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Abstract

We study depth 3 circuits of the form OR ◦ AND ◦ XOR, or equivalently – DNF
of parities. This model was first explicitly studied by Jukna (CPC’06) who obtained
a 2Ω(n) lower bound for explicit functions in this model. Several related models have
gained attention in the last few years, such as parity decision trees, the parity kill
number and AC0 ◦ XOR circuits.

For a function f : {0, 1}n → {0, 1}, we denote by DNF⊕(f) the least integer s for
which there exists an OR ◦AND ◦XOR circuit, with OR gate of fan-in s, that computes
f . We summarize some of our results:

• For any affine disperser f : {0, 1}n → {0, 1} for dimension k, it holds that DNF⊕(f) ≥
2n−2k. By plugging Shaltiel’s affine disperser (FOCS’11) we obtain an explicit

2n−n
o(1)

lower bound.

• We give a non-trivial general upper bound by showing that DNF⊕(f) ≤ O(2n/n)
for any function f on n bits. This bound is shown to be tight up to an O(log n)
factor.

• We show that for any symmetric function f it holds that DNF⊕(f) ≤ 1.5n·poly(n).
Furthermore, there exists a symmetric function f for which this bound is tight
up to a polynomial factor.

• For threshold functions we show tighter bounds. For example, we show that the
majority function has DNF⊕ complexity of 2n/2 · poly(n). This is also tight up to
a polynomial factor.

• For the inner product function IP on n inputs we show that DNF⊕(IP) = 2n/2−1.
Previously, Jukna gave a lower bound of Ω(2n/4) for the DNF⊕ complexity of this
function. We further give bounds for any low degree polynomial.

• Finally, we obtain a 2n−o(n) average case lower bound for the parity decision tree
model using affine extractors.
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1 Introduction

In this paper we study depth 3 circuits of the form OR ◦ AND ◦ XOR, where all gates have
unbounded fan-in. Note that such a circuit computes a DNF applied to linear combinations
of the input variables. Thus, for a function f : {0, 1}n → {0, 1} we denote by DNF⊕(f)
the minimum top gate fan-in over all circuits of the above form that compute f . Why not
define DNF⊕(f) as the minimum number of gates required by an OR ◦AND ◦XOR circuit for
computing f? There are three answers to this question, which also shed more light on this
model of computation.

1. There is an equivalent, yet more combinatorial meaning, to the DNF⊕ complexity of a
function f the way it is defined above; DNF⊕(f) is the least number of affine subspaces
required to cover exactly f−1(1). This is because every input to the top gate is an
AND◦XOR circuit, and such a circuit computes the indicator of an affine subspace (we
allow the use of constants).

2. Although potentially the fan-in of the AND and XOR gates can be arbitrary large, one
can in fact assume it is bounded by n. Indeed, since AND ◦ XOR circuit computes the
indicator function of some affine subspace, one can always replace the circuit with an
equivalent circuit where the fan-in of the AND and XOR gates is at most n. Thus,
the minimum number of gates required by an OR ◦ AND ◦ XOR circuit for computing
a given function f is bounded above by DNF⊕(f) · n2. In this paper we are mainly
interested in functions with exponentially large DNF⊕(f) complexity and we do not
mind such polynomial factors.

3. The size of a DNF is defined as the number of terms it contains, which is the top gate
fan-in when represented as an OR ◦AND circuit. So the current definition is analogous
to the definition of the DNF complexity of a function.

To the best of our knowledge, the DNF⊕ complexity of a function was first explicitly
considered by Jukna [Juk06] (see also Chapter 11 of [Juk12]). Jukna applies graph theoretic
arguments and gives 2Ω(n) lower bounds on the DNF⊕ complexity for several explicit and
natural functions. For example, for all even n, a lower bound of Ω(2n/4) is given for the
DNF⊕ complexity of the inner product function IP(x) = x1x2 + x3x4 + · · · + xn−1xn, where
addition is over F2. 1 A similar result was obtained by Grolmusz [Gro94] based on commu-
nication complexity arguments. In [Juk06] it is also shown that the disjointness function
disj : {0, 1}n → {0, 1} defined by disj(x) = 1 if and only if x1x2 + x3x4 + · · · + xn−1xn = 0,
where addition is over N, has DNF⊕ complexity of Ω(20.016n).

More generally, Jukna characterizes the DNF⊕ complexity of functions that represent
bipartite graphs in a certain way. The downside of this technique is that it cannot yield
lower bounds stronger than 2n/2, whereas one can show that most functions on n inputs
have DNF⊕ complexity Ω(2n/(n · log n)), as we discuss later in the introduction.

1Jukna’s lower bound holds even if one replace the top OR gate by any threshold gate.
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Several related models have been considered in the literature. For example, the parity
decision tree model, defined by Kushilevitz and Mansour [KM93] in the context of learning
theory, has received a significant attention in the last few years [MO09, ZS10, TWXZ13,
OST+13, STV14], with motivation coming mainly from communication complexity. We
elaborate on the relation between the DNF⊕ model and parity decision tree model in Sec-
tion 7, and give new results for it. Another example would be a recent work of Akavia et al.
[ABG+14], who considered AC0 ◦ XOR circuits, which strictly generalizes the DNF⊕ model.
Their motivation comes from cryptography. A work of O’Donnell et al. [OST+13] is related
to the width of OR◦AND◦XOR circuits, whereas the DNF⊕ complexity is about understand-
ing the size of such circuits. We also mention the work of Grolmusz [Gro94] who studied
depth 3 circuits where the top gate is a threshold gate, the middle layer contains AND gates,
and the bottom layer is composed of MODm gates, for some integer m.

1.1 Our Results

In this paper we further study the DNF⊕ model. We also obtain results for the parity decision
tree model. In the remaining of the introduction we elaborate on our contributions.

Almost Optimal Lower Bounds via Affine Dispersers

The first result of this paper states that good affine dispersers have a very high DNF⊕
complexity. An affine disperser for dimension k is a function f : {0, 1}n → {0, 1} with the
following property: For every affine subspace U ⊆ {0, 1}n of dimension k, f restricted to U is
not constant. Using a standard probabilistic argument, one can show the existence of affine
dispersers for dimension k = log2(n)+log2 log2(n)+O(1). In terms of explicit constructions,
the state of the art affine disperser is due to Shaltiel [Sha11]. Shaltiel’s disperser works for
dimension as low as k = 2log0.9 n, which although not logarithmic is still sub-polynomial.

Affine dispersers can be thought of as a “linear analogue” to Ramsey graphs, and are
very natural pseudorandom objects which gained some attention by researchers in the past
few years (e.g., [BKS+05, BSK12, Sha11, Li11, CT14]). Nevertheless, the only application
of them we are aware of is a lower bound of 3n − O(k) by Demenkov and Kulikov [DK11]
for circuits over the full basis. By plugging an affine disperser for sub-linear dimension this
gives (3 − o(1)) · n lower bound, matching and simplifying a result of Blum [Blu83], and is
still the state of the art lower bound for this model. Here we give another application of
affine dispersers, as captured by the following lemma.

Theorem 1.1. Let f : {0, 1}n → {0, 1} be an affine disperser for dimension k. Then,

1. DNF⊕(f) ≥ 2n−2k.

2. max (DNF⊕(f),DNF⊕(1− f)) ≥ 2n−k, where 1− f is the negation of f .

A clarification regarding Theorem 1.1 is in order. The first item of the theorem tells
us that if f is an affine disperser for dimension k then DNF⊕(f) ≥ 2n−2k. This by itself is
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already enough to yield almost optimal explicit lower bounds for the DNF⊕ model. Indeed,
since Shaltiel’s disperser is an affine disperser for dimension k = no(1) one obtains a 2n−n

o(1)

lower bound (we remark that although Shaltiel’s disperser is explicit in the computational
sense, its description is not at all simple! We believe it is interesting to find an explicit
function in the computational sense, that also has a simple description. We discuss this in
Section 2).

