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Abstract

We prove that if the hardness of inverting a size-verifiable one-way function can
be based on NP-hardness via a general (adaptive) reduction, then NP ⊆ coAM. This
claim was made by Akavia, Goldreich, Goldwasser, and Moshkovitz (STOC 2006), but
was later retracted (STOC 2010).

Akavia, Goldreich, Goldwasser, and Moshkovitz [AGGM06] claimed that if there exists
an adaptive reduction from an NP-complete problem to inverting an efficient size-verifiable
function, then NP ⊆ coAM. They provided a proof for size-verifiable functions that have
polynomial pre-image size as well as a proof for general size-verifiable functions, even if the
size of the pre-image can only be approximated. The proof for the latter statement was
found to be erroneous and has been retracted [AGGM10].1 In this note we give a proof of
their claim. For motivation about the problem, we refer the reader to the work [AGGM06].

Throughout this paper, we consider efficiently computable functions f with f({0, 1}n) ⊆
{0, 1}m(n), where m is an injective function on integers. We say an oracle I inverts f if for
every x ∈ {0, 1}∗, I(f(x)) belongs to the set f−1(f(x)).

We say that f is size-verifiable if the decision problem Nf = {(y, s) : |f−1(y)| = s} is in
AM. We say that f is approximately size-verifiable if the following promise problem Af is in
AM:

YES instances of Af : (y, s, 1a) such that |f−1(y)| ≤ s

NO instances of Af : (y, s, 1a) such that |f−1(y)| > (1 + 1/a)s.

A reduction from a decision problem L to inverting f is a randomized oracle algorithm
R? such that for every oracle I that inverts f , RI decides L with probability at least 2/3
over the randomness of R?.
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1In the same paper [AGGM06], Akavia et al. also show that the existence of a (randomized) non-adaptive
reduction of NP to the task of inverting an arbitrary one-way function implies that NP ⊆ coAM. This result
is not affected by the gap found in [AGGM10].
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Theorem 1. Let f be an efficiently computable, approximately size-verifiable function. If
there exists an efficient reduction from L to inverting f with respect to deterministic inversion
oracles, then L is in AM ∩ coAM.

Corollary 2. Let f be an efficiently computable, approximately size-verifiable function.
There is no efficient reduction from an NP-hard language L to inverting f with respect
to deterministic inversion oracles, unless NP ⊆ coAM.

We first prove a weaker version of the theorem that relies on two simplifying assumptions.
Firstly, we assume that the reduction is correct even with respect to randomized inversion
oracles. These are oracles that have access to an internal source of randomness when answer-
ing their queries. Our inversion oracle will simply sample a uniform pre-image amongst all
possible pre-images like an inverter for a distributional one-way function [IL89]. Note that a
reduction that works for randomized inversion oracles also works with respect to determin-
istic oracles, as they are a special case of randomized ones. As we prove a negative result,
stronger requirements on the reduction weaken our result. We will thus explain later how to
remove this additional requirement on the reduction. Secondly, we assume the function to
be size-verifiable rather than approximately size-verifiable. We then adapt the proof to the
general case.

Randomized inversion oracles Let R? be a reduction, I a randomized oracle, and z
an input. A valid transcript of RI(z) is a string of the form (r, x1, . . . , xq), where r is the
randomness of the reduction and x1, . . . , xq are the oracle answers in the order produced by
I. We will assume, without loss of generality, that the length of r and the number of queries
q depend only on the length of z.

Consider the randomized inversion oracle U that, on query y, returns an x chosen uni-
formly at random from the set f−1(y), or the special symbol ⊥ if this set is empty. Let the
set C consist of all tuples (z, r, x1, . . . , xq, p), such that (r, x1, . . . , xq) is an accepting valid
transcript of RU(z) and p is an integer between 1 and dK/(s(y1) · · · s(yq))e. Here,

• yi is the i-th query of the reduction,

• s(y) is the size of the set of possible answers on query y:

s(y) =

{
|f−1(y)|, if f−1(y) is non-empty

1, otherwise,

• and K = 2 ·2q`, where ` is an upper bound on the length of queries R? makes on inputs
of length |z|.

Claim 3. C is in AM.

