
Separation between Estimation and Approximation

Uriel Feige ∗ Shlomo Jozpeh ∗

August 19, 2014

Abstract

We show (under standard assumptions) that there are NP optimization problems for which

estimation is easier than approximation. Namely, one can estimate the value of the optimal

solution within a ratio of ρ, but it is difficult to find a solution whose value is within ρ of

optimal. As an important special case, we show that there are linear programming relaxations

for which no polynomial time rounding technique matches the integrality gap of the linear

program.

1 Introduction

We briefly review some basic concepts related to approximation algorithms for optimization prob-

lems. For simplicity of the presentation, we shall only deal with maximization problems, though

our results can be adapted to minimization problems as well. Given a binary relation (also referred

to as predicate) R, we say that y is a feasible solution for x if (x, y) ∈ R. Let |s| denote the represen-

tation size of input s (e.g., the number of bits in some standard binary representation). We say that

R is a polynomial relation if for every x, every feasible y is of size |y| ≤ |x|O(1), and furthermore,

there is a polynomial time algorithm that for every pair (x, y) decides whether (x, y) ∈ R. Let V be

a value function, mapping pairs (x, y) to nonnegative integer values, and computable in polynomial

time. For simplicity of the presentation and essentially without loss of generality, let us assume

that V (x, y) = 0 if y is not feasible for x. An NP-optimization problem is specified by a predicate

R and value function V as above. An instance of the problem is an input x, and the desired goal

is to output a y maximizing V (x, y). Given such an x, we refer to such a y as an optimal solution,

and to the corresponding value of V (x, y) as the optimum value opt(x).

For example, in the maximum independent set problem, the input x is a graph, (x, y) ∈ R iff y

is an independent set in x, and V (x, y) outputs the number of vertices in y if y is a feasible solution,

and outputs 0 otherwise.

∗Weizmann Institute of Science. Email: {uriel.feige,shlomo.jozeph}@weizmann.ac.il

1

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Report No. 110 (2014)

Given that some NP-optimization problems cannot be solved optimally in polynomial time

(unless P=NP), a common approach of coping with this difficulty is via an approximation algorithm.

Given R and V as above, a polynomial time algorithm A is said to have approximation ratio

0 ≤ ρ ≤ 1 if for every input x it outputs a solution A(x) whose value satisfies V (x,A(x)) ≥ ρ·opt(x).

A polynomial time algorithm B is said to have estimation ratio 0 ≤ ρ ≤ 1 if for every input x it

outputs a value B(x) satisfying ρ · opt(x) ≤ B(x) ≤ opt(x). Clearly, approximation is at least

as difficult as estimation, because a ρ-approximation algorithm A can be used as a ρ-estimation

algorithm B by taking B(x) = V (x,A(x)). The question addressed in this work is whether there

are NP-optimization problems for which estimation is easier than approximation, in the sense that

the best estimation ratio for the problem is strictly larger than the best approximation ratio. We

refer to this as a separation between estimation and approximation.

Observe that if P=NP then every NP-optimization problem can be solved exactly, and there is

no separation between estimation and approximation. Hence to establish a separation we need to

at least assume that P does not equal NP. In fact, to establish our results, we shall use an even

stronger assumption. A polynomial relation R is in TFNP [9] (Total Function NP) if every x has

a feasible solution. A TFNP relation is said to be in FP if there is a polynomial time algorithm

that on input x finds a feasible solution. It is currently not know whether every TFNP predicate

is in FP, and there are several TFNP relations that serve as plausible candidates for not being in

FP. Examples include factoring (every integer has a prime factorization, but no polynomial time

factoring algorithm is known, a fact that serves as the basis of several well known cryptographic

schemes, such as RSA), Nash equilibrium (every two player game in normal form has a mixed Nash

equilibrium, but finding a Nash equilibrium is PPAD-complete [2]), and maximal cut (every edge

weighted graph has a cut whose size cannot be improved by a single vertex changing size, but

finding a maximal cut is PLS-complete [7]).

We observe that a separation between estimation and approximation can be established under

the assumption that TFNP is not in FP. In fact, one can precisely control the gap between estimation

and approximation.