Nevertheless, it is not clear whether the factor of 2 in the exponent of 2n−2k is necessary.
Moreover, as we exemplify next, in some cases this factor of 2 is highly undesired. So,
although Theorem 1.1 does not guarantee a lower bound of 2n−k for any affine disperser,
the second item of the theorem (which has a “one line proof”) does guarantee such a lower
bound for either f or its negation. We note that if f is explicit then so is its negation, and
as a result, we have this amusing scenario where any explicit affine disperser for dimension
k yields an explicit lower bound of 2n−k, though we do not necessarily know whether this
lower bound comes from f or its negation. 2

One application of item 2 (in which item 1 is meaningless) is in proving that DNF⊕(IP) ≥
Ω(2n/2), which improves the lower bound of Ω(2n/4) obtained by Jukna. Indeed, it is a well-
known fact that IP is an affine disperser for dimension n/2 + 1 (see Appendix A), and so the
second item of Theorem 1.1 implies that either IP or its negation have DNF⊕ complexity of
Ω(2n/2). We further discuss the inner product later in the introduction (see also Section 6),
where we show that the bound holds in fact for both functions. We also give a second proof
for this fact.

Item 2 of Theorem 1.1 also implies the existence of a function f on n inputs such that
DNF⊕(f) ≥ Ω(2n/(n · log n)). This can be seen by taking an affine disperser for dimension
k = log2(n) + log2 log2(n) + O(1), which is promised to exists by the probabilistic method.
It is worth mentioning that by using a counting argument (which is the most common way
of proving such lower bounds) one would get a weaker lower bound of Ω(2n/n2).

We remark that while a random function on n inputs have DNF⊕ complexity 2n/(n·log n),
with high probability, Theorem 1.1 gives an explicit property of a random function that causes
its DNF⊕ complexity to be large.

An Upper Bound for All Functions

Clearly the DNF⊕ complexity of any function f on n bits is bounded above by 2n. Indeed,
one can take the union of points in f−1(1) as these are affine subspaces of dimension 0. The
next theorem gives an upper bound of O(2n/n) for the DNF⊕ complexity of all functions on
n bits.

Theorem 1.2. For any function f : {0, 1}n → {0, 1} it holds that DNF⊕(f) ≤ O(2n/n).

The combinatorial meaning of Theorem 1.2 is that any set (namely, f−1(1)) can always
be covered by not O(2n/n) affine subspaces, regardless of its structure. By the lower bound

2In fact, if one knows toward which value f is biased, then one can tell which of f or 1 − f obtains the
2n−k lower bound. Still, it is not always clear if a given construction of an affine disperser is biased towards
1, and we prefer to give a statement that could be used in a “black-box” fashion.
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mentioned above, it follows that this upper bound is tight up to an O(log n) factor. Our
proof for the upper bound makes use of the Gowers norm, and does not seem to be related
to (or to follow from) the classical O(2n/n) upper bound of Lupanov [Lup58] for fan-in 2
circuits over Boolean circuits.

The DNF⊕ Complexity of Symmetric and Threshold Functions

We continue to study the DNF⊕ complexity of natural classes of functions. Our next result
gives a non-trivial upper bound for any symmetric function.

Theorem 1.3. For any symmetric function f : {0, 1}n → {0, 1} it holds that

DNF⊕(f) ≤ 1.5n · poly(n).

Moreover, there exists a symmetric function g : {0, 1}n → {0, 1} such that DNF⊕(g) ≥
Ω(1.5n/

√
n).

Theorem 1.3 states that any symmetric function has DNF⊕ complexity at most 1.5n ·
poly(n), and this is tight for the class of symmetric functions. One may still ask whether a
better bound can be obtained for the natural subclass of threshold functions. Consider for
example the majority function Maj : {0, 1}n → {0, 1}, where n is an odd positive integer. Is
the upper bound of 1.5n · poly(n) tight for Maj? It is not hard to show that DNF⊕(Maj) ≥
Ω(2n/2) ≥ Ω(1.414n). To see this we use the fact an affine subspaces of dimension d cannot
be contained in Hamming balls of radius d−1 (see Fact 4.2). Since Maj−1(1) is the Hamming
ball of radius (n+ 1)/2 centered at the all ones vector, any affine subspace that participates
in the covering of Maj−1(1) must have dimension at most (n + 1)/2. Thus, DNF⊕(Maj) ≥
2n−1/2(n+1)/2 = Ω(2n/2).

Which of these bounds, if any, is the right one? Our next theorem states that it is the
lower bound that is tight. In fact, it gives a tight bound (up to polynomial factors) for
the DNF⊕ complexity of any threshold function, where the threshold is at least 1/2. In the
theorem below, Thτ : {0, 1}n → {0, 1} is the function such that Thτ (x) = 1 if and only if
|x| ≥ τn, where τ ∈ [0, 1] is an integer multiple of 1/n, and H is the Shannon binary entropy
function defined by H(x) = −x log2(x)− (1− x) log2(1− x).

Theorem 1.4. For any integer n and any 1/2 ≤ τ ≤ 1 that is an integer multiple of 1/n

2(H(τ)−(1−τ))·n · poly(n−1) ≤ DNF⊕(Thτ ) ≤ 2(H(τ)−(1−τ))·n · poly(n).

By plugging τ = 1/2 in Theorem 1.4 we obtain that, up to poly(n) factors, the DNF⊕ com-
plexity of Maj on n inputs is 2n/2. It is interesting to compare this result with Quine [Qui53]
classical result stating that the DNF complexity of Maj is

(
n
n/2

)
= Θ(2n/

√
n).

Theorem 1.4 only applies for τ ≥ 1/2, and there is a reason for that. Indeed, using
arguments similar to the lower bound for DNF⊕(Maj) sketched above, one can show that
for any τ < 1/2 it holds that DNF⊕(Thτ ) ≥ 2τn. Roughly speaking, this asymmetry of the
DNF⊕ complexity between threshold functions with τ ≥ 1/2 and τ < 1/2 follows from the
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fact that the set of functions with low DNF⊕ complexity is not closed under negation. For
that one should also consider the CNF⊕ complexity, defined in the natural way. A similar
phenomenon occurs in the standard DNF and CNF complexity measures. We elaborate on
that in Section 7.

While the lower bound in Theorem 1.3 holds for all symmetric functions, the construction
we give that matches this lower bound only uses parity gates with fan-in 2 (and the upper
bound in Theorem 1.4 requires only fan-in 3). Note that one can replace each fan-in 2 parity
gate with a width 2 constant size CNF. By collapsing levels one then obtains a depth 3
Boolean circuit of size 1.5n · poly(n), with fan-in 2 bottom layer gates, that computes the
given symmetric function. The latter is a result that is attributed to Paturi et al. [PSZ97],
and Theorem 1.3 reproduce it.

The Inner Product Function and Low Degree Polynomials

As mentioned above, the second item in Theorem 1.1 implies a lower bound of Ω(2n/2) for
DNF⊕(IP) (or for DNF⊕(1− IP)). We would like to get a more precise bound. It is easy to
see that DNF⊕(IP) ≤ 2n/2− 1. Indeed, when fixing the variables {xi : i odd} to zeros we are
getting the constant zero function, while for any other fix of the variables {xi : i odd} we
get a linear function in the {xi : i even}. Therefore, we can write IP as

IP(x1, . . . , xn) =
∨

(α1,α3,...,αn−1)6=~0

((∧
i odd

xi = αi

)
∧

(⊕
i odd

αixi+1 = 1

))
.

In the following theorem we show that this is best possible.

Theorem 1.5. For any even integer n, it holds that DNF⊕(IP) = 2n/2 − 1.