Proof. On input (z, r, x1, . . . , xq, p), the AM verifier for C runs the reduction on input z with
randomness r and checks that for for each query yi that the reduction makes, the answer xi
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is indeed a pre-image of yi and that the reduction accepts. To see that p is of the right size,
we ask the prover to provide s(y1), . . . , s(yq) such that p ≤ K/(s(y1) · · · s(yq)). We then run
the AM verifier for Nf ato check that the numbers s(y1), . . . , s(yq) that the prover provided
are correct.

Let C(z) denote the set of all (r, x1, . . . , xq, p) such that (z, r, x1, . . . , xq, p) is in C.

Claim 4. C(z) has size at least 2
3
2|r|K if z ∈ L, and size at most 1

2
2|r|K if z 6∈ L.

Proof. Fix the input z. Conditioned on the randomness r, every valid transcript (r, x1, . . . , xq)
appears with probability exactly 1/(s(y1) . . . s(yq)) over the choice of randomness of the in-
verter. All these probabilities add up to one:∑

(x1,...,xq)

1

s(y1) . . . s(yq)
= 1.

If z ∈ L, then at least a 2/3 fraction of these valid transcripts must be accepting for
R?(z) over the choice of r and so

|C(z)| ≥ 2
3

∑
valid transcript (r, x1, . . . , xq)

⌈ K

s(y1) . . . s(yq)

⌉
≥ 2

3

∑
r
K
∑

(x1,...,xq)

1

s(y1) . . . s(yq)

= 2
3
2|r|K.

If z 6∈ L, then at most a 1/3 of the valid transcripts are accepting, and

|C(z)| ≤ 1
3

∑
valid transcript (r, x1, . . . , xq)

⌈ K

s(y1) . . . s(yq)

⌉
≤ 1

3

∑
r
(K + 1)

∑
(x1,...,xq)

1

s(y1) . . . s(yq)

≤ 1
3

∑
r
K
(∑

(x1,...,xq)

1

s(y1) . . . s(yq)
+
∑

(r,x1,...,xq)
1
)

≤ 1
3
2|r|(K + 2q`)

≤ 1
2
2|r|K

by our choice of K.

Using the set lower bound protocol of Goldwasser and Sipser [GS86], we conclude that

L is in AM. Applying the same argument to the reduction R
?

that outputs the opposite
answer of R?, it follows that L is also in coAM.
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Deterministic inversion oracles We now prove Theorem 2 for size-verifiable functions
and deterministic inversion oracles. Assume R? is an efficient reduction from L to inverting
f with respect to deterministic inversion oracles. Then, for every inversion oracle I for f , RI

decides L with probability at least 2/3. By averaging, it follows that for every distribution
I on inversion oracles I for f , RI decides L with probability at least 2/3:

Prr,I∼I [R
I(z; r) = L(z)] ≥ 2

3
for every z.

If the oracle U could be written as a probability distribution over deterministic inversion
oracles for f , then Theorem 2 would follow immediately from Claims 3 and 4. Unfortunately
this is not the case: One reason is that a deterministic oracle sampled from any distribution
always produces the same answer to the same query, while the oracle U outputs statistically
independent answers. We resolve this difficulty by applying a minor modification to the
description of U : The modified oracle U ′ will choose among the answers to a query y using
randomness coming from a random function F applied to y. Specifically, if x1, . . . , xs(y) are
the possible inverses of y, then U ′(y) = xF (y).

Proof of Theorem 2 for size-verifiable functions. Let `(n) and q(n) be polynomial, efficiently
computable upper bounds on the query length and query complexity of the reduction on
inputs of length n, respectively. Let F = {Fm} be a collection of random functions, where
Fm takes as input a string y ∈ {0, 1}m and outputs a number between 1 and s(y). We define
the randomized oracle U ′ as follows:

• Randomness: For every query length m, choose a uniformly random Fm, indepen-
dently of F1, . . . , Fm−1.

• Functionality: On input y of length m, output ⊥ if y is not in the range of f , or
U ′(y) = xFm(y) if it is, where x1, . . . , xs(y) are the inverses of y under f .

Observe that U ′ is determined by a product distribution over F1, F2, . . . and any fixing
of F1, F2, . . . specifies a deterministic inversion oracle for f . Since, for every z, the event
RU ′

(z; r) = L(z) is measurable both over r and over (F1, F2, . . . ), by averaging

Prr,(F1,F2,... )∼F [RU ′
(z; r) = L(z)] ≥ 2

3
for every z.