Theorem 1. For every 0 ≤ α < β ≤ 1 and ε > 0, there is an NP-optimization problem that has

a β-estimation algorithm, an α-approximation algorithm, no (β + ε)-estimation algorithm (unless

P=NP), and no (α+ ε)-approximation algorithm (unless TFNP is in FP).

The NP-optimization problem in the proof of Theorem 1 is somewhat artificial and was designed

specifically for the proof. For natural NP-optimization problems, such a separation can often be

proved not to occur. See Section 1.1 for more details.

A common technique for designing approximation algorithms is via linear programming relax-

ations. One first formalizes the NP-optimization problem π as an integer linear program (IP). This

step is typically not difficult, because integer linear programming is NP-hard (and hence other prob-

lems in NP can be reduced to it). Thereafter, one relaxes the integrality constraints, thus achieving

2

a linear program (LP) relaxation whose optimal value satisfies optLP (x) ≥ opt(x). The smallest

possible ratio opt(x)
optLP (x) (over all x) is referred to as the integrality gap ρLP of the LP. As linear

programs can be solved in polynomial time, computing optLP (x) (and scaling the result by ρLP)

can serve as a ρLP -estimation algorithm for π. To obtain an approximation algorithm one designs

a rounding procedure that takes a (fractional) solution of the LP and “rounds” it to an integer

solution to the integer program. Let rounded(x) denote the value of the solution obtained after

rounding the optimal LP solution. Ideally, one can establish that the value rounded(x)
optLP (x) ≥ ρLP , which

then implies that computing rounded(x) is a ρLP -approximation algorithm for π. This approach

has been successful numerous times (see [6, 14, 15] for many examples), and hence one might be led

to believe that for every LP relaxation there is a polynomial time rounding procedure that matches

the integrality gap. Our next theorem specializes Theorem 1 to the context of integer programs,

showing that rounding procedures that match the integrality gap do not always exist.

Theorem 2. For every 0 ≤ α < β ≤ 1 and ε > 0, there is a family of (maximization) integer

programs with non-negative objective function with the following properties:

1. For every integer program its LP-relaxation has an integrality gap of no worse than β.

2. For infinitely many integer programs the LP-relaxation has an integrality gap no better than

β + ε.

3. There is a polynomial time algorithm that gives a solution whose value approximates the

optimal integer program value within a ratio of α.

4. There is no (α+ ε)-approximation algorithm for the optimal solution of the integer program,

unless TFNP is in FP.

The family of integer programs in Theorem 2 defines an NP-optimization problem, and hence

Theorem 2 implies Theorem 1.

Our separation between estimation and approximation (Theorems 1 and 2) assumes that TFNP

is not contained in FP. This assumption is unavoidable, as otherwise no separation exists.

Proposition 3. If α-estimation of a value function V is in FP, then α-approximation of V is

reducible to a problem in TFNP.

1.1 Related Work

The current work continues a line of research outlined in [3]. The reader is referred to [3] for a more

detailed discussion of the motivations and background (though note that there are more recent

developments that are not covered in [3] and are mentioned below). Here we provide a shorter

presentation of the background.

3

The distinction between estimation and approximation is analogous to the distinction between

decision (does a solution exist?) and search (find a solution) for NP-problems. For NP-complete

problems, due to their self reducible nature, search can be reduced to decision, and there is no

separation between decision and search. However, for problems in NP that are not (known to be)

NP-complete, it is plausible that such a separation exists. In particular, the class TFNP (mentioned

in Section 1) contains problems that always have solutions (hence decision is trivial), but for which

the search problem is not known to be solvable in polynomial time. Unlike the class NP which

has NP-complete problems (such as SAT), TFNP does not seem to have complete problems (for

reasons that we shall not discuss here), and hence many subclasses of TFNP has been introduced

(such as PLS [7] and PPAD [11]), and these subclasses do have complete problems. In a sense,

our Theorem 2 can be thought of as suggesting for TFNP a problem that can serve the purpose

usually attributed to complete problems. Namely, one may think of the problem of rounding LP-

relaxations within ratios that match the integrality gap as a problem that is essentially in TFNP

(it is reducible to a problem in TFNP, by proposition 3), and every problem in TFNP is reducible

to it.