We prove Theorem 1.5 in Section 6. So one completely understands the DNF⊕ complexity
of IP. In fact, one can prove something more general. Namely, for any degree 2 polynomial
over F2 we have DNF⊕(f) = Θ(1/bias(f)) (see Corollary 6.3). So the DNF⊕ complexity of
degree 2 polynomials is also well understood. What about higher degrees? In the follow-
ing theorem we give a non-trivial upper bound for the DNF⊕ complexity of degree d > 2
polynomials. The bound is meaningful for functions with degree up to roughly log log n.

Theorem 1.6. Let f : {0, 1}n → {0, 1} be a function that has degree d ≥ 3 as a polynomial
over F2. Then,

DNF⊕(f) ≤ 2n−Ω(n1/(d−1)!).

On the other hand, with high probability, a random degree d polynomial over F2 has DNF⊕
complexity 2n−O(n1/(d−1)).

We also prove stronger upper bounds for biased low degree polynomials (see Section 6
for more details).
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The Parity Decision Tree Model

As mentioned, Kushilevitz and Mansour [KM93] introduced the notion of parity decision
trees, which received a significant attention in the last few years [MO09, ZS10, TWXZ13,
OST+13, STV14]. Roughly speaking, these are decision trees where each node contains not
a variable but rather a linear function of some subset of the variables (see, e.g., [STV14] for
the formal definition). The parity decision tree complexity of a function f : {0, 1}n → {0, 1},
which we denote here by DT⊕(f), is the least size (that is, number of leaves) required by a
parity decision tree for computing f .

In this paper we give an average case hardness result for the DT⊕ model. Namely, we
give an explicit construction for a function f such that any function with not too large DT⊕
complexity has a small correlation with f . For this we need to recall the definition of an
affine extractor, which is a strengthening of affine dispersers.

An affine extractor for dimension k with bias ε is a function f : {0, 1}n → {0, 1} with
the following property. For every affine subspace U ⊆ Fn2 of dimension k, the bias of f
restricted to U , defined as bias(f |U) = |Eu∼U [(−1)f(u)]|, is at most ε. A standard probabilistic
argument shows the existence of an affine extractor with bias ε for dimension k = log2(n/ε2)+
log2 log2(n/ε2)+O(1). The state of the art explicit constructions for affine extractors [Bou07,
Yeh11, Li11] works for dimension k = O(n/

√
log log n), with bias that is exponentially small

in n.
In the theorem below, the distance between two functions, denoted by dist(f, g), is defined

as the fraction of points in the hypercube on which the functions disagree.

Theorem 1.7. Let f : {0, 1}n → {0, 1} be an affine extractor for dimension k, with bias
ε ≤ 1/2. Then, for any g : {0, 1}n → {0, 1} such that DT⊕(g) ≤ ε · 2n−k it holds that
dist(f, g) ≥ 1/2− 4ε.

By plugging the efficiently constructible affine extractors mentioned above, one obtains an
explicit average case lower bound of 2n−o(n) for the DT⊕ model. As in the case of lower bounds
for the DNF⊕ model, it is also interesting to obtain explicit lower bounds that have a succinct
and simple description. One example comes from the inner product function. Indeed, the
fact that IP is an affine extractor for dimension n/2 + c, with error exponentially small in c,
is considered a folklore (see Appendix A). Thus, Theorem 1.7 implies that IP has no more
than ε correlation with functions having DT⊕ complexity O(ε2 · 2n/2). To break the “n/2
barrier”, one can consider the function Tr(x7) 3, which clearly has a simple description. Ben-
Sasson and Kopparty [BSK12] proved that this function is an affine extractor for dimension
2n/5 +O(log2(1/ε)), when n is odd. 4 Thus for, say, a constant ε, one obtains a simple and
explicit average case lower bound of Ω(20.6n) for this model.

Like in the case of affine dispersers, although affine extractors are natural objects, to the
best of our knowledge so far they only found two applications in the literature. One was

3Tr is the trace function from F2n to F2. We also assume some underlying isomorphism between the
vector space Fn

2 and the field F2n .
4To get this dependency in ε, one needs to use a result by Haramaty and Shpilka [HS10]. See also Theorem

6.2 in [CT14].
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given by Ben-Sasson and Zewi [BSZ11], who gave a construction of a two-source extractor
based on affine extractors. Conditioned on the Polynomial Freiman-Ruzsa conjecture from
additive combinatorics, this two-source extractor is shown to support min-entropy lower than
the state of the art extractor by Bourgain [Bou05]. The second application was shown by
Viola [Vio14] for the purpose of constructing extractors for circuit sources.

A proof for Theorem 1.7 is given in Section 7, where we also relate the DNF⊕ and DT⊕
complexity measures. We summary here by saying that interesting results regarding the
DNF and the decision tree complexity “goes through” in the analogous models with parity
gates with hardly any change in the proofs. Still, we feel it is worthwhile to point out these
relations between DNF⊕ and DT⊕.

1.2 Preliminaries

Throughout the paper, for readability sake, we suppress floor and ceiling. For integers n, k
such that 0 ≤ k ≤ n, we denote by Lk the k’th level of the n dimensional hypercube,
namely, Lk = {x ∈ {0, 1}n : |x| = k}, where |x| is the Hamming weight of x. Note that n is
suppressed in this notation. This will not cause a confusion because n will always be clear
from the context. The bias of a Boolean function f : D → {0, 1}, defined on some domain
D, is given by bias(f) , |D|−1 · |

∑
x∈D (−1)f(x)|.

We make some use of basic results from Fourier analysis of Boolean functions. We follow
the standard notations set in O’Donnell’s book [O’D14].

2 Almost Optimal Lower Bounds via Affine Dispersers

We start this section by proving Theorem 1.1. To this end we prove the following lemma.

Lemma 2.1. Let A ⊂ {0, 1}n be a set of size t < 2n. Then, for any integer ` ≥ 0 such that

(t+ 1) · 2`−1 < 2n, (2.1)

there exists an affine subspace V` ⊂ {0, 1}n such that A ∩ V` = ∅.

Proof. We construct the affine subspaces (V`)` by induction on `. We start with the base
case ` = 0. As we assume that |A| = t < 2n, there exists a point in {0, 1}n \ A, which is an
affine subspace of dimension ` = 0, as desired.

We now construct V` given V`−1, assuming ` satisfies Equation 2.1. Let ∆1, . . . ,∆`−1

be linearly independent vectors such that V`−1 = ∆0 + Span(∆1, . . . ,∆`−1), for some shift
vector ∆0. We wish to find a vector ∆`, independent of ∆1, . . . ,∆`−1, such that ∆0 +
Span(∆1, . . . ,∆`) does not intersect A. This will be our V`. To this end, consider the set of
“good shifts”

X = {x ∈ {0, 1}n | (x+ Span(∆1, . . . ,∆`−1)) ∩ A = ∅} .
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We note that ∆0 ∈ X. Moreover, if x is another point in X then by setting ∆` = x+ ∆0 we
get that

∆0 + Span(∆1, . . . ,∆`) = (∆0 + Span(∆1, . . . ,∆`−1)) ∪ (∆0 + ∆` + Span(∆1, . . . ,∆`−1))

= (∆0 + Span(∆1, . . . ,∆`−1)) ∪ (x+ Span(∆1, . . . ,∆`−1)) ,

and since both x,∆0 ∈ X, it follows that the set above does not intersect A. So, all that is
left to prove is the existence of an x ∈ X such that ∆` = x + ∆0 is linearly independent of
∆1, . . . ,∆`−1, or equivalently, that X \ V`−1 6= ∅. To this end, note that x ∈ X if and only if
x 6∈ A+ Span(∆1, . . . ,∆`−1). So,

|X| = 2n − |A+ Span(∆1, . . . ,∆`−1)|
≥ 2n − |A| · |Span(∆1, . . . ,∆`−1)|
= 2n − t · 2`−1.