We may now assume, without loss of generality, that RU ′
never makes the same query

twice to the oracle U ′. (More formally, we replace R? by another reduction that memoizes
answers to previously made queries, and possibly makes some dummy queries at the end
to ensure the number of queries is exactly q(n) on inputs of length n.) We define C(z) as
before. Claims 3 and 4 still hold, and so L is in AM ∩ coAM.

Extension to approximately size-verifiable functions Consider the promise problem
C ′, whose YES instances are the same as the YES instances of C, and whose NO instances
consist of the (z, r, x1, . . . , xq, p) for which either (r, x1, . . . , xq) is not an accepting valid
transcript of RU ′

(z) or p > d6
5
K/s(y1) . . . s(yq)e, where K = 10

3
2q`. We now prove the

analogues of Claims 3 and 4. We observe that the Goldwasser-Sipser lower bound protocol
extends to AM-promise problems and conclude, as before, that L must be in AM ∩ coAM.
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Claim 5. C ′ is in AM.

Proof. On input (z, r, x1, . . . , xq, p), the AM verifier for C ′ runs the reduction on input z
with randomness r and checks that for for each query yi that the reduction makes, the
answer xi is indeed a pre-image of yi and that the reduction accepts. It then asks the prover
to provide claims ŝi for the values s(yi), 1 ≤ i ≤ q, runs the AM proof for Af on input
(yi, ŝi, 1

6q), and verifies that p ≤ dK/ŝ1 . . . ŝqe. Clearly the verifier accepts YES instances
of C ′. If (z, r, x1, . . . , xq, p) is a NO instance, then either the transcript is not valid and
accepting, or f(xi) 6= yi for some i, or dK/ŝ1 . . . ŝqe ≥ p > d6

5
K/s(y1) . . . s(yq)e, in which

case s(yi) > (6/5)1/qŝi > (1 + 1/(6q))ŝi for some i and the verifier for Af rejects.

Let C ′YES(z) and C ′NO(z) consist of those (r, x1, . . . , xq, p) such that (z, r, x1, . . . , xq, p) are
YES and NO instances of C ′, respectively.

Claim 6. If z ∈ L, then C ′YES(z) has size at least 2
3
2|r|K. If z 6∈ L, then C ′NO(z) has size at

most 1
2
2|r|K, where C ′NO(z) denotes all tuples (z, r, x1, ..., xq, p) that are not in C ′NO(z).

Proof. The proof of the first part is identical to the proof of the first part of Claim 4. For
the second part, if z 6∈ L, then by a similar calculation

|C ′NO(z)| ≤ 1
3

∑
valid transcript (r, x1, . . . , xq)

⌈ 6K/5

s(y1) . . . s(yq)

⌉
≤ 1

3
2|r|(6

5
K + 2q`) ≤ 1

2
2|r|K.

Acknowledgements

We thank Oded Goldreich and Shafi Goldwasser for helpful comments on the presentation.

References

[AGGM06] Adi Akavia, Oded Goldreich, Shafi Goldwasser, and Dana Moshkovitz. On basing
one-way functions on NP-hardness. In Proceedings of the Thirty-eighth Annual
ACM Symposium on Theory of Computing, STOC ’06, pages 701–710, New York,
NY, USA, 2006. ACM.

[AGGM10] Adi Akavia, Oded Goldreich, Shafi Goldwasser, and Dana Moshkovitz. Erratum
for: On basing one-way functions on NP-hardness. In Proceedings of the Forty-
second ACM Symposium on Theory of Computing, STOC ’10, pages 795–796,
New York, NY, USA, 2010. ACM.

[GS86] Shafi Goldwasser and Michael Sipser. Private coins versus public coins in inter-
active proof systems. In Proceedings of the Eighteenth Annual ACM Symposium
on Theory of Computing, STOC ’86, pages 59–68, New York, NY, USA, 1986.
ACM.

5



[IL89] Russell Impagliazzo and Michael Luby. One-way functions are essential for com-
plexity based cryptography (extended abstract). In 30th Annual Symposium
on Foundations of Computer Science, Research Triangle Park, North Carolina,
USA, 30 October - 1 November 1989, pages 230–235. IEEE Computer Society,
1989.

6

 

ECCC                 ISSN 1433-8092 

http://eccc.hpi-web.de 