Known NP-hardness of approximation results are in fact (we are not aware of exceptions)

hardness of estimation results. Hence in those cases (which are quite common by now) in which the

hardness ratio matches the approximation ratio given by known algorithms (such as max 3SAT,

where this ratio is 7/8 up to low order terms), there is no separation between estimation and

approximation (except possibly in the low order terms, an issue that is beyond the scope of the

current paper).

There are only a few optimization problems in which the current state of our knowledge is

such that the estimation ratios known are better than the approximation ratios know. Some such

problems were discussed in [3], but even for some of these problems there had since been progress

in closing the apparent gap between estimation and approximation. Most notable, new algorithmic

versions of the local lemma [10, 4], of discrepancy bounds [1, 8] and of local search [13] serve towards

this purpose.

2 Formal Definitions and Proofs

2.1 Definitions

Definition 4. Let h be any polynomial. Let Dh =
⋃
n {0, 1}

n×{0, 1}h(n). A function V : Dh → N
that is computable in FP (Function Polynomial Time) is a value function.

We may define a value function on inputs satisfying a certain property with the implicit intention

that the function gives a value of zero to all other inputs.

Definition 5. Given a value function V and an input x, let MV
x = maxy {V (x, y)}. An α-solution

for V and x is a string z such that V (x, z) ≥ αMV
x

4

Definition 6. α-estimation of a value function is the following problem: given a value function V

and a string x, output a value v such that αMV
x ≤ v ≤MV

x .

Definition 7. α-approximation of a value function is the following problem: given a value function

V and a string x, output an α-solution.

Example 8. The value function VSAT (ϕ, a) is defined as follows: interpret ϕ as an E3SAT formula,

and a as its assignment. Return the number of satisfied clauses. It is known that 7/8-approximation

is in FP, while (7/8 + ε)-estimation is NP-hard [5], for any ε > 0.

Definition 9. A relation R is in the complexity class TFNP (Total Function NP) if there is a poly-

nomial time Turing machine T and a polynomial h such that R = {(x, y) | |y| ≤ h (|x|) , T (x, y) = 1}
and for any string x there is a y such that (x, y) ∈ R. The first element of the pair is called the

input, and the second element is called the solution. The goal of every problem in TFNP is to find

a solution, given an input. Note that given any pair (x, y), it is possible to use T to verify that

(x, y) ∈ R in polynomial time.

Definition 10. A reduction from a certain relation R to a TFNP problem S is a pair of polynomial

time computable functions (f, g). It must hold that for any x, if (f (x) , y) ∈ S, then (x, g (x, y)) ∈ R.

Remark 11. Note that if there is a reduction from R to S then a black box solving S can solve R,

but R is not necessarily in TFNP; Every input has a solution that can be verified to be in R using

a specific polynomial Turing machine, but some input-solution pairs may not be verifiable to be in

R.

Note that if α-approximation for some value function V is in FP, α-estimation of V is in FP

as well. If α-estimation is NP-hard, then α-approximation is also NP-hard. Additionally, For any

β ≤ α

• If α-estimation (approximation) of V is in FP, then β-estimation (approximation) of V is in

FP.

• If β-estimation (approximation) of V is NP-hard, then α-estimation (approximation) of V is

NP-hard

Most hardness of approximation results show that value functions are NP-hard to estimate, which

also shows that value functions are NP-hard to approximate. On the other hand, usually algorithms

in P approximate, and not just estimate.

2.2 Proofs

Given a value function V , suppose that α-estimation is in P. How hard can α-approximation be?

We now prove Proposition 3 which addresses this question.

5

Proof. Let V be a value function, and let f be a function in FP that α-estimates V . Define the

following relation: R = {(x, y) |V (x, y) ≥ f (x)}. Note that for any input x, there is some solution

y such that (x, y) ∈ R. Additionally, given x and y, one can verify in polynomial time whether

(x, y) ∈ R or not. Therefore, the relation R is in TFNP. α-approximation of V is reducible to

finding a string in the relation R, hence, α-approximation is reducible to TFNP.