Thus,
|X \ V`−1| ≥ |X| − |V`−1| ≥ 2n − (t+ 1) · 2`−1 > 0,

where the last inequality follows by Equation (2.1). Thus, X \ V`−1 6= ∅, which concludes
the proof.

We now turn to the proof of Theorem 1.1.

Proof of Theorem 1.1. We start with the proof of the first item. Let f be an affine disperser
for dimension k and set s = DNF⊕(f). Thus, f is the union of s affine subspaces. Since f is
an affine disperser for dimension k, each of these affine subspaces has dimension at most k−1.
Thus, |f−1(1)| ≤ s·2k−1. By Lemma 2.1, for every integer ` such that (|f−1(1)|+1)·2`−1 < 2n,
there exists an affine subspace of dimension `, restricted to which f is the constant 0. Since
f is an affine disperser for dimension k, we get that

(s · 2k−1 + 1) · 2k−1 ≥ (|f−1(1)|+ 1) · 2k−1 ≥ 2n.

Thus, s ≥ 2n−2k as desired.
We now turn to prove the second item, which is actually even simpler to prove. As

before, if f is an affine disperser for dimension k with DNF⊕(f) = s then |f−1(1)| ≤ s · 2k−1.
So DNF⊕(f) ≥ |f−1(1)| · 21−k. Now note that if f is an affine disperser for dimension
k then so does 1 − f , and so applying the argument above for 1 − f gives DNF⊕(1 −
f) ≥ |(1 − f)−1(1)| · 21−k. Clearly, max(|f−1(1)|, |(1 − f)−1(1)|) ≥ 2n−1 and so we get that
max(DNF⊕(f),DNF⊕(1− f)) ≥ 2n−k, as stated.

A discussion regarding explicitness.

As mentioned, by plugging Shaltiel’s disperser to Theorem 1.1 it follows that there exists
an efficiently computable function f : {0, 1}n → {0, 1} such that DNF⊕(f) ≥ 2n−n

o(1)
. The
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affine disperser of Shaltiel mentioned above, which we denote by Sha, is explicit in the
computational sense. Namely, given x ∈ {0, 1}n, one can compute Sha(x) in time poly(|x|).
However, the description of the function Sha is not at all simple. Thus, it is natural to ask
for an explicit lower bound for the DNF⊕ model, which also has a simple description. Ben-
Sasson and Kopparty [BSK12] gave such a construction that works for dimension Ω(n4/5)
(though we omit its description here as it would require setting some notations). Thus, there

is a “simple” and explicit lower bound of 2n−Ω(n4/5) for the DNF⊕ model.
We next show a very simple and explicit function that has DNF⊕ complexity Ω(22n/3)

(just to break the “n/2 barrier”). In [BSK12] the authors showed that for an odd n, the
function Tr(x15), which evidently has a very simple description, is an affine disperser for
dimension n/3 + 10. By examining the proof of the second item in Theorem 1.1, one can
see that for any affine disperser f for dimension k, DNF⊕(f) ≥ |f−1(1)| · 21−k. Now, Tr(x15)
is a non-constant degree 4 polynomial over F2, and so it obtains the value 1 on at least 2−4

fraction of the hypercube. Thus, it follows that DNF⊕(Tr(x15)) ≥ Ω(22n/3).

3 An Upper Bound for All Functions

In this section we prove Theorem 1.2. To this end we need the following lemma.

Lemma 3.1. Let A ⊆ {0, 1}n be a set of size ε · 2n, for any ε > 2−n/4. Then there exists an
affine subspace V ⊆ A of dimension dim(V ) ≥ log(n)− log log(1/ε)− 2.

We defer the proof of Lemma 3.1 and first prove Theorem 1.2.

Proof of Theorem 1.2. In order to prove Theorem 1.2, fix a function f : {0, 1}n → {0, 1},
and let A = f−1(1). We want to show that there are s = O(2n/n) affine subspaces V1, . . . , Vs
contained in A that cover A, i.e. A = ∪si=1Vi. We choose the affine subspaces greedily as
follows:

1. Set A1 = A.

2. Set i = 1.

3. Repeat

(a) Pick an affine subspace Vi ⊆ Ai of maximal dimension.

(b) Set Ai+1 = Ai \ Vi.
(c) Increment i by 1.

until |Ai| ≤ 2n/n.

4. Output V1, . . . , Vi−1 together with the singleton affine subspaces for each point in Ai.

9



We claim that the above procedure terminates in at most O(2n/n) iterations. For every
integer t ≥ 0 define it = min{i : Ai ≤ 2n−t}. Note that i0 = 1. By Lemma 3.1, for every
i < it we have |Vi| ≥ n/4t. Therefore,

it − it−1 ≤
|Ait−1|

mini≤it |Vi|
≤ 2n−t

n/4t
.

The algorithm terminates in the iteration i = ilogn, which is at most

ilogn = 1 +

logn∑
t=1

(it − it−1) ≤ 1 +

logn∑
t=1

2n−t

n/4t
≤ 1 +

4 · 2n

n
·
∞∑
t=1

t

2t
= 1 + 8 · 2n

n
.

Therefore, the procedure above outputs at most 1 + 8 · 2n/n + |Ailogn
| = 1 + 9 · 2n/n affine

subspaces. This completes the proof of the theorem.

We now return to the proof of Lemma 3.1. We need the following definition of degree d
norm of a function, also known as the uniformity norm or Gowers norm of a function.

Definition 3.2 (Degree d norm). Let f : {0, 1}n → R be a function. The d’th norm of f is
defined as

Ud(f) =

 E
x,y1,...,yd∈{0,1}n

∏
S⊆[d]

f(x+
∑
i∈S

yi)

1/2d

.

The following proposition is standard and can be found, e.g., in [VW07].

Proposition 3.3 (Gowers-Cauchy-Schwartz inequality). Let f : {0, 1}n → R be a function.
Then, U1(f) = |E[f(x)]|, and for any positive integer i it holds that Ui(f) ≤ Ui+1(f).

We are now ready to prove Lemma 3.1.

Proof of Lemma 3.1. Let f : {0, 1}n → {0, 1} be the indicator function of the set A. Then,
for any d ∈ N, by Proposition 3.3 we have Ud(f) ≥ E[f(x)] = ε. Therefore, since f is
Boolean, by the definition of Ud(f) we have

Pr
x,y1,...,yd∈{0,1}n

[x+ Span(y1, . . . , yd) ⊆ A] = E
x,y1,...,yd∈{0,1}n

∏
S⊆[d]

f(x+
∑
i∈S

yi)

 ≥ ε2d .

Note that uniformly random vectors y1, . . . , yd ∈ {0, 1}n are linearly independent with prob-
ability (1 − 2−n)(1 − 21−n)(1 − 22−n) · · · (1 − 2d−1−n) > 1 − 2d−n. Therefore, for uniformly
random x, y1, . . . , yd ∈ {0, 1}n, with probability at least ε2d − 2d−n, the affine subspace
x + Span(y1, . . . , yd) is contained in A, and its dimension is d. Thus, as long as ε2d > 2d−n

the set A contains an affine subspace of dimension d. It is easy to check that this indeed
holds for d = dlog(n)− log log(1/ε)− 2e.
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4 The DNF⊕ Complexity of Symmetric Functions

In this section we prove Theorem 1.3. To this end we will need the following two facts.

Fact 4.1. Let n > 1 be an integer. Let p ∈ (0, 1) be such that pn is an integer. Let q = 1−p.
Then,

1√
8npq

≤
(
n

pn

)
· 2−H(p)n ≤ 1√

3npq
.

In particular,
1√
8n
≤
(
n

pn

)
· 2−H(p)n ≤ 1 .

A proof for Fact 4.1 can be found in, e.g., [CT12].

Fact 4.2. Let u + U be an affine subspace of dimension d. Then u + U is not contained in
any ball of radius d− 1. In particular, there exist vectors u1, u2 ∈ u + U such that |u1| ≥ d
and |u2| ≤ n− d.

