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Abstract

Non-malleable codes were introduced by Dziembowski, Pietrzak and Wichs [DPW10] as
an elegant generalization of the classical notions of error detection, where the corruption of a
codeword is viewed as a tampering function acting on it. Informally, a non-malleable code with
respect to a family of tampering functions F consists of a randomized encoding function Enc
and a deterministic decoding function Dec such that for any m, Dec(Enc(m)) = m. Further,
for any tampering function f ∈ F and any message m, Dec(f(Enc(m))) is either m or is ε-close
to a distribution Df independent of m, where ε is called the error.

Of particular importance are non-malleable codes in the C-split-state model. In this model,
the codeword is partitioned into C equal sized blocks and the tampering function family consists
of functions (f1, . . . , fC) such that fi acts on the ith block. For C = 1 there cannot exist non-
malleable codes. For C = 2, the best known explicit construction is by Aggarwal, Dodis and

Lovett [ADL14] who achieve rate = Ω(n−6/7) and error = 2−Ω(n−1/7), where n is the block
length of the code.

In our main result, we construct efficient non-malleable codes in the C-split-state model for
C = 10 that achieve constant rate and error = 2−Ω(n). These are the first explicit codes of
constant rate in the C-split-state model for any C = o(n), that do not rely on any unproven
assumptions. We also improve the error in the explicit non-malleable codes constructed in the
bit tampering model by Cheraghchi and Guruswami [CG14b].

Our constructions use an elegant connection found between seedless non-malleable extractors
and non-malleable codes by Cheraghchi and Guruswami [CG14b]. We explicitly construct such
seedless non-malleable extractors for 10 independent sources and deduce our results on non-
malleable codes based on this connection. Our constructions of extractors use encodings and a
new variant of the sum-product theorem.
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1 Introduction

1.1 Non-malleable codes

Error-correcting codes encode a message m into a longer codeword c enabling recovery of m even
after part of c is corrupted. We can view this corruption as a tampering function f acting on
the codeword, where f is from some small allowable family F of tampering functions. The strict
requirement of retrieving the encoded message m imposes restrictions on the kind of tampering
functions that can be handled. Unique decoding is limited by the minimum distance of the code-
word, and various bounds are known in the case of list decoding. Hence, many natural classes of
tampering functions cannot be handled in this framework.

One might hope to achieve a weaker goal of only detecting errors, possibly with high probability.
Cramer et al. [CDF+08] constructed one such class of error-detecting codes, known as Algebraic
Manipulation Detection codes (AMD codes), where the allowable tampering functions consist of
all functions of the form fa(x) = a+ x. However error detection is impossible with respect to the
family of constant functions. This follows since one cannot hope to detect errors against a function
that always outputs some fixed codeword.

Dziembowski, Pietrzak and Wichs [DPW10] introduced non-malleable codes as a natural gen-
eralization of error-detecting codes. Informally, a non-malleable code with respect to a tampering
function family F is equipped with a randomized encoder Enc and a deterministic decoder Dec such
that Dec(Enc(m)) = m and for any tampering function f ∈ F the following holds: for any message
m, Dec(f(Enc(m))) is either the message m or is ε-close (in statistical distance) to a distribution
Df independent of m. The parameter ε is called the error.

Let Fn be the set of all functions on {0, 1}n. Note that there cannot exist a code with block
length n which is non-malleable with respect to Fn. This follows since the tampering function
could then use the function Dec to decode the message m, get a message m′ by flipping all the bits
in m, and use the encoding function to pick any codeword in Enc(m′).

Therefore, it is natural to restrict the size of the family of tampering functions. It follows
from the works in [DPW10], [CG14a] that there exists non-malleable codes with respect to any

tampering function family of size bounded by 22δn with rate close to 1− δ and error 2−Ω(n), for any
constant δ > 0. The bounds obtained in these works are existential, and some progress has been
made since then in giving explicit constructions against useful classes of tampering functions.

Non-malleable codes in the C-split-state model One of the most important families of
tampering functions, both from an application point of view and from theoretical interest, is the
family of tampering functions in the C-split-state model. In this model, each tampering function f
is of the form (f1, . . . , fC) where fi ∈ Fn/C , and for any codeword x = (x1, . . . , xC) ∈ ({0, 1}n/C)C

we define (f1, . . . , fC)(x1, . . . , xC) = (f1(x1), . . . , fC(xC)). Thus each fi independently tampers
a fixed partition of the codeword. The relevance of this model comes from a practical point of
view when a codeword is partitioned and stored in C different locations and different tampering
functions acts independently on each part. Another motivation to study this model comes from the
scenario where a codeword is sent through a channel that corrupts different parts independently.
This suggests that even the case C = n is interesting, but the case when C is independent of n is
particularly important, especially when C is in fact a small integer.

There has been a lot of recent work on constructing explicit and efficient non malleable codes
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in the C-split-state model. Since C = 1 includes all of Fn, the best one can hope for is C = 2. A
Monte-Carlo construction of non-malleable codes in this model was given in the original paper on
non-malleable codes [DPW10] for C = 2 and then improved in [CG14a]. However, both of these
constructions are inefficient. For C = 2, these Monte-Carlo constructions imply existence of codes
of rate close to 1

2 and corresponds to the hardest case. On the other extreme, when C = n, it
corresponds to the case of bit tampering where each function fi acts independently on a particular
bit of the codeword.

The best known explicit construction of non-malleable codes in the C-split-state model for
the case when C = 2 is due to the elegant work of Aggarwal, Dodis and Lovett [ADL14], who

construct a code with rate = Ω(n−6/7) and error = 2−Ω(n−1/7). Their proof of non-malleability
uses sophisticated methods from additive combinatorics. The drawback of this construction is the
polynomially small rate of the code.

Our main result on non-malleable codes is for the model of C-split-state adversaries when
C = 10. We give explicit constructions of non-malleable codes in this model with rate = Ω(1) and
error = 2−Ω(n). In particular, we have the following result.

Theorem 1. For all n > 0 there exists an explicit construction of efficient non-malleable codes on
{0, 1}n in the 10-split-state model with constant rate and error = 2−Ω(n).

We note that the best known non-malleable code in the O(1)-split-state prior to this work was
the non-malleable code in the 2-split-state model from [ADL14], which as mentioned above, has

rate Ω(n−6/7) and error is 2−Ω(n−1/7). Thus we give the first explicit construction of constant rate
non-malleable codes in the split-state model for a fixed integer C that do not rely on any unproven
assumptions; in fact, this is the first for C = o(n). We further obtain optimal error.

For the case of bit tampering (C = n), the best known explicit constructions of non-malleable

codes were given in the work of [CG14b] with rate = (1−o(1)) and error = 2−Ω(n−1/7). We improve
upon the error and obtain the following result.

Theorem 2. For all n > 0 there exists an explicit construction of efficient non-malleable codes on
{0, 1}n in the bit tampering model with rate = (1− o(1)) and error = 2−Ω(n).

We obtain Theorem 2 from the following observation. The construction against bit tampering
in [CG14b] uses a possibly sub-optimal rate non-malleable code against bit-tampering in its con-
struction and shows a way to improve the rate to (1 − o(1)) while maintaining the error bound.
The sub-optimal rate non-malleable code used was the code from [ADL14] which resulted in the

sub-optimal error bound of 2−Ω(n−1/7). By plugging in our non-malleable code construction from
Theorem 1 as the sub-optimal non-malleable code in the construction of [CG14b], we deduce The-
orem 2.

Previous Work: Apart from the previous work stated above, there has been other work in con-
structing non-malleable codes. However they did not improve the parameters achieved in [ADL14]
in the C-split model for C = o(n). Before the work of [ADL14], the only unconditional efficient
non-malleable code in the C-split-state model, for C = o(n), was by Dziembowski, Kazana, and
Obremski [DKO13]. However, they could encode only 1 bit messages.

There were also some conditional results. Liu and Lysyanskaya [LL12] constructed efficient
constant rate non-malleable codes in the split-state model against computationally bounded adver-
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saries. Their proof of non-malleability relies on the existence of robust public-key cryptosystems
and existence of robust non-interactive zero-knowledge proof systems for some language in NP. They
also use the common reference string (CRS) assumption which roughly states that one has access
to an untampered random string. The recent work of Faust et al. [FMVW13] constructed almost
optimal non-malleable codes against the class of polynomial sized circuits in the CRS framework.
[CCP12], [CCFP11], [CKM11], and [FMNV14] considered non-malleable codes in other models.

Independent Work: Independently, Aggarwal, Dodis, Kazana and and Obremski [ADKO14]
constructed non-malleable codes in the 2-split model with rate Ω(n−1/2). Furthermore, they gave
a general reduction from 2 parts to a constant number of parts, incurring only a constant overhead
in the rate, as long as the non-malleable extractor is strong, as ours is. As a result, after seeing a
preliminary version of our work, they applied their reduction to our result to construct constant-rate
non-malleable codes in the 2-split model.

1.2 Non-malleable extractors

We prove Theorem 1 by constructing an object called seedless non-malleable extractor, which
is interesting in its own right. To motivate this, recall that the area of randomness extraction
addresses the problem of efficiently generating nearly uniformly random bits from weak sources.
The most widely used model of a weak source X measures the randomness in X in terms of its
min-entropy H∞(X). We say that X has min-entropy k if the maximum probability that X places
on any point in its support is 2−k. Unfortunately it is not possible to extract even a single bit from
sources with min-entropy n− 1. To overcome this, the notion of seeded extractors was considered
in [NZ93] where one is allowed to extract from source X using a short uniformly random string Y .
We now define strong seeded extractors, using ◦ to denote concatenation and |D1 −D2| to denote
the statistical distance between distributions D1 and D2 (see Section 2).

Definition 1.1. A function SExt : {0, 1}n × {0, 1}d → {0, 1}m is a (k, ε)-strong seeded extractor
if the following holds : If X is a source on {0, 1}n such that H∞(X) ≥ k and Y is a uniformly
random string on {0, 1}d independent of X, then

|SExt(X,Y ) ◦ Y − Um ◦ Y | < ε

From a series of works ending with [LRVW03],[GUV09],[DKSS09], we now have explicit con-
structions of strong seeded extractors for k as small as O(log n), which is optimal up to a constant
factor.

A generalization of strong seeded extractors called seeded non-malleable extractors was intro-
duced in the context of privacy amplification by Dodis and Wichs in [DW09]. Dodis and Wichs
showed the existence of such extractors, and subsequently explicit constructions of seeded non-
malleable extractors were given in the recent works of [DLWZ11], [CRS12], [Li12a] and [Li12b].
Recently Li [Li13] found applications of non-malleable extractors in constructing extractors for
independent sources. To define non-malleable extractors, we need the following definition.

Definition 1.2. For any function f : S → S, f has a fixed point at s ∈ S if f(s) = s. We say
f has no fixed points in T ⊆ S, if f(t) 6= t for all t ∈ T . f has no fixed points if f(s) 6= s for all
s ∈ S.
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We will need non-malleable extractors even if the seed is weak (not uniformly random), as in
the following definition.

Definition 1.3. A function snmExt : {0, 1}n × {0, 1}d → {0, 1}m is a (k1, k2, ε)-seeded non-
malleable extractor if the following holds : If X and Y are independent sources on {0, 1}n and
{0, 1}d respectively such that H∞(X) ≥ k1 and H∞(Y ) ≥ k2 and f : {0, 1}n → {0, 1}n has no fixed
points, then

|snmExt(X,Y ) ◦ snmExt(X, f(Y )) ◦ Y − Um ◦ snmExt(X, f(Y )) ◦ Y | < ε

In the above definition f is called a tampering function.

In a recent work, Cheraghchi and Guruswami [CG14b] raised the natural question of construct-
ing non-malleable extractors when we allow both X and Y to be tampered independently. They
asked, roughly :

Construct a polytime function nmExt : ({0, 1}n)2 → {0, 1}m such that the following holds :
If X,Y are independent sources on {0, 1}n such that H∞(X), H∞(Y ) ≥ k and f, g are arbitrary
tampering functions on {0, 1}n such that at least one of f, g has no fixed points, then

|nmExt(X,Y ) ◦ nmExt(f(X), g(Y ))− Um ◦ nmExt(f(X), g(Y ))| < ε

Note that if both f and g are the identity function, then obviously there cannot be any such
function nmExt. To avoid such technicalities, we have the restriction that at least one of f or g
has no fixed points. It turns out that such functions, called seedless non-malleable extractors, exist
for k as low as O(log n) and ε = 2−Ω(k) with m = Ω(k). This was shown in [CG14b] using clever
techniques from the probabilistic method. However giving explicit constructions of such extractors
turns out to be a very hard problem, even for k = n, and there are still no known constructions.

It appears nontrivial to extend existing constructions of seeded non-malleable extractors when
both sources are tampered. For example for sources on Fp, the function χ(x + y), where χ is the
quadratic character1, was shown to be a seeded non-malleable extractor [DLWZ11]. However it
fails to work against tampering functions f(x) = x+ 1 and g(y) = y − 1, even for full entropy.

In this paper we make progress on a relaxed version of this problem where we use a constant
number of independent sources, each with min-entropy k, instead of just 2 sources. We note that
prior to this work, there were no known results in this setting even for k = n.

We now give an informal definition of seedless non-malleable extractors for independent sources.
We refer the reader to Section 3 for formal definitions.

Definition 1.4 (informal). A function snmExt : ({0, 1}n)C → {0, 1}m is a (k, ε)-seedless non-
malleable extractor for C independent sources if the following holds: If X1, . . . , XC are independent
sources on {0, 1}n such that H∞(Xi) ≥ k for all i = 1, . . . , C and f1, . . . , fC are arbitrary tampering
functions such that there exists an fi with no fixed points, then

|nmExt(X1, . . . , XC) ◦ nmExt(f1(X1), . . . , fC(XC))− Um ◦ nmExt(f1(X1), . . . , fC(XC)))| < ε

Our main result on non-malleable extractors is the following theorem.

1for any prime field Fp, the quadratic character is given by χ(x) = x
p−1
2
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Theorem 3. For some δ > 0 there exists a polynomial time construction of a (k, ε)-seedless non-
malleable extractor for 10 independent sources nmExt : ({0, 1}n)10 → {0, 1}m with k = (1 − δ)n,
ε = 2−Ω(n) and m = Ω(k).

