-bit randomness, and {BPn} the underlying canonical BPs. Fix any ε ∈ (0, 1/2] and
any constant α > 0. There is a polynomial time algorithm D such that for every f ∈ NC1, n ∈ N,

w ∈ {0, 1}n, and r ∈ {0, 1}m(n), D on input (1n, fn, y = f̂(w, r), y′ = f̂(w′, r)) with w′
$← Dε(w),

outputs all but α logn
− log(1−ε) bits of w and w′, with probability 1− n−α.

Proof of Lemma 6.2. Fix a Boolean function f ∈ NC1 and one n ∈ N. Let BP = (G,φ, src, tA, tR)
be the canonical BP for computing f on n bit inputs; BP has size η < s(n) and can be constructed
efficiently from the description of f in poly(η) < poly(s(n)) steps. Let A(x) the η × η adjacency
matrix of G, and L(x) the (η−1)×(η−1) matrix that equals to A(x)−I removing the first column
and last row. Recall that the randomized polynomial RP of BP consists of the Γ = (η−1)(η−2)/2
entries above the diagonal of matrix M computed as,

Mij(x; r(1), r(2)) = Σt,k

(
R1(r(1))itL(x)tkR2(r(2))kj

)
= Σt,kTitkj(x; r(1), r(2)),
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and the randomized encoding f̂ consists of the local encodings LRij of each Mij ; in particular,

LRij(x, r
(1), r(2); (r(3)

ij , r
(4)

ij)) includes a term (Titkj + r(3)
itkj) for every t, k

Before proceeding to describe the algorithm for inverting AIK randomized encoding, we first
describe three useful subroutines.

Subroutine D1 for determining differences The first subroutine D1 described in Figure 6
determines whether the ith bits of two assignments w and w′ differ or not, given a pair of AIK
encoding using shared randomness y = f̂(w, r), y′ = f̂(w′, r). We in-line some analysis in the
algorithm in square brackets.

Algorithm D1 for estimating the difference between w and w′

On input 1n, BP , y = f̂(w, r), y′ = f̂(w′, r′) and i ∈ [n] proceed as follows:

1. Find any edge (t, k) in G with label xi, that is Atk = xi.
a

2. Consider the monomial

Ttt,k−1,k−1(x) = R1(r(1))ttL(x)t,k−1R2(r(2))k−1,k−1 = 1×Atk × 1 = xi

Find the values corresponding to term Ttt,k−1,k−1 + r(3)
tt,k−1,k−1 in y and y′, which are,

v = Ttt,k−1,k−1(w) + r(3)
tt,k−1,k−1 = wi + r(3)

tt,k−1,k−1

v′ = Ttt,k−1,k−1(w′) + r(3)
tt,k−1,k−1 = w′i + r(3)′

tt,k−1,k−1

3. Determine whether wi = w′i: Set D̃eltai = 0 if v = v′ and 1 otherwise.

[Remark: The computation of D̃eltai depends only on random coins r(3)
tt,k−1,k−1 and

r(3)′
tt,k−1,k−1. When they are equal (which happens when y and y′ are generated using identi-

cal random coins), wi = w′i if and only if v1 = v2, and thus the difference between wi and w′i is
recovered correctly.]

aBy Property 1 of the canonical BPs and the fact that xi must be used in some layer, such an edge
must exist.

Figure 6: When given a pair y = f̂(w, r), y′ = f̂(w′, r) and i, whether wi 6= w′i can be determined.

It follows directly from the construction that

Claim 6.1. For every w,w′ ∈ {0, 1}n, and r ∈ {0, 1}m(n), D1(1n, BP, y = f̂(w, r), y′ = f̂(w′, r), i)
outputs ∆i = wi ⊕ w′i.

Subroutine D2 for recovering r(1) values If layer θ ∈ [`] depends on variable xiθ and its value
flips from from w to w′, the second subroutine recovers all r(1) values associated with nodes in layer
θ. More specifically, for every node t in layer θ, the r(1) values associated with t are {r(1)

i,t}i<t;
denote them as r(1)(t). Similarly, the r(1)-values associated with layer θ include all r(1)-values
associated with every node in this layer {r(1)

i,t}i<t,t∈Vθ ; denoted as r(1)(θ) (recall that Vθ is the set
of nodes in layer θ). When the value of xiθ flips from w to w′, subroutine D2 described in Figure 7
recovers all r(1)-values associated with layer θ—in this case, we say layer l is ready. Formally,

It follows from the construction of D2 that,
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Algorithm D2 for recovering r(1)-values

On input 1n, BP , y = f̂(w, r), y′ = f̂(w′, r′), and θ ∈ [`], proceed as follows:

For every node t in layer θ, recover the r(1)-values associated with t as follows:

1. Find any edge (t, k) in G with label xiθ , that is Atk = xiθ .
a

2. For every r(1) value r(1)
it, consider the monomial

Tit,k−1,k−1(x) = R1(r(1))itL(x)t,k−1R2(r(2))k−1,k−1 = r(1)
it ×Atk × 1 = r(1)

itxiθ

Find the values corresponding to term Tit,k−1,k−1 + r(3)
ij,k−1,k−1 in y and y′, which are,

v = Tit,k−1,k−1(w) + r(3)
it,k−1,k−1 = r(1)

itwiθ + r(3)
it,k−1,k−1

v′ = Tit,k−1,k−1(w′) + r(3)′
it,k−1,k−1 = r(1)′

itw
′
iθ

+ r(3)′
it,k−1,k−1

Set r̃
(1)
it to v − v′.

Finally, output r̃(1)(θ) = {r̃(1)
it }i<t,t∈Vθ .

[Remark: For every i, t, the computation of r̃
(1)
it depends only on random coins (r(1)

it, r
(1)′

it)

and (r(3)
it,k−1,k−1, r

(3)′
it,k−1,k−1). If both pairs are equal, when wiθ 6= w′iθ , subtracting v and v′

recovers r(1)
it.]

aBy Property 1 of canonical BPs, such an edge must exist.

Figure 7: If the value of xiθ flips in w and w′, then the r(1)-values r(1)(θ) of layer θ can be recovered from

y = f̂(w, r), y′ = f̂(w′, r). Then layer θ becomes ready.

