
Dual VP Classes

Eric Allender
Department of Computer Science, Rutgers University

Piscataway, NJ, USA
allender@cs.rutgers.edu

Anna Gál
Department of Computer Science, University of Texas

Austin, TX, USA
panni@cs.utexas.edu

Ian Mertz Department of Computer Science, Rutgers University
Piscataway, NJ, USA
iwmertz@gmail.com

September 30, 2014

Abstract

We consider arithmetic complexity classes that are in some sense dual to the
classes VP(Fp) that were introduced by Valiant. This provides new characterizations
of the complexity classes ACC1 and TC1, and also provides a compelling example of
a class of high-degree polynomials that can be simulated via arithmetic circuits of
much lower degree.

1 Introduction

Semiunbounded fan-in circuits play an important role in computational complexity the-
ory. Over the Boolean semiring, logarithmic depth polynomial-size semiunbounded fan-
in circuits (with bounded fan-in AND gates and unbounded fan-in OR gates, with
NOT gates only at the input level) characterize the complexity class LogCFL, also
known as SAC1, which has been the subject of numerous investigations [Ven91, GLS01,
LMSV01, AL13, Pet02, RA00]. Over Fp, logarithmic depth polynomial-size semiun-
bounded fan-in circuits (with bounded fan-in multiplication gates and unbounded fan-in
addition gates) characterize the complexity class VP(Fp), the study of which was initi-
ated by Valiant [Val79]; these classes have received quite a bit of study since then (e.g.,
[Bür99, Bür00, GW96, KP11]).

Because LogCFL is closed under complement [BCD+89], it can be characterized in
terms of semiunbounded fan-in circuits by restricting either the AND gates or the OR
gates to have bounded fan-in. It is unknown if there is any other algebraic structure for
which a similar phenomenon occurs. In particular, it is not known how the complex-
ity of functions in VP(Fp) compares to that of the functions in the classes defined by

1

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Report No. 122 (2014)

logarithmic depth polynomial-size semiunbounded fan-in circuits with bounded fan-in
addition gates and unbounded fan-in multiplication gates.

Part of our motivation in this study, is to understand the computational power of
these semiunbounded fan-in circuit classes, which are in some sense dual to Valiant’s
classes VP(Fp). We use the notation ΛP(Fp) to refer to the class of problems character-
ized by logarithmic depth polynomial-size semiunbounded fan-in circuits with bounded
fan-in addition gates and unbounded fan-in multiplication gates. Formal definitions ap-
pear in Section 2. We show that each class ΛP(Fp) corresponds exactly to a particular
subclass of ACC1, and that the union over all p of ΛP(Fp) is exactly equal to ACC1.

After characterizing the computational power of ΛP(Fp), we next turn our atten-
tion to the complexity class TC1, characterized by polynomial-size threshold circuits of
logarithmic depth. Reif and Tate [RT92] gave an alternative characterization of TC1 in
terms of unbounded fan-in arithmetic circuits of logarithmic depth where the circuits
for inputs of size n operate over the field Fpn , where pn is the n-th prime. (See also the
discussion of Reif and Tate’s work in [BCK+14].) Using the standard notation (reviewed
in Section 2), this characterization can be stated as TC1 = #AC1(Fpn). We show that
no computational power is lost by restricting the fan-in of the + gates in this setting:
We show that TC1 = LΛP(Fpn).

Immerman and Landau [IL95] conjectured that every problem in TC1 is reducible
to the problem of computing the determinant of integer matrices. This would have
several consequences, including providing a characterization of TC1 in terms of VP(Q).
Buhrman et al. [BCK+14] have argued that the Immerman-Landau conjecture is un-
likely, in that this would imply that arbitrary polynomials having degree nO(log n) and
polynomial-size arithmetic circuits mod pn could be simulated by arithmetic circuits of
much lower degree over Q. This raises the question: When can high-degree polynomials
over one algebra be simulated by low-degree polynomials over another algebra?

In partial answer to this question, we show that all of the problems in ΛP(F2),
ΛP(F3), ΛP(F5), ΛP(F17) and in general any ΛP(Fq) where q−1 is a power of 2 (that is,
where q is a Fermat prime) can be simulated by polynomial size “weakly semiunbounded
fan-in” arithmetic circuits over F2 of depth log n. These are circuits where the addition
gates have unbounded fan-in, and the multiplication gates have fan-in O(log n). Thus
these circuits compute polynomials over F2 having algebraic degree at most nO(log log n).
Further, we show that all functions over F2 with polynomial size unbounded fan-in
log-depth circuits can be represented by polynomial size weakly semi-unbounded fan-in
log-depth circuits. This offers the most compelling example of which we are aware, in
which a natural class of polynomials of degree nO(log n) over one algebra (such as F2)
can be simulated by polynomials having much smaller degree.

We show that similar Boolean simulations hold for the subclasses of ACC1 defined
by unbounded fan-in AND, OR, and MODm gates, for any fixed m. Namely, for
logarithmic depth polynomial-size circuits of unbounded fan-in AND, OR and MODm

gates, it causes no loss of power to restrict the fan-in of the AND and OR gates to be
logarithmic.

2

2 Preliminaries

We assume that the reader is familiar with Boolean circuit complexity classes such as AC0

and ACC0; a good source for this background material is the excellent text by Vollmer
[Vol99]. The following standard notation is used by Vollmer for circuit complexity
classes, and we follow those conventions here:

Definition 1. • ACi is the class of languages accepted by Dlogtime-uniform circuit
families of polynomial size and depth O(logi n), consisting of unbounded fan-in
AND, and OR gates, along with NOT gates.

• ACi[m] is defined as ACi, but in addition unbounded fan-in MODm gates are al-
lowed, which output 1 iff the number of input wires carrying a value of 1 is a
multiple of m.

• For any finite set S ⊂ N, ACi[S] is defined analogously to ACi[m], but now the
circuit families are allowed to use MODr gates for any r ∈ S. It is known that,
for any m ∈ N,ACi(m) = ACi(S(m)), where S(m) ={p : p is prime and p divides
m} [Smo87]. Thus, in particular ACi[6] = ACi[2, 3] and ACi = ACi[∅]. (When
it will not cause confusion, we omit unnecessary brackets, writing for instance
ACi[2, 3] instead of ACi[{2, 3}].)

• ACCi =
⋃

m ACi[m].

• TCi is the class of languages accepted by Dlogtime-uniform circuit families of poly-
nomial size and depth O(logi n), consisting of unbounded fan-in MAJORITY
gates, along with NOT gates.

• SACi is the class of languages accepted by Dlogtime-uniform circuit families of
polynomial size and depth O(logi n), consisting of unbounded fan-in OR gates and
bounded fan-in AND gates, along with NOT gates at the leaves.