Proof of Fact 4.2. Consider a d×n generating matrix A for the subspace U . By performing
a Gaussian elimination on A and permuting the columns of the resulted matrix, we can
assume that the first d columns of A form the identity matrix. This can be done because
such operations have no affect on Hamming weights nor on the dimension. Now let B be a
ball of radius d− 1 around the point u0, that is, B = {x ∈ {0, 1}n : |x− u0| ≤ d− 1}. Let v
be the vector in U that disagrees with u0 on the first d entries. Such a vector exists by the
structure of A deduced above. Clearly v /∈ B since |v − u0| ≥ d. The proof follows.

We start by showing that the “moreover direction” of Theorem 1.3 holds. Consider the
function gk : {0, 1}n → {0, 1} defined by gk(x) = 1 if and only if |x| = k, where 0 ≤ k ≤ n is
an integer.

Claim 4.3. For any integers n and 0 ≤ k ≤ n it holds that DNF⊕(gk) ≥
(
n
k

)
· 2−min(k,n−k).

Proof of Claim 4.3. First note that for any k, DNF⊕(gk) = DNF⊕(gn−k) since any covering
for gk can be translated to a covering for gn−k by adding the all ones vector to the shifts
of all affine subspaces in the covering. It is therefore enough to show that for all k ≤ n/2,
DNF⊕(gk) ≥

(
n
k

)
· 2−k. Note that DNF⊕(gk) is the minimum number of affine subspaces such

that their union equals Lk. Since |Lk| =
(
n
k

)
the proof follows by Fact 4.2 which guarantees

that any affine subspace in this covering has dimension at most k.

Consider now the function gk for k = 2n/3. By Claim 4.3 and Fact 4.1 it follows that

DNF⊕(gk) ≥

(
n

2n/3

)
2n/3

≥ Ω

(
1√
n
· 2n·(H(2/3)−1/3)

)
= Ω

(
1√
n
· 1.5n

)
,

which concludes the “moreover direction” of Theorem 1.3. To prove the more interesting
direction, we show that Claim 4.3 is tight up to poly(n) factors.
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Lemma 4.4. For any integers n and 0 ≤ k ≤ n it holds that

DNF⊕(gk) ≤
(
n

k

)
· 2−min(k,n−k) · n.

Proof of Lemma 4.4. We start by presenting the proof for k = n/2 (assuming that n is even).
The proof for this special case is slightly simpler than the proof for general k, and already
demonstrates the proof idea.

For every permutation σ ∈ Sn we define the affine subspace Vσ ⊆ {0, 1}n that contains
all points subject to the following n/2 affine constraints:

1 = xσ(1) + xσ(2)

1 = xσ(3) + xσ(4)
...

1 = xσ(n−1) + xσ(n) .

Note that for every σ ∈ Sn, it holds that Vσ ⊆ Ln/2. We show next that by choosing
m = n ·

(
n
n/2

)
· 2−n/2 random permutations σ1, . . . , σm uniformly and independently from Sn,

with high probability Ln/2 = ∪mi=1Vσi . To see this fix x ∈ Ln/2. By symmetry, for a uniformly
random σ ∈ Sn we have that

Pr
σ

[x ∈ Vσ] =
|Vσ|
|Ln/2|

=
2n/2(
n
n/2

) .
Therefore,

Pr
σ1,...,σm

[
x /∈

m⋃
i=1

Vσi

]
≤

(
1− 2n/2(

n
n/2

))m

≤ e−n,

where the last inequality holds by the choice of m. Hence, by the union bound

Pr
σ1,...,σm

[
∃x ∈ Ln/2 such that x /∈

m⋃
i=1

Vσi

]
≤
(
n

n/2

)
· e−n < 1.

Therefore, there exist m affine subspaces, of the above form, such that their union equals
Ln/2, and so DNF⊕(gn/2) ≤ n ·

(
n
n/2

)
· 2−n/2.

We proceed now for general k ≤ n/2. As mentioned, this would also conclude the proof
for all k ≥ n/2. Let t = n− 2k. For every permutation σ ∈ Sn define the affine subspace Vσ
as the set of points that obey the following affine constraints:


0 = xσ(1)

...
0 = xσ(t)
1 = xσ(t+1) + xσ(t+2)

...
1 = xσ(n−1) + xσ(n) .
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Clearly, Vσ ⊆ Lk for every permutation σ ∈ Sn. Moreover, for every fixed x ∈ Lk we have
that Prσ[x ∈ Vσ] = |Vσ|/|Lk| = 2k/

(
n
k

)
. Therefore, if we choose m = n ·

(
n
k

)
· 2−k random

permutations σ1, . . . , σm uniformly and independently at random then

Pr
σ1,...,σm

[
x /∈

m⋃
i=1

Vσi

]
≤

(
1− 2k(

n
k

))m

≤ e−n,

where the last inequality follows by our choice of m. By taking the union bound over all
x ∈ Lk we get

Pr
σ1,...,σm

[
∃x ∈ Lk such that x 6∈

m⋃
i=1

Vσi

]
≤
(
n

k

)
· e−n < 1.

Therefore, DNF⊕(gk) ≤
(
n
k

)
· 2−k · n.

We now deduce Theorem 1.3 from Lemma 4.4. Any symmetric function f : {0, 1}n →
{0, 1} can be written as the union of some subset of {g0, . . . , gn}. Thus, DNF⊕(f) ≤∑n

k=0 DNF⊕(gk). By Lemma 4.4 and Fact 4.1,

DNF⊕(gk) ≤
(
n

k

)
· 2−min(k,n−k) · n ≤ 2H(k/n)·n−min(k,n−k) · n.

One can show that the maximum over 0 ≤ k ≤ n of the expression H(k/n) ·n−min(k, n−k)
that appears in the exponent above is obtained at k = n/3 and k = 2n/3. This maximum
value is (H(1/3)− 1/3) · n = log2(1.5) · n. Thus, for all 0 ≤ k ≤ n, DNF⊕(gk) ≤ 1.5n · n and
so DNF⊕(f) ≤ O(1.5n · n2). We remark that by a more careful argument one can show that
DNF⊕(f) ≤ O(1.5n · n).

5 The DNF⊕ Complexity of Threshold Functions

In this section we prove Theorem 1.4.

Proof. As in the proof of Theorem 1.3, it is enough to show how to cover any level ωn
for τ ≤ ω ≤ 1 in the hypercube by 2(H(τ)−(1−τ))·n · poly(n) affine subspaces. However, as
apposed to the way this was done in the proof of Theorem 1.3, we may now consider affine
subspaces that are not restricted to level ωn, and points may “leak” to higher levels. This
is the leverage we exploit so to obtain stronger results for threshold functions.

The proof is more delicate than the proof of Theorem 1.3, and for the purpose of covering
Lωn, for different τ ≤ ω ≤ 1, we need to consider affine subspaces with different structure.
Moreover, we first handle levels ωn such that τ ≤ ω ≤ (3τ + 1)/4. We then show how to
handle the higher levels.

13



Given 1/2 ≤ τ ≤ 1 and τ ≤ ω ≤ (3τ + 1)/4, define 5

α = 2ω − 1

β = 3τ − 4ω + 1

γ = 2ω − 2τ.

Note that by our choice of τ, ω it holds that 0 ≤ α, β, γ ≤ 1. For a permutation σ ∈ Sn let
Vσ be the affine subspace of {0, 1}n that is defined by the following set of affine constraints:




1 = xσ(1)

...
1 = xσ(αn)
1 = xσ(αn+1) + xσ(αn+2)

...
1 = xσ((α+2β)n−1) + xσ((α+2β)n)
1 = xσ((α+2β)n+1) + xσ((α+2β)n+2) + xσ((α+2β)n+3)

...
1 = xσ(n−2) + xσ(n−1) + xσ(n).