Remark 12. Unlike the relationR = {(x, y) |V (x, y) ≥ f (x)}, the relation R̂ =
{

(x, y) |V (x, y) ≥ αMV
x

}
might not be in TFNP (because for a given x it may include solutions y for which αMV

x ≤ V (x, y) <

f (x) and then membership of (x, y) ∈ R̂ might not be decidable in polynomial time).

The following proposition is a special case of Theorem 1 and illustrates the proof techniques

that can be used in order to prove Theorem 1. Later, the proof of Theorem 2 will serve as a

complete proof for Theorem 1.

Proposition 13. For any R ∈ TFNP, there is a value function such that 7/8-estimation is in P,

(7/8 + ε)-estimation is NP-hard, 7/16-approximation is in P, and (7/16 + ε)-approximation is as hard

as R, for any ε > 0

Proof. Given R ∈ TFNP, we define the following value function VR: Given (x, y), the input x is

interpreted as encoding two sub-inputs x = (ϕ, r), where ϕ is interpreted as an E3SAT formula

and r as an input to R, and the solution y is interpreted as encoding two sub-solutions y = (a, s),

where a is an assignment for ϕ and s is a solution for r.

Let caϕ be the number of clauses in ϕ satisfied by a.

VR (ϕ, r, a, s) =

caϕ (r, s) /∈ R

2caϕ (r, s) ∈ R

By the definition of TFNP, for any string r there is a string s such that (r, s) ∈ R. Thus, if

there is an assignment satisfying c clauses in ϕ, the value function can get value 2c. Since every

E3SAT formula has an assignment satisfying 7/8 of its clauses, we have that 7/8-estimation is in

FP. Since deciding whether a general 3SAT formula is 7/8 + ε satisfiable or completely satisfiable is

NP-hard [5], (7/8 + ε)-estimation is NP-hard.

It is easy to find an assignment that satisfies 7/8 of the clauses of any given E3SAT formula,

but this gives us only 7/16-approximation to VR, unless we can solve R. If a black box gives us

β-approximation of R, for any β > 7/16, either the black box approximated ϕ to within a factor

better than 7/8, or it found a solution for r. Since (7/8 + ε)-approximation is an NP-hard problem,

solving any TFNP problem (including R) can reduced to it, so β-approximation is at least as hard

as R.

We now turn to prove Theorem 2. Its proof is broken into several propositions.

6

Proposition 14. For any R ∈ TFNP, there is a set of integer programs (one for each input instance

x) where

• The integer program has a feasible solution, and a feasible solution can be found in polynomial

time.

• Every feasible solution has nonnegative value.

• The maximum value of the integer program is 1.

• The linear program relaxation (that is, replacing the requirement that the variables are in

{0, 1} with the requirement that they are in the range [0, 1]) has maximal value 1. Hence the

integrality gap is 1.

• Outputting a solution to the IP of value that is not 0 is as hard as solving R.

Proof. Given R ∈ TFNP let T denote the Turing machine associated with R. For every n, one

can associate a circuit Cn that simulates the computation of T on those input pairs (x, y) of size

|x| = n, and outputs 1 if and only if (x, y) ∈ R. As binary NAND forms a complete basis for

logical gates, we may assume that all gates in the circuit are NAND gates. Given an input string

x′ with |x′| = n, let Cn(x′) denote the NAND circuit obtained from Cn by simplifying, after the

input variables x are fixed to x′. Only the variables y remain as input to Cn(x′). We associate a

variable name µ with the output of the circuit.

We now associate a 0/1 integer program IP with circuit Cn(x′). Every input (a y variable) to

the circuit and every output of every gate will have an IP variable associated with it. The variable

associated with the output gate of the circuit is called µ, and the objective of the IP is to maximize

µ. The constraints are as follows. For every variable z we have the 0/1 constraint z ∈ {0, 1}. For

every NAND gate the IP contains two constraints as follows. Let z1 and z2 (which need not be

distinct) denote the input variables to the NAND gate, and let the output variable of the gate be

z3. The constraints associated with the gate are:

• z1 + z2 + z3 ≤ 2µ.