Note that the restriction that NOT gates appear at the leaves in SACi circuits is
essential; if NOT gates were allowed to appear everywhere, then these classes would
coincide with ACi. Similarly, note that we do not bother to define a complexity class
SACi[m], since a MODm gate with a single input is equivalent to a NOT gate, and thus
SACi[m] would be the same as ACi[m].

The algebraic complexity classes VP(R) for various algebraic structures R were origi-
nally defined [Val79] in the context of nonuniform circuit complexity, as classes of families
of n-variate polynomials of degree nO(1) that can be represented by polynomial-size al-
gebraic circuits over R. In this paper, we focus on uniform circuit families, and thus we
use the notation VP(R) to denote the families of polynomials that result when we im-
pose a logspace-uniformity condition on the circuit families. In the original nonuniform
setting, it was shown by [VSBR83] that the circuits defining polynomials in VP(R) can
be assumed to have small depth. Later [AJMV98] a slightly improved characterization
was provided, that works also in the context of uniform circuit complexity:

Theorem 1. [VSBR83, AJMV98] For any commutative semiring R, VP(R) coincides
with the class of families of polynomials over R represented by logspace-uniform circuit
families of polynomial size and logarithmic depth with unbounded fan-in + gates, and
fan-in two × gates.

3

Note that over Fp, many different polynomials yield the same function. For example,
since x3 = x in F3, every function on n variables has a polynomial of degree at most 2n.
Very likely there are functions represented by polynomials in VP(F3) of degree, say, n5,
but not by any polynomial of degree 2n. On the other hand, there is a case to be made
for focusing on the functions in these classes, rather than focusing on the polynomials
that represent those functions. For instance, if the Immerman-Landau conjecture is
true, and TC1 is reducible to problems in VP(Fpn) (for instance), it would suffice for
every function in TC1 = #AC1(Fpn) to have a representation in VP(Fpn), even though
the polynomials represented by #AC1(Fpn) circuits have large degree, and thus cannot
be in any VP class.

In the literature on VP classes, one standard way to focus on the functions repre-
sented by polynomials in VP is to consider what is called the Boolean Part of VP(R),
which is the set of languages A ⊆ {0, 1}∗ such that, for some sequence of polynomials
(Qn), for x ∈ A we have Q|x|(x) = 1, and for x ∈ {0, 1}∗ such that x /∈ A we have
Q|x|(x) = 0.

When the algebra R is a finite field, considering the Boolean part of VP(R) captures
the relevant complexity aspects, since the computation of any function represented by
a polynomial in VP(R) (with inputs and outputs coming from R) is logspace-Turing
reducible to some language in the Boolean Part of VP(R).

In this paper, we will be concerned exclusively with the “Boolean Part” of various
arithmetic classes. For notational convenience, we will just refer to these classes using
the “VP” notation, rather than constantly repeating the phrase “Boolean Part”.

Following the standard naming conventions of [Vol99], for any Boolean circuit com-
plexity class C defined in terms of circuits with AND and OR gates, we define the class
#C(R) to be the class of functions represented by algebraic circuits defined over the
algebra R, where AND is replaced by ×, and OR is replaced by + (and NOT gates are
interpreted using the appropriate notion of negation in the algebra R). In particular,
we will be concerned with the following two classes:

Definition 2. Let R be any semiring. Then

• #AC1(R) is the class of functions f{0, 1}∗ → R represented by families of logspace-
uniform circuits of unbounded fan-in + and × gates having depth O(log n) and
polynomial size.

• #SAC1(R) is the class of functions f{0, 1}∗ → R represented by families of logspace-
uniform circuits of unbounded fan-in + gates and × gates of fan-in two, having
depth O(log n) and polynomial size.

Input variables may be negated, using the appropriate notion of negation in the algebra
R. Where no confusion will result, the notation #C(R) will also be used to refer to the
class of languages whose characteristic functions lie in the given class.

Hence from Theorem 1 we obtain:

Proposition 1. Let p be a prime. Then VP(Fp) = #SAC1(Fp).

4

2.1 New Definitions: Λ-classes

In this section, we introduce and define classes that are dual to the #SAC1(R) classes
discussed above. Define #SAC1,∗(R) to be the class of functions f{0, 1}∗ → R repre-
sented by families of logspace-uniform circuits of unbounded fan-in × gates and + gates
of fan-in two, having depth O(log n) and polynomial size. Proposition 1 highlights the
connection between VP and #SAC1; thus we will utilize the convenient notation ΛP(R)
to denote the dual notation, rather than the more cumbersome #SAC1,∗(R).

Of course, the set of formal polynomials represented by ΛP circuits is not contained in
any VP class, because ΛP contains polynomials of degree nO(log n). However, as discussed
in the previous section, we are considering the “Boolean Part” of these classes. More
formally:

Definition 3. Let p be a prime number. ΛP(Fp) is the class of all languages A ⊆ {0, 1}∗
with the property that there is a logspace-uniform family of circuits {Cn : n ∈ N} such
that

• The depth of Cn is O(log n).

• Each Cn consists of input gates, + gates, and × gates.

• Each + gate has fan-in two, whereas there is no bound on the fan-in of the ×
gates.

• For each string x of length n, x is in A if and only if Cn(x) evaluates to 1, when
the + and × gates are evaluated over Fp. Furthermore, if x 6∈ A, then Cn(x)
evaluates to 0.

Observe that ΛP(Fp) is closed under logspace-Turing reductions; that is ΛP(Fp) =

LΛP(Fp). Perhaps the easiest way to see this is to note that there are only polynomially-
many queries that a logspace-Turing reduction can pose, on a given input x, since
the query that is posed is determined entirely by the worktape configuration of the
oracle Turing machine when it begins to write the query. These queries can be denoted
y1, . . . , ynk for some k. If A ∈ LΛP(Fp), then there is a language B ∈ L such that x ∈ A
iff (x, z) ∈ B where z is the bit string of length nk recording the oracle answers for each
query yi. The language B has a SAC1 circuit with the property that, on each input
(x, z), it has either zero or one accepting subtree. Although the argument showing that
SAC1 is closed under complement does not maintain a meaningful relationship regarding
the number of accepting subtrees, it follows easily from the fact that L is closed under
complement that B also has ΛP(Fp) circuits. By connecting ΛP(Fp) circuits computing
the answer to each oracle query yi to the input variables for z, one obtains a ΛP(Fp)
circuit for A. Thus we believe that we have ample justification for defining ΛP(Fp) as a
class of Boolean languages, as we have done.

We mention that ΛP classes over different fields of the same characteristic define the
same class of languages.

Proposition 2. Let p be a prime. Then ΛP(Fp) = ΛP(Fpk).