Claim 6.2. For every n ∈ N, canonical branching program BP on n input variables, w,w′ ∈
{0, 1}n, and r ∈ {0, 1}m(n), if layer θ depends on variable xiθ and wiθ 6= w′iθ , then D2(1n, BP, y =

f̂(w, r), y′ = f̂(w′, r), θ) outputs r(1)(θ).

Subroutine D3 for recovering assignments When a layer θ is ready, we show how to recover
the assignment wiθ−1

to the input variable xiθ−1
associated with the previous layer θ − 1, from y

and r(1)-values of layer θ. (The assignment w′iθ−1
can be recovered from w′iθ−1

⊕ ∆iθ−1
.) When

the value wiθ−1
is recovered, we say that layer θ − 1 is solved. The subroutine D3 is described in

Figure 8.

Claim 6.3. For every n ∈ N, canonical branching program BP on n input variables, w ∈ {0, 1}n,
and r ∈ {0, 1}m(n), D3(1n, BP, y = f̂(w, r), θ, r(1)(θ)) outputs wiθ−1

.

Subroutine D4 for recovering r(1)-values after a layer is solved When a layer θ−1 is solved,
and the next layer θ is ready, we show how to use the assignment wiθ−1 and the r(1)-values r(1)(θ)
to recover the r(1)-values r(1)(θ − 1) associated with layer θ − 1; then layer θ − 1 becomes ready.
The sub-routine is described in Figure 9.

It follows from the construction of algorithm D4 that

Claim 6.4. For every n ∈ N, canonical branching program BP on n input variables, w ∈ {0, 1}n,
and r ∈ {0, 1}m(n), D4(1n, BP, y = f̂(w, r), θ, wiθ−1, r

(1)(θ)) outputs r(1)(θ − 1).
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Algorithm D3 for recovering assignments

On input 1n, BP , y = f̂(w, r), θ and r̃(1)(θ) for 0 < θ ≤ ` proceed as follows:

1. Pick any node k in layer θ. Find the “last” in-coming edge (t, k) to k, that is, all other edges
(t′, k) to k have t′ < t. It has label xiθ−1

(or x̄iθ−1
), that is, Atk = xiθ (or Atk = x̄iθ−1

) and
At′k = 0 for all t < t′.

2. Consider following entry in the randomized polynomial.

Mt,k−1(x) = Σt′k′
(
R1(r(1))tt′L(x)t′k′R2(r(2))k′,k−1

)
= Σt≤t′,k′=k−1

(
R1(r(1))tt′L(x)t′k−1

)
a

= Σt≤t′
(
R1(r(1))tt′ (A(x)t′k − It′k)

)
b

= xiθ−1
− r(1)

tk (or x̄iθ−1
− r(1)

tk) c

Reconstruct the value of Mt,k−1(w) from y and find value r̃
(1)
tk in r̃(1)(θ). Compute w̃iθ−1

=

Mt,k−1(w) + r̃
(1)
tk (or Mt,k−1(w) + r̃

(1)
tk + 1).

[Remark: The computation of w̃iθ−1 depends only on the random coin r(1)
tk and the output is

correct whenever r̃
(1)
tk = r(1)

tk.]

aThis equality follows from the structures of matrixes R1, and R2: In the k − 1th column of R1, only
entry R2(r(2))k−1,k−1 = 1 and all other entries R2(r(2))k′,k−1 = 0 for k′ 6= k−1; R2 is an upper triangular
matrix, and for all t > t′ R1(r(1))t,t′ = 0.

bThis equality follows from structure of L: For every entry i, j in L, L(x)ij = A(x)i,j+1 − Ii,j+1.
cThis equality follows from the fact that A(x)t′k = 0 for all t′ > t and Atk = xiθ (or Atk = x̄iθ−1) and

that R1(r(1))tt = 1.

Figure 8: When a layer θ is ready—that is, values r(1)(Vθ) are known—the assignments to xiθ−1
of the

previous layer θ − 1 can be recovered from y = f̂(w, r). Then layer θ − 1 becomes solved.

Putting pieces together With the above four subroutines, the program for inverting AIK
randomized encoding is straightforward. Given two randomized encoding y = f̂(w, r) and y′ =
f̂(w′, r) for a NC1 Boolean function f with a canonical branching program BP , the algorithm D
proceeds in three steps:

Step 1, Recover difference: Compute the difference D̃elta between w and w′ using subroutine
D1; then find the last layer θ∗ in BP whose associated input variable xiθ∗ satisfies that
D̃eltaiθ∗ = 1.

By Claim 6.1, D1 returns the correct difference D̃elta = ∆ = w⊕w′. Thus, the input variable
xiθ∗ indeed have different assignments wiθ∗ 6= w′iθ∗ . Furthermore, order input variables in the
sequence they appear in BP , xπ(1), · · · , xπ(n); xiθ∗ corresponds to the last variable xπ(u∗) in
the sequence whose assignments are different (i.e., where u∗ is the largest index u satisfying
wu 6= w′u).

Step 2, Initialize: Recover the r(1)-values of layer θ∗ using subroutine D2.

As argued above, the input variable xiθ∗ indeed has its value flip from w to w′. Then, by
Claim 6.2, D2 returns the correct r(1)-values r(1)(θ∗) associated with layer θ∗. Thus, layer θ∗

becomes ready.
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Algorithm D4 for recovering r(1)-values after a layer is solved

On input 1n, BP , y = f̂(w, r), θ ≤ `, w̃iθ−1, r̃(1)(θ), proceed as follows:

For every node t in layer θ − 1, recover r(1)(t) as follows:

1. Find an out-going edge (t, k) whose label is satisfied by w̃iθ−1
. a

[If w̃iθ−1
= wiθ−1

, then A(w)tk = 1. By Property 2 of canonical BPs, k in layer θ ≤ `
has exactly two incoming edges (t, k) and (t̃, k) with opposite labels xiθ−1

and x̄iθ−1
; thus,

A(w)t′k = 0 for all t′ 6= t.]

2. For every i < t, to recover r(1)
it, consider following entry in the randomized polynomial.

Mi,k−1(x) = Σt′k′
(
R1(r(1))it′L(x)t′k′R2(r(2))k′,k−1

)
= Σi≤t′

(
R1(r(1))it′ (A(x)t′k − It′k)

)
b

= Σi≤t′
(
r(1)

it′A(x)t′k

)
− r(1)

ik

[If w̃iθ−1
= wiθ−1

, A(w)t′ 6=t,k = 0 and A(w)tk = 1. Thus, Mi,k−1(w) = r(1)
it − r(1)

ik.]