Theorem 1 now follows from an elegant reduction discovered in [CG14b], which shows how
to use explicit constructions of seedless non-malleable extractors to construct non-malleable codes
with an efficient decoder. This reduction however does not guarantee an efficient encoder for the
constructed codes. Developing an efficient encoder for the non-malleable codes, which follow from
the extractor construction in Theorem 3, requires some additional work. We build an efficient
encoder using algorithms for almost uniformly sampling from algebraic varieties combined with
the method of rejection sampling. The proof of correctness of the encoding algorithm relies on
estimates on the number of rational points on algebraic varieties.

1.3 Organization

We discuss preliminaries in Section 2, and formally define non-malleable codes and seedless non-
malleable extractors in Section 3. We recall the connection between non-malleable codes and
seedless non-malleable extractors from [CG14b] and deduce Theorem 1 assuming Theorem 3 and
Theorem 8.7 in Section 4. Our main technical contribution is the proof of Theorem 3. We use
Section 5 to sketch the main ideas in proving Theorem 3. Section 5 can be skipped without any
loss of continuation. We present the formal proof of Theorem 3 in Section 6. We require a sum-
product estimate over F4

p for proving Theorem 3. We prove this in Section 7. The proof of this
estimate closely follows the arguments of a sum-product theorem over F2

p by Bourgain [Bou05a].
We develop an efficient encoder for the constructed non-malleable codes in the 10-split-state model
in Section 8. In Appendix B, we prove an additional property of the constructed seedless non-
malleable extractor which might be useful in other explicit constructions.

2 Preliminaries

2.1 Notations

We use capital letters to denote distributions and their support. We use corresponding small letters
to denote a sample from the source.
We use [l] to denote the set {1, 2, . . . , l}.
We use Um to denote the uniform distribution over {0, 1}m.
For any set S, we use |S| to denote its size.
Fp denotes the prime finite field with p elements.
For a vector v ∈ Fnp , we use ΠS(v) to denote the projection of v to the coordinates indexed by the
elements in S ⊂ [n]. We extend the action of ΠS to sets in the obvious manner. We use Πi for
Π{i}.
For any set S, we use s ∼ S to denote a uniform draw from S.
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2.2 Min entropy and flat distributions

Definition 2.1. For a source X we define min-entropy of X as :

H∞(X) = min
s∈support(X)

{
1

log(Pr[X = s])

}
Definition 2.2. We call a distribution (source) D to be flat if it is uniform over a set S.

Definition 2.3. A (n, k)-source is a distribution on {0, 1}n with min-entropy k.

It is a well known fact that any (n, k)-source is a convex combination of flat sources supported
on sets of size 2k.

2.3 Statistical distance, convex combination of distributions and probability
lemmas

Definition 2.4. Let D1 and D2 be two distributions on a set S. We define the statistical distance
between D1 and D2 as :

|D1 −D2| =
1

2

∑
s∈S
|Pr[D1 = u]− Pr[D2 = u]|

We say that a distribution D1 is ε-close to another distribution D2 if |D1 −D2| ≤ ε.

Definition 2.5. The collision probability of a distribution D is defined as : cp(D) = Pr[D = D′],
where D′ is independent and identicaly distributed as D.

For the sake of convenience, we make the following definition.

Definition 2.6. For a set A, define cp(A) to be the collision probability of the uniform distribution
on A.

The following lemma was proved in [BIW06].

Lemma 2.7. Let D be a distribution with cp(D) = 1
KL . Then D is L−1/2-close to a distribution

with min-entropy at least logK.

Definition 2.8. We say that a distribution D on a set S is a convex combination of distributions
D1, . . . , Dl on S if there exists non-negative constants (called weights) w1, . . . , wl with

∑l
i=1wi = 1

such that Pr[D = s] =
∑l

i=1wi · Pr[Di = s] for all s ∈ S. We use the notation D =
∑l

i=1wi ·Di

to denote the fact that D is a convex combination of the distributions D1, . . . , Dl with weights
w1, . . . , wl.

Definition 2.9. For random variables X and Y , we use X|Y to denote a random variable with
distribution : Pr[(X|Y ) = x] =

∑
y∈support(Y ) Pr[Y = y] · Pr[X = x|Y = y].

We note the following lemma which follows from the above definitions.

Lemma 2.10. Let X and Y be distributions on a set S such that X =
∑l

i=1wi · Xi and Y =∑l
i=1wi · Yi. Then |X − Y | ≤

∑
iwi · |Xi − Yi|.
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The following result follows from a lemma proved in [MW97].

Corollary 2.11. Let X,Y be random variables with supports S, T ⊆ V such that (X,Y ) is ε-close
to a distribution with min-entropy k. Further suppose that the random variable Y can take at most
l values. Then

Pr
y∼Y

[
(X|Y = y) is 2ε1/2-close to a source with

min-entropy k − log l − log

(
1

ε

)]
≥ 1− 2ε1/2

2.4 Some results from additive combinatorics

We recall some well known results from additive combinatorics. We refer the reader to the excellent
book by Tao and Vu [TV06] for more details.

Definition 2.12. For vectors v, w ∈ Fnp , where v = (v1, . . . , vn) and w = (w1, . . . , wn), we define

v � w = (v1w1, . . . , vnwn)

Definition 2.13. For subsets A,B ⊆ Fnp , define the sets :

A+B = {a+ b : a ∈ A, b ∈ B}

A�B = {a� b : a ∈ A, b ∈ B}

Observation 2.14. (F∗p)n is a group under the operation �.

Lemma 2.15 (Plünnecke-Ruzsa). Let A,B be finite subsets in an additive group G. Then

|A+A| ≤ |A+B|4

|A||B|2

Lemma 2.16 (Plünnecke-Ruzsa). Let A be a finite subset of any additive group G. Then

|A−A| ≤
(
|A+A|
|A|

)3

|A|

Lemma 2.17 (Balog-Szemerédi-Gowers lemma [BS94],[Gow98]). Let A,B be finite subsets of an
additive group G and let |A|1−ρ1 ≤ |B| ≤ |A|1+ρ1. If cp(A + B) ≥ |A|−(1+ρ2−ρ1), then there exists
subsets A′ ⊆ A, B′ ⊆ B such that |A′| ≥ |A|1−10ρ2, |B′| ≥ |B|1−10ρ2, and |A′ +B′| ≤ |A|1+ρ1+10ρ2.

2.5 Some known extractor constructions

We recall some known results on multi-source extractors and non-malleable extractors.

The following result on extracting from 2 independent sources is well known and a proof can
be found in [Rao07].
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Theorem 2.18. For all n > 0 and any constant δ there exists an explicit function 2SExt : {0,
1}n × {0, 1}n → {0, 1}m, m = Ω(δn), such that if X, Y are independent sources with min-entropy
k1, k2 respectively satisfying k1 + k2 ≥ (1 + δ)n, then

|2SExt(X,Y ) ◦ X − Um ◦ X| ≤ 2−Ω(n),

|2SExt(X,Y ) ◦ Y − Um ◦ Y | ≤ 2−Ω(n)

We recall a 3-source extractor constructed in [Rao06].

Theorem 2.19 ([Rao06]). For every n and and constant δ > 0 there exists an explicit function
3ext : {0, 1}n → {0, 1}m, m = Ω(n), such that if X1, X2, X3 are independent (n, δn) sources then

|3Ext(X1, X2, X3)− Um| < 2−Ω(n)

Explicit constructions of seeded non-malleable extractors follow from works of [DLWZ11] and
[Li12b]. The output length in [DLWZ11] relies on an unproven but widely believed conjecture on
primes while the output length in [Li12b] is unconditional. Further, either of the non-malleable
extractors from [DLWZ11] or [Li12b] is also a strong 2-source extractor.

Theorem 2.20 ([DLWZ11],[Li12b]). Let δ > 0 be a constant. For all n, there exists an explicit
function snmExt : {0, 1}n×{0, 1}n → {0, 1}m, m = Ω(n), satisfying: Suppose X,Y are independent
sources on {0, 1}n with min-entropy k1, k2 respectively.

1. If (k1 + k2) ≥ (1 + δ)n, then

|snmExt(X,Y ) ◦ X − Um ◦ X| < 2−Ω(n),

|snmExt(X,Y ) ◦ Y − Um ◦ Y | < 2−Ω(n)

2. If k1, k2 > (1− δ)n and f is any tampering function with no fixed points, then

|snmExt(X,Y ) ◦ snmExt(X, f(Y ))

−Um ◦ snmExt(X, f(Y ))| < 2−Ω(n)

3 Non-malleable codes and Seedless non-malleable extractors

3.1 Non-malleable codes

We follow the presentation in [DPW10] and define non-malleable codes.

Definition 3.1 (Coding schemes). Let Enc : {0, 1}k → {0, 1}n and Dec : {0, 1}n → {0, 1}k ∪ {⊥}
be functions such that Enc is a randomized function (i.e. it has access to a private randomness)
and Dec is a deterministic function. We say that (Enc,Dec) is a coding scheme with block length n
and message length k if for all s ∈ {0, 1}k, Pr[Dec(Enc(s)) = s] = 1 (the probability is over the
randomness in Enc).

Definition 3.2 (Tampering functions). For any n > 0, let Fn denote the set of all functions
f : {0, 1}n → {0, 1}n. We call any subset F ⊆ Fn to be a family of tampering functions.

8



We do not specify the domain of tampering functions when it is implied from the context.

Definition 3.3. For any function f : S → S and T ⊆ S, the maximum pre-image size of f in T
is given by maxt∈T |f−1(t)|. The maximum pre-image size of f is maxs∈S |f−1(s)|.

We now define non-malleable codes with respect to a family of tampering functions. We need
to define the following function.

copy(x, y) =

{
x if x 6= same?

y if x = same?

Definition 3.4 (Non-malleable codes). A coding scheme (Enc,Dec) with block length n and message
length k is a non-malleable code with respect to a family of tampering functions F ⊂ Fn and error ε
if for every f ∈ F there exists a random variable Df on {0, 1}k ∪ {same?} which is independent of
the randomness in Enc such that for all messages s ∈ {0, 1}k, it holds that

|Dec(f(Enc(s)))− copy(Df , s)| ≤ ε

The rate of a non-malleable code C is given by k
n .

As an easy example, suppose the tampering function family at hand is Fconstant, consisting of
all constant functions, fc(x) = c for all x. We can use any coding scheme and for any tampering
function fc ∈ Fconstant, we may take Dfc to be Dec(c) with probability 1.

3.1.1 Non-malleable codes in the C-split-state model

We formally define non-malleable codes in the C-split sate model.

Definition 3.5. Let Fn,C = {(f1, . . . , fC) : fi ∈ Fn/C for all i ∈ [C]}, where for any x = (x1, . . . ,

xC) ∈ ({0, 1}n/C)C we define (f1, . . . , fC)(x) = (f1(x1), . . . , fC(xC)). Non-malleable codes in the
C-split-state model with block length n are non-malleable codes with respect to Fn,C .

We call Fn,C to be the family of tampering functions in the C-split-state model.

When C = n, note that this corresponds to the case of bit tampering. Also C ≥ 2, since as
discussed before, C = 1 is impossible.

3.2 Seedless non-malleable extractors

Seedless non-malleable extractors were first introduced by Cheraghchi and Guruswami in [CG14b].
We present a modified definition here.

Definition 3.6 (Seedless non-malleable extractors). A function nmExt : {0, 1}n → {0, 1}m is
said to be a seedless non-malleable extractor with respect to a class of sources X and a family of
tampering functions F with error ε if for every distribution X ∈ X and every tampering function
f ∈ F , there exists a random variable DX,f on {0, 1}m ∪ {same?} which is independent of the
source X such that

|nmExt(X) ◦ nmExt(f(X))− Um ◦ copy(DX,f , Um)| ≤ ε

9



where both Um’s refer to the same uniform m-bit string.

For example suppose nmExt is a deterministic extractor for the class of sources X . If f(x) = x
is the identity function, then we may take DX,f = same? with probability 1.

We now define a special case of the above definition which is of particular interest to us.

Definition 3.7 (Seedless non-malleable multi-source extractors). For any constant C, we say that
nmExt : ({0, 1}n)C → {0, 1}m is a seedless non-malleable multi-source extractor for C independent
sources with min-entropy k and error ε if whenever X1, X2, . . . , XC are independent (n, k)-sources
and f1, f2 . . . , fC are arbitrary tampering functions in Fn, there exists random variable Df on
{0, 1}m ∪ {same?} which is independent of the sources X1, . . . , XC such that

|nmExt(X1, . . . , XC) ◦ nmExt(f1(X1), . . . fl(XC))− Um ◦ copy(Df , Um)| < ε

where both Um’s refer to the same uniform m-bit string.

4 Non-malleable codes via Seedless non-malleable extractors

In this section we prove Theorem 1 assuming Theorem 3 and Theorem 8.7. The work by Cheraghchi
and Guruswami [CG14b] shows a way to construct non-malleable codes with an efficient decoder
from explicit constructions of seedless non-malleable extractors. We use this connection to construct
non-malleable codes. An efficient encoder for the resulting non-malleable codes is constructed in
Section 8.

The following theorem follows from the work in [CG14b]. We include a proof for the sake of
completeness.

Theorem 4.1. For any constant C, let nmExt : ({0, 1}n)C → {0, 1}m, m = Ω(n) be a polynomial
time computable seedless non-malleable extractor for C-independent sources for min-entropy n with
error ε = 2−Ω(n). Then there exists an explicit non-malleable code with an efficient decoder in the
C-split-state model with block length = Cn, rate = Ω(1) and error = 2−Ω(n).

Proof. Let ε = 2−2δn for some δ > 0. If m > δn, we can modify nmExt such that its output is of
length δn (without increasing the error). Thus, without loss of generality we can assume m ≤ δn.

We now define the non-malleable code in the following way: For any message s ∈ {0, 1}m, the
encoder Enc(s) outputs a uniformly random string from the set nmExt−1(s) ⊂ {0, 1}Cn. For any
codeword c ∈ {0, 1}Cn, the decoder Dec outputs nmExt(c). Thus, for any message s, Dec(Enc(s)) =
s. We now prove that the code is non-malleable.

Let X1, . . . , XC be independent, uniformly random sources on {0, 1}n. Let f1, . . . , fC be arbi-
trary tampering functions on {0, 1}n. From the definition of non-malleable extractors, we know
that there exists an independent random variable Df such that

|nmExt(X1, . . . , XC) ◦ nmExt(f1(X1), . . . , fC(XC))− Um ◦ copy(Df , Um)| < ε (1)

where both Um’s refer to the same string.

Let S be a distribution which is uniformly random on {0, 1}m. For c ∈ {0, 1}Cn, let f(c) denote
the tampered string in {0, 1}Cn which is obtained by partitioning c into blocks of length n and the
ith block of n bits is tampered by fi.