5

Proof. The finite field of size pk is a vector space of dimension k over the field of size p,
and thus can be represented by k × k matrices over Fp. Thus each + and × gate of a
ΛP(Fpk) circuit can be replaced by subcircuits implementing matrix sum and product
over Fp. The resulting circuit is a ΛP(Fp) circuit.

It is also appropriate to use the VP and ΛP notation when referring to the classes
defined by Boolean semiunbounded fan-in circuits with negation gates allowed at the
inputs. With this notation, VP(B2) corresponds to the Boolean class SAC1, and ΛP(B2)
corresponds to the complement of SAC1 (with bounded fan-in OR gates, unbounded
fan-in AND gates and negation gates allowed at the inputs). It has been shown by
[BCD+89] that SAC1 is closed under complement. Thus we close this section with the
equality that serves as a springboard for investigating the ΛP classes.

Theorem 2. [BCD+89] VP(B2) = ΛP(B2)(= SAC1 = LogCFL).

We do not believe that VP(Fp) = ΛP(Fp) for any prime p, but in Section 4 we discuss
some other settings where it is plausible that VP and ΛP classes might have equivalent
complexity.

3 Subclasses of ACC1

In this section, we present our characterizations of ACC1 in terms of the ΛP(Fp) classes.

Theorem 3. For any prime p, ΛP(Fp) = AC1[S(p − 1)]. (Recall that S(m) is defined
in Definition 1.)

Proof. (⊆): Consider a ΛP(Fp) circuit C. We will create a circuit C ′ with gates that
record the binary representation of the value at each gate g in C, using unbounded
fan-in AND, OR and MODq gates, for each q ∈ S(p − 1). Since the input gates of C
take on only binary values (by our definition of ΛP(Fp)), the input levels of C ′ and C
coincide.

Each + gate g of C (of fan-in 2) can be computed with NC0 circuitry using the
Boolean gates of C ′, since the binary representation of both inputs to g consist of only
log p = O(1) bits.

Now consider a × gate g of C, having unbounded fan-in: g =
∏

i hi. For each a ∈ Fp,
C ′ will have a subcircuit computing the Boolean value [g = a]. (We will use the notation
“[B]” to refer to the truth-value of B.) The i-th bit of the binary representation of g is
thus obtained by taking the OR over all a of ([g = a] AND (the i-th bit of a)).

The value [g = 0] is obtained by simply checking if there is some i such that hi = 0.
Now we show how to compute [g = a] for a 6= 0. Let p − 1 =

∏`
j=1 q

ej

j where
S(p − 1) = {q1, . . . , q`}. Let σ be a generator of the multiplicative group of Fp. Then
g =

∏
i hi =

∏
i σ

log hi = σ
P

i log hi where “log b” denotes the unique element of Fp such
that σlog b = b. Hence the value [g = a] is equivalent to [log a ≡

∑
i log hi mod (p− 1)],

which in turn is equivalent to the AND of the values [log a ≡
∑

i log hi mod (qej

j)].
If ej = 1 then the value [log a ≡

∑
i log hi mod (qj)] is easy to compute with a

MODqj gate, as follows. Map the binary representation of each hi to the string xi =
1log hi0p−log hi . (Note that the mapping from hi to xi is computable in logspace-uniform
NC0.) Let Xa be the string that results from concatenating the string 1(p−1)−log a and

6

all of the strings xi. Now observe that feeding Xa into a MODqj gate computes the
value [log a ≡

∑
i log hi mod (qj)].

If ej > 1, then first observe that [b ≡ 0 mod q
ej

j] can be computed by checking if

each of b,

(
b
qj

)
,

(
b
q2
j

)
, . . .

(
b

q
ej−1
j

)
is equivalent to 0 mod qj . (See, e.g. [BT94,

Fact 2.2].) Observe also that
(

b
d

)
can be represented as the number of different AND

gates of fan-in d that evaluate to 1, taking inputs from the string Xa. Thus all of these
conditions can be checked in constant depth with unbounded fan-in AND gates and
MODqj gates.

Since C has depth O(log n), and C ′ consists of layers of constant-depth circuitry to
replace each layer of gates in C, this completes the proof of this direction.

(⊇): Given an AC1[S(p−1)] circuit C, we show how to construct an algebraic circuit
C ′ that is equivalent to C. Each gate g of C will have an equivalent gate g in C ′. The
input gates of C and of C ′ are exactly the same.

If g is a NOT gate in C, say g = ¬h, then in C ′ we will have g = (h + (p − 1)) ×
(h + (p− 1)).

If g is an AND gate (say, g = ∧ihi), then in C ′ we will have g =
∏

i hi. OR gates
will be handled the same way, using De Morgan’s Laws.

Now consider the case when g is a MODqj gate with inputs hi. Thus g computes
the value [

∑
i hi ≡ 0 mod qj]. Let σ be a generator of the multiplicative cyclic subgroup

of size qj . First map each hi to the value h′i = 1 + ((σ + (p− 1))× hi, and observe that
h′i = σhi for all hi ∈ {0, 1}. Observe that 1 −

∏
i h

′
i = 1 − σ

P
i hi is equal to 0 if

∑
i hi

is a multiple of qj , and is non-zero otherwise. Thus 1 − (1 −
∏

i h
′
i)

p−1 is equal to the
Boolean value [

∑
i hi ≡ 0 mod qj].

It is easy to verify that C ′ has logarithmic depth, and uses only bounded fan-in +
gates, as well as unbounded fan-in × gates.

Corollary 1. ACC1 =
⋃

p ΛP(Fp).

Proof. Let A ∈ ACC1. Thus A ∈ AC1[m] for some modulus m.
By Dirichlet’s Theorem, the arithmetic progression m + 1, 2m + 1, . . . contains some

prime p. Thus AC1[m] ⊆ AC1[S(p− 1)] = ΛP(Fp).

Note also that several of the ΛP(Fp) classes coincide. This is neither known nor
believed to happen with the VP(Fp) classes.

Corollary 2. • ΛP(F2) = AC1.

• If p is a Fermat prime (that is, p− 1 is a power of 2, such as p ∈ {3, 5, 17, 257,
65,537}), then ΛP(Fp) = AC1[2].

• ΛP(F7) = ΛP(F13) = ΛP(F19).

• More generally, S(p− 1) = S(q − 1) implies ΛP(Fp) = ΛP(Fq).

Augmenting the ΛP(Fp) classes with unbounded fan-in addition gates increases their
computation power only by adding MODp gates, as the following theorem demonstrates.

7

Theorem 4. For each prime p, #AC1(Fp) = AC1[{p} ∪ S(p− 1)].