Namely, we have αn constraints on 1 variable, βn constraints on two variables and γn
constraints on three variables, where each variable appears in exactly one constraint as σ is
a permutation. Note that α+ 2β + 3γ = 1, so this set of constraints acts on all entries of x,
and is well-defined in the sense that it does not operate on invalid entries of x.

We note that if x satisfies all the constraints above then |x| ≥ τn. Indeed, each entry of
x appears in exactly one constraint, the number of constraints is exactly α+ β + γ = τ and
each satisfied constraint implies that at least one of the entries of x that participate in the
constraint is 1. Thus, for any permutation σ, the affine subspace Vσ is contained in Th−1

τ (1),
and so taking union of Vσ for several permutations σ would never cover undesired points.

We now compute the number of points in level ωn covered by Vσ. Let x ∈ Vσ∩Lωn. Since
x ∈ Vσ, the first αn constraints contribute αn to the Hamming weight of x. The following
βn constraints contribute βn to the Hamming weight of x (as exactly one of the variables
in such a constraint on two variables is 1). Since |x| = ωn and since each of the remaining
γn constraints must have either 1 or 3 variables set to 1, it holds that exactly δn of these
constraints have one variable with value 1 and the rest have all 3 variables set to 1, where

δ =
α + β + 3γ − ω

2
=

3ω − 3τ

2
.

5For ease of notation, we treat variables such as τ, ω, α, β and γ as if they were some real numbers in [0, 1]
and ignore the issue of rounding to integer multiplication of 1/n. This does not affect any of the results.

14



Moreover, there is a one to one mapping between the points in Vσ ∩ Lωn and the number of
ways to choose which of the two variables in each of the βn constraints will have value 1,
which δn out of the γn constraints will have exactly one variable set to 1 and which variable
out of the three would that be. Hence,

|Vσ ∩ Lωn| = 2βn ·
(
γn

δn

)
· 3δn ≥ 1√

8n
· 2(β+γ·H(δ/γ)+δ·log2 3)·n =

1

8
√
n
· 2(1−τ)·n,

where the inequality follows by Fact 4.1, and the last equality follows by our choice of α, β
and γ. Let

m =
√

8 · n1.5 · 2(H(ω)−(1−τ))·n ≤
√

8 · n1.5 · 2(H(τ)−(1−τ))·n.

As in the proof of Theorem 1.3, it follows that if σ1, . . . , σm are permutations sampled
uniformly and independently at random, then for any x ∈ Lωn

Pr
σ1,...,σm

[
x /∈

m⋃
i=1

Vσi

]
≤
(

1− |Vσ1 ∩ Lωn|
|Lωn|

)m
≤ e−n.

Hence, by the union bound over all x ∈ Lωn, there exist m permutations σ1, . . . , σm such that
Vσ1 , . . . Vσm are all contained in Th−1

τ (1) and which their union covers Lωn. We conclude that
the union of all levels Lωn for τ ≤ ω ≤ (3τ + 1)/4 can be covered by O(n2.5 · 2(H(τ)−(1−τ))·n)
affine subspaces, all contained in Th−1

τ (1).
We note that the constraint ω ≤ (3τ + 1)/4 is necessary for our set of affine constraints

to be well-defined. Indeed, for ω > (3τ +1)/4, we have β < 0 which makes no sense since βn
represents the number of constraints on two variables. The values of α, β and γ were obtained
by some optimization which was spared from the reader. The fact that this optimization
process resulted in taking a negative β for high values of ω suggests that we should do as
close to it as we can, and indeed to handle the higher levels ω > (3τ + 1)/4 we take β = 0,
namely sets of constraints on only one or three variables.

Let σ ∈ Sn be a permutation. Consider a system of affine constraints were αn constraints
are on one variable, and the rest, say γn of them, are on three variables. Namely,


1 = xσ(1)

...
1 = xσ(αn)
1 = xσ(αn+1) + xσ(αn+2) + xσ(αn+3)

...
1 = xσ(n−2) + xσ(n−1) + xσ(n) .

One must take α + 3γ = 1 since each entry of x should appear in exactly one constraint.
Moreover, since we want that any solution to these set of constraints will be contained in
Th−1

τ (1), one must take α + γ = τ . Solving gives

α =
3τ − 1

2
, γ =

1− τ
2

.
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Note that the affine subspaces defined by these constraints is the same for all levels, as
apposed to the case ω ≤ (3τ + 1)/4, where the number of constraints of each type depended
on ω. By our choice of α, γ, for every permutation σ it holds that Vσ ⊆ Th−1

τ (1).
We now turn to compute |Vσ ∩ Lωn|. Consider x in this intersection. Suppose δn of

the constraints on three variables contain exactly one entry of x with value 1. Then, ω =
α + δ + 3(γ − δ) and so

δ =
α + 3γ − ω

2
=

1− ω
2

.

Moreover, as in the previous case, there is a one to one mapping between the points in
Vσ ∩Lωn and the number of ways to choose δn constraints from the γn constraints on three
variables and choosing which unique variable in a triplet is set to 1. Thus,

|Vσ ∩ Lωn| =
(
γn

δn

)
· 3δn ≥ 1√

8n
· 2µ·n,

where

µ =
1− τ

2
·H
(

1− ω
1− τ

)
+ log2(3) · 1− ω

2
.

It is left to show that H(ω)− µ ≤ H(τ)− (1− τ) for (3τ + 1)/4 < ω ≤ 1, and the proof will
follow. Thus, one needs to prove that for this range of ω,

φτ (ω) , H(τ) +
1− ω

2
· log2(3)−H(ω)− 1− τ

2
·
(

2−H
(

1− ω
1− τ

))
≥ 0.

One can verify that

φτ

(
3τ + 1

4

)
= H(τ)−H

(
3τ + 1

4

)
≥ 0,

where the last inequality holds since 1/2 ≤ τ ≤ (3τ + 1)/4. Thus, to complete the proof it
is enough to show that φτ (ω) is monotone increasing in the interval (1/2, 1). To this end we
consider the derivative of φτ (ω) (note that φτ (ω) is infinitely differentiable in its domain),

d

dω
φτ (ω) = log2

(
ω

1− ω

)
+

1

2
log2

(
1− ω
ω − τ

)
− 1

2
log2 (3)

=
1

2
log2

(
ω2

3(1− ω)(ω − τ)

)
≥ 1

2
log2

(
ω2

3(1− ω)(ω − 1/2)

)
.

The proof then follows as one can easily verify that the expression inside the log(·) is at least
1 for any 1/2 < ω < 1.
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6 The Inner Product Function and Low Degree Poly-

nomials

We start this section by proving Theorem 1.5. As mentioned in the introduction, DNF⊕(IP) ≤
2n/2 − 1, so it is enough to prove a matching lower bound. We first show two proofs that
almost achieve this lower bound. We will obtain the tight bound afterwards.

The first proof uses a lemma of Akavia et al. [ABG+14]. To state it we move to the {±1}
representation of functions. Namely, we consider functions of the form f : {0, 1}n → {±1}.
Based on a result by Jackson [Jac97], Akavia et al. [ABG+14] proved the following lemma.

Lemma 6.1 ([ABG+14]). For any function f : {0, 1}n → {±1} it holds that

max
S⊆[n]

|f̂(S)| ≥ 1

2DNF⊕(f) + 1
.

Since all the Fourier coefficients of IP in the {±1} representation have absolute value
2−n/2, Lemma 6.1 immediately implies that DNF⊕(IP) ≥ (2n/2 − 1)/2, which is almost tight
– only factor 2 away from the upper bound.