10



We note that,

|Enc(S)− UCn| = |nmExt−1(S)− UCn| < |(nmExt−1) ◦ (nmExt(UCn))− UCn|+ ε = ε

Using this in (1), we have

|Dec(Enc(S)) ◦Dec(Enc(f(S))− Um ◦ copy(Df , Um)| < 2ε

Therefore, for any s ∈ {0, 1}m,

|Dec(Enc(s)) ◦Dec(Enc(f(s))− s ◦ copy(Df , s)| <
2ε

Pr[S = s]
= 2m+1ε

Hence,
|Dec(Enc(f(s))− copy(Df , s)| < 2−δn/2

This shows that the constructed code is indeed non-malleable. The efficiency of the decoder follows
from the fact that nmExt is efficiently computable.

Thus composing Theorem 3 with Theorem 4.1 gives us an explicit construction of non-malleable
codes in the 10 split-state model with an efficient decoder. An efficient encoder for this non-
malleable code follows from Theorem 8.7. This proves Theorem 1.

5 Proof outline of Theorem 3

In this section we sketch the main ideas involved in proving Theorem 3. This section can be skipped
without any loss of continuation. The formal proof of Theorem 3 is presented in Section 6.

Definition 5.1. We call a set A satisfying the conclusion of Theorem 6.2 to be sum-product friendly.
We call a flat distribution sum-product friendly if its support is sum-product friendly.

Let X1, . . . , X8 be independent (n, (1− δ)n)-sources and X9 be an independent (2n, 2(1− δ)n)-
source. We view each Xi, i ∈ [8], as a source on Fp for some prime p, 2n < p < 2n+1.

5.1 A first attempt

For simplicity, assume that we are dealing with tampering functions with no fixed points. Consider
the sources (Xi, fi(Xi)) on F2

p with min-entropy (1−δ) log p. Following ideas of constructing multi-
source extractors from the sum-product theorem (Theorem 6.1) in [BIW06], suppose we have that
the source (X1 ·X2 +X3, f1(X1)·f2(X2)+f3(X3)) expands (in a statistical sense) and is p−Ω(1)-close
to a source with min-entropy (1 + δ) log p.

Since the maximum min-entropy in the source f1(X1) · f2(X2) + f3(X3) is log p, we are in good
shape. In particular by Corollary 2.11, (X1 ·X2 +X3)|(f1(X1) · f2(X2) + f3(X3)) is p−Ω(1)-close to
a source with min-entropy Ω(δ log p) with probability 1−p−Ω(1). Following this, we can thus group
the sources in blocks of 3 and output

3Ext(X1 ·X2 +X3, X4 ·X5 +X6, X7 ·X8 +X9)

where 3Ext is the extractor from Theorem 2.19.
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5.2 A simple counterexample to the approach above

It turns out that the source (X1 · X2 + X3, f1(X1) · f2(X2) + f3(X3)) need not cross the log p
min-entropy barrier. As an easy counter example consider the tampering functions f1(x) = 2x,
f2(x) = 2x and f3(x) = 4x (where we view the tampering functions as functions from Fp to Fp).
We see that

(X1 ·X2 +X3, f1(X1) · f2(X2) + f3(X3)) = (Y, 4Y )

for some distribution Y on Fp. Thus the min-entropy expansion step in our attempted construction
fails.

5.3 The actual construction

The high level idea is to make the approach of our first attempt work by characterizing all counterex-
amples to expansion and then using suitable encodings of the sources to avoid such counterexamples.
We can ensure expansion from encodings under certain assumptions on the maximum pre-image
size and number of fixed points of the tampering functions. We combine this with other extractor
ideas to build seedless non-malleable multi-source extractors. We note that the idea of encoding
sources was also used by Bourgain [Bou05b] for constructing extractors for 2 independent sources.

We now present the main steps involved in our construction. We assume n ≥ n0 for some
constant n0 (if n < n0, we can do a constant time brute-force search for optimal extractors).

• We view each (n, (1 − δ)n)-source Xi, i ∈ [8], as a source on Fp, 2n < p < 2n+1. We encode
each xi as enc(xi) = (xi, q(xi)) for some suitable q() to be fixed later. Define the source

Xf,i,j = (enc(Xi) + enc(Xj), enc(fi(Xi)) + enc(fj(Xj)))

Note that Xf,i,j is a source on F4
p.

We find a suitable encoding such that the following claim holds.

Claim 5.2 (informal). Xf,1,2 �Xf,3,4 +Xf,5,6 �Xf,7,8 is p−Ω(1)-close to a source with min-
entropy (2 + 20δ) log p under the assumption that at least one of the fi’s has no fixed points
and the maximum pre-image size of each of the fi’s is bounded.

• To find a good encoding enc, we first derive a sum-product estimate over F4
p in Theorem 6.2

which characterizes sets that do not expand. We roughly show that for a set A ⊂ F4
p of size

p2−δ such that Π{1,2}(A),Π{3,4}(A) > p1+δ′ for δ′ >> δ and |A ∩ (F∗p)4| > 1
2 |A|, we have

|A+A|+ |A�A| > p2+10δ unless A has a large intersection with a 2-dimensional plane of a
certain form in F4

p.

The sum-product estimate is proved in Section 7. It is obtained by closely following the
proof of a sum product estimate over F2

p obtained by Bourgain in [Bou05a] and extending the
arguments to F4

p.

• The idea to prove Claim 5.2 is to adapt the machinery developed in [BIW06] for proving such
expansion statements about min-entropy to a more general setting. We point out the key
differences from [BIW06] and our contribution in making the proof work.
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1. The sources Xf,i,j are not flat sources. We show that each such Xf,i,j is close to a
convex combination of a constant number of flat sources. Since not all sets in F4

p are
sum-product friendly, we keep track of the supports of these flat sources.

2. Our key contribution here is to show that for the choice of enc(x) = (x, x4 + x2 + x),
the flat sources corresponding to Xf,i,j are sum-product friendly if at least one of fi or
fj has no fixed points and the maximum pre-image size of fi and fj is bounded.

3. Thus we are dealing with convex combinations of distributions of the form A�B+C�D
where A,B,C,D are flat sources on F4

p with the guarantee that at least one of the flat
sources is sum-product friendly. We show that the proof technique of [BIW06] goes
through even with this weaker guarantee.

• Define the following function.

ext1(x1, . . . , x8) = (enc(x1)+enc(x2))�(enc(x3)+enc(x4))+(enc(x5)+enc(x6))�(enc(x7)+enc(x8))

We use Claim 5.2 and Corollary 2.11 to conclude the following.

Claim 5.3 (informal). ext1(X1, . . . , X8)|ext1(f1(X1), . . . , f8(X8)) is p−Ω(1)-close to a source
with min-entropy 10δ log p with probability 1−p−Ω(1) assuming that none of the fi’s have large
maximum pre-image size and at least one of the fi’s have no fixed points.

• We next prove that the requirement on pre-image size of the tampering functions in Claim
5.3 can be removed.

Claim 5.4 (informal). ext1(X1, . . . , X8)|ext1(f1(X1), . . . , f8(X8)) is p−Ω(1)-close to a source
with min-entropy 10δ log p with probability 1 − p−Ω(1) assuming that at least one of the fi’s
have no fixed points.

(We note that Claim 5.2 may not hold without the restriction on maximum pre-image size of
the fi’s and hence we use some new observations for proving Claim 5.4)

• To motivate our final construction, we describe an extractor ext2 in this step which we don’t
actually use in our construction. The formal proofs of the claims made in this step are not
included in this paper.

Let SExt be the strong 2-source extractor from Theorem 2.18.

Let ext2 : ({0, 1}n)8 × {0, 1}2n → {0, 1}m, m = Ω(n), be defined as:

ext2(x1, . . . , x9) = SExt(ext1(x1, . . . , x8), x9)

The following result follows from Claim 5.4.

Claim 5.5 (informal). Let X1, . . . , X8 be independent (n, (1 − δ)n)-sources and X9 be an
independent (2n, 2(1−δ)n)-source. Then ext2(X1, . . . , X9)|ext2(f1(X1), . . . , f9(X9)) is p−Ω(1)-
close to Um with probability 1 − p−Ω(1) if there exists some i ∈ [8] such that fi has no fixed
points.
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The proof of the above claim follows from the following observations. Define the random
variable W = ext1(X1, . . . , X8) and V = ext1(f1(X1), . . . , f8(X8)). We know by Claim 5.4
that for most fixings of V = v, W is p−Ω(1)-close to a source with min-entropy 10δ log p =
5δ(2n). Since SExt is an extractor that for 2 independent sources on {0, 1}2n with min-entropy
k1, k2 satisfying k1 + k2 ≥ (2 + δ)n, by Theorem 2.18 we have

|SExt(W,X9) ◦ V ◦ X9 − Um ◦ V ◦ X9| < 2−Ω(n)

The proof of Claim 5.5 now follows.

• However, ext2 cannot be the required non-malleable extractor in Theorem 3. In particular
when for all i ∈ [8], fi is the identity function and f9 is any arbitrary tampering function
with no fixed points, ext2 does not work. Instead we replace SExt with snmExt and present
our final construction.

Let nmExt : ({0, 1}n)8 × {0, 1}2n → {0, 1}m, m = Ω(n), be defined as:

nmExt(x1, . . . , x9) = snmExt(ext1(x1, . . . , x8), x9)

where snmExt is the seeded non-malleable extractor from Theorem 2.20. We prove the
following claim.

Claim 5.6 (informal). Let X1, . . . , X8 be independent (n, (1 − δ)n)-sources and X9 be an
independent (2n, 2(1 − δ)n)-source. Then nmExt(X1, . . . , X9)|nmExt(f1(X1), . . . , f9(X9)) is
p−Ω(1)-close to Um with probability 1−p−Ω(1) when at least one of the fi’s have no fixed points.

For an easier presentation of the main ideas, we outline the proof of the above claim in a
simpler setting where each fi is either the identity function or has no fixed points and at least
one of the fi’s is not the identity function.

The following cases arise depending on the fi’s.

1. Suppose there is some j ∈ [8] such that fj has no fixed points. The conclusion in this
case follows from Claim 5.5.

2. Now suppose for all j ∈ [8], fj is the identity function. Thus f9 has no fixed points.

Set W to be the random variable ext1(X1, . . . , X8).

We show that W is p−Ω(1)-close to a source Z with min-entropy 2(1−2δ)n. Note that Z
and X9I(9) are independent sources on {0, 1}2n, each with min-entropy rate > (1 − 2δ)

and f I9 has no fixed points. Thus by Theorem 2.20, we have

|snmExt(Z,X9) ◦ snmExt(Z, f9(X9))− Um ◦ snmExt(Z, f9(X9))| < 2−Ω(n)

This concludes the proof of Claim 5.6.

We now summarize the proof of Theorem 3.

• Let Si denote the support of each (flat) independent source Xi. We partition each Si into
Si0 and Si1 such that fi(xi0) = xi0 for all xi0 ∈ Si0 and fi has no fixed points in Si1. Let Xi0

and Xi1 be flat distributions supported on Si0 and Si1 respectively.

For any 0-1 vector I, let I(i) denote the i’th entry in I. Let wI =
∏9
i=1

|SiI(i)|
|Si| for I ∈ {0, 1}9.

We use Claim 5.6 to prove the following.
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Claim 5.7 (informal). Let I ∈ {0, 1}9 \ {~0}. Then

wI · |nmExt(X1I(1), . . . , X9I(9)) ◦ nmExt(f1(X1I(1)), . . . , f9(X9I(9)))−

Um ◦ nmExt(f1(X1I(1)), . . . , f9(X9I(9)))| < 2−Ω(n)

We also prove that nmExt is a multi-source extractor.

Claim 5.8 (informal). Let Y1, . . . , Y8 be independent (n, (1 − 2δ)n)-sources and Y9 an inde-
pendent (2n, 2(1− 2δ)n)-source . Then

|nmExt(Y1, . . . , Y9)− Um| < 2−Ω(n)

• Define the random variable Df as:

Df = w~0 · {same
?}+

∑
I∈{0,1}9\{~0}

wI · nmExt(f1(X ′1I(1)), . . . , f9(X ′9I(9)))

where for each i ∈ [9] and I ∈ {0, 1}9, X ′iI(i) is identically distributed asXiI(i) and independent
of X1, . . . , X9.

Recall that we need to prove :

|nmExt(X1, . . . , X9) ◦ nmExt(f1(X1), . . . , f9(X9)) − Um ◦ copy(Df , Um)| < 2−Ω(n) (2)

We have,

|nmExt(X1, . . . , X9) ◦ nmExt(f1(X1), . . . , f9(X9)) − Um ◦ copy(Df , Um)|

≤ (∗) +
∑

I∈{0,1}9\{~0}

wI · |nmExt(X1I(1), . . . , X9I(9)) ◦ nmExt(f1(X1I(1)), . . . , f9(X9I(9)))

−Um ◦ nmExt(f1(X1I(1)), . . . , f9(X9I(9))| (3)

where,

(∗) = w~0 · |nmExt(X10, . . . , X90) ◦ nmExt(f1(X10), . . . , f9(X90))− copy(same?, Um) ◦ Um|
(4)

For i ∈ [9], the support of Xi0 is Si0 and by definition fi(xi0) = xi0 for all xi0 ∈ Si0. Using
the definition of the function copy, we have

(∗) = w~0 · |nmExt(X10, . . . , X90) ◦ nmExt(X10, . . . , X90)− Um ◦ Um|
= w~0 · |nmExt(X10, . . . , X90)− Um| (5)

≤ 2−Ω(n)

where the inequality in the last step is derived from Claim 5.8. Each term of the summation
in the RHS of (3) can be bounded by 2−Ω(n) using Claim 5.7. Since there are 29 − 1 terms
in the summation, we have the required bound in (2). This concludes the proof outline of
Theorem 3.
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6 Proof of Theorem 3

6.1 A sum-product estimate

The following sum-product theorem over prime fields follows from [BKT04], [BGK06], and [Kon03].

Theorem 6.1 (Sum-product over prime fields). Let Fp be any prime field and let A ⊂ Fp be any
non-empty subset such that |A| < p1−δ for some constant δ > 0. Then there exists a constant
τ = τ(δ) > 0, such that

|A+A|+ |A ·A| ≥ |A|1+τ

An analogue of Theorem 6.1 over Fp×Fp was proved by Bourgain in [Bou05a]. We extend this
to sets over F4

p in the following theorem and use it in our proof of Theorem 3. It is stated in a
convenient way.