Proof. (⊆): Again, we use a gate-by-gate simulation, and record the binary value of
each gate of g. Multiplication gates are handled as in the proof of Theorem 3. Consider
now the case of an addition gate g =

∑
i hi. First, we show how to compute the Boolean

value [g = a]. Using this information to obtain the binary representation of the value of
g is then handled the same way that this was done for multiplication gates in the proof
of Theorem 3.

Using NC0 circuitry, one can convert the binary representation of each hi to the
unary string yi = 1hi0p−hi (as in the proof of Theorem 3). Let Ya be the string 1p−a

concatenated with all of the strings yi. Feeding Ya into a MODp gate computes the
Boolean value [g = a].

(⊇): As in Theorem 3, we carry out a gate-by-gate simulation, whereby each gate g
in a AC1[{p} ∪ S(p− 1)] circuit C is equivalent to a gate (also called g) in a #AC1(Fp)
circuit C ′. We only need to consider the case where g is a MODp gate with Boolean
inputs hi. In this case, note that g = 1 + ((

∑
i hi)p−1 × (p− 1)).

Corollary 3. ACC1 =
⋃

p ΛP(Fp) =
⋃

p #AC1(Fp).

Corollary 4. For any prime p there is a prime q such that #AC1(Fp) ⊆ ΛP(Fq).

Proof. By Dirichlet’s Theorem, there is a prime q such that q−1 is a multiple of p(p−1).
The claim now follows immediately from Theorems 4 and 3.

It will be useful to bear in mind that VP(Fp) also has a simple characterization in
terms of Boolean circuits. In order to present this characterization, we present a more
general definition, which will be needed later.

Definition 4. Let m ∈ N, and let g be any function on N. Define g-AC1[m] to be the
class of languages with logspace-uniform circuits of polynomial size and depth O(log n),
consisting of unbounded-fan-in MODm gates, along with AND gates of fan-in O(g(n)).
Clearly g-AC1[m] ⊆ AC1[m].

Observe that, since a MODm gate can simulate a NOT gate, g-AC1[m] remains the
same if OR gates of fan-in O(g) are also allowed.

Corollary 5. For every prime p, VP(Fp) = 2-AC1[p] ⊆ AC1[p].

Proof. Recall that VP(Fp) = #SAC1(Fp). Thus we need only show how to simulate
bounded fan-in × gates and unbounded fan-in + gates. Bounded fan-in × gates can be
simulated in O(1) depth using AND and OR gates of fan-in two (since the values being
multiplied are of size O(1)). Unbounded fan-in + gates can be simulated using MODp

gates, as in the proof of the preceding theorem.
For the converse inclusion, consider a 2-AC1[p] circuit. Since a unary MODp gate is

equivalent to a NOT gate, we can assume that the circuit has only fan-in two AND gates
and unbounded fan-in MODp gates. Thus each Boolean AND gate can be simulated
by a fan-in two multiplication gate, and the MODp gates can be simulated as in the
proof of Theorem 4.

8

We remark that the same proof shows that, for any m ∈ N, VP(Zm) ⊆ 2-AC1[m].
However, the converse inclusion is not known, unless m is prime.

We remark also that the proofs of Theorems 3 and 4 carry over also for depths other
than log n. (Related results for constant-depth unbounded-fan-in circuits can be found
already in [Smo87, AAD00].)

Corollary 6. For any prime p, #SACi,∗(Fp) = ACi[S(p− 1)] and #ACi(Fp) = ACi[p ∪
S(p− 1)].

3.1 Comparing ΛP and VP.

How do the ΛP and VP classes compare to each other?
As a consequence of Corollary 5 and Theorem 3, VP(Fp) ⊆ ΛP(Fq) whenever p

divides q − 1. In particular, VP(F2) ⊆ ΛP(Fq) for any prime q > 2. No inclusion of
any ΛP class in any VP class is known unconditionally, although ΛP(B2)(= SAC1) is
contained in every VP(Fp) class in the nonuniform setting [GW96, RA00], and this holds
also in the uniform setting under a plausible derandomization hypothesis [ARZ99].

No ΛP(Fq) class can be contained in VP(Fp) unless AC1 ⊆ VP(Fp), since AC1 =
ΛP(F2) ⊆ ΛP(F3) ⊆ ΛP(Fq) for every prime q ≥ 3. AC1 is not known to be contained
in any VP class, although we return to this topic again in Section 4

4 Threshold circuits and small degree

The inspiration for the results in this section comes from the following theorem of Reif
and Tate [RT92] (as re-stated by Buhrman et al. [BCK+14]):

Theorem 5. TC1 = #AC1(Fpn).

Here, the class #AC1(Fpn) consists of the languages whose (Boolean) characteristic
functions are computed by logspace-uniform families of arithmetic circuits of logarithmic
depth with unbounded fan-in + and × gates, where the arithmetic operations of the
circuit Cn are interpreted over Fpn , where p1, p2, p3, . . . is the sequence of all primes
2, 3, 5, . . . That is, circuits for inputs of length n use the n-th prime to define the algebraic
structure.

This class is closed under logspace-Turing reductions – but when we consider other
circuit complexity classes defined using Fpn , it is not clear that these other classes are
closed under logspace-Turing reductions.

As an important example, we mention VP(Fpn). As we show below, this class has
an important connection to VP(Q), which is perhaps the canonical example of a VP
class. Vinay [Vin91] proved that VP(Q) has essentially the same computational power
as #LogCFL (which counts among its complete problems the problem of determining
how many distinct parse trees a string x has in a certain context-free language). Here,
we mention one more alternative characterization of the computational power of VP(Q).

Proposition 3. LVP(Fpn) = LVP(Q) = L#LogCFL.

Proof. Consider the first equality. If one wants to compute the value of a VP(Fpn) circuit
on a given input of length n, in logspace one can first compute the value of pn. Then

9

one can use a VP(Q) oracle to evaluate the VP(Fpn) circuit over the rationals instead of
over Fpn , obtaining an integer result. Then one can divide the result by pn and obtain
the remainder, which is the value of the circuit in Fpn , using the fact that division is
computable in logspace [CDL01, HAB02].

Conversely, if one wants to evaluate a VP(Q) circuit on a given n-tuple of ratio-
nals, one can use the standard technique of computing the numerator and denominator
separately; the circuits for these functions are also in VP(Q). Thus our task boils
down to evaluating an integer-valued arithmetic circuit Cn. To do this, we use Chi-
nese remaindering, and evaluate circuits (with some dummy variables) over the primes
pn, pn+1, . . . , pn+nc for some constant c. Converting between Chinese remainder repre-
sentation and binary representation can be accomplished in logspace [CDL01, HAB02],
which completes the proof of the first equality.

For the second equality, we similarly use the fact that VP(Q) circuits with integer
coefficients and inputs can be evaluated in #LogCFL, and appeal to [Vin91].