Reconstruct the value of Mi,k−1(w) from y. Find value r̃
(1)
ik in r̃(1)(θ), and set r̃

(1)
it =

Mi,k−1(w) + r̃
(1)
ik .

Finally, output r̃(1)(θ − 1) = {r̃(1)
it }i<t,t∈Vθ .

[Remark: When w̃iθ−1
= wiθ−1

, the computation of each r̃
(1)
it depends only on value r̃

(1)
ik , which is

different for every pair of (i, t).]

aBy Property 1 of canonical BPs, every node not in the last layer has two out-going edges with opposite
labels xiθ−1 and x̄iθ−1 ; thus one of them must be satisfied.

bThis equality follows from the structures of matrixes R1, R2 and L as in Figure 8.

Figure 9: When a layer θ− 1 is solved and layer θ is ready—that is, values wiθ−1
and r(1)(θ) is known—the

r(1)-values associated with layer θ − 1 can be recovered from y = f̂(w, r). Then layer θ − 1 becomes ready.

Step 3, Cascade: Starting from that θ∗ is ready, “work backwards” from layer θ∗ − 1 to the first
layer iteratively to recover the values of the input variables associated with these layers. More
specifically, in each iteration, starting from that a layer θ is ready (initially θ = θ∗), recover
the assignment w̃iθ−1

associated with the previous layer θ− 1 using subroutine D3. Next, use

the recovered assignment to recover the r(1)-values of layer θ − 1 using subroutine D4; the
algorithm then proceeds to the next iteration with layer θ = θ − 1, until θ = 0.

In each iteration, when a layer θ is ready, by Claim 6.3, D3 returns the correct assignment
w̃iθ−1

= wiθ−1
and thus layer θ − 1 becomes solved. Then, combining the fact that layer θ

is ready and layer θ − 1 is solved, by Claim 6.4, D4 returns the correct r(1) values for layer
θ − 1, and thus layer θ − 1 becomes ready. Therefore, by a simple induction argument, after
i iterations, layers θ∗ − 1 to θ∗ − i are solved and layers θ∗ to θ∗ − i are ready. At the
end of all iterations, values associated with layers θ∗ − 1 to 1 are all recovered correctly. In
other words, the algorithm computes wπ(u∗), · · ·wπ(1) correctly, which also allows computing
w′π(u∗), · · ·w

′
π(1) as w′j = wj ⊕∆j .

A formal description of the algorithm D appears in Figure 10. As argued above, relying on
Claim 6.1, 6.2, 6.3 and 6.4, the algorithm D satisfies the requirement of Lemma 6.2, which concludes
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the lemma.

Algorithm D for inverting AIK randomized encodings for Boolean functions

On input 1n, fn, y = f̂(w, r), y′ = f̂(w′, r), proceed as follows:

Generate the canonical branching program BP for computing fn on n-bit inputs (underlying f̂);
input variables appear in BP in order xπ(1), · · · , xπ(n). Then, do:

Estimate difference: InvokeD1(1n, BP, y, y′, i) for each i ∈ [n] to recover the difference between
the two assignments. Let D̃elta be the output, and θ∗ be the largest index θ in [`] such
that layer θ is associated with xiθ and D̃eltaiθ = 1. Furthermore, let u∗ be the index such
that xiθ∗ = xπ(u∗).

Initialize: Invoke D2(1n, BP, y, y′, θ∗) to get the r(1)-values associated with layer θ∗. Let r̃(1)(θ∗)
be the output. Initialize θ = θ∗.

Cascade: Proceed in iterations until θ = 0. In each iteration,

• Invoke D3(1n, BP, y, θ, r̃(1)(θ)) to recover the assignment to variable xiθ−1
of layer

θ − 1; let w̃iθ−1
be the output.

• Invoke D4(1n, BP, y, θ, w̃iθ−1
, r̃(1)(θ)) to recover the r(1)-values associated with layer

θ − 1; let r̃(1)(θ − 1) be the output.

• Set θ = θ − 1.

Finally, output w̃π(u∗−1), · · · w̃π(1) and w̃′π(u∗−1), · · · w̃
′
π(1) where w̃′j = w̃j ⊕ D̃eltaj .

Figure 10: For every NC1 Boolean function f , given AIK encodings for two assignments w and w′ using
shared randomness, partial information of the two assignments can be recovered.

6.3.2 Handling Non-Boolean Functions:

Let f ∈ NC1 be a function that on input a n bit string, outputs an l(n) bit string. Let fd be
the Boolean function that outputs the dth output bit of f . By construction of the AIK ran-
domized encoding, an encoding f̂(x; r) for n-bit inputs is the concatenation of the encodings
f̂1(x; r[1]), · · · , f̂l(n)(x; r[l(n)]) for each output bit, where r = r[1], · · · , r[l(n)]. Therefore, given
encodings y and y′ for two different n-bit assignments w and w′ using shared randomness r, we
can apply algorithm D on each pair of encodings (yd, y

′
d) w.r.t. Boolean function fd to recover

partial information of w and w′. We show that when w and w′ are correlated, the recovered partial
information allows to invert f(w) and f(w′) with high probability, concluding Theorem 6.2.

Proof Theorem 6.2. We design the algorithmD′ as follows: First parse y and y′ as the concatenation
of the randomized encoding for each output bit, that is, y = y1‖ · · · ‖yl(n) and y = y′1‖ · · · ‖y′l(n),

and then invoke D on (1n, fd, yd, y
′
d) for every d ∈ [l(n)] to recover partial information of w and w′.

By Corollary 6.1, in the case where w and w′ are correlated, D′ can recover at least n− α logn
− log(1−ε)

bits of w and w′ with probability 1 − n−α for any constant α. Whenever this is true, D′ find an
assignment for the remaining α logn

− log(1−ε) bits by brute force, so that the recovered assignments w̃

and w̃′ are pre-images of f(w) and f(w′). Therefore, D′ satisfies the statement of the theorem.
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6.4 Inverting AIK Randomized Encoding with Correlated Randomness

The previous section showed that the AIK randomized encoding is easy to invert given instances
generated using correlated inputs and identical random strings. In this section, we consider in-
stances generated using both correlated input and correlated random strings.