Theorem 6.2. There exists τ0 > τ1 > 0 such that the following holds : Let A be a subset of F4
p

satisfying |A ∩ (F∗p)4| ≥ |A|
2 . Suppose that for any subset A1 ⊆ A satisfying |A1| ≥ p−τ1 |A|, the

following conditions holds.

1. Π{1,2}(A1) ≥ p1+τ0 and Π{3,4}(A1) ≥ p1+τ0.

2. A1 * P , where P is a 2-dimensional linear subspace of F4
p of the form

(a) {(x1, x2, c1x1, c2x2) : x1 ∈ Fp, x2 ∈ Fp} or

(b) {(x1, x2, c2x2, c1x1) : x1 ∈ Fp, x2 ∈ Fp}.

Then there exists a constant τ > 0 (depending on τ0, τ1) such that if |A| < p7/3−τ1, then

|A+A|+ |A�A| > pτ |A|

We present the proof of Theorem 6.2 in Section 7. The proof of Theorem 6.2 closely follows
and extends the arguments in the sum-product estimate over F2

p proved by Bourgain.

Definition 6.3. We call a set A satisfying the conclusion of Theorem 6.2 to be sum-product friendly.
We call a flat distribution sum-product friendly if its support is sum-product friendly.

6.2 A sum-product friendly encoding

Let τ, τ0, τ1 be the constants from Theorem 6.2. Let p be any prime satisfying : pτ0 > 16.

Define enc : Fp → F2
p in the following way.

enc(x) = (x, x4 + x2 + x)

Lemma 6.4. Let S1, S2 ⊂ Fp be subsets of size p1−δ, p > 3. Define the distribution

Xf,1,2 = (enc(x1) + enc(x2), enc(f1(x1)) + enc(f2(x2))) : x1 ∼ S1, x2 ∼ S2

where f1, f2 are arbitrary functions.
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Then Xf,1,2 is O(p−δ)-close to a convex combination of at most 4 flat distributions supported
on sets of the form

Ti = {(enc(x1) + enc(x2), enc(f1(x1) + enc(f2(x2))) : (x1, x2) ∈ Gi},

where Gi ⊂ F2
p and |Gi| = |Ti| ≥ p2−3δ.

Proof. Let T ⊂ F4
p denote the support of Xf,1,2. We partition T into at most 4 parts in the following

way.

For any t ∈ T , let s(t) ⊂ F2
p be the set of all (x1, x2) ∈ S1 × S2 such that (enc(x1) + enc(x2),

enc(f1(x1)) + enc(f2(x2))) = t. Let r(x) denote the cardinality of the set s(x).

We claim that for any t ∈ T , 1 ≤ r(x) ≤ 4. The upper bound follows from the following
calculation. Let t = (t1, t2, t3, t4) ∈ F 4

p . Thus for any (x1, x2) ∈ s(t), we have

x1 + x2 = t1

x4
1 + x2

1 + x1 + x4
2 + x2

2 + x2 = t2

Substituting for x2, we have

x4
1 + (t2 − x1)4 + q(x1, t1, t2) = 0

where q(x1, t1, t2) has degree at most 2 in x1. Thus x1 must satisfy a polynomial of degree exactly 4.
For each fixing of x1, notice that x2 also gets fixed. Thus r(t) ≤ 4 for all t ∈ T .

For i ∈ [4], we define the sets
Ti = {t ∈ T : r(t) = i}

Thus the Ti’s form a partition of T .

Define sets Gi ⊂ F2
p, i ∈ [4], such that for all t ∈ Ti, |Gi ∩ s(t)| = 1. In other words Gi is

constructed by picking exactly one element from s(t) for each t ∈ Ti. Thus |Gi| = |Ti|.
We note that for any t ∈ Ti, Pr[Xf,1,2 = t] = i

|S1||S2| and hence

Pr[Xf,1,2 ∈ Ti] =
i|Gi|
|S1||S2|

Thus we have

Xf,1,2 =

4∑
i

wi ·
(
(enc(x1) + enc(x2), enc(f1(x1)) + enc(f2(x2))) : (x1, x2) ∼ Gi

)
where wi = i|Gi|

|S1||S2| .

For some i, if |Gi| < p2−3δ then wi ≤ i · p−δ. Thus Xf,i,j is 9 · p−δ-close to a distribution X ′f,i,j
defined as

X ′f,1,2 =

4∑
i

w′i ·
(
(enc(x1) + enc(x2), enc(f1(x1)) + enc(f2(x2))) : (x1, x2) ∼ Gi

)
where we set w′i’s as follows. Set w′i = 0 for all i such that wi < i · p−δ. Pick a j such that
wj ≥ j · p−δ and set w′j = wj +

∑
i:wi<i·p−δ wi. For the remaining unset w′i’s, set it equal to wi.
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Lemma 6.5. Choose a small δ1 > τ0. Let f1, f2 be functions with maximum pre-image size
bounded by pδ1. Further assume f1 has no fixed points. Define the set A = {enc(x1) + enc(x2),
enc(f1(x1)) + enc(f2(x2)) : (x1, x2) ∈ G} where G ⊂ F2

p is a subset of size at least p1+10δ1. Then
the set A ⊂ F4

p is sum-product friendly.

Proof. We begin by noting that p1+9δ1 < |A| << p7/3.

We need the following claim.

Claim 6.6. Define the set B = {(enc(y1)+enc(y2), enc(g1(y1))+enc(g2(y2))) : (y1, y2) ∈ H} where
H ⊂ F2

p is a subset of size at least p1+10δ1 and g1, g2 are tampering functions with pre-image size

bounded by pδ1. Then following inequalities hold :

• |B ∩ ({0} × F3
p)| ≤ p

• |B ∩ (Fp × {0} × F2
p)| ≤ 4.p

• |B ∩ (F2
p × {0} × Fp)| ≤ p1+δ1

• |B ∩ (F3
p × {0})| ≤ 4p1+δ1

Proof. We have,

B = {(y1 + y2, y
4
1 + y2

1 + y1 + y4
2 + y2

2 + y2, g1(y1) + g2(y2), g1(y1)4 + g1(y1)2 + g1(y1) + g2(y2)4 +
g2(y2)2 + g2(y2)) : (y1, y2) ∈ H}.

We prove the inequality:
|B ∩ (F3

p × {0})| ≤ 4p1+δ1

The other inequalities follow using similar arguments.

Fix y1 to some value in Fp. We note that g2(y2) is the root of a monic degree 4 polynomial
and hence has at most 4 choices. Thus y2 can take at most 4pδ1 values by using the bound on the
pre-image size of g2. The inequality now follows by observing that y1 can take at most p values.

Using Claim 6.6, we have |A ∩ (F∗p)4| ≥ (1− p−7δ1)|A| > 1
2 |A|.

Consider any subset A1 ⊆ A such that |A1| ≥ p−τ1 |A|. It follows that there exists G1 ⊆ G such
that

A1 = {(enc(x1) + enc(x2), enc(f1(x1)) + enc(f2(x2))) : (x1, x2) ∈ G1}

Thus |A1| > p1+8δ1 . We also note that |G1| ≥ |A1| > p1+8δ1 .

We note that |Π1,2(A1)| = |A1| > p1+τ0 . Further |Π3,4(A1)| > |A1|p−2δ1 > p1+6δ1 > p1+τ0 .

The final part of the proof is to bound the intersection of A1 with any 2-dimensional linear
space P of the forms specified in Theorem 6.2.

Suppose A1 ⊂ P = {(y1, y2, c1y1, c2y2) : y1, y2 ∈ Fp}. Thus we have for all (x1, x2) ∈ G1:

f1(x1) + f2(x2) = c1(x1 + x2)

f1(x1)4 + f1(x1)2 + f1(x1) + f2(x2)4 + f2(x2)2 + f2(x2) = c2(x4
1 + x2

1 + x1 + x4
2 + x2

2 + x2)
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Fix x2 = α such that (x1, α) ∈ G1 for all x1 ∈ S1 ⊂ Fp, |S1| ≥ |G1|
p ≥ p

8δ1 . Let f2(α) = β. We thus
have for all x1 ∈ S1,

f1(x1) = c1x1 + c1α− β (6)

f1(x1)4 + f1(x1)2 + f1(x1) + β4 + β2 + β = c2(x4
1 + x2

1 + x1 + α4 + α2 + α) (7)

(8)

Thus for all x ∈ S1, the following holds:

(c1x1 + c1α− β)4 + (c1x1 + c1α− β)2 + (c1x1 + c1α− β) + β4 + β2 + β

−c2(x4
1 + x2

1 + x1 + α4 + α2 + α) = 0 (9)

To derive a contradiction, we split it into the following cases.

• c1 6= 0 , c1α− β 6= 0

In this case notice that the LHS of (9) is of degree at least 3 and at most 4 in x1 and hence
can have at most 4 roots, which is a contradiction since |S1| ≥ p8δ1 > 4.

• c1 = 0

In this case we see that from (6), f1 is constant on S1 which contradicts the assumption that
f1 has pre-image size at most pδ1 .

• c1α− β = 0, c1 6= 0

Thus (9) simplifies to

c4
1x

4
1 + c2

1x
2
1 + c1x1 + β4 + β2 + β − c2(x4

1 + x2
1 + x1 + α4 + α2 + α) = 0 (10)

We see that this is at least a linear equation and at most a degree 4 equation in x1 ( and
thus a contradiction, as argued above) unless c4

1 = c2
1 = c1 = c2. Thus c1 = 1 ( since c1 6= 0).

But by (6), we then have f1(x1) = x1 for all x1 ∈ S1. This contradicts the fact that f1 has
no fixed points.

This contradicts our assumption that A1 ⊆ {(y1, y2, c1y1, c2y2) : y1, y2 ∈ Fp}.
Now suppose A1 ⊆ P = {(y1, y2, c2y2, c1y1) : y1, y2 ∈ Fp}. We arrive at a contradiction using

similar arguments as above. We have for all (x1, x2) ∈ G1

f1(x1) + f2(x2) = c2(x4
1 + x2

1 + x1 + x4
2 + x2

2 + x2)

f1(x1)4 + f1(x1)2 + f1(x1) + f2(x2)4 + f2(x2)2 + f2(x2) = c1(x1 + x2)

Fix x2 = α such that (x1, α) ∈ G1 for all x1 ∈ S1 ⊂ Fp, |S1| ≥ |G1|
|p| ≥ p

8δ1 . Let f2(α) = β. We thus
have for all x ∈ S1,

f1(x1) = c2(x4
1 + x2

1 + x1 + α4 + α2 + α)− β (11)

f1(x1)4 + f1(x1)2 + f1(x1) + β4 + β2 + β = c1(x1 + x2) (12)

(13)

19



It follows that for all x ∈ S1,(
c2(x4

1 + x2
1 + x1 + α4 + α2 + α)− β

)4
+
(
c2(x4

1 + x2
1 + x1 + α4 + α2 + α)− β

)2
+(

c2(x4
1 + x2

1 + x1 + α4 + α2 + α)− β
)

+ β4 + β2 + β − c1(x1 + α) = 0
(14)

We note that (14) is a degree 16 equation in x1 (and hence a contradiction since p8δ1 > 16) unless
c2 = 0. But if c2 = 0 then from (11) we have f1 is constant on S1 which contradicts our assumption
that f1 has pre-image size at most pδ1 . This completes our proof that A is sum-product friendly.

In the following lemmas, we shall abuse notation and for any set A, we will also use A to denote
the flat distribution with support A.

Choose δ1 small enough such that for a sum-product friendly set A of size p2−5·103δ1 we have
|A + A| + |A � A| > |A|p5·104δ1 . This can be ensured by choosing δ1 = 10−5 · τ , where τ is the
constant from Theorem 6.2.

Lemma 6.7. Let G1, G2, G3 ⊂ F2
p be subsets of size at least p2−δ1. Let f1, . . . , f6 be functions

with pre-image size at most p10δ1. Further assume f1 has no fixed points. For i ∈ [3] define the
sets Ai = {(enc(x2i−1) + enc(x2i), enc(f2i−1(x2i−1)) + enc(f2i(x2i))) : (x2i−1, x2i) ∈ Gi}. Then
A1 �A2 +A3 is O(p−δ1)-close to a distribution with min-entropy (2 + 10δ1) log p.

To prove the above lemma, we borrow ideas from [BIW06] and use the proof technique developed
in their work.

We begin by proving the following lemmas.

Lemma 6.8. Let A ⊂ (Fp∗)4, p2−300δ1 ≤ |A| < p2 be such that any subset A′ ⊆ A of size greater

than p2−5·103δ1 is sum-product friendly. Supose that for some B ⊂ (F∗p)4, we have |A�B| ≤ p2+300δ1,

p2−300δ1 ≤ |B| < p2. Then for any C ⊂ (F∗p)4 such that p2−δ1 ≤ |C| < p2, we have cp(A + C) ≤
p−(2+12δ1).

Proof. Since |A�B| ≤ p2+300δ1 , using Lemma 2.15 we have |A�A| ≤ |A|p2400δ1 . Suppose there is
some set C such that |C| > p2−δ1 and cp(A+C) > p−(2+12δ1). Using Lemma 2.17 with ρ1 = 200δ1

and ρ2 = 220δ1, it follows that there exists sets A′ ⊆ A, C ′ ⊆ C, |A′ + C ′| ≤ p2+5·103δ1 and
|A′|, |C ′| > p2−5·103δ1 . Using Lemma 2.15, we get that |A′ + A′| ≤ |A′|p4·104δ1 . We also have
|A′ � A′| ≤ |A � A| ≤ |A′|p104δ1 . By our choice of δ1, this contradicts A′ being sum-product
friendly.

Switching the roles of addition and multiplication gives the following.

Lemma 6.9. Let A ⊂ (Fp∗)4, p2−300δ1 ≤ |A| < p2 be such that any subset A′ ⊆ A of size at least

p2−5·103δ1 is sum-product friendly. Let B ⊂ (F∗p)4 be a set such that |A+B| ≤ p2+300δ1, p2−300δ1 ≤
|B| < p2. Then for any C ⊂ (F∗p)4 such that p2−δ1 ≤ |C| < p2, we have cp(A� C) ≤ p−(2+12δ1).