When we consider arithmetic circuits of superpolynomial algebraic degree (such as
the ΛP classes), evaluating the circuits over the integers can produce outputs that require
a superpolynomial number of bits to express in binary. Thus, when we consider such
classes, it will always be in the context of structures (such as Fpn) where the output can
always be represented in a polynomial number of bits.

Our first new result in this section, is to improve Theorem 5.

Theorem 6. TC1 = #AC1(Fpn) = LΛP(Fpn).

Proof. We will show how to simulate a #AC1(Fpn) circuit C, by making calls to an
appropriate function in ΛP(Fpn). The first step is to find a prime q that is not too much
larger than pn, such that q − 1 is a multiple of pn(pn − 1). Xylouris [Xyl11] has shown
that the sequence 1 + pn(pn− 1), 1 + 2pn(pn− 1), 1 + 3pn(pn− 1) . . . contains a prime of
size O(p10.4

n). Thus our logspace procedure will begin by enumerating the elements of
this sequence, and is guaranteed to find some such prime q. We will create an arithmetic
circuit C ′ operating over Fq that will allow us to simulate C.

For each gate g of C and each a ∈ Fpn , C ′ will have a gate computing the Boolean
value [g = a]. If g is an input gate, our logspace procedure will compute the value of
each [g = a] and provide these as the inputs to the circuit C ′.

Let us now consider the case when g is a + gate, g =
∑

i hi. Let γ be a generator
of the cyclic subgroup of the multiplicative group of Fq of order pn. Our circuit C ′ will
have gates hi,a computing the value

hi,a = ([hi = a]× (γa − 1) + 1).

Observe that
∏

a hi,a is equal to γhi . C ′ will have a gate g′ computing the value g′ =∏
i,a hi,a. Note that g′ is equal to γ

P
i hi = γg (since γ has order pn). The value of

the gate [g = b] (for a given b ∈ Fpn) is thus c−1
b ×

∏
` 6=b(γ

` − g′), where the constant
cb =

∏
` 6=b(γ

`− b) can be computed in logspace and is thus available as a constant in C ′.
It remains only to deal with the case when g is a × gate, g =

∏
i hi. In C ′, the gate

[g = 0] is 1−
∏

i(1− [hi = 0]).
Let µ be a generator of the multiplicative group of Fpn , and let α be a generator of

the subgroup of the multiplicative group of Fg of order pn − 1. If g does not evaluate

10

to 0, then g is equal to µb for some b. Our circuit C ′ will have gates hi,` computing the
values

hi,` = ([hi = µ`]× (α` − 1) + 1).

Our circuit C ′ will have gates h′i computing the value h′i =
∏

` hi,`. Observe that h′i is
equal to αa if hi = µa, and h′i is equal to 1 if hi = 0.

In C ′, there will be a gate g′ that computes the following value: g′ = (1 − [g =
0])
∏

i h
′
i = ([g 6= 0])

∏
i α

logµ hi = ([g 6= 0])α
P

i logµ hi = ([g 6= 0])αlogµ g. Observe that,
if g 6= 0, then g = µb for some b, and in this case g′ evaluates to αb. The value of
the gate [g = µb] (for a given b ∈ Fpn) is thus c−1

b ×
∏

` 6=b(α
` − g′), where the constant

cb =
∏

` 6=b(α
` − µb) can be computed in logspace and is thus available as a constant in

C ′.

For completeness, we add one more relevant characterization of TC1:

Theorem 7. TC1 = #AC1(Fpn) = LΛP(Fpn) = AC1[pn]

Proof. We need only consider the last equality.
(⊇): Majority gates can simulate AND, OR, and MODpn gates constant depth;

thus this direction is easy.
(⊆): Let ε be chosen so that 2nε < pn for every n. Any MAJORITY gate (of

fan-in nk) can be simulated by an AC0-reduction to MAJORITY gates having fan-
in nε [AK10]. Thus if A ∈ TC1, then A is accepted by a family of circuits if AND,
OR, and MAJORITY gates, where the MAJORITY gates have fan-in at most nε. It
suffices to show how to simulate a MAJORITY gate with inputs h1, . . . , h`. Note that
MODpn(h1, . . . , h`, 1pn−b) computes the value [b =

∑
i hi]. Thus the MAJORITY of

the hi is simply the OR, over all b > `/2 of the subcircuits computing [b =
∑

i hi].

In order to set the context for the results of the next section, it is necessary to
consider an extension of Theorem 6, involving arithmetic circuits over certain rings.
Thus we require the following definition.

Definition 5. Let (mn) be any sequence of natural numbers (where each mn > 1) such
that the mapping 1n 7→ mn is computable in logspace. We use the notation #AC1(Zmn)
to denote the class of functions f with domain {0, 1}∗ such that there is a logspace-
uniform family of arithmetic circuits {Cn} of logarithmic depth with unbounded fan-in
+ and × gates, where the arithmetic operations of the circuit Cn are interpreted over
Zmn, and for any input x of length n, f(x) = Cn(x). We use the notation #AC1(ZL) to
denote the union, over all logspace-computable sequence of moduli (mn), of #AC1(Zmn).

Since the sequence of primes (pn) is logspace-computable, TC1(= #AC1(Fpn)) is
clearly contained in #AC1(ZL). Conversely, all of the functions in #AC1(ZL) are com-
putable in TC1. To see this, consider a function f ∈ #AC1(ZL). To evaluate f(x) for
an input of length n, first we compute the modulus mn and the circuit Cn. To evaluate
each gate g of Cn (in binary), first we compute the sum or product of the values that
feed into g (which can be done in constant depth using threshold circuits) and then
we reduce the result modulo mn (which involves division, which can also be computed
in constant depth). Thus, arithmetic circuits over the integers mod mn for reasonable
sequences of moduli mn give yet another arithmetic characterization of TC1.

11

4.1 Degree Reduction

In this subsection, we introduce a class of circuits that is intermediate between the
unbounded fan-in circuit model and the semiunbounded fan-in model, for the purposes
of investigating when arithmetic circuits of superpolynomial algebraic degree can be
simulated by arithmetic circuits (possibly over a different algebra) with much smaller
algebraic degree.

The starting point for this subsection is Theorem 4.3 in [AJMV98], which states
that every problem in AC1 is reducible to a function computable by polynomial-size
arithmetic circuits of degree nO(log log n). In this section, we refine the result of [AJMV98],
and put it in context with the theorems about TC1 that were presented in the previous
subsection. Those results show that TC1 reduces to semiunbounded fan-in arithmetic
circuits in the ΛP(Fpn) model, but leave open the question of whether TC1 also reduces
to semiunbounded fan-in arithmetic circuits in the VP(Fpn) model (which coincides with
VP(Q)). We are unable to answer this question, but we do show that some interesting
inclusions can be demonstrated if we relax the VP model, by imposing a less-stringent
restriction on the fan-in of the × gates.