The second proof, for which we gave a rough sketch in the introduction, is based on the
well-known fact that IP: {0, 1}n → {0, 1} is an affine disperser for dimension n/2 + 1 (see
Appendix A). By the proof of the second item in Theorem 1.1, we get that

DNF⊕(IP) ≥ |IP
−1(1)|

2(n/2+1)−1
=

1

2
· (2n/2 − 1),

which is also a factor of 2 away from the upper bound. Next, by being slightly more careful,
we give the proof for the exact bound of 2n/2 − 1. To this end we consider again the {±1}
representation of functions. We use the following result regarding small bias sets.

Lemma 6.2 ([PR04, AS10, AC13] (see Lemma 4.5 in [AC13])). Let S be an ε-biased set.
Then, for any affine subspace U it holds that∣∣∣∣ |S ∩ U ||S|

− |U |
2n

∣∣∣∣ ≤ ε. (6.1)

Proof of Theorem 1.5. Recall that a set S is ε-biased if and only if |S|−1 · |
∑

s∈S[(−1)〈s,α〉]| ≤
ε for all non-zero α ∈ {0, 1}n. One can easily show that this is equivalent of saying that

|1̂S(T )| ≤ ε · |S|
2n−1 for all ∅ 6= T ⊆ [n], where 1S is the indicator function for the set S

in the {±1} representation. Recall also that all non-zero Fourier coefficients of IP in the
{±1} representation have absolute value of 2−n/2. By plugging this to Equation (6.1) and
rearranging we get that∣∣∣∣∣∣IP−1(−1) ∩ U

∣∣− |IP−1(−1)|
2n

· |U |
∣∣∣∣ ≤ 2n/2−1. (6.2)
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Assume now that U is an affine subspace that is contained in IP−1(−1). Using the fact that
|IP−1(−1)| = 2n−1−2n/2−1, Equation (6.2) implies that |U |/2 < (1/2+2−n/2−1)·|U | ≤ 2n/2−1.
It follows that |U | < 2n/2, and hence since the size of U is a power of 2, we conclude that

|U | ≤ 2n/2−1. Therefore DNF⊕(IP) ≥ |IP−1(−1)|
2n/2−1 = 2n/2 − 1, as stated.

We now deduce a result regarding general quadratic polynomials.

Corollary 6.3. Let f : {0, 1}n → {0, 1} be a function that has degree 2 as a polynomial over
F2. Let δ = bias(f) =

∣∣Ex∼{0,1}n [(−1)f(x)]
∣∣. Then, DNF⊕(f) = Θ(1/δ).

Proof. Dickson’s theorem ([Dic01], Theorem 199) states that, up to linear transformations,
all degree 2 polynomials over F2 are essentially the inner product function. More precisely,
any degree 2 polynomial f(x) over F2 can be written us f(x) = `0(x)+IP(`1(x), `2(x), . . . , `r(x)),
where the `i’s are independent linear functions, and δ = Θ(2−r/2). Theorem 1.5 implies that
the inner product function on r inputs has DNF⊕ complexity of Θ(2r/2) = Θ(1/δ). The proof
follows since applying the inner product function on r independent linear functions (rather
than on the input bits) does not change its DNF⊕ complexity.

The DNF⊕ complexity of degree d ≥ 3 polynomials

Next we prove Theorem 1.6. The first part of the theorem readily follows from the following
result by Cohen and Tal [CT14].

Theorem 6.4 ([CT14], Theorem 2). Let f : {0, 1}n → {0, 1} be a function that has degree
d as a polynomial over F2. Then, there exists a partition of {0, 1}n to affine subspaces, each
of dimension Ω(n1/(d−1)!), such that f is constant on each part.

Proof of Theorem 1.6. To deduce the first part of Theorem 1.6 from Theorem 6.4 note that
the latter implies that f−1(1) can be written as a union of at most |f−1(1)|/2Ω(n1/(d−1)!) ≤
2n−Ω(n1/(d−1)!) affine subspaces. As for the moreover part, a result by Ben-Eliezer et al.
[BEHL09] implies that a random degree d polynomial is, with high probability, an affine
disperser for dimension k = O(n1/(d−1)). This together with Theorem 1.1 imply the moreover
part.

As in the case of quadratic polynomials, one can obtain a stronger result for the case of
biased polynomials of constant degree. We start with the case of degree 3 polynomials.

Theorem 6.5. Let f : {0, 1}n → {0, 1} be a function that has degree 3 as a polynomial over
F2. Assume that bias(f) = δ. Then,

DNF⊕(f) ≤ 2n/2+O(log4(1/δ)).

For the proof of Theorem 6.5 we need the following structural result by Haramaty and
Shpilka [HS10].

18



Theorem 6.6 ([HS10]). Let f : {0, 1}n → {0, 1} be a cubic polynomial with bias δ. Then,
there exists c = O(log4 (1/δ)) such that f can be written as

f(x) =
c∑
i=1

`i(x)qi(x) + g(`1(x), . . . , `c(x)),

where the `i’s are linear functions, the qi’s are quadratic polynomials and g is a cubic poly-
nomial.

Theorem 6.5 readily follows from Theorem 6.6. Indeed, for any fixing of `1(x), . . . , `c(x)
the function f is reduced to a sum of quadratic polynomials, which is by itself a quadratic
polynomial, and as mentioned above, has DNF⊕ complexity at most O(2n/2). One can then
take the union over all (at most 2c) appropriate fixings of `1(x), . . . , `c(x).

For biased polynomials of higher degrees one can prove the following theorem.

Theorem 6.7. Let f : {0, 1}n → {0, 1} be a degree d polynomial with bias δ. Then, there is
some c = c(d, δ) (independent of n) such that

DNF⊕(f) ≤ 2n−
n1/(d−2)!

ce
+c.

The proof of Theorem 6.7 readily follows by a structural result for biased low degree
polynomials of Kaufman and Lovett [KL08] combined with Theorem 4 in [CT14]. We omit
the details.

7 The Parity Decision Tree Model

As mentioned, the parity decision tree model, defined by Kushilevitz and Mansour [KM93],
has received a significant attention in the last few years [MO09, ZS10, TWXZ13, OST+13,
STV14]. We start this section by proving Theorem 1.7 and then discuss the relation between
the DT⊕ complexity of a function and its DNF⊕ complexity.

Proof of Theorem 1.7. Let g be a function with DT⊕(g) = s ≤ ε ·2n−k such that dist(f, g) =
δ. We want to show that δ ≥ 1/2 − 4ε. Since DT⊕(g) = s, the function g is an indicator
function of the distinct union of s affine subspaces U1, . . . , Us. Let I ⊆ [s] be the set of
indices for which dim(Ui) ≥ k.

Let c = |f−1(1) \ g−1(1)| be the number of ones obtained by f outside ∪iUi. For i ∈ [s],
let ai be the number of ones obtained by f on Ui, and let bi be the number of zeros obtained
by f on Ui. Since f is an affine extractor for dimension k, with bias ε, it holds that for any
i ∈ I,

bias(f |Ui
) =

∣∣∣∣ai − biai + bi

∣∣∣∣ ≤ ε.

Thus, for all i ∈ I,

ai ≤
(

1 + ε

1− ε

)
· bi ≤ (1 + 4ε) · bi,
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and so ∑
i∈I

ai ≤ (1 + 4ε) ·
∑
i∈I

bi ≤ (1 + 4ε) · (δ · 2n − c), (7.1)

where the last inequality follows since each i ∈ [s] contributes bi to the (non-relative) distance
between f and g. Note that for this inequality we also use the disjointness of the Ui’s. Now,
by Equation (7.1) and by our assumption that s ≤ ε · 2n−k, we have that

|f−1(1)| ≤ c+ s · 2k +
∑
i∈I

ai

≤ c+ s · 2k + (1 + 4ε) · (δ · 2n − c)
≤ s · 2k + (1 + 4ε) · δ · 2n

≤ (δ + ε+ 4εδ) · 2n.

On the other hand, f must have bias at most ε on {0, 1}n, and so |f−1(1)| ≥ (1/2− ε/2) ·2n.
Thus,

δ ≥ 1− 3ε

2(1 + 4ε)
≥ 1

2
− 4ε,

as desired.