• z1 + z2 + 2z3 ≥ 2µ.

Observe that if µ = 0 the assignment zi = 0 for i ∈ {1, 2, 3} satisfies the constraints. However,

if µ = 1 only assignments consistent with the NAND gate satisfy both constraints. Specifically, if

z1 = z2 = 1 then the second constraint is satisfied and the first constraint requires that z3 = 0. For

other assignments to z1, z2, the first constraint is satisfied and the second constraint requires that

z3 = 1.

The IP is feasible, and assigning all variables to 0 is a feasible solution (of value 0). Every

feasible solution has nonnegative value because of the 0/1 constraints. The maximum value of

7

the IP is 1, obtained by considering a solution y such that the output of Cn(x′) is 1 (such a y

necessarily exists, because R ∈ TFNP), and assigning the values of variables in the IP according to

the computation of Cn(x′) on input y. The linear programming relaxation (relaxing z ∈ {0, 1} to

0 ≤ z ≤ 1 for all variables) has value at most 1 because of the constraint µ ≤ 1. Assigning µ = 1

and z = 1
2 to all other variables is a feasible solution of value 1 for the LP relaxation.

For every feasible solution of value µ = 1 to the IP, the value of the y variables is such that

(x′, y) ∈ R. Hence finding a solution to the IP of value 1 is as hard as solving R.

Proposition 15. For any 0 < γ < 1, there is a set of integer programs satisfying

• The integer program is feasible and the value of every feasible solution is nonnegative.

• The maximum value of each program is between γ and 1.

• A solution with value γ can be found in polynomial time.

• The linear program relaxation (that is, replacing the requirement that the variables are in

{0, 1} with the requirement that they are in the range [0, 1]) has maximal value exactly 1.

Hence the integrality gap is no worse than γ.

• Estimating the optimal value of the integer programs within a ratio of γ + ε is NP-hard.

Proof. Consider an arbitrary 3CNF formula with m clauses over a set x of n variables. Represent

it as an integer program in the following way (which is standard except for our choice of objective

function). For each variable xj the IP has a corresponding variable, and for every clause j the IP

has a variable yj . All variables are in {0, 1}. For every clause there is a linear constraint that allows

the corresponding y variable to be 1 if and only if the clause is satisfied by the x variables. For

example, if clause j is (x1, x̄2, x3) then the corresponding constraint is x1 + (1−x2) +x3 ≥ yj . The

IP also has an auxiliary variable µ with the constraint µ = 1. The objective function is to maximize

(8γ − 7)µ + 8(1−γ)
m Σm

j=1yj , which by the constraint µ = 1 is equivalent to 8γ − 7 + 8(1−γ)
m Σm

j=1yj .

To ensure nonnegativity of the objective value, we add the constraint Σm
j=1yj ≥ 7m/8.

One easily observes that to maximize the objective function one needs to maximize Σm
j=1yj . As

for every 3CNF formula with m clauses there is an assignment satisfying at least 7m/8 clauses, the

IP is feasible. Its maximum value is thus at least 8γ − 7 + 8(1−γ)
m

7m
8 = γ. If the 3CNF formula

is satisfiable then the LP has a feasible solution with Σm
j=1yj = m, and then the maximum value

is 8γ − 7 + 8(1−γ)
m m = 1. No higher value is possible neither for the IP nor for its LP relaxation

because of the constraints yj ≤ 1. The LP relaxation has value 1, by taking xi = 1
2 for every i, and

yj = 1 for every j.

By the construction of the IP, for any 0/1 solution, the x variables are an assignment satisfying

Σyj clauses of the 3CNF instance. Since it is NP-hard to distinguish between satisfiable 3CNF-

formulas and those that are only 7+ε
8 -satisfiable [5], estimating the optimal value of the integer

program within a ratio of γ + ε is NP-hard.

8

We remark (for the purpose of handling a technicality in the proof of Theorem 2) that Propo-

sition 15 also holds when γ = 1, in a trivial sense. (Take the IP with one constraint x = 1 and

objective function x. Moreover, estimating the optimal value of the integer program within a ratio

of γ + ε = 1 + ε is then impossible, rather than just NP-hard, as approximation ratios cannot

exceed 1.)