Definition 6. Let (mn) be any sequence of natural numbers (where each mn > 1) such
that the mapping 1n 7→ mn is computable in logspace. #WSAC1(Zmn) is the class of
functions represented by logspace-uniform arithmetic circuit families {Cn}, where Cn is
interpreted over Zmn, where each Cn has size polynomial in n, and depth O(log n), and
where the + gates have unbounded fan-in, and the × gates have fan-in O(log n). Thus
these circuits are not semiunbounded, but have a “weak” form of the semiunbounded
fan-in restriction. We use the notation #WSAC1(ZL) to denote the union, over all
logspace-computable sequence of moduli (mn), of #AC1(Zmn). In the special case when
mn = p for all n, we obtain the class #WSAC1(Fp).

We refrain from defining a weakly semiunbounded analog of the ΛP classes, because
it is easy to show that they are equivalent to the ΛP classes, since AC0 circuits can add
logarithmically-many numbers, given in binary.

We improve on [AJMV98, Theorem 4.3] by showing AC1 is contained in #WSAC1(F2);
note that all polynomials in #WSAC1(Fp) have degree nO(log log n), and note also that
the class of functions considered in [AJMV98] is not obviously even in TC1. In addition,
we improve on [AJMV98] by reducing not merely AC1, but also AC1[p] for any prime p.
This includes ΛP(Fp) for any p such that S(p− 1) ⊆ {2}.

Theorem 8. Let p be any prime. Then AC1[p] = #WSAC1(Fp).

Proof. The inclusion #WSAC1(Fp) ⊆ AC1[p] is straightforward. The proof of Corollary 5
shows how to simulate semiunbounded fan-in circuits over Fp by AC1[p] circuits. We
merely need to add to that construction, to show how to handle multiplication gates
of logarithmic fan-in. Let g be a multiplication gate computing the product of the
gates h1, . . . , hc log n. As in the proof of Corollary 5, the simulating AC1[p] circuit will
record the binary representation of the value of each of the gates hi. Thus the value
of g depends on only O(log n) binary bits of the simulating circuit, and the bits of the
binary representation of the value of g can be computed by a logspace-uniform DNF
expression. This yields the desired AC1[p] circuit.

12

For the proof of the converse inclusion, the main technical ingredient involved is the
following lemma from [AJMV98]. (In [AJMV98] the lemma is stated only for MOD2, but
the proof carries over to any MODm gate with only trivial changes. For completeness,
a detailed proof may be found in Appendix A.)

Lemma 1. [AJMV98] Let m be any natural number, m > 1. For each ` ∈ N, there is a
family of constant-depth, polynomial-size, probabilistic circuits consisting of unbounded-
fan-in MODm gates, AND gates of fan-in O(log n), and O(log n) probabilistic bits,
computing the OR of n bits, with error probability < 1/n`.

Now we follow closely the proof of [AJMV98, Theorem 4.3].
Take an AC1[p] circuit, replace all AND gates by OR and MODp gates (using

DeMorgan’s laws), and then replace each OR gate in the resulting circuit with the sub-
circuit guaranteed by Lemma 1 (for l chosen so that nl is much larger than the size of the
original circuit), with the same O(log n) probabilistic bits re-used in each replacement
circuit. The result is a probabilistic, polynomial-size circuit that, with high probability,
provides the same output as the original circuit. Note that replacing AND gates by ×
and replacing each MODp gate g having wires from hi with a subcircuit of the form
1 − (

∑
i hi)p−1, one obtains an arithmetic circuit over the integers, whose value mod p

is equal to the output of the original AC1[p] circuit with high probability. (This is one
place where we use the fact that p is prime.) The circuit has depth O(log n), and has
unbounded fan-in + gates, and all × gates have fan-in O(log n), and thus it is a weakly
semiunbounded fan-in circuit.

Create nO(1) copies of this probabilistic circuit, one copy for each sequence of prob-
abilistic bits; call these circuits D1, D2, . . . , Dnc . Note that each Di computes a value
in {0, 1}. Note also that 1−Di is also computable in #WSAC1(Fp). Thus we can feed
these values into an arithmetic NC1 circuit computing MAJORITY (using the fact that
all functions in NC1 are in #NC1 [CMTV98]). The resulting circuit is equivalent to our
original AC1[p] circuit.

We especially call attention to the following corollary, which shows that, over F2,
polynomial size logarithmic depth arithmetic circuits of degree nO(log n) and of degree
nO(log log n) represent precisely the same functions!

Corollary 7. #WSAC1(F2) = #AC1(F2) = AC1[2] = ΛP(F3).

Proof. The containment #WSAC1(F2) ⊆ #AC1(F2) is immediate from the definition
(since #WSAC1(F2) circuits are a restricted form of #AC1(F2) circuits). The second
equality is from Theorem 4. The equality AC1[2] = ΛP(F3) is from Theorem 3. The
inclusion AC1[2] ⊆ #WSAC1(F2) is from Theorem 8.

If we focus on the Boolean classes, rather than on the arithmetic classes, then we
obtain a remarkable collapse.

Theorem 9. Let m ∈ N. Then AC1[m] = log-AC1[m]. (Recall the definition of g-AC1[m]
from Definition 4.)

Proof. The proof of Theorem 8 begins with the statement of Lemma 1, which holds for
any modulus m. The proof then uses Lemma 1 to replace a general AC1[m] circuit by

13

an equivalent probabilistic circuit with unbounded fan-in MODm gates and AND gates
with logarithmic fan-in, using only O(log n) probabilistic bits.

The proof of Theorem 8 proceeds to modify this to obtain an arithmetic circuit.
Instead, we simply make polynomially-many copies of this Boolean circuit (one copy for
each probabilistic sequence), and take the majority vote of these copies.

Using Theorem 4 it follows that arithmetic AC1 circuits over any finite field Fp can be
simulated by Boolean circuits with MOD gates and small fan-in AND gates. It remains
open whether this in turn leads to small-degree arithmetic circuits over Fp when p > 2,
and also whether the fan-in of the AND gates can be sublogarithmic, without loss of
power.

When m is composite, Theorem 9 can be improved to obtain an even more striking
collapse, by invoking the work of Hansen and Koucký [HK10].

Theorem 10. Let m not be a prime power. Then AC1[m] = 2-AC1[m].

Proof. Let p 6= q where {p, q} ⊆ S(m). It suffices to show how to construct a family of
2-AC1[m] circuits to simulate a given AC1[m] circuit family.