We identify certain “regularity” properties, and show that any function f ∈ NC1 satisfying these
properties—called well-formed functions—has the property that their AIK randomized encoding is

easy to invert given instances y = f̂(w, r) and y = f̂(w′, r′) with (w′, r′)
$← Dε(w, r). We argue that

these properties are not too restrictive by showing that any function f ∈ NC1 can be transformed
into such another function f ′ ∈ NC1 that is well-formed and “functionally equivalently” to f ; here
functionally equivalence means that for every input x the output of f(x) can be computed from
the output of f ′(x) and vice versa. (Furthermore, the transformation can be done efficiently in
expected polynomial time.) In other words, the set of functions that are well-formed encompasses
all functionalities, and every NC1 function f can be turned into another function f ′ that has the
“same hardness” as f , whose AIK encodings are easy to invert given instances with correlated
inputs and randomness.

6.4.1 Step 1: Invert AIK Randomized Encoding of Well-Formed Functions

Consider NC1 functions f with the following special properties:

Long output length: On a n-bit input, f outputs l(n) ≥ nΥ bits.

High input locality: Every bit of a n-bit input influences at least Υ output bits.

Well diffusion: Every (1 − ξ) fraction of the output bits depends on all n input bits, where
ξ ∈ Ξfn = {0, 1/l(n), 2/l(n) · · · , (l(n)− 1)/l(n), 1}

We say that fn is (Υ, ξ)-well formed, if f satisfies the above three properties when restricted
to n-bit inputs, if for every n ∈ N, fn is (Υ(n), ξ(n))-well formed for some function Υ : N → N,
ξ : N→ N, then we say that f is (Υ(·), ξ(·))-well formed. We say that a function f is well-formed,
if it is (Υ(·), ξ(·))-well formed where Υ(n) = ω(log n) and ξ(n) = O(1). We show that for every
fn, the above three properties can be efficiently verified and the parameters can be efficiently
determined.

Claim 6.5. There is an efficient algorithm, such that, for every n ∈ N and function f , the algorithm
on input fn outputs the maximal Υ ∈ N and ξ ∈ Ξfn such that fn is (Υ, ξ)-well formed.

Proof. The algorithm proceeds as follows: Given fn that maps n-bit inputs to l(n) bits, to decide
Υ, count the number of output bits that are influenced by each input bit and set v to be the minimal
number; then set Υ = min(v, bl(n)/nc). To decide ξ, for every input variable xi, find the set Oi of
output bits that do not depend on xi, and let O be the largest set; then, set 1− ξ = (|O|+ 1)/l(n).
Finally, output (Υ, ξ).

It is easy to see that Υ is the maximal integer w.r.t. which the long output length and high
input locality properties hold for fn. Next, we first show that the well-diffusion property holds
w.r.t. ξ and then show that it is also maximal. Assume for contradiction that the well-diffusion
property does not hold w.r.t. ξ, that is, there is a set of output bits O′ that accounts for a 1 − ξ
fraction of all output bits (i.e., |O′| = (1− ξ)l(n)), but O′ does not depend on all input bits. Let xi′

be one of the input bits that O′ does not depend on. Then O′ ⊆ Oi′ , and |Oi′ | ≥ |O′| = (1− ξ)l(n).
On the other hand, Oi′ must be smaller than then largest set O, which contains less than (1−ξ)l(n)
number of output bits. This gives a contradiction.
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To show that ξ is maximal. Consider another ξ′ ∈ Ξfn such that the well-diffusion property
holds w.r.t. ξ′, that is, every (1− ξ′) fraction of the output bits depends on all input bits. We show
that ξ ≥ ξ′. Since every set Oi does not depend on all input bits, they each contains less than (1−ξ′)
fraction of the output bits. Then |O| ≤ (1− ξ′)l(n)− 1 and thus (1− ξ) = (|O|+ 1)/l(n) ≤ (1− ξ′).
This concludes the claim.

Theorem 6.3. For every NC1 function f , let f̂ be the AIK randomized encoding of f using m(·)-
bit randomness. For every ε ∈ (0, 1/2] and α > 0, there is a polynomial time algorithm satisfying
that for every well-formed function f , every sufficiently large n ∈ N, every w ∈ {0, 1}n, and

r ∈ {0, 1}m(n), the algorithm on input (1n, fn, y = f̂(w, r), y′ = f̂(w′, r′)) with (w′, r′)
$← Dε((w, r)),

inverts f(w) and f(w′) with probability 1− n−α.

Proof. Fix any well-formed function f that maps n-bit inputs to l = l(n)-bit output and ε ∈ (0, 1/2).
let fd be the Boolean function that outputs the dth output bit of f .

Given fn, by Claim 6.5 one can efficiently find the maximal Υ, ξ such that fn is (Υ, ξ)-well-
formed. Furthermore, for every output bit d ∈ [l], one can efficiently construct the canonical
branching programs BPd for computing that output bit, with size ηd, adjacency matrix Ad and
matrix Ld equal to Ad− I with the first column and last row removed. By the construction of AIK
randomized encoding, an encoding y = f̂(x, r) is the concatenation y = y1, · · · , yl of the encoding for
each output bit, that is, yd = f̂d(x; r[d]), where f̂d is the AIK randomized encoding of the branching
program BPd; each encoding yd uses independent randomness r[d] and r = r[1], · · · , r[l(n)]. (As
before, each r[d] can be parsed into four parts r[d] = (r[d](1), r[d](2), r[d](3), r[d](4)) for different uses
when generating the randomized encoding of BPd.) Note that each output bit d and thus BPd may
not depend on all input variables, but rather a subset of them. Before proceeding to constructing
the inverting algorithm, we first consider four subroutines D′1 to D′4, similar to that in the proof of
Lemma 6.2. All the subroutines works for arbitrary w, w′ and r, and probabilistically derived r′

from r.

Subroutine D′1 for recovering the differences D′1 determines whether the ith bits of two
assignments w and w′ differ or not, given a pair of AIK encoding y = f̂(w, r), y′ = f̂(w′, r′).
D′1 makes use of the subroutine D1 in the proof of Lemma 6.2 and proceeds as follows: On in-
put (1n, fn, y = f̂(w, r), y′ = f̂(w′, r′), i), for every output bit d ∈ [l] that depends on xi, invoke
D1(1n, BPd, yd, y

′
d, i) to obtain D̃elta[d]i; then output the majority D̃eltai of all recovered differ-

ences.
We show that the output D̃eltai is correct with overwhelming probability.