We say that a set is plus-friendly if it satisfies the conclusion of Lemma 6.8. Similarly we say
that a set is times-friendly if it satisfies the conclusion of Lemma 6.9.
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Lemma 6.10. Let A1 ⊂ F4
p be the set defined in Lemma 6.7. Then A1 = A+ ∪A× ∪A11 such that

the following hold:

1. A+ is empty or plus-friendly

2. A× is empty or times-friendly

3. |A11| ≤ |A1|p−δ1

Proof of Lemma 6.10. We start out by replacing A1 by A1 ∩ (F∗p)4. We can do this without loss of

generality since as observed in the proof of Lemma 6.5, |A1 ∩ (F∗p)4| > (1− p−δ1)|A1| and hence we
add the set A1 \ (F∗p)4 to A11.

Note that by Lemma 6.5, any subset of A1 of size at least p2−5·103δ1 is sum-product friendly.
Let A× = A1 and A+ = ∅. We maintain the invariance that A+ is either plus-friendly or empty.
If A× is times-friendly then we are done. Else there exists some B of size at least p2−δ1 such that
cp(A× � B) > p−(2+12δ1). Using Lemma 2.17 with ρ1 = 2δ1 and ρ2 = 14δ1, we have that there
exists sets A′ ⊆ A×, B′ ⊆ B, |A′ � B′| ≤ p2+284δ1 and |A′|, |B′| ≥ p2−282δ1 . Thus, by Lemma 6.8,
A′ is plus-friendly. We remove A′ from A× and add it to A+. Further it can be proved that unions
of disjoint plus-friendly sets are also plus-friendly. We iterate as above till A× is times-friendly or
|A×| ≤ |A1|p−δ1 .

Proof of Lemma 6.7. By Lemma 6.10 we have A1 = A+ ∪ A× ∪ A′. Using Claim 6.6, we have
|A2 ∩ (F∗p)4| > (1− p−δ1)|A2| and |A3 ∩ (F∗p)4| > (1− p−δ1)|A3|. Thus A1�A2 +A3 is O(p−δ1)-close
to a convex combination of distributions of the form:

1. A+ � a2 +A3, a2 ∈ A2 ∩ (F∗p)4

2. A× �A2 + a3, a3 ∈ A3 ∩ (F∗p)4

By Lemma 6.8 and Lemma 6.9, we thus have that A1 �A2 +A3 is O(p−δ1)-close to a distribution
with collision probability at most p−(2+12δ1). Thus by using Lemma 2.7, we have that A1�A2 +A3

is O(p−δ1)-close to a distribution with min-entropy (2 + 10δ1) log p.

Theorem 6.11. Let X1, . . . , X8 be independent sources on Fp with min-entropy (1 − δ) log p. Let
f1, f2, . . . , f8 be arbitrary functions such that at least one of the fi’s has no fixed points. Further
suppose that the pre-image of each fi is bounded by p10δ. Define the source

Xf,i,j = enc(Xi) + enc(Xj), enc(fi(Xi)) + enc(fj(Xj))

Then Xf,1,2�Xf,3,4+Xf,5,6�Xf,7,8 is O(p−δ)-close to a distribution with min-entropy (2+10δ) log p.

Proof. Without loss of generality suppose f1 has no fixed points. For all i ∈ [3], using Lemma 6.4
we have that Xf,2i−1,2i is O(p−δ)-close to a convex combination of at most 4 flat distributions Aij
of the form (enc(x2i−1)+enc(x2i), enc(f1(x2i−1)+enc(f2(x2i))) : (x2i−1, x2i) ∼ Gij where Gij ⊂ F2

p,

|Gij | ≥ p2−3δ.

With probability 1−O(p−δ) over fixing of the sources X7, X8, we have Xf,1,2�Xf,3,4 +Xf,5,6�
xf,7,8 is O(p−δ)-close to a convex combination of at most 43 distributions of the form A1j1 ·A2j2 +
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α · A3j3 , α ∈ (F∗p)4. Since f1 has no fixed points, by Lemma 6.7 with δ1 = 3δ, we have that

A1j1 � A2j2 + α � A3j3 is O(p−δ)-close to a distribution with min-entropy (2 + 10δ) log p. Hence,
Xf,1,2 �Xf,3,4 +Xf,5,6 �Xf,7,8 is O(p−δ)-close to a distribution with min-entropy (2 + 10δ) log p.

6.3 Non-malleable extractors for functions with no fixed points

In this section we prove a special case of Theorem 3 where we have a restriction on the fixed points
of the tampering functions. We use this result in the proof of Theorem 3.

Theorem 6.12. There exists a constant δ > 0 such that for every n there exists an explicit
function nmExt : ({0, 1}n)8 × {0, 1}2n → {0, 1}m, such that if X1, X2, . . . , X8 are independent (n,
(1−δ)n)-sources, X9 an independent (2n, 2(1−δ)n)-source and f1, f2, . . . , f9 are arbitrary tampering
functions such that there exists j ∈ [8] such that fj has no fixed points, then

|nmExt(X1, . . . , X9) ◦ nmExt(f1(X1), . . . , f9(X9))− Um ◦ nmExt(f1(X1), . . . , f9(X9))| < 2−Ω(n)

Proof. We view each Xi, i ∈ [8], as a source on Fp for a prime p satisfying 2n < p < 2n+1. If
pτ0 ≤ 16, we do a brute-force search for nmExt (in constant time). Thus assume pτ0 > 16.

Let snmExt : {0, 1}2n × {0, 1}2n → {0, 1}m, m = Ω(n), be the seeded non malleable extractor
from Theorem 2.20. Define the functions

ext1(x1, x2, . . . , x8) =
1∑
i=0

(
enc(x4i+1) + enc(x4i+2)

)
�
(
enc(x4i+3) + enc(x4i+4)

)
nmExt(x1, . . . , x9) = snmExt(ext1(x1, . . . , x8), x9)

We show that nmExt satisfies the conclusion of Theorem 6.12.

Let Si ⊂ Fp be the support of the flat source Xi for all i ∈ [8]. Also let S9 ⊂ {0, 1}2n be the
support of X9. We partition each Si into Si0 and Si1 based on the pre-image of fi as follows.

Si0 = {s ∈ Si : |f−1
i (s) ∩ Si| ≤ p20δ}, Si1 = Si \ Si1.

Let Xij be the flat source on Sij for j = 0, 1.

We thus have

|nmExt(X1, . . . , X9) ◦ nmExt(f1(X1), . . . , f9(X9))− Um ◦ nmExt(f1(X1), . . . , f9(X9))| (15)

≤
∑

I∈{0,1}9
wI · |nmExt(X1I(1), . . . , X9I(9)) ◦ nmExt(f1(X1I(1)), . . . , f9(X9I(9)))−

Um ◦ nmExt(f1(X1I(1)), . . . , f9(X9I(9)))| (16)

where wI =
∏9
i=1

(
|SiI(i)
|Si|

)
.

We bound each term in (16). In particular we show that

wI · |nmExt(X1I(1), . . . , X9I(9)) ◦ nmExt(f1(X1I(1)), . . . , f9(X9I(9)))−

Um ◦ nmExt(f1(X1I(1)), . . . , f9(X9I(9)))| < 2−Ω(n) (17)
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for each I ∈ {0, 1}9. Since there are 29(= constant) such terms in (16), we get the required bound
on (15).

We now prove (17). Fix any I ∈ {0, 1}9. The following two cases can occur.

1. Suppose for some j ∈ [9], |SjI(j)| ≤ p−δ|Sj |. Then wI < p−δ and hence the bound in (17)
follows.

2. Thus suppose |SiI(i)| ≥ p−δ|Sj | for all i ∈ [9].

Define the random variables :

W I = ext1(X1I(1), . . . , X8I(8)), V I = ext1(f1(X1I(1)), . . . , f8(X8I(8)))

We prove that the following holds.

Pr
v∼V I

[(W I |V I = v) is O(p−δ)-close to a distribution with min-entropy at least 10δ log p] ≥ 1− p−δ

(18)

The following two cases arise depending on I.

(a) Suppose I(j) = 0 for all j ∈ [8]. It follows from Theorem 6.11 that (W I , V I) is p−δ-close
to a source with min-entropy (2 + 20δ) log p. Using Corollary 2.11 with ε = p−2δ, we
have that

Pr
v∼V Ii

[(W I
i |V I

i = vi) is O(p−δ)-close to a distribution with min-entropy at least 10δ log p] ≥ 1−p−δ

(b) Suppose there exists some j ∈ [8] such that I(j) = 1. Consider fixing fj(XjI(j)) and all
XiI(i), i ∈ [8] \ {j}. Without loss of generality suppose j = 1.

Under this fixing W I has min-entropy at least 20δ log p unless sources X3I(3), X4I(4) are
fixed such that enc(x3I(3)) + enc(x4I(4)) /∈ (F ∗p )2. But it follows from Claim 6.6 that

Pr[enc(X3) + enc(X4) /∈ (F∗p)2] < p−δ. Thus,

Pr
v∼V I

[(W I |V I = v) is O(p−δ)-close to a distribution with min-entropy at least 20δ log p] = 1

This completes the proof of (18).

We continue with the proof of (17). For each i ∈ [C ′], define the set

GoodI = {v ∈ support(V I) : (W I |V I = v) is O(p−δ)-close to a distribution with

min-entropy at least 10δ log p}

It follows from (18) that Prv∼V I [v ∈ GoodI ] > 1− p−δ.
It follows from Theorem 2.20 that snmExt is a strong 2-source extractor for independent
sources on 2n bits with entropies k1, k2 respectively satisfying k1 + k2 ≥ (2 + δ)n.
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Thus we have,

|snmExt(W I , X9I(9)) ◦ V I ◦ X9I(9) − Um ◦ V I ◦ X9I(9)|

≤ (Pr[V I /∈ GoodI ]) + 2−Ω(n) + p−δ ≤ 2p−δ + 2−Ω(n) = 2−Ω(n)

Since nmExt(f1(X1I(1)), . . . , f9(X9,I(9))) is a deterministic function of the random variables

V I and X9I(9), the bound in (17) is now immediate.

6.4 Non-malleable extractor for arbitrary functions

We now prove a slightly stronger version of Theorem 3.

Theorem 6.13 (Theorem 3 restated, stronger version). There exists a constant δ > 0 such that for
every n there exists an explicit function nmExt : ({0, 1}n)8 × {0, 1}2n → {0, 1}m, m = Ω(n), such
that if X1, X2, . . . , X8 are independent (n, (1 − δ)n)-sources, X9 an independent (2n, 2(1 − δ)n)-
source and f1, f2, . . . , f9 are arbitrary tampering functions then there exists random variable Df on
{0, 1}m ∪ {same?} which is independent of the sources X1, . . . , X9 such that

|nmExt(X1, . . . , X9) ◦ nmExt(f1(X1), . . . , f9(X9)) − Um ◦ copy(Df , Um)| ≤ 2−Ω(n)

where both Um’s refer to the same uniform m-bit string.

Proof. We view each Xi, i ∈ [8], as a source on Fp for a prime p satisfying 2n < p < 2n+1. We
assume pτ0 > 16 (else we do a constant time brute-force search for nmExt).

Let snmExt : {0, 1}2n × {0, 1}2n → {0, 1}m, m = Ω(n), be the seeded non-malleable extractor
from Theorem 2.20.

Define the functions

ext1(x1, x2, . . . , x8) =

1∑
i=0

(
enc(x4i+1) + enc(x4i+2)

)
�
(
enc(x4i+3) + enc(x4i+4)

)
nmExt(x1, . . . , x9) = snmExt(ext1(x1, . . . , x8), x9)

We need the following claims.

Claim 6.14. Let Y1, . . . , Y8 be sources on Fp with min-entropy (1−2δ)·log p. Then ext1(Y1, . . . , Y8)
is 2−Ω(n)-close to a source with min-entropy (1− 2δ) · 2 log p.

Proof. We claim that enc(Y1)+enc(Y2) is a source with min-entropy 2(1−2δ) log p−2. This follows
from the fact that (y1 + y2, y

4
1 + y2

1 + y1 + y2 + y2
2 + y2) = (a, b) has at most 4 solutions in (y1, y2).

Also it follows from Claim 6.6 that Pr[enc(Y3) + enc(Y4) /∈ (F∗p)2] < p−δ. Thus ext1(Y1, . . . , Y8) is

p−δ-close to a source with min-entropy 2(1− 2δ) log p− 2.

Claim 6.15. Let Y1, . . . , Y8 be independent (n, (1 − 2δ)n)-sources and Y9 an independent (2n,
2(1− 2δ)n)-source . Then

|nmExt(Y1, . . . , Y9)− Um| < 2−Ω(n)
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Proof. Follows directly from Claim 6.14 and Theorem 2.20.

For each i ∈ [8], let Si ⊂ Fp be the support of the (flat) source Xi. Let S9 ⊂ {0, 1}2n be the
support of X9. We partition each Si into Si0 and Si1 such that fi has no fixed points in Si1. Thus

Si0 = {s ∈ Si : fi(s) = s}, Si1 = Si \ Si0

Let Xij be the flat source that is supported on Sij , i = 1, .., 9, j = 0, 1. Let f Ii denote fi with its
domain restricted to the set SiI(i). Thus f Ii is a function from SiI(i) to Fp.

For any 0-1 vector I, let I(i) denote the i’th co-ordinate in I. Let wI =
∏9
i=1

|SiI(i)|
|Si| for I ∈ {0,

1}9.

Define the random variable Df as:

Df = w~0 · {same
?}+

∑
I∈{0,1}9\{~0}

wI · nmExt(f1(X ′1I(1)), . . . , f9(X ′9I(9)))

where for each i ∈ [9] and I ∈ {0, 1}9, X ′iI(i) is identically distributed as XiI(i) and independent of
X1, . . . , X9.

We show that nmExt and Df satisfies the conclusion of Theorem 6.13.

Recall that to prove Theorem 6.13, we need to show the following bound.

|nmExt(X1, . . . , X9) ◦ nmExt(f1(X1), . . . , f9(X9))− Um ◦ copy(Df , Um)| < 2−Ω(n) (19)

We have

(19) ≤ (∗) +
∑

I∈{0,1}9\{~0}

wI · |nmExt(X1I(1), . . . , X9I(9)) ◦ nmExt(f I1 (X1I(1)), . . . , f
I
9 (X9I(9)))−

Um ◦ nmExt(f I1 (X1I(1)), . . . , f
I
9 (X9I(9)))|

(20)

where

(∗) = w~0 · |nmExt(X10, . . . , X90) ◦ nmExt(f
~0
1 (X10), . . . , f

~0
9 (X90))− copy(same?, Um) ◦ Um|

For i ∈ [9], the support of Xi0 is Si0 and by definition f
~0
i (xi0) = xi0 for all xi0 ∈ Si0. Using the

definition of the function copy, we have

(∗) = w~0 · |nmExt(X10, . . . , X90) ◦ nmExt(X10, . . . , X90)− Um ◦ Um|
= w~0 · |nmExt(X10, . . . , X90)− Um| (21)

We prove the following claims.