Hansen and Koucký showed [HK10, Lemma 3.5] that, for every c > 1 there is a
constant-depth probabilistic circuit composed of MODpq gates that computes the OR
of n variables, using only O(log n) probabilistic bits, and having error probability less
than 1/nc. Thus we can replace each unbounded fan-in AND and OR gate in the
AC1[m] with the corresponding circuit (possibly with negation gates) guaranteed by
[HK10]. The MODpq gates can be replaced with MODm gates via standard techniques,
as in the proof of Theorem 3. By choosing a suitably large value for c, the resulting
probabilistic circuit simulates the original circuit with small error probability.

Now, as in the proof of Theorem 9 we can make polynomially-many copies of the
probabilistic circuit, hardwiring in different values for the probabilistic bits, and take
the majority vote.

It might be useful to have additional examples of algebras, where some degree re-
duction can be accomplished. Thus we also offer the following theorem:

Theorem 11. Let p be any prime. Then AC1[p] ⊆ L#WSAC1(ZL).

Proof. We start with the sequence of circuits D1, D2, . . . , Dnc created in the proof of
the preceding theorem. We now make use of the “Toda polynomials” introduced in
[Tod91]. For example, there is an explicit construction in [BT94] of a polynomial Pk

of degree 2k − 1 such that (y mod p) ∈ {0, 1} implies Pk(y) mod pk = y mod p. It
is observed in [AG94] that, for k = O(log n), the polynomial Pk can be implemented
via logspace-uniform constant-depth circuits over the integers. Thus, by replacing each
multiplication gate with a tree of fan-in two, the polynomial can be implemented by
a semiunbounded fan-in circuit of logarithmic depth. Applying this polynomial to the
output of each circuit Di, we obtain a #WSAC1(Z) circuit whose value mod p is the
same as the output of the original AC1[p] circuit with high probability, and with the
additional property that the output of the circuit, when represented in p-ary notation,
has all of the c log n low-order symbols of the result equal to zero (except possibly the
lowest-order symbol). We will choose c to be the constant such that there are c log n
probabilistic bits). Call the resulting circuit Ei.

14

Now create a circuit whose output gate computes
∑

i Ei. The output gate of the
resulting #WSAC1(Z) circuit records a number whose low-order c log n positions (in
p-ary notation) records the number of the nc copies that output 1. If this number is
greater than nc/2, then the original circuit accepted its input; otherwise it rejected its
input.

In order to compute this number using #WSAC1(ZL) instead of #WSAC1(Z), we
use this logspace-computable sequence of moduli: mn = pn. Evaluating the arithmetic
over Zpn gives the number represented by the low-order n positions of the result, in p-
ary notation. A logspace oracle machine, upon being given this number (say, in binary
notation) can compute the value of this number modulo p1+c log n and determine if that
number is greater than nc/2, and can thereby determine if the original circuit accepted
its input.

It is natural to wonder whether this theorem can be extended, to allow compos-
ite moduli. A direct application of the techniques of [AG94, BT94, Yao90] requires
multiple applications of the Toda polynomials, and this in turn results in circuits of
superlogarithmic depth.

Using Theorems 3 and 4 we obtain the following.

Corollary 8. If p is a Fermat prime, then ΛP(Fp) ⊆ L#WSAC1(ZL).

5 Conclusions, Discussion, and Open Problems

We have introduced the complexity classes ΛP(R) for various algebraic structures R,
and have shown that they provide alternative characterizations of well-known com-
plexity classes. Furthermore, we have shown that arithmetic circuit complexity classes
corresponding to polynomials of degree nO(log log n) also yield new characterizations of
complexity classes, such as the equality

AC1[p] = log−AC1[p] = #WSAC1(Fp).

Furthermore, in the case when p = 2, we obtain the additional collapse

#AC1(F2) = AC1[2] = log−AC1[2] = #WSAC1(F2),

showing that algebraic degree nO(log n) and nO(log log n) have equivalent expressive power,
in this setting.

We have obtained the following new characterizations of ACC1:

ACC1 =
⋃
p

#AC1(Fp) =
⋃
p

ΛP(Fp) =
⋃
m

2-AC1[m].

That is, although ACC1 corresponds to unbounded fan-in arithmetic circuits of logarith-
mic depth, and to unbounded fan-in Boolean circuits with modular counting gates, no
power is lost if the addition gates have bounded fan-in (in the arithmetic case) or if only
the modular counting gates have unbounded fan-in (in the Boolean case). It remains
unknown if

⋃
m VP(Zm) captures all of ACC1. (That is, in the arithmetic case, is the

ΛP model really stronger than the VP model?)
We believe that it is fairly likely that several of our theorems can be improved. For

instance:

15

• Perhaps Theorems 9 and 10 can be improved, to show that for all m, AC1[m] = 2-
AC1[m]. Note that this is already known to hold if m is not a prime power. By
Corollary 5 this would show that VP(Fp) = AC1[p] for all primes p. It would also
show that #AC1(F2) = VP(F2) = ΛP(Fp) for every Fermat prime p. (We should
point out that this would imply that AC1 ⊆ VP(Fp) for every prime p, whereas
even the weaker inclusion SAC1 ⊆ VP(Fp) is only known to hold non-uniformly
[GW96].)

• Can Corollary 8 be improved to hold for all primes p, or even for ΛP(Fpn)? The

latter improvement would show that TC1 ⊆ L#WSAC1(ZL).

• Perhaps one can improve Theorem 11, to achieve a simulation of degree nO(1).
Why should nO(log log n) be optimal? Perhaps this could also be improved to hold
for composite moduli?

• If some combinations of the preceding improvements are possible, TC1 would re-
duce to VP(Q), which would be a significant step toward the Immerman-Landau
conjecture.

We began this investigation, wondering if the equality VP(B2) = ΛP(B2) could carry
over to any other algebraic structure. We think that it appears as if VP(Fp) and ΛP(Fp)
are incomparable for every non-Fermat prime p > 2, since VP(Fp) = 2-AC1[p] and
ΛP(Fp) = 2-AC1[S(p − 1)]. That is, these classes correspond to circuits with access to
modular counting gates for completely different sets of primes. For Fermat primes we
have ΛP(Fp) = log-AC1[2] and again the VP and ΛP classes seem incomparable.

For the special case of p = 2, we have VP(F2) = 2-AC1[2] and ΛP(F2) = AC1. We
hold out some hope that VP(F2) = AC1[2], in which case it would appear that the VP
class could be more powerful than the ΛP class – but based on current knowledge it also
appears possible that the VP and ΛP classes are incomparable in this case too.