Claim 6.6. For every n ∈ N, w,w′ ∈ {0, 1}n, and r ∈ {0, 1}m(n), d ∈ [l(n)], in an experiment
where r′ is sampled from Dε(r), the algorithm D′1(1n, fn, y = f̂(w, r), y′ = f̂(w′, r′), i) outputs
D̃eltai = wi ⊕ w′i with overwhelming probability, over the randomness for sampling r′.

Proof. We first show that for every output bit d that depends on xi, the value D̃elta[d]i returned
by D1 is correct with probability 1 − ε. As described in Figure 6, when D1 is invoked with input

instances yd, y
′
d, it computes its output D̃elta[d]i depends only on r[d]

(3)
tt,k−1,k−1 and r′[d]

(3)
tt,k−1,k−1,

and the output D̃elta[d]i is correct as long as the random coin r′[d]
(3)
tt,k−1,k−1 = r[d]

(3)
tt,k−1,k−1, which

happens with probability 1 − ε. Thus, D̃elta[d]i = ∆i with probability 1 − ε. Additionally, this
probability is independent for different d.
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Next, given that f is well-formed, xi influences Υ = Υ(n) = ω(log n) output bits. Each of them
is correct with probability 1 − ε independently; therefore, the majority D̃elta of all D̃elta[d]i is
correct with overwhelming probability.

Subroutine D′2 for recovering r(1) values When an input variable xi has different value in
assignments w and w′, subroutine D′2 is applied to recover the r(1)-values associated with layers
that depends on xi. Across the l branching programs BP1, · · · , BPl of f , there could be many
layers depending on xi. However, since the r(1)-values for different layers in different BPs are all
independently sampled, we recover the r(1)-values for each layer θ in each branching program BPd
that depends on xi separately by invoking D′2(1n, BPd, yd, y

′
d, θ), which in turn simply invokes D2

with the same input. We show that when the instances yd, y
′
d are generated using ε-probabilistically

correlated random coins, D′2 recovers the r(1) values probabilistically.

Claim 6.7. For every n ∈ N, w,w′ ∈ {0, 1}n, r ∈ {0, 1}m(n), in an randomized experiment that

samples r′
$← Dε(r), and computes y = f̂(w, r), y′ = f̂(w′, r′), if layer θ in BPd depends on an

variable xi, and wi 6= w′i, then D′2(1n, BPd, yd, y
′
d, θ) outputs set r̃[d](1)(θ) in which each r̃[d]

(1)
it =

r[d]
(1)
it with probability at least 1− 2ε independently, over the randomness r′[d] for generating y′d.

Proof. D′2 proceeds identically to D2. As described in Figure 7, the subroutine D2 computes

each r(1)-value r̃[d]
(1)
it , depending only on (r[d]

(3)
it,k−1,k−1, r

′[d]
(3)
it,k−1,k−1) and (r[d]

(1)
it , r

′[d]
(1)
it ) and the

output is correct as long as the two pair of random coins are equal, which occurs with probability

1− 2ε. Therefore, each r̃[d]
(1)
it output by D′2 is correct with probability 1− 2ε. Furthermore, since

for each i, t, the computation depends on different (independently sampled) random coins, their
probabilities of correctness are all independent.

We say that r̃[d](1)(θ) is a set of approx-r(1)-values of layer θ in BPd if it is a random variable
satisfying the property described in the above claim (i.e., each r(1)-value in the set is correct with
probability 1− 2ε). When such a random variable is derived, we say that layer θ is approx-ready.

Subroutine D′3 for recovering assignments In the proof of Lemma 6.2, whenever a layer
θ becomes ready, subroutine D3 can be applied to recover the assignment wi to the variable xi
associated with the previous layer θ−1. In this proof, since the recovered r(1)-values of a layer may
have errors, to compensate this, only when an enough number—ω(log n)—of layers are approx-ready
and all of their previous layers are associated with xi, can we recover the assignment wi.

Let Ri be a set of triplets (θ,BPd, r̃[d](1)(θ)) satisfying the following properties:

• In each triplet, r̃[d](1)(θ) is a set of approx-r(1)-values for layer θ in BPd.

• Every branching program BPd appears at most once and their corresponding sets {r̃[d](1)(θ)}
are all independent.

• The previous layer θ − 1 in BPd depends on xi.

The subroutine D′3 on input (1n, fn, y, i,Ri) proceeds as follows: To find the assignment to
xi, for every triplet (θ,BPd, r̃[d](1)(θ)) in Ri, invoke D3 with input (1n, BPd, yd, θ, r̃[d](1)(θ)) and
obtain an assignment w̃[d]i; output the majority w̃i of all recovered assignments.

Claim 6.8. For every n ∈ N, w,w′ ∈ {0, 1}n, r ∈ {0, 1}m(n), in an experiment that samples

r′
$← Dε(r), computes y = f̂(w, r), y′ = f̂(w′, r′), and produces a set Ri as described above, for

every i ∈ [n], D′3(1n, fn, y, i,Ri) outputs wi with probability at least 1− exp(−O(|Ri|)).
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Proof. We first show that for every triplet (θ,BPd, r̃[d](1)(θ)) in Ri, the assignment w̃[d]i returned
by D3(1n, BPd, yd, θ, r̃[d](1)(θ)) is correct with probability 1 − 2ε. This follows since as described

in Figure 8, the computation of w̃[d]i depends only on r[d]
(1)
tk ∈ r[d](1)(θ) and the output is correct

whenever r̃[d]
(1)
tk = r[d]

(1)
tk . By the property of Ri, this occurs with probability 1−2ε. Furthermore,

since for different triplets, the sets {r̃[d](1)(θ)} are independent, the output by D3 for different
triplets are independent. Then, by the Chernoff, the majority of all recovered assignments from D3

is correct with probability 1− exp(−O(|Ri|)).

If Ri contains a super-logarithmic of triplets, the assignment wi for xi can be recovered correctly
with overwhelming probability. In this case, we say that xi is solved and all layers (in all branching
programs) depending on xi are solved.