We now prove Theorem 2.

Proof. The case α = 0 and β = 1 is handled by Proposition 14. Hence we may assume that

1− β + α > 0.

Suppose that there is R ∈ TFNP that is not in P (given x, there is no polynomial time algo-

rithm guaranteed to find y such that (x, y) ∈ R). For such an R and an input x′, consider the

corresponding integer program from Proposition 14. Call it IP1 and its objective value v1. Given a

3CNF formula, consider the corresponding integer program from Proposition 15, with γ = α
1−β+α

(note that necessarily γ ≤ 1). Call it IP2 and its objective value v2.

The integer program IP is a concatenation of the constraints of IP1 and IP2 on disjoint sets of

variables, and its objective function is λv1 + (1 − λ)v2, where λ = β − α. We remark that given

an IP of this form, one can easily decide which variables originated from IP1 and which variables

originated from IP2. (For example, the constraints involving the former have a variable whose

coefficient is 2.)

Proposition 14 implies that finding a feasible solution (of value at least 0) for IP1 is easy, and

Proposition 15 implies that finding a solution of value γ for IP2 is easy. Hence finding a solution

of value (1−λ)γ = α for IP is easy. Finding a solution of value above α+ ε is as hard as solving R

(because it requires either solving R, or approximating 3SAT within a ratio better than 7/8, which

is NP-hard and hence at least as hard as solving R). There is always a solution of value 1 for IP1

and hence a solution of value λ + (1 − λ)γ = β for IP. The LP-relaxation has value 1 (because

this is true for both IP1 and IP2), and hence the integrality gap is no worse than β. For infinitely

many inputs IP2 does not have value above γ + ε (otherwise estimating its value within this ratio

could not be NP-hard), hence there are infinitely many integer programs in the IP family whose

LP-relaxation has integrality gap no better than β +O(ε).

2.3 Extensions

There are known reductions between various subclasses of TFNP (see [12]). These subclasses can

be incorporated into more elaborate constructions based on the proof method of Proposition 13.

Let R = {Ri}ki=1 be relations in TFNP such that there is a reduction from Rito Ri+1. The input

and the solution are treated as k+ 1 strings, x = (ϕ, r1, · · · , rk) and y = (a, s1, · · · , sk). ϕ is inter-

preted as a E3SAT formula. Let c be the number of clauses in ϕ satisfied by a. For all 1 ≤ i ≤ k, pi =

2 if (ri, si) ∈ Ri, otherwise, pi = 1. We define the value function VR (ϕ, r1, · · · , rk, a, s1, · · · sk) =

cΠpi. Since each pi can be made to be 2, 7/8-estimation is in FP. However, for 0 ≤ j ≤ k − 1

9

(
7

23+j + ε
)
-approximation is at least as as hard as Rk−j : Let xk−j be an input for Rk−j . Let xi+k−j

the reduction of xk−j to Ri+k−j . Let ϕ be an E3SAT formula that is always 7/8-satisfiable. Suppose

that given the input (ϕ, x1, · · · , xk) (where the strings xt for t < k − j are arbitrary), we have a(
7

23+j + ε
)
-approximation (a, s1, · · · sk). There is a solution of value 7 · 2k−3, so the approximation

has a value of at least 722k−j−6. Any solution must have the form 7 · 2p for some integer p, so the

approximation must have value of at least 7 · 2k−j−3. Hence, k − j of the pairs (xi, si) must be in

their respective Ri, and we get a solution to to xk−j or one of its reductions.

2.4 Easily certifiable integrality gaps

Theorem 2 presents a family of integer programs (call this family Fβ), such that for every IP in Fβ

the LP-relaxation has an integrality gap no worse than β (and furthermore, no polynomial time

“rounding” algorithm ensures approximation within a ratio better than α, unless TFNP is in FP).

Recall (see proof of Proposition 14) that the IPs in Fβ are derived from some relation R ∈ TFNP.