Claim 6.16.

(∗) = w~0 · |nmExt(X10, . . . , X90)− Um| < 2−Ω(n) (22)
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Claim 6.17. For every I ∈ {0, 1}9 \ {~0} the following holds:

wI · |nmExt(X1I(1), . . . , X9I(9)) ◦ nmExt(f1(X1I(1)), . . . , f9(X9I(9)))−

Um ◦ nmExt(f I1 (X1I(1)), . . . , f
I
9 (X9I(9)))| < 2−Ω(n) (23)

We use the above claims to conclude (19).

Proof of (19) using Claim 6.17 and Claim 6.16. Note that there are 29 terms in RHS of (20). Each
term corresponding to a non-zero I is bounded by 2−Ω(n) using Claim 6.17 and the term corre-
sponding to I = ~0 is bounded by 2−Ω(n) using Claim 6.16. We can thus bound LHS of (19) by
2−Ω(n).

Proof of Claim 6.16. We note that if for any i ∈ [9], |Si0||Si| < p−δ, we have w~0 < p−δ. Thus suppose

|Si0| > p−δ|Si| for all i ∈ [9]. The bound now follows from Claim 6.15.

Proof of Claim 6.17. Fix some I ∈ {0, 1}9 \ {~0}.
We split the proof into the following cases.

1. If for some i ∈ [9], |SiI(i)| < p−δ|Si|, then wI < p−δ and hence the bound in (23) follows.

2. Thus suppose |SiI(i)| ≥ p−δ|Si| for all i ∈ [9]. We consider the following cases.

(a) Suppose there exists some j ∈ [8] such that I(j) = 1. In this case we use Theorem 6.12
to conclude the bound in (23).

(b) Suppose for all i ∈ [8], I(i) = 0. We note that I(9) = 1 since I 6= ~0. Thus all f Ii , i ∈ [8],
are the identity functions over their respective domains and f I9 has no fixed points.

Using Claim 6.14, we have ext1(X1I(1), . . . , X8I(8)) is 2−Ω(n)-close to a source Z with
min-entropy (1− 2δ) · 2n.

Define the random variable: W I = ext1(X1I(1), . . . , X8I(8)).

Thus we have

|nmExt(X1I(1), . . . , X9I(9)) ◦ nmExt(f1(X1I(1)), . . . , f9(X9I(9)))

−Um ◦ nmExt(f1(X1I(1)), . . . , f9(X9I(9)))|
= |snmExt(W I , X9I(9)) ◦ snmExt(W I , f I9 (X9I(9)))− Um ◦ snmExt(W I , f I9 (X9I(9)))|

≤ |snmExt(Z,X9I(9)) ◦ snmExt(Z, f I9 (X9I(9)))− Um ◦ snmExt(Z, f I9 (X9I(9)))|+ 2−Ω(n)

Note that Z and X9I(9) are independent sources on {0, 1}2n, each with min-entropy rate

> (1− 2δ) and f I9 has no fixed points. Thus by Theorem 2.20, we have

|snmExt(Z,X9I(9)) ◦ snmExt(Z, f I9 (X9I(9)))− Um ◦ snmExt(Z, f I9 (X9I(9)))| ≤ 2−Ω(n)

Thus, the bound in (23) follows.

This completes the proof of Claim 6.17.
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7 Proof of the sum-product estimate over F4
p

We closely follow the proof of the sum-product estimate by Bourgain in [Bou05a] and prove Theorem
6.2, which we restate.

Theorem 6.2. Let τ0 > τ1 > 0 be any positive constants. Let A be a subset of F4
p satisfying

|A ∩ (F∗p)4| ≥ |A|
2 . Suppose that for any subset A1 ⊆ A satisfying |A1| ≥ p−τ1 |A|, the following

conditions holds.

1. Π{1,2}(A1) ≥ p1+τ0and Π{3,4}(A1) ≥ p1+τ0.

2. A1 * P , where P is a 2-dimensional linear subspace of F4
p of form

(a) {(x1, x2, c1x1, c2x2) : x1 ∈ Fp, x2 ∈ Fp} or

(b) {(x1, x2, c2x2, c1x1) : x1 ∈ Fp, x2 ∈ Fp}.

Then there exists some constant τ > 0 (depending on τ0, τ1) such that if |A| < p7/3−τ1, then

|A+A|+ |A�A| > pτ |A|

We introduce some notations.

Definition 7.1. Let S ⊆ Fnp be any set of vectors. Define S�2 = S � S and S�(k+1) = S�k � S
for k ≥ 2.

We prove Theorem 6.2 using the following lemmas.

Lemma 7.2. Let B be any subset of F4
p such that |Π{1,2}(B)| ≥ p1+τ0 and |Π{3,4}(B)| ≥ p1+τ0.

Then one of the following holds.

1. There exists constant k = k(τ0) such that |kB�k| ≥ p7/3 or

2. B ⊆ P where P is a 2-dimensional linear subspace of F4
p of the form

(a) {(x1, x2, c1x1, c2x2) : x1 ∈ Fp, x2 ∈ Fp} or

(b) {(x1, x2, c2x2, c1x1) : x1 ∈ Fp, x2 ∈ Fp}.

Lemma 7.3. Let B ⊂ (F∗p)4 such that |B| ≥ p1+τ0 and |B +B|+ |B �B| ≤ pτ |B|. Fix any k > 0.
Then, there is a subset B1 of B such that

1. |B1| ≥ p−τ1 |B| and

2. |kB�k1 | ≤ pτ1 |B1|

where τ1 = p3k2τ .

Proof of Theorem 6.2. We replace A with its intersection with (F∗p)4. Choose τ small enough such

for k = k(τ0) (where k(τ0) is the constant from Lemma 7.2), it holds that: p3k2τ < τ1. Suppose
that |A + A| + |A � A| ≤ pτ |A|. Using Lemma 7.3, there exists a subset A1, |A1| ≥ p−τ1 |A|, such
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that |kA�k1 | ≤ |A|pτ1 . Further, we have that A1 satisfies the hypothesis of Lemma 7.2. Suppose,
conclusion (1) of Lemma 7.2 holds. This implies that |A| ≥ p7/3 which contradicts our assumption
on the size of A. Further, from the assumptions on the structure of A1, we see that conclusion (2)
in Lemma 7.2 cannot hold. Thus, it must be that |A+A|+ |A�A| > pτ |A|.

Lemma 7.3 follows directly from Lemma 4 in [Bou05a] by noticing that their proof works over
(F∗p)4 as well. Hence we do not present the proof of Lemma 7.3.

Thus we focus on proving Lemma 7.2.

We require the following lemma which was proved by Bourgain [Bou05a].

Lemma 7.4. For any B ⊆ F2
p such that |B| ≥ p1+τ0 there exists a constant k = k(τ0) such that

|kB�k| = p2.

We now proceed to prove Lemma 7.2.

Proof of Lemma 7.2. Let Bij denote Π{i,j}(B). Using Lemma 7.4, there exists some k0 such that

|kB�k12 | = p2, |kB�k34 | = p2 for k ≥ k0. We split the proof into two cases.

1. Suppose there exists some k ≥ k0 such that |kB�k| > p2.

Thus, it must be the case that the projection map Π{1,2} is not one-one on kB�k. Thus there

exists b, b′ ∈ kB�k such that Π{1,2}(b) = Π{1,2}(b
′) but Π{3,4}(b) 6= Π{3,4}(b

′). Consider the
set

kB�k − (b− b′)kB�k = {
(
x1, x2, x3 − (b3 − b′3)y3, x4 − (b4 − b′4)y4

)
:

(x1, x2, x3, x4) ∈ kB�k, (y1, y2, y3, y4) ∈ kB�k}

Notice that (x1, x2) takes all values of F2
p since |Π{1,2}(kB�k)| = p2. Similarly (y3, y4) takes

all values of Fp×Fp since |Π{3,4}(kB�k)| = p2. Further, at least one of (b3− b′3) or (b4− b′4) is

non zero. Without loss of generality, suppose b3− b′3 6= 0. Then, for any fixing of x ∈ kB�k),
Π3(x− (b− b′)kB�k) = Fp and hence |kB�k − (b− b′)kB�k| ≥ p3.

We observe that

kB�k − (b− b′)kB�k ⊆ kB�k − (kB�k − kB�k)kB�k ⊆ k′B�k′ − k′B�k′

, where k′ = 3k2. Using Lemma 2.16 with A = k′B�k
′

and recalling that |k′B�k′ | > p2, we
have

|k′B�k′ + k′B�k
′ | ≥

(
|k′B�k′ − k′B�k′ ||k′B�k′ |2

)1/3

> (p3p4)1/3 = p7/3

Setting a new k = 2k′, we have |kB�k| ≥ p7/3.

2. Suppose |kB�k| = p2 for all k ≥ k0. Thus in particular we have

|k0B
�k0 + k0B

�k0 | = |k0B
�k0 |
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and
|k0B

�k0 � k0B
�k0 | = |k0B

�k0 |

Thus k0B
�k0 must be a 2-dimensional affine subspace of F4

p.

Let k0B
�k0 = {z + λv + µw : λ, µ ∈ Fp}, z, v, w ∈ F4

p . To complete the argument, we prove
the following claims about the structure of z, v, w.

Claim 7.5. We can assume v = (1, 0, α1, α2) and w = (0, 1, β1, β2) such that
span{(α1, α2), (β1, β2)} = F2

p

Proof. The proof follows from the observation that Π{1,2}(k0B
�k0) = Π{3,4}(k0B

�k0) = F2
p.

Claim 7.6. Let v = (1, 0, α1, α2) and w = (0, 1, β1, β2). Then αiβi = 0 for i ∈ [2]. Further
z = 0.

We show how to complete the proof of Lemma 7.2, before proving the above claim.

Proof of Lemma 7.2 using Claim 7.5 and Claim 7.6. Since we have α1β1 = 0, suppose α1 =
0. It follows from Claim 7.5 and Claim 7.6 that β1 6= 0, α2 6= 0 and β2 = 0.

Thus k0B
�k0 = {z + λv + µw : λ, µ ∈ Fp} = {(λ, µ, β1µ, α2λ) : λ, µ ∈ Fp}.

Fix any y = (y1, y2, y3, y4) ∈ k0B
�(k0−1) ∩ (F∗p)4. Note that there exists such a y since

B ∩ (F ∗p )4 6= ∅ and k0B
�k0 ∩ (F ∗p )4 6= ∅.

For any x = (x1, x2, x3, x4) ∈ B, since x� y ∈ k0B
�k0 = {(λ, µ, β1µ, α2λ) : λ, µ ∈ Fp}, there

exists λ, µ such that the following relations hold :

x4 = y−1
4 α2x1y1, x3 = y−1

3 β1x2y2

Thus
B ⊆ {(x1, x2, c2x2, c1x1) : x1, x2 ∈ Fp}

where c1 = y−1
4 α2y1, c2 = y−1

3 β1y2.

For the case when α1 6= 0 (and hence β1 = 0), we use an identical argument to derive that
B ⊆ {(x1, x2, c1x1, c2x2 : x1, x2) ∈ Fp}.

We conclude by proving Claim 7.6.

Proof of Claim 7.6. Let S = (k0B
�k0) � (k0B

�k0). Recall that k0B
�k0 = {z + λv + µw : λ,

µ ∈ Fp} where v = (1, 0, α1, α2), w = (0, 1, β1, β2) and |S| = |k0B
�k0 | = p2. Thus for each

i ∈ [4],
Πi(S) = {πi(λ1, λ2, µ1, µ2) : λ1, λ2, µ1, µ2 ∈ Fp}
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where

π1(λ1, λ2, µ1, µ2) = π1(λ1, λ2) = (z1 + λ1)(z1 + λ2)

= λ1λ2 + (λ1 + λ2)z1 + z2
1

π2(λ1, λ2, µ1, µ2) = π2(µ1, µ2) = (z2 + µ1)(z2 + µ2)

= µ1µ2 + (µ1 + µ2)z2 + z2
2

π3(λ1, λ2, µ1, µ2) = (λ1α1 + µ1β1 + z3)(λ2α1 + µ2β1 + z3)

= λ1λ2α
2
1 + µ1µ2β

2
1 + α1β1(λ1µ2 + λ2µ1)+

(λ1 + λ2)α1z3 + (µ1 + µ2)β1z3 + z2
3

π4(λ1, λ2, µ1, µ2) = (λ1α2 + µ1β2 + z4)(λ2α2 + µ2β2 + z4)

= λ1λ2α
2
2 + µ1µ2β

2
2 + α2β2(λ1µ2 + λ2µ1)+

(λ1 + λ2)α2z4 + (µ1 + µ2)β2z4 + z2
4

• We prove αiβi = 0, for i = 1, 2. Suppose not. Let α1β1 6= 0.

Fix λ2 = a2 6= −z1 and let λ1 = a1 6= λ2 and let π1(a1, a2) = a. Note that π1(a1,
a2) = π(b1, a2) iff a1 = b1. Thus |{π1(x, a2) : x ∈ Fp \ {a2}}| = p− 1.

We claim that for any such fixing of λ1 = a1, λ2 = a2, there exists µ1, µ2 such that
π2(µ1, µ2) = b and π3(a1, a2, µ1, µ2) = c for at least O(p2) pairs (b, c) ∈ F2

p. Suppose

π2(µ1, µ2) = µ1µ2 + (µ1 + µ2)z2 + z2
2 = b

π3(a1, a2, µ1, µ2) = β2
1µ1µ2 + γ1µ1 + γ2µ2 + γ3 = c

where γ1, γ2, γ3 ∈ Fp are constants ( does not depend on µ1, µ2) . By our choice of λ1, λ2,
we have that γ1 6= γ2 and hence the above system of equations has at most two pairs
of values of (µ1, µ2) which satisfy it. Since (µ1, µ2) takes p2 values, there at least p2/2
distinct pairs (b, c) such that there (π2(µ1, µ2), π3(λ1, λ2, µ1, µ2)) = (b, c).

Thus we have shown that there exists λ1, λ2, µ1, µ2 such that (π1(λ1, λ2), π2(µ1, µ2),
π3(λ1, λ2, µ1, µ2)) = (a, b, c) for at least 1

2(p − 1)p2 distinct tuples (a, b, c) ∈ F3
p, which

is a contradiction since |S| = p2. Thus α1β1 = 0. A similar argument implies that
α2β2 = 0.