The relation between DT⊕ and DNF⊕

One can easily see that DNF⊕(f) ≤ DT⊕(f) for any function f , and a natural question is
what can be said in the other direction. Let DNF(f),DT(f) denote the size of the smallest
DNF and smallest decision tree for computing f , respectively. Jukna et al. [JRSW99] gave
an exponential separation between the DNF and DT complexity. Their proof is based on
the observation that DT(f) ≥ ‖f̂‖1, while on the other hand, there is a function with very
large spectral norm that is computable by a small DNF. The Tribes function is one such

example, where the DNF complexity is O(n/ log n) while ‖T̂ribes‖1 ≥ 2Ω(n/ logn). We observe
that the arguments of Jukna et al. also gives an exponential separation between DNF⊕ and
DT⊕ (and in fact even a separation between DNF and DT⊕). This is because one can show
that DT⊕(f) ≥ Ω(‖f̂‖1) (see the exercises of Chapter 4 in O’Donnell book [O’D14]).

It is worth mentioning that proving lower bounds on the DT⊕ complexity of a function
via the spectral norm cannot give bounds better than 2n/2, whereas Theorem 1.7 (and even
Theorem 1.1) yield lower bounds of the form 2n−o(n).

Let CNF(f) denote the size of the smallest CNF for computing f . A result of Ehren-
feucht and Haussler [EH89] states that an exponential separation such as above cannot
occur when the CNF complexity of f is also small. More precisely, it is shown that DT(f) ≤
nO(log2(DNF(f)+CNF(f))) (see also a proof due to Savickỳ in [Juk12], Theorem 14.32). By inspect-
ing the proof, one can verify that the same relation also holds in the analog DNF⊕,CNF⊕
and DT⊕ models. Namely, DT⊕(f) ≤ nO(log2(DNF⊕(f)+CNF⊕(f))). Since the verification is
straightforward, we omit the proof.

We mention one more result in the standard DNF, CNF and DT models that “goes
through” in the analog models with parities. So far we only discussed the size of DNFs,

20



CNFs and decision trees. However, one can also consider the width of DNFs and CNFs and
the depth of a decision tree. For a function f , we denote by C1(f) the least integer w for
which there exists a width w DNF that computes f . One similarly defines C0(f) as the least
integer w for which there exists a width w CNF that computes f . The least integer d for
which there exists a depth d decision tree that computes f is denoted by D(f).

Several recent papers [TWXZ13, OST+13, STV14] have studied the relation between the
analog models with parities and properties of the Fourier spectrum of a function. Here we
only want to point out the following relation. A classical result, that was rediscovered by
several researchers [BI87, Tar89, HH91], states that D(f) ≤ C0(f) · C1(f) (see also Theorem
14.3 in [Juk12]). Again, by inspection one can verify that this result also holds in the analog
model with parities.

8 Open Problems

Average case lower bounds for DNF⊕. In Theorem 1.1 we proved a worst case lower
bound of 2n−n

o(1)
for the DNF⊕ model using affine dispersers. We used affine extractors

to prove average case lower bounds of 2n−o(n) for the weaker DT⊕ model in Theorem 1.7.
It would be interesting to prove average case lower bounds also for the DNF⊕ model. We
believe that proving a 2Ω(n) average case lower bound for this model using affine extractors
is attainable. We note that an average case lower bound of the form 2Ω(

√
n) for the majority

function follows by standard arguments, and this is tight even for DNFs, as was shown by
O’Donnell and Wimmer [OW07].

Affine dispersers and depth 3 Boolean circuits. In this paper we gave explicit lower
bounds for the DNF⊕ model using affine dispersers. We ask what is the least size of a depth
3 Boolean circuit (namely, using only AND,OR and NOT gates) for computing an affine
disperser (or affine extractors) for dimension O(log n)? The best known explicit lower bound
for the latter model is 2Ω(

√
n). One function that gives this bound is the XOR function [H̊as86].

Improving this lower bound is a major open problem in circuit complexity with interesting
consequences [Val83] (see also Chapter 11 in [Juk12]).

It is implicit in [Raz88, Sav95] that a polynomial-size depth 3 circuit of the form XOR ◦
AND ◦ XOR, with top fan-in O(n log n), can compute an affine extractor for dimension
O(log n) (see also an appendix of [CT14] for an explicit statement). Since the XOR function
on m inputs can be computed by depth 3 circuits with size 2O(

√
m), one can replace the XOR

gates in the circuit above, and by collapsing layers, obtain a depth 5 Boolean circuit with
size 2O(

√
n logn) that computes an affine extractor for dimension O(log n). We ask whether

depth 3 Boolean circuits with similar size can do as well?
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A The Inner Product Function is an Affine Extractor

In this section, for completeness, we give two proofs for the following folklore result.

Theorem A.1. Let n ≥ 2 be an even integer and let c ≥ 1 be an integer. Then, the inner
product function IP on n inputs is an affine extractor for dimension k = n/2 + c with bias
ε ≤ 2−c. In particular, IP is an affine disperser for dimension n/2 + 1.

Proof 1. Let U be an affine subspace with dimension k = n/2 + c. In order to prove that IP
is balanced on U , we make the following observation.

Observation A.2. Let f : {0, 1}n → {±1} be a function, and let g : {0, 1}n−1 → {±1} be
obtained by restricting f to some n−1 dimensional affine subspace. Suppose for concreteness
that the affine subspace is {x ∈ {0, 1}n : xn =

∑
j∈J xj + b} for some J ⊆ [n − 1] and
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b ∈ {0, 1}. Then, we may write g as g(x1, . . . , xn−1) = f(x1, . . . , xn−1,
∑

j∈J xj + b), and

hence for any S ⊆ [n− 1] we have ĝ(S) = f̂(S) + (−1)b · f̂((S ∪ {n})∆J).

By applying this observation repeatedly, we conclude that if g is the restriction of f to
the affine subspace U , then each Fourier coefficient of g is a sum/difference of 2n−k Fourier

coefficient of f . In particular, for f = IP, since |ÎP(S)| = −2n/2 for all S ⊆ [n], each Fourier
coefficient of its restriction IP|U is at most 2n−k ·2−n/2 = 2−c in absolute value. In particular,
the bias of IP|U , which is equal to the empty coefficient of the restricted function, is at most

bias(IP|U) = ÎP(∅) ≤ 2−c, as required.

Next we give an alternative proof for Theorem A.1. The proof gives a bound of 2−c+2−n/2

on the bias ε, which is slightly weaker than the bound 2−c stated in Theorem A.1. Still, we
find the proof interesting.

Proof 2. Let U be an affine subspace with dimension k = n/2 + c. We will use the fact that
in the {±1} representation, all Fourier coefficients of IP have absolute value of 2−n/2. Thus,
similarly to the way it was done in the proof of Theorem 1.5, one can show that IP−1(1) is

an ε-biased set with ε = 2n/2−1

|IP−1(1)| . Lemma 6.2 states that for any ε-biased set S and for any

affine subspace U it holds that ∣∣∣∣ |S ∩ U ||S|
− |U |

2n

∣∣∣∣ ≤ ε. (A.1)

Thus, by plugging |U | = 2n/2+c and ε = 2n/2−1

|IP−1(1)| to Equation (A.1) and rearranging we get∣∣∣∣ |IP−1(−1) ∩ U |
|U |

− |IP
−1(−1)|
2n

∣∣∣∣ ≤ ε · |IP
−1(−1)|
|U |

= 2−c−1. (A.2)

Since |IP−1(−1)|/2n = 1/2− 2−n/2−1 it follows that the bias of IP on U is

bias(IP|U) = 2 ·
∣∣∣∣ |IP−1(−1) ∩ U |

|U |
− 1

2

∣∣∣∣ ≤ 2−c + 2−n/2.
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