We may assume that the Turing machine T (and hence also the circuits Cn) associated with R is

publicly known. In this case, for every IP ∈ Fβ there is a polynomial size witness (which includes

the input x′ for R and the chain or reductions leading to the IP) that certifies that indeed the IP

is in Fβ, and hence that the integrality gap is no worse than β. However, this does not necessarily

imply that given an IP in Fβ, finding the associated witness for being in Fβ is a computationally

easy task (this is not required in the statement of Theorem 2). We sketch below how one can

modify the proofs in this manuscript so that the resulting family Fβ is such that finding witnesses

for IP ∈ Fβ becomes an easy computational task.

As observed in the proof of Theorem 2, given an IP as in Theorem 2, it is easy to decompose it

into IP1 and IP2, and to separate the objective function into a part that depends on IP1 and a part

that depends on IP2. The form of IP2 makes it self-evident that it represents a 3CNF formula (that

can be explicitly reconstructed from the constraints of IP2). However, without a-priori knowing

the instance x′, the task of determining that IP1 is an IP that is derived by a reduction from

an instance of R might be difficult. To make this task easy, one can slightly modify the proof of

Proposition 14. Namely, first reduce the circuit Cn (rather than the simplified circuit Cn(x′)) to an

IP. Thereafter, given x′, for each input bit i the reduction adds either the constraint xi = 0 or the

constraint xi = 1, depending on the value of bit i in x′. Finally, the reduction names the variables

in the order in which they appear in the circuit Cn. (Alternatively, if we do not wish names of

variables to convey information, there are other tricks of associating an index i with a variable

z, e.g., by adding a trivially satisfiable constraint z ≤ i.) Given an IP constructed as above, one

can easily reconstruct x′ and the circuit Cn, and consequently certify that the integrality gap is no

worse than β.

10

Acknowledgements

Work supported in part by the Israel Science Foundation (grant No. 621/12) and by the I-CORE

Program of the Planning and Budgeting Committee and The Israel Science Foundation (grant No.

4/11).

References

[1] Nikhil Bansal. Semidefinite optimization in discrepancy theory. Math. Program. 134(1): 5–22

(2012).

[2] Xi Chen, Xiaotie Deng. Settling the Complexity of Two-Player Nash Equilibrium. FOCS 2006:

261–272.

[3] Uriel Feige. On Estimation Algorithms vs Approximation Algorithms. FSTTCS 2008: 357–363.

[4] Bernhard Haeupler, Barna Saha, Aravind Srinivasan. New Constructive Aspects of the Lovasz

Local Lemma. J. ACM 58(6): 28 (2011).

[5] Johan Hastad. Some optimal inapproximability results. J. ACM 48(4): 798–859 (2001).

[6] Dorit Hochbaum (Ed.). Approximation Algorithms for NP-hard Problems. PWS Publishing

Company, 1997.

[7] David S. Johnson, Christos H. Papadimitriou, Mihalis Yannakakis. How Easy is Local Search?

J. Comput. Syst. Sci. 37(1): 79–100 (1988).

[8] Shachar Lovett, Raghu Meka. Constructive Discrepancy Minimization by Walking on the

Edges. FOCS 2012: 61–67.

[9] Nimrod Megiddo and Christos H. Papadimitriou. On total functions, existence theorems, and

computational complexity, Theoretical Computer Science 81(2):317–324, 1991.

[10] Robin A. Moser, Gabor Tardos. A constructive proof of the general Lovasz Local Lemma. J.

ACM 57(2) (2010).

[11] Christos H. Papadimitriou. On Graph-Theoretic Lemmata and Complexity Classes (Extended

Abstract) FOCS 1990: 794–801.

[12] Christos H. Papadimitriou. On the complexity of the parity argument and other inefficient

proofs of existence, Journal of Computer and System Sciences 48(3):498–532, 1994.

[13] Lukas Polacek, Ola Svensson. Quasi-polynomial Local Search for Restricted Max-Min Fair

Allocation. ICALP (1) 2012: 726–737.

11

[14] David P. Williamson, David B. Shmoys. The Design of Approximation Algorithms. Cambridge

University Press 2011.

[15] Vijay Vazirani. Approximation Algorithms. Springer 2001.

12

ECCC ISSN 1433-8092

http://eccc.hpi-web.de