• We now prove z = 0. Suppose α1 = 0. Thus β1 6= 0, α2 6= 0 and β2 = 0. We again fix
λ2 = a2 6= −z1 and let λ1 = a1 6= λ2. Let (b, c) ∈ F2

p. We bound the number of (µ1, µ2)
such that (π2(µ1, µ2), π3(a1, a2, µ1, µ2) = (b, c). We have the following equations.

µ1µ2 + (µ1 + µ2)z2 + z2
2 = b

β2
1µ1µ2 + β1z3(µ1 + µ2) + γ0 = c

We see that the number of solutions of the above pair of equations is bounded by 2
unless z3 = β1z1. It follows that if z3 6= β1z2, there exists (λ1, λ2, µ1, µ2) such that
(π1(λ1, λ2), π2(µ1, µ2), π3(λ1, λ2, µ1, µ2)) = (a, b, c) for at least 1

2(p− 1)p2 distinct tuples
(a, b, c) ∈ F3

p, which is a contradiction. Thus suppose z3 = β1z2.

Using an identical argument (but now fixing µ1, µ2 appropriately in π2 and arguing about
the range of π1 and π4 upon varying λ1, λ2), we get that z4 = α2z1. Thus z = (z1, z2,
β1z2, α2z1) = z1 · (1, 0, 0, α2) + z2 · (0, 1, β1, 0) = z1 · v + z2 · w ∈ span{v, w}. Hence we
can take z = 0.
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8 Efficient algorithms for non-malleable codes in the 10-split-state
model

In this section we prove efficiency of the non-malleable codes constructed in Theorem 1. Let nmExt
be the function from Theorem 3. Recall that for any message s, its encoding is a uniform element
from nmExt−1(s) and for any codeword c, the decoded message is nmExt(c). Thus the efficiency
of the decoder follows from the fact that nmExt is a polynomial time function.

We construct an efficient algorithm which takes as input a message s ∈ {0, 1}n and samples
from a distribution that is 2−Ω(n)-close to uniform on nmExt−1(s) and use this as our encoder.
This is indeed sufficient, since we only add an exponentially small error when we use this algorithm
instead of sampling uniformly from nmExt−1(s).

Our sampling algorithm is based on the following observations.

• The uniform distribution on the set nmExt−1(s) is a convex combination of uniform distri-
butions on algebraic varieties of low degree.

• Sampling almost uniformly from such algebraic sets can be done efficiently [CS09].

• Further, obtaining the weights in the convex combination reduces to approximately counting
the size of such algebraic sets for which there are efficient algorithms [HW98]. However,
the number of distributions in the convex combination can be exponentially large. To get
around this difficulty, we use the method of rejection sampling. The proof of correctness of
the algorithm relies on estimates on the number of rational points on algebraic varieties.

8.1 Tools from algebraic geometry

Let g ∈ Fp[x1, . . . , xc] and let H ⊆ Fcp be its set of zeroes. We call H the algebraic hypersurface
defined by g.

The following version of the Lang-Weil bound for hypersurfaces in Fcp was proved in [CM06].

Theorem 8.1 (Lang-Weil bound). Let c, d be constant integers and let p be a large prime. Let
H ⊂ Fcp be a hypersurface defined by a degree d polynomial. Then there exists an integer s, 0 ≤ s ≤
d, such that

||H| − spc−1| ≤ O(sign(s) · pc−
3
2 + pc−2)

where sign(s) = 1 if s > 0 and sign(0) = 0.

Lemma 8.2 (Schwartz-Zippel Lemma [Sch80], [Zip79]). Let g(x1, . . . , xc) be a non-zero multivari-
ate polynomial of degree d with coefficients in Fp. Then the hypersurface H ⊂ Fcp defined by g is of
size at most dpc−1.

We need some previous work on efficient sampling and approximate counting of algebraic vari-
eties.
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Theorem 8.3 ([CS09]). Let c, k, d be constant integers such that c > k and let p be a prime. There
exists an efficient randomized algorithm A1 such that the following holds:

Let g1, . . . , gk ∈ Fp[x1, . . . , xc] be arbitrary polynomials of degree at most d and let S ⊆ Fcp be the
set of common zeroes of g1, . . . , gk. A1 takes as input the description of g1, . . . , gk and a parameter
δ and outputs a sample from a distribution which is O(1/p1−δ)-close to the uniform distribution
on S. The worst-case running time of A1 is bounded by poly(log p).

Theorem 8.4 ([HW98]). Let c, k, d > 0 be constant integers and let p be a prime. There exists an
efficient randomized algorithm A2 such that the following holds:

Let g1, . . . , gk ∈ Fp[x1, . . . , xc] be arbitrary polynomials of degree at most d and let S ⊆ Fcp be
the set of common zeroes of g1, . . . , gk. A2 takes as input the description of g1, . . . , gk and outputs
an integer v such that

1

|S|
· |v − |S|| < O(p−1/2)

The worst-case running time of A2 is bounded by poly(log p).

8.2 A new extractor

In the construction of the seedless non-malleable extractor nmExt in Theorem 3, we needed a
seeded non-malleable extractor snmExt (with some additional properties, see Theorem 2.20). We
carefully choose snmExt such that it is easy to sample almost uniformly from nmExt−1(s). The
main idea is to pick snmExt such that nmExt−1(s) is a convex combination of algebraic varieties
of low degree over a field with large characteristic. Thus, the constructions in [Li12b] look to be a
good choice for the seeded non-malleable extractor. However, for this choice, we face the following
difficulty:

Let σM : Fp → ZM be defined as σM (x) = x (mod M). nmExt is of the form σM ◦ ext2 ◦ ext1,
where ext1 : F10

p → F4
p, ext2 : F2

q → Fq, and p, q are primes satisfying p2 ≤ q ≤ 2p2 (and interpreting
the output of ext1 as an element in F2

q). Changing the characteristic of the field destroys the low
degree properties of the function ext2 ◦ ext1.

To fix this, we construct a new extractor for ext2 (satisfying the conditions of Theorem 2.20)
which allows us to work over the same field as ext1. The extractor is a variation of a construction
by Bourgain [Bou05b]. The proof uses ideas from [Li12b], but requires more work.

Theorem 8.5. Let p be a prime. Define the functions ext2 : (F2
p) × (F2

p) → Fp and snmExt :
(F2
p)× (F2

p)→ ZM in the following way:

ext2((x1, x2), (y1, y2)) =

2∑
j=1

(xjyj + x2
jy

2
j ), snmExt(x, y) = σM (ext2(x, y))

where σM (x) = x (mod M). Suppose X,Y are independent sources on F2
p with min-entropies k1, k2

respectively.

1. If (k1 + k2) ≥ (2 + δ) log p, then

|snmExt(X,Y ) ◦ X − UM ◦ X| < p−Ω(1), |snmExt(X,Y ) ◦ Y − UM ◦ Y | < p−Ω(1)
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2. If k1, k2 > (2− δ) log p and f is any tampering function with no fixed points, then

|snmExt(X,Y ) ◦ snmExt(X, f(Y ))− UM ◦ snmExt(X, f(Y ))| < p−Ω(1).

The proof of Theorem 8.5 is presented in Appendix A.

8.3 A generic sampling algorithm

We construct an algorithm for almost uniformly sampling from certain structured sets.

Theorem 8.6. Let S1, S2, and S3 be finite sets. For arbitrary functions g : S2 → S3, h : S1 → S2,
there exists a sampling algorithm B which takes as input z ∈ S3 and a parameter ε ≥ ε0, runs in
time poly(log(|S1| · |S2|), log(1

ε )), and outputs a sample from a distribution that is O(ε)-close to
uniform on the set (g ◦ h)−1(z), if the following conditions hold:

1. There exists an algorithm B1, which takes as input z ∈ S3, runs in time poly(log(|S2|)), and
outputs a sample from a distribution that is uniform on the set g−1(z).

2. There exists an algorithm B2, which takes as input y ∈ S2 and ε, runs in time poly(log(|S1|),
log(1

ε )), and outputs a sample from a distribution that is ε-close to uniform on the set h−1(y).

3. There exists an algorithm B3, which takes as input y ∈ S2 and ε, runs in time poly(log(|S1|),
log(1

ε )), and outputs an approximation Ay for |h−1(y)| with a multiplicative error of at most ε,

i.e., 1− ε ≤ Ay
|h−1(y)| ≤ 1 + ε.

4. There exist constants β > 0 and λ ≥ 1, and an efficiently computable value max such that
for all ε ≥ ε0 the following holds: There exists a subset S′2 ⊆ S2 such that for all y ∈ S′2,
max
λ ≤ |h

−1(y)| ≤ max. Further, 1
|(g◦h)−1(z)|

∑
y∈S2\S′2

|h−1(y)| ≤ ε and
|S′2|
|S2| > β.

Proof. The idea is to use the method of rejection sampling.

Algorithm B (given input z ∈ S3 and error parameter ε):

1. Use B1 to sample y from g−1(z). Compute an approximation Ay for |h−1(y)| with error ε using

algorithm B3. If Ay < max ·( 1
λ − ε), reject y. Else accept y with probability wt(y) =

Ay
max .

Iterate this step till some y is accepted. If no sample is accepted after O(log 1
ε ) iterations,

accept the next sample.

2. Once y is accepted, sample from h−1(y) using B2 (with error ε).

Proof of correctness of Algorithm B: Consider any subset T ⊆ (g ◦ h)−1(z). Let pT,1 be the
probability that some element from T is picked by B in one iteration.

Then:

pT,1 =
∑

y∈g−1(z)

1

|g−1(z)|
·
(
|h−1(y)|

max
± ε
)
·
(
|T ∩ h−1(y)|
|h−1(y)|

± ε
)

The above expression is derived in the following way: Consider any y ∈ g−1(z). Let Ay be the
approximation of |h−1(y)| computed by algorithm B3. The probability of y being picked by B1
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is 1
|g−1(z)| . The probability that this y is accepted is given by

Ay
max = |h−1(y)|

max ± ε. Further, if y is

accepted, |T∩h
−1(y)|

|h−1(y)| ±ε is the probability that some element from the set T is picked by algorithm B2

(since B2 samples from a distribution ε-close to uniform on h−1(y)).

It follows that,

|pT,1 −
|T |

max ·|g−1(z)|
| = O(ε)

Let N = |(g ◦ h)−1(z)|. The probability that an iteration of Step (1) fails to accept a sample is:

preject =

(
1− N

max ·|g−1(z)|

)
±O(ε)

Let k = O(log 1
ε ). The probability pT that some element from T is picked by B in at most k

iterations is given by:

pT = pT,1

k−1∑
i=0

(preject)
i

=

(
|T |

max ·|g−1(z)|
±O(ε)

)
·
k−1∑
i=0

(
1− N

max ·|g−1(z)|
±O(ε)

)i
Thus, ∣∣∣∣pT − |T |N

∣∣∣∣ ≤ (1− N

max ·|g−1(z)|

)k
+O(ε)

≤ e−
Nk

max ·|g−1(z)| +O(ε) = O(ε)

where the equality in the last step follows from the fact that N
max ·|g−1(z)| = O(1) (by Condition (4)

in the hypothesis).

The probability that no sample is accepted by B in k iterations is bounded by:(
1− N

max ·|g−1(z)|

)k
+O(ε) = O(ε)

Let B(z, ε) denote the output distribution of algorithm B. Thus,

|B(z, ε)− U(g◦h)−1(z)| = max
T⊆(g◦h)−1(z)

∣∣∣∣Pr[B(z, ε) ∈ T ]− |T |
N

∣∣∣∣
≤
∣∣∣∣pT +O(ε)− |T |

N

∣∣∣∣ = O(ε)
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8.4 An efficient encoder

We recall the seedless non-malleable extractor constructed in Theorem 3.

Let enc : Fp → F2
p be defined as enc(x) = (x, x4 + x2 + x).

Then nmExt : F10
p → ZM is defined to be:

nmExt(x1, . . . , x10) = ext3(ext2(ext1(x1, . . . , x10)))

where, ext1 : F10
p → F4

p, ext2 : F4
p → Fp, and ext3 : Fp → ZM are defined in the following way:

ext1(x1, . . . , x10) =
( 1∑
i=0

(enc(x4i+1) + enc(x4i+2))� (enc(x4i+3) + enc(x4i+4)), x9, x10

)

ext2(y1, y2, z1, z2) =
2∑
j=1

(yjzj + y2
j z

2
j ), ext3(w) = σM (w) = w (mod M)

We set M = pδ such that the error in the extractor nmExt is ε = p−2δ. Note that, as discussed
before, we use the extractor from Subsection 8.2 for ext2 in nmExt instead of the constructions in
[DLWZ11], [Li12b].

An efficient encoder for the constructed non-malleable codes in the 10-split-state model follows
from the following theorem.

Theorem 8.7. There exists a randomized algorithm which takes as input z ∈ ZM and a parameter
ε > O(p−1/2) and samples from a distribution O(ε)-close to uniform on the set (nmExt)−1(z). The
worst case running time of the algorithm is bounded by poly(log p, log(1

ε )).

We prove Theorem 8.7 using the following lemma.

Lemma 8.8. For s ∈ ZM , let Ts = ext−1
3 (s) ⊂ Fp and S = nmExt−1(s). For a ∈ Fp, define

Wa = (ext2 ◦ ext1)−1(a) ⊂ F10
p . Define Is = {a ∈ Ts : |Wa|

p9
≤ 0.9} and W =

⋃
a∈IsWa.

Then
|W |
|S|

< p−(1−δ),
|Is|
|Ts|

<
18

19

Proof of Theorem 8.7 assuming Lemma 8.8. We show that for g = ext3 and h = ext2 ◦ ext1, all the
conditions of Theorem 8.6 are satisfied.

1. It is easy to uniformly sample from g−1(z).

2. An efficient algorithm for almost uniformly sampling from h−1(y) follows from Lemma 8.3.

3. An efficient algorithm for approximately counting h−1(y) follows from Lemma 8.4.

4. Using Lemma 8.8, we have that for at least (1/19)th fraction of the y’s in g−1(z),
0.9p9 < |h−1(y)| ≤ 18p9.
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Define I = {y ∈ g−1(z) : |h−1(y)| ≤ 0.9p9}. It follows from Lemma 8.8 that:

1

|(g ◦ h)−1(z)|
∑
y∈I
|h−1(y)| < p−(1−δ)

Thus by Theorem 8.6, there exists an efficient algorithm to sample almost uniformly from the set
(nmExt)−1(z).

Proof of Lemma 8.8. We begin by proving some claims.