Subroutine D′4 for recovering r(1)-values after a variable xi is solved After wi is recovered,
for every θ − 1 (in some BPd) that depends on xi, if its next layer θ (also in BPd) is approx-ready,
then the r(1)-values of layer θ − 1 can also be recovered probabilistically, and layer θ − 1 becomes
approx-ready. The subroutine D′4 on input (1n, BPd, yd, θ, wi, r̃[d](1)(θ)) simply invokes D4 with the
same input.

Claim 6.9. For every n ∈ N, w,w′ ∈ {0, 1}n, and r ∈ {0, 1}m(n), in an experiment that samples

r′
$← Dε(r), computes y = f̂(w, r), y′ = f̂(w′, r′), and produces a set r̃[d](1)(θ) of approx-r(1)-values

for layer θ in BPd, D4(1n, BPd, yd, θ, wi, r̃[d](1)(θ)) outputs a set r̃[d](1)(θ− 1) of approx-r(1)-values
for layer θ − 1 in BPd.

Proof. D′4 proceeds identically as D4. As described in Figure 9, the computation of each r(1)-value

r̃[d]
(1)
it ∈ r̃[d](1)(θ − 1) depends on a different value r̃[d]

(1)
ik ∈ r̃[d](1)(θ − 1), and whenever r̃[d]

(1)
ik

is correct (i.e., equals r[d]
(1)
ik ), so is r̃[d]

(1)
it . Since each r̃[d]

(1)
ik is correct with probability 1 − 2ε

independently, each r̃[d]
(1)
it is correct with probability 1− 2ε independently.

Putting pieces together Given the above four subroutines, the inverting algorithm D′ that on
input (1n, fn, y = f̂(w, r), y′ = f̂(w′, r′)) proceeds as follows:

Step 1, Preparation: Generate the canonical branching programs BP1, · · · , BPl for each output
bit. Compute the maximal Υ, ξ such that fn is (Υ, ξ)-well formed.

Analysis: By the fact that f is well-formed, fn is (Υ′(n), ξ′(n)-well formed for some ω(log n)
function Υ′ and an O(1) function ξ′. Then by Claim 6.5, Υ ≥ Υ′(n) and ξ′ ≥ ξ(n) are found
efficiently.

Step 2, Recover difference: For each i, Compute the difference D̃eltai between wi and w′i by
invoking subroutine D′1 with input (1n, fn, y, y′, i). Given D̃elta, for each output bit d, find
the last layer θ[d] in BPd whose associated input variable xiθ[d] satisfies that D̃eltaiθ[d] = 1.
(if all input variables that BPd depends on have the same values in w and w′, set θ[d] = ⊥.)
Set F∗ = (θ[1], · · · , θ[l]).
In the rest of the execution, D′ maintains a length l vector F where the dth component
represents a layer in the dth branching program or is set to ⊥. We call such a vector a
frontier and F∗ the initial frontier. We say that a layer θ in BPd is above, on, or below the
frontier F if θ > θ[d], θ = θ[d], or θ < θ[d]. Let U be the set of input variables that appears in
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layers above or on the initial frontier, (i.e., xi ∈ U if and only if it appears some layer smaller
than θ[d] in some BPd).

Analysis: By Claim 6.1, D1 returns the correct difference D̃eltai = ∆i = wi⊕w′i for each i with
overwhelming probability. by the union bound, the whole D̃elta is correct with overwhelming
probability. When this happens, it is indeed the case that every layer above the frontier
depends on a variable with the same assignment in w and w′, whereas, every layer on the
frontier depends on a variable with different assignments. Furthermore, by the fact that
w′ is derived from w by flipping each bit with probability ε, we show that the number of
input variables that appears only above or on the initial frontier is bounded by a logarithmic
number with high probability.

Claim 6.10. For every α′ > 0, n ∈ N, w ∈ {0, 1}n and r ∈ {0, 1}m(n), in a randomized

experiment that samples w′, r′
$← Dε(w, r), and computes set U as described above, conditioned

on D̃elta = ∆ occurring, the probability that the size of U is greater than α′ logn
− log(1−ε) is bounded

by 1− 1/nα
′
.

Proof. Conditioned on D̃elta = ∆, the initial frontier F∗ contains for every branching pro-
gram BPd the last layer that depends on an input variable with different assignments by w
and w′. Let Ud and Fd be the set of input variables appearing above and on F∗ in BPd
respectively. Furthermore, let U ′d be the subset of such input variables that does not appear
in any Ud′ with d′ < d, that is U ′d = Ud \ (U1 ∪ · · · ∪ Ud−1), and similarly, F ′d the set of input
variable that does not appear in any Fd′ with d′ < d, that is, F ′d = Fd \ (F1 ∪ · · · ,∪Fd−1). It
holds that |U | = Σd∈[l](|U ′d|+ |F ′d|).

Note that (conditioned on D̃elta = ∆), the sizes of sets U ′d’s F
′
d’s, and U are random variables

depending only on the randomness for sampling w′ and on the topology of the branching
programs. Furthermore, for every possible values s1, · · · , sl ∈ N and s̃1, · · · , s̃l ∈ N, the
probability that for all d, |U ′d| = sd and |F ′d| = s̃d is

Pr[∀ d ∈ [l], |U ′d| = sd ∧ |F ′d| = s̃d]

≤
∏
d∈[l]

(
(1− ε)sdεs̃d

)
=
(
(1− ε)Σd∈[l]sd

) (
εΣd∈[l]s̃d

)
≤ (1− ε)Σd∈[l](sd+s̃d)

Then the probability that |U | ≥ α logn
− log(1−ε) is bounded by 1/nα. This is because for every

possible sizes s1, · · · sl and s̃1, · · · s̃l of U ′1 · · · , U ′l and F ′1 · · · , F ′l , such that |U | = Σd∈[l](|U ′d|+
|F ′d|) = Σd∈[l](sd + s̃d) ≥ α logn

− log(1−ε) , by the above inequality, the probability they occur is

bounded by 1/nα.

The rest of the algorithm is analysed conditioning on that D̃elta = ∆ and the size of U is
bounded.

Step 3, Initialize: For every layer θ[d] 6= ⊥ in the initial frontier F∗, invoke subroutine D′2 with
input (1n, BPd, yd, y

′
d, θ[d]), and obtain an output set S[d]; record triplet (θ[d], BPd, S[d]) in

a set R∗.
Analysis: As argued above, every layer on the frontier depends on an input variable with
different assignments. Then, by Claim 6.7, for every possible w,w′, r, the set S[d] returned
by D′2 for layer θ[d] is indeed a set of approx-r(1)-values for this layer, and the generation of
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S[d] depends only on r′[d]. Thus all layers θ[d] 6= ⊥ on the initial frontier becomes approx-ready
and different sets {S[d]} in R∗ are independent.

Step 4, Cascade: Starting from that all layers on the initial frontier are approx-ready, “work
backwards” in all the branching programs iteratively to recover the assignment values. More
specifically, through out the iterations, the algorithm maintains the a frontier F = {(θ[d])}d∈[l]

and a corresponding set R = {(θ[d], BPd, S[d])}θ[d]6=⊥∈F that contains an entry for every non-

⊥ layer in F , where the set S[d] contains a set of r(1)-values for that layer.

Initially F = F∗ and R = R∗. In each iteration, starting with a pair (F ,R), set Ri to the
subset of triplets (θ[d], BPd, S[d]) ∈ R such that layer θ[d] − 1 depends on xi. If the largest
set Ri∗ among all Ri’s has more than Υξ/2 elements, invoke D′3(1n, fn, y, i∗,Ri∗) and record
the output assignment w̃i∗ . Otherwise, terminate the iterations.

If the iterations are not terminated, prepare the new frontier F ′ and R′ for the next iter-
ation as follows: Initialize F ′ = F and R′ = R. For every triplet (θ[d], BPd, S[d]) ∈ Ri∗ ,
invoke D′4(1n, BPd, θ[d], w̃i∗ , S[d]) to obtain an output set S′[d]; then, replace this triplet
(θ[d], BPd, S[d]) in R′ with (θ[d] − 1, BPd, S

′[d]) and replace θ[d] in F ′ with θ[d] − 1. Then
proceed to the next iteration with the updated (F ′,R′).
Analysis: We show that throughout the execution, the pair F ,R maintained by D′ satisfy
the following properties.

• In the frontier F = {(θ[d])}d∈[l], all non-⊥ layers are approx-ready.

• The set R = {(θ[d], BPd, S[d])}θ[d]6=⊥∈F contains a set of approx-r(1)-values for every
non-⊥ layer θ[d] on the frontier F . Moreover, each set S[d] in R is a random variable
depending only on r′[d] and thus are all independent.

By the analysis of step 2, the initial pair F∗,R∗ satisfies these two property. Next we show that
in each iteration, if the pair (F ,R) available at the beginning of the iteration satisfies these
two properties, either (1) the iterations terminates, or (2) a correct assignment w̃i∗ = wi∗ is
recovered and the new pair F ′,R′ for the next iteration also satisfy these two properties with
overwhelming probability. Then by an induction argument, when the iterations terminates,
all the assignments recovered are correct with overwhelming probability.

When an iteration does not terminate, a set Ri∗ with more than Υξ/2 triplets is found, then
by Claim 6.8, an invocation to D′3 returns the valid assignment w̃i∗ = wi∗ with probability
1− exp(−O(|Ri∗ |)). Since the value Υξ/2 is super-logarithmic (as Υξ/2 = Θ(Υ′(n))), w̃i∗ =
wi∗ with overwhelming probability.

Conditioned on w̃i∗ = wi∗ , we show that the new pair (F ′,R′) for the next iteration also
satisfies the above two properties. Since (F ′,R′) only differ from (F ,R) at entries that
are contained in Ri∗ , we only need to analyze the newly updated entries. For each triplet
(θ[d], BPd, S[d]) ∈ Ri∗ , θ[d] − 1 depends on xi∗ ; thus, layer θ[d] − 1 satisfies that it is solved
and its previous layer θ[d] is approx-ready. Then, by Claim 6.9, for every possible w,w′, r,
the set S′[d] returned by the invocation of D′4 (using inputs w̃i∗ = wi∗ and set S[d]) is indeed
a set of approx-r(1)-values for layer θ[d] − 1, and the generation of S′[d] depends only on
r′[d]. Thus, θ[d] − 1 in F ′ becomes approx-ready, and R′ contains its corresponding set of
approx-r(1)-values S′[d] that depends only on r′[d].

Step 5, Output: If the number of input variables xi whose assignments are not found in w̃ (i.e.,

w̃i is not set) is bounded by α′ logn
− log(1−ε) , abort and output ⊥. Otherwise, use brute force to find
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assignments twi to these variables that together with assignments recovered in Step 4 yield
image f(w); set w̃′ = w̃ ⊕ D̃elta and output w̃, w̃′.

Analysis: By construction, an iteration terminates only if all sets Ri derived from R has
less than Υξ/2 triplets. Therefore R has less than Υξn/2 triplets. Since the algorithm
maintains the invariant that R contains a triplet for every non-⊥ layer in F , this means at
least (1 − ξ/2)Υn layers in F are set to ⊥; let W be the set of corresponding branching
programs. By the well-diffusion property of fn, the branching programs in W depend on all
input variables. Furthermore, since Step 4 recovers the assignments for all input variables
appearing below the initial frontier F∗ and above the final frontier F , assignments for all input
variables appearing below F∗ in branching programs in W are recovered, which contains all
variables but these in U . Then conditioned on that the size of U is bounded by α′ logn

− log(1−ε) . A
consistent assignment to variables in U can be recovered using brute force.

Combining the analysis for each step, we have that except with probability 1/nα
′
+ µ(n) for some

negligible function µ, D′ outputs value pre-images w̃ and w̃′ for f(w) and f(w′). Plugging in
α′ = α/2 concludes the theorem.

6.4.2 Step 2: From Well-Formed Functions to Any Functions

We show that there is a simple randomized transformation that turns any NC1 function f into an
well-formed function f ′ that is functionally equivalent in expected polynomial time.

Lemma 6.3. For every NC1 function f , and every n ∈ N, the transformation Trans(fn) outputs a
function (f ′)n that is functionally equivalent to fn and (log2(·), ξ(·))-well formed for any constant
function ξ(n) = c, such that 1 − c −H(c) > 0, with probability at least 1/2 − exp(−O(n)), (where
H is the binary entropy of c, H(c) = −c log c− (1− c) log(1− c)).