Claim 8.9. For any s ∈ ZM ,

p10−δ(1− p−δ) < |nmExt−1(s)| < (p10−δ)(1 + p−δ)

Proof. Let X1, . . . , X10 be uniform on Fp. Using the fact that nmExt is an extractor for independent
sources with error at most ε = p−2δ, we have |Pr[nmExt(X1, . . . , X10) = s] − 1

M | < ε. The bound
on |nmExt−1(s)| now follows.

Claim 8.10. For any a ∈ Fp, let Wa = (ext2 ◦ ext1)−1(a) ⊂ F10
p . Then there exists a polynomial

g ∈ Fp[x1, . . . , x10] of degree at most 18 with coefficients in Fp such that Wa is the set of zeroes of g.

Proof. Define g(x1, . . . , x10) = ext2 ◦ ext1(x1, . . . , x10)− a.

For a ∈ Fp, define Na = |Wa|. Note that |Ts| = p1−δ.

Using Claim 8.9, we have

p10−δ − p10−2δ ≤
∑
a∈Ts

Na ≤ p10−δ + p10−2δ

It follows from Lemma 8.2 and Claim 8.10 that for any a ∈ Fp, Na ≤ 18p9. Further, Theorem 8.1
and Claim 8.10 imply that if Na < 0.9p9 for some a ∈ Fp, then Na < Cp8 for some constant C.

Thus,

p10−δ − p10−2δ ≤ |Is| · Cp8 + (|Ts| − |Is|) · 18p9 (24)

for some constant C.

Since |Is| ≤ |Ts| = p1−δ, |Is| · Cp8 ≤ Cp9−δ. It follows that,

p1−δ − o(1) ≤ 18(|TS | − |Is|) (25)

Rearranging, we have
|Is|
|Ts|
≤ 17

18
+ o(1) <

18

19

Further,
|W |
|S|

<
1

|S|
· |Is| · Cp8 ≤ C · p9−δ

p10−δ − p10−2δ
< p−(1−δ).
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A Proof of Theorem 8.5

We restate Theorem 8.5 for the sake of convenience.

Theorem 8.5 (restated). Let p be a prime. Define the functions ext2 : (F2
p) × (F2

p) → Fp and
snmExt : (F2

p)× (F2
p)→ ZM in the following way:

ext2((x1, x2), (y1, y2)) =
2∑
j=1

(xjyj + x2
jy

2
j ), snmExt(x, y) = σM (ext2(x, y))

where σM (x) = x (mod M). Suppose X,Y are independent sources on F2
p with min-entropies k1, k2

respectively.
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1. If (k1 + k2) ≥ (2 + δ) log p, then

|snmExt(X,Y ) ◦ X − UM ◦ X| < p−Ω(1), |snmExt(X,Y ) ◦ Y − UM ◦ Y | < p−Ω(1)

2. If k1, k2 > (2− δ) log p and f is any tampering function with no fixed points, then

|snmExt(X,Y ) ◦ snmExt(X, f(Y ))− UM ◦ snmExt(X, f(Y ))| < p−Ω(1).

We recall some results in order to prove Theorem 8.5.
Notation For any distribution D and non-negative integers c1, c2, let c1D−c2D be the distribution
obtained by drawing independent samples d1, . . . , dc1+c2 from D and outputting (d1 + . . .+ dc1)−
(dc1+1 + . . .+ dc1+c2).

Define eN : ZN → C as eN (x) = e
2πix
N . Recall that any nontrivial character φ of the additive

group ZN is of the form φ(x) = eN (αx) for some α ∈ ZN \ {0}. For an introduction to Fourier
analysis on Abelian groups, we refer the reader to [TV06].

The following XOR lemma was proved in [Rao07].

Lemma A.1 (XOR lemma). Let D be a distribution over ZN such that for every nontrivial char-
acter ψ of ZN , we have |E[ψ(D)]| ≤ ε. Then, for any M < N , we have

|σM (D)− UM | = O(ε logN
√
M) +O(M/N)

We need a slightly modified version of an XOR Lemma proved in [DLWZ11].

Lemma A.2. Let D1, D2 be distributions over ZN such that for arbitrary characters ψ, φ of ZN ,
we have |E[ψ(D1)φ(D2)]| ≤ ε, whenever ψ is nontrivial. Then, for any M < N , we have

|(σM (D1), σM (D2))− (UM , σM (D2))| = O(ε(logN)2M) +O(M/N)

For vectors v, w ∈ FCp , let 〈v, w〉 denote the standard inner product over Fp. The following
results are well known and can be found in [Rao07].

Lemma A.3. Let δ > 0 be a constant. Let X,Y be independent sources on FCp with min-entropies
k1, k2 respectively, such that k1 + k2 ≥ (C + δ) log p. Then for any nontrivial character φ of Fp,
|E[φ(〈X,Y 〉)]| < p−Ω(1).

Lemma A.4. Let δ > 0 be a constant. Let X,Y be independent sources on FCp with the fol-
lowing property: There exist constants c1, c2 such that the sources c1X, c2Y with min-entropy k1,
k2 respectively, satisfying k1 + k2 ≥ (C + δ) log p. Then for any nontrivial character φ of Fp,
|E[φ(〈X,Y 〉)]| < p−Ω(1).

Lemma A.5. Let ext : {0, 1}n × {0, 1}n → {0, 1}m, m = Ω(n), be a 2-source extractor with error
2−Ω(n), for independent sources with min-entropies k1, k2 respectively, satisfying k1 +k2 > (1+ δ)n.
Then ext is a strong 2-source extractor with error 2−Ω(n) for independent sources with min-entropies
k1, k2 respectively, satisfying k1 + k2 > (1 + 2δ)n.

Proof of Theorem 8.5.

40



• Suppose k1 + k2 > (2 + δ) log p.

We prove the following claim.

Claim A.6. For any nontrivial character φ of Fp, we have |E[φ(ext2(X,Y )]| < p−Ω(1).

Proof. We note that,

ext2(X,Y ) = 〈(x1, x2, x
2
1, x

2
2), (y1, y2, y

2
1, y

2
2)〉

Define the distributions X ′, Y ′ (over F4
p) in the following way:

X ′ = (x1, x2, x
2
1, x

2
2) : (x1, x2) ∼ X, Y ′ = (y1, y2, y

2
1, y

2
2) : (y1, y2) ∼ Y

Thus
ext2(X,Y ) = 〈X ′, Y ′〉

We claim that 2X ′ has min-entropy at least 2k1 − 2. To prove this, consider arbitrary (a, b,
c, d) ∈ F4

p. x1 + x̄1 = a, x2
1 + x̄2

1 = c has at most 2 solutions in (x1, x̄1). In a similar way,
x2 + x̄2 = b, x2

2 + x̄2
2 = d has at most 2 solutions in (x2, x̄2). Thus,

Pr[2X ′ = (a, b, c, d)] ≤ 4 · 2−2k1

Hence 2X ′ has min-entropy at least 2k1 − 2. Similarly, the distribution 2Y ′ has entropy at
least 2k2 − 2.

Thus,
H∞(2X ′) +H∞(2Y ′) ≥ 2(k1 + k2)− 4 > (4 + δ) log p

The proof now follows using Claim A.4.

By combining Claim A.6 with Lemma A.1 and Lemma A.5, we have

|snmExt(X,Y ) ◦ X − UM ◦ X| < p−Ω(1), |snmExt(X,Y ) ◦ Y − UM ◦ Y | < p−Ω(1)

• Now suppose k1, k2 > (2− δ) log p and f is any tampering function with no fixed points.

Let f1, f2 be functions such that for any (y1, y2) ∈ F2
p,

f(y1, y2) = (f1(y1, y2), f2(y1, y2))

We show that for arbitrary characters φ, ψ of Fp, such that φ is nontrivial,

|E[φ(ext2(X,Y ))ψ(ext2(X, f(Y )))]| < p−Ω(1) (26)

Let φ(x) = ep(αx), ψ(x) = ep(αβx) for some α ∈ F∗p and β ∈ Fp. To prove (26), it is enough
to prove the following claim.

Claim A.7. For arbitrary α ∈ F∗p and β ∈ Fp,

|E[ep(α · ext2(X,Y ) + αβ · ext2(X, f(Y ))]| < p−Ω(1)
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Proof. If β = 0, the proof follows by Claim A.6. Thus suppose β ∈ F∗p.
Define the distributions X ′ and Y ′β,f (over F4

p) in the following way:

X ′ = (x1, x2, x
2
1, x

2
2) : (x1, x2) ∼ X

Y ′β,f = (y1 + βf1(y1, y2), y2 + βf2(y1, y2), y2
1 + βf1(y1, y2)2, y2

2 + βf2(y1, y2)2) : (y1, y2) ∼ Y
We note that,

E[ep(α · ext2(X,Y ) + αβ · ext2(X, f(Y ))]| = E[φ(〈X ′, Y ′β,f 〉)]

where φ(x) = ep(αx) is a nontrivial character of Fp.
It follows from the proof of Claim A.6 that the source 2X ′ has min-entropy at least 2k1 − 2.

We now claim that the distribution Y ′β,f has min-entropy at least k2 − log p. To prove this

consider arbitrary (a, b, c, d) ∈ F4
p. To get an upper bound on Pr[Y ′β,f = (a, b, c, d)], we bound

the number of pairs (y1, y2) satisfying the following equations:

y1 + βf1(y1, y2) = a (27)

y2
1 + βf1(y1, y2)2 = c (28)

y2 + βf2(y1, y2) = b (29)

y2
2 + βf2(y1, y2)2 = d (30)

Eliminating fi(y1, y2) from equations (28) and (30), we have

(1 + β)y2
1 − 2ay1 + (a2 − βc) = 0 (31)

(1 + β)y2
2 − 2by2 + (b2 − βb) = 0 (32)

1. If β 6= −1, clearly there are at most 4 possible values of (y1, y2) satisfying the equations
(31) and (32).

2. Now suppose β = −1.

(a) If ab 6= 0, then (y1, y2) can take exactly 1 value.

(b) Consider the case where a = 0. This forces c = 0 for (31) to hold. Hence by (27),
f1(y1, y2) = y1.

i. If b 6= 0, then y2 can take at most 1 value and hence there are at most p values
of (y1, y2) satisfying the equations (31) and (32).

ii. If b = 0, then d is forced to be 0 for (32) to hold. By (29), f2(y1, y2) = y2 and
hence f(y1, y2) = (y1, y2). Since f has no fixed points, there can be no solutions
in this case.

We thus have,
Pr[Y ′β,f = (a, b, c, d)] ≤ p · 2−k2

and hence Y ′β,f has min-entropy at least k2 − log p.

Thus,

H∞(2X ′) +H∞(Y ′β,f ) ≥ 2k1 + k2 − log p− 2 ≥ 5 log p− 3δ log p− 2 >> (4 + δ) log p

The proof now follows using Claim A.4.

42



By combining (26) with Lemma A.2, we have

|snmExt(X,Y ) ◦ snmExt(X, f(Y ))− UM ◦ snmExt(X, f(Y ))| < p−Ω(1).

This concludes the proof of Theorem 8.5.

B An additional property of the constructed seedless non-malleable
extractor

We include an additional property of the seedless non-malleable extractor from Theorem 6.13, which
might find application in other explicit constructions. Independently, Aggarwal, Dodis, Kazanaand
and Obremski [ADKO14] gave a general reduction from 2 parts to a constant number of parts,
incurring only a constant overhead in the rate, as long as the non-malleable extractor satisfies this
property. As a result, after seeing a preliminary version of our work, they applied their reduction
to our result to construct constant-rate non-malleable codes in the 2-split model.

Theorem B.1. Let X1, . . . , X8 be independent (n, n)-sources and let X9 be an independent
(2n, 2n)-source. Let nmExt : ({0, 1}n)8 × {0, 1}2n → {0, 1}m,m = Ω(n), be the seedless non-
malleable extractor with error ε = 2−Ω(n) from Theorem 6.13.Then:

|nmExt(X1, . . . , X9) ◦Xi1 ◦ . . . Xi8 − Um ◦Xi1 ◦ . . . Xi8 | < 2−Ω(n)

for arbitrary 1 ≤ i1 < . . . < i8 ≤ 9.

Proof. Recall that nmExt(X1 . . . , X9) = snmExt(ext1(X1, . . . , X8), X9), where the functions snmExt
and ext1 are defined in the proof of Theorem 6.13. We split the proof into two cases.

• Suppose i8 6= 9. Consider a fixing of the sources X1, . . . , X7 to arbitrary values x1, . . . , x7

such that (enc(x5) + enc(x6)) ∈ (F∗p)2. It follows from Claim 6.6 that the probability over

X1 . . . , X7 of a fixing satisfying this condition is at least 1− 2−Ω(n). We prove that:

|nmExt(x1, . . . x7, X8, X9) ◦X8 − Um ◦X8| < 2−Ω(n) (33)

It follows from the structure of ext1 that ext1(x1, . . . , x7, X8) is a (2n,n)-source. By applying
Theorem 2.20 on the sources ext1(x1, . . . , x7, X8) and X9, we have

|snmExt(ext1(x1, . . . , x7, X8), X9) ◦ ext1(x1, . . . , x7, X8)− Um ◦ ext1(x1, . . . , x7, X8)| < 2−Ω(n).

Now (33) follows by observing that there is a deterministic one-one map between the random
variables X8 and ext1(x1, . . . , x7, X8).

Using Lemma 2.10, it follows that

|nmExt(X1, . . . , X9) ◦X1 ◦ . . . X8 − Um ◦X1 ◦ . . . X8| < 2−Ω(n)
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• Now suppose i8 = 9. Let 1 ≤ j ≤ 8 be such that j 6= il for any l ∈ [8]. Consider any fixing
of the sources X1, . . . , Xj−1, Xj+1, . . . , X8 such that ext1(x1, . . . , xj−1, Xj , xj+1, . . . , x8) is a
(2n, n)-source. As argued in the previous case, the probability (over X1, . . . , Xj−1, Xj+1, . . . ,
X8) of a fixing satisfying this condition is at least 1 − 2−Ω(n). Further recall that X9 is a
(2n, 2n)-source. Using Theorem 2.20, we have

|snmExt(ext1(x1, . . . , xj−1, Xj , xj+1, . . . , x8), X9) ◦X9 − Um ◦X9| < 2−Ω(n)

Using Lemma 2.10, it follows that

|nmExt(X1, . . . , X9) ◦Xi1 ◦ . . . Xi8 − Um ◦Xi1 ◦ . . . Xi8 | < 2−Ω(n).
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