Proof. Consider any NC1 function f . Towards proving the lemma, we first describe an efficient
randomized transformation Trans, that given fn outputs a function (f ′′)n, such that, for every
sufficiently large n ∈ N, (f ′′)n is functionally equivalent to fn and (log2(n), c)-well formed for any
sufficiently small constant c, with probability close to 1/2.

Transformation Trans(fn): The function fn maps n bits to l(n) bits. Let L(n) = max(l(n), n log2 n)
(that is, Υ(n) = log2 n). Sample a random l(n)× L(n) matrix R in GF (2). Construct func-
tion (f ′′)n that maps an n-bit input x to an L(n)-bit output equal to fn(x)× R (computed
over GF (2)). Then output (f ′′)n (with R hardwired in).

Note that since l(n) = poly(n), and fn can be computed by a circuit of O(log n) depth, (f ′′)n can
also be computed by a circuit of O(log n) depth. We show that for every n ∈ N, (f ′′)n is functionally
equivalent to fn with probability at least 1/2. The transformation Trans chooses a random matrix
R, and construct function (f ′′)n(x) = fn(x)R. By construction, (f ′′)n is functionally equivalent to
fn whenever R is full rank, which occurs with probability at least 1/2.

Next, we argue that for every n ≥ 4, (f ′′)n is (log2 n, c)-well formed for every sufficiently small
positive constant c, with all but exponentially small probability. The long output length property
follows directly from the construction. It remains to show the high input locality and well diffusion
properties. Towards this, we first show that for every output bit d in fn and every input variable
xi, the probability that the dth output bit depends on xi is 1/2. With respect to xi, every output
bit yj of fn can be represented as a polynomial over GF (2) with the following form:

yj(x) = xiP
1
j (x 6=i) + P 2

j (x 6=i)
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where x 6=i represents all but the ith input variables. xi influences at least one of the output bits of
fn, say it is the j∗th and P 1

j∗(x6=i) is a non-zero polynomial. Let R•,d be the dth column of R. The

dth output bit zd of (f ′′)n equals to 〈y,R•,d〉 and can be represented as the following polynomial
w.r.t. xi.

zd(x) = xi
(
Σj∈[l]RjdP

1
j (x 6=i)

)
+ Σj∈[l]RjdP

2
j (x 6=i)

Since over the random choices of R•,d, the probability that the polynomial Σj∈[l]RjdP
1
j (x 6=i) is non-

zero is 1/2, the probability that the dth output bit of (f ′′)n depends on xi is also 1/2. Furthermore,
this probability is independent for different output bits.

Then, by the Chernoff bound, for any input variable xi, the probability that it influences less
than a quarter of all the output bits is bounded by exp(−L(n)/8). Thus, for every n ≥ 4, xi
influences more than log2 n output bits with probability 1 − exp(−L(n)/8). Finally, by the union
bound, the high input locality property holds with probability 1−n exp(−L(n)/8). To see the well
diffusion property w.r.t. a constant c, consider first any fixed (1− c) fraction of output bits O. For
every input variable xi, the probability that O does not depend on xi is bounded by 1

2(1−c)L(n) . Thus

by the union bound, the probability that O does not depend on any xi is bounded by n/2(1−c)L(n).
Furthermore, since there are at most 2(H(c)L(n)) different possible sets O. By the union bound
again, the probability that there is a set of (1 − c) fraction of output bits that does not depend
on all input variables is bounded by n/2(1−c−H(c))L(n). When c is sufficiently small, such that,
1− c− 2H(c) > 0, this probability is exponentially small.

Overall, by the union bound, for every n ≥ 4, the transformation Trans outputs a function
(f ′′)n that is functionally equivalent to fn and is (log2(n), c)-well-formed for all sufficiently small
constant c such that 1− c− 2H(c) > 0, with probability

p(n) =
1

2
− n

e(L(n)/8)
− n

2(1−c−H(c))L(n)
≥ 1

2
− n

e(n/8)
− n

2(1−c−H(c))n

Note that this probability is independent of the function f , and there exists a constant N ∈ N
such that for every n ≥ N , the above probability is greater than 1/4. Using this N , we construct
another transformation Trans′ that outputs a function (f ′)n that is functionally equivalent for all
inputs (rather than only for sufficiently long inputs).

Fix any constant c such that 1 − c − 2H(c) > 0. The new transformation Trans′ on input
a function fn, simply outputs (f ′)n = fn if n < N ; otherwise, if n ≥ N , it repeated invokes
Trans(fn) until the output (f ′′)n is indeed functionally equivalent to fn and (log2 n, c)-well formed,
and outputs (f ′)n = (f ′′)n. (The functionally equivalence property can be efficiently checked by
checking whether the random matrix R that Trans chooses is full rank.) Since for every n ≥ N , the
probability that the function output by Trans satisfies these two properties is larger than 1/4, Trans′

runs in expected polynomial time. Furthermore, consider the function f ′ = {(f ′)n}n∈N output by
Trans′; f ′ is functionally equivalent to f for all inputs, and is (log2(·), ξ(·))-well-formed for ξ(n) = c.
This concludes the lemma.

Lemma 6.3 implies that for every function f ∈ NC1, there exists another function f ′ =
{(f ′)n}n∈N ∈ NC1, such that, f ′ is well-formed and functionally equivalent to f . Therefore, f ′

has the same hardness as f . Since f ′ is well-formed, by Theorem 6.3, f̂ ′ is easy to invert given
instances with correlated inputs and randomness. Therefore, we obtain the following Corollary 6.2.

Corollary 6.2. For every function f in NC1, there exists another function f ′ ∈ NC1 that is
functionally equivalent to f and well-formed. Furthermore, the AIK randomized encoding f̂ ′ of
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f ′ uses m(·)-bit random coins, and for every ε ∈ (0, 1/2] and α > 0, there is a polynomial time
algorithm satisfying that for every sufficiently large n ∈ N, every w ∈ {0, 1}n and r ∈ {0, 1}m(n),

the algorithm on input (1n, fn, (f̂ ′)n, y = f̂ ′(w, r), y′ = f̂ ′(w′, r′)) with (w′, r′)
$← Dε((w, r)), inverts

f(w) and f(w′) with probability 1− n−α.
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