Acknowledgments The first and third authors acknowledge the support of NSF
grants CCF-0832787 and CCF-1064785. The second author was supported in part by
NSF grant CCF-1018060. We also acknowledge stimulating conversations with Meena
Mahajan, which occurred at the 2014 Dagstuhl Workshop on the Complexity of Dis-
crete Problems (Dagstuhl Seminar 14121), and illuminating conversations with Stephen
Fenner and Michal Koucký, which occurred at the 2014 Dagstuhl Workshop on Alge-
bra in Computational Complexity (Dagstuhl Seminar 14391). We also thank Rutgers
colleagues Richard Bumby, John Miller and Steve Miller, for helpful pointers to the
literature, as well as helpful feedback from Pascal Koiran.

References

[AAD00] M. Agrawal, E. Allender, and S. Datta. On TC0, AC0, and arithmetic
circuits. Journal of Computer and System Sciences, 60:395–421, 2000.

[AG94] E. Allender and V. Gore. A uniform circuit lower bound for the permanent.
SIAM Journal on Computing, 23:1026–49, 1994.

16

[AJMV98] E. Allender, J. Jiao, M. Mahajan, and V. Vinay. Non-commutative arith-
metic circuits: Depth reduction and size lower bounds. Theoretical Computer
Science, 209:47–86, 1998.

[AK10] Eric Allender and Michal Koucký. Amplifying lower bounds by means of
self-reducibility. Journal of the ACM, 57:14:1 – 14:36, 2010.

[AL13] E. Allender and K.-J. Lange. Symmetry coincides with nondeterminism for
time-bounded auxiliary pushdown automata. Theory of Computing, 2013.
To appear; an earlier version appeared in CCC 2010.

[ARZ99] E. Allender, K. Reinhardt, and S. Zhou. Isolation, matching, and counting:
Uniform and nonuniform upper bounds. Journal of Computer and System
Sciences, 59(2):164–181, 1999.

[BCD+89] A. Borodin, S. A. Cook, P. W. Dymond, W. L. Ruzzo, and M. Tompa. Two
applications of inductive counting for complementation problems. SIAM
Journal on Computing, 18:559–578, 1989. See Erratum in SIAM J. Com-
put. 18, 1283.

[BCK+14] Harry Buhrman, Richard Cleve, Michal Koucký, Bruno Loff, and Florian
Speelman. Computing with a full memory: catalytic space. In ACM Sym-
posium on Theory of Computing (STOC), pages 857–866, 2014.

[BT94] R. Beigel and J. Tarui. On ACC. Computational Complexity, 4:350–366,
1994. Special issue on circuit complexity.

[Bür99] Peter Bürgisser. On the structure of Valiant’s complexity classes. Discrete
Mathematics & Theoretical Computer Science, 3(3):73–94, 1999.

[Bür00] Peter Bürgisser. Cook’s versus Valiant’s hypothesis. Theoretical Computer
Science, 235(1):71–88, 2000.

[CDL01] A. Chiu, G.I. Davida, and B. Litow. Division in logspace-uniform NC1.
RAIRO Theoretical Informatics and Applications, 35:259–276, 2001.

[CMTV98] Hervé Caussinus, Pierre McKenzie, Denis Thérien, and Heribert Vollmer.
Nondeterministic NC1 computation. Journal of Computer and System Sci-
ences, 57(2):200–212, 1998.

[CRS95] Suresh Chari, Pankaj Rohatgi, and Aravind Srinivasan. Randomness-
optimal unique element isolation with applications to perfect matching and
related problems. SIAM Journal on Computing, 24(5):1036–1050, 1995.

[GG81] Ofer Gabber and Zvi Galil. Explicit constructions of linear-sized supercon-
centrators. Journal of Computer and System Sciences, 22(3):407–420, 1981.

[GLS01] Georg Gottlob, Nicola Leone, and Francesco Scarcello. The complexity of
acyclic conjunctive queries. Journal of the ACM, 48(3):431–498, 2001.

[GW96] Anna Gál and Avi Wigderson. Boolean complexity classes vs. their arith-
metic analogs. Random Struct. Algorithms, 9(1-2):99–111, 1996.

17

[HAB02] William Hesse, Eric Allender, and David A. Mix Barrington. Uniform
constant-depth threshold circuits for division and iterated multiplication.
Journal of Computer and System Sciences, 65:695–716, 2002.

[HK10] Kristoffer Arnsfelt Hansen and Michal Koucký. A new characterization of
ACC0 and probabilistic CC0. Computational Complexity, 19(2):211–234,
2010.

[IL95] N. Immerman and S. Landau. The complexity of iterated multiplication.
Information and Computation, 116:103–116, 1995.

[IZ89] Russell Impagliazzo and David Zuckerman. How to recycle random bits.
In IEEE Symposium on Foundations of Computer Science (FOCS), pages
248–253, 1989.

[KP11] Pascal Koiran and Sylvain Perifel. Interpolation in Valiant’s theory. Com-
putational Complexity, 20(1):1–20, 2011.

[LMSV01] Clemens Lautemann, Pierre McKenzie, Thomas Schwentick, and Heribert
Vollmer. The descriptive complexity approach to LOGCFL. Journal of
Computer and System Sciences, 62(4):629–652, 2001.

[Pet02] Holger Petersen. The membership problem for regular expressions with
intersection is complete in LOGCFL. In Symposium on Theoretical Aspects
of Computer Science (STACS), number 2285 in Lecture Notes in Computer
Science, pages 513–522. Springer, 2002.

[RA00] K. Reinhardt and E. Allender. Making nondeterminism unambiguous. SIAM
Journal on Computing, 29:1118–1131, 2000.

[RT92] J. Reif and S. Tate. On threshold circuits and polynomial computation.
SIAM Journal on Computing, 21:896–908, 1992.

[Smo87] R. Smolensky. Algebraic methods in the theory of lower bounds for Boolean
circuit complexity. In ACM Symposium on Theory of Computing (STOC),
pages 77–82, 1987.

[Tod91] S. Toda. PP is as hard as the polynomial-time hierarchy. SIAM Journal on
Computing, 20:865–877, 1991.

[Val79] L.G. Valiant. Completeness classes in algebra. In Proc. 11th ACM STOC,
pages 249–261, 1979.

[Ven91] H. Venkateswaran. Properties that characterize LOGCFL. Journal of Com-
puter and System Sciences, 43:380–404, 1991.

[Vin91] V Vinay. Counting auxiliary pushdown automata and semi-unbounded
arithmetic circuits. In Proceedings of 6th Structure in Complexity Theory
Conference, pages 270–284, 1991.

[Vol99] H. Vollmer. Introduction to Circuit Complexity: A Uniform Approach.
Springer-Verlag New York Inc., 1999.

18

[VSBR83] L.G. Valiant, S. Skyum, S. Berkowitz, and C. Rackoff. Fast parallel compu-
tation of polynomials using few processors. SIAM Journal on Computing,
12(4):641–644, 1983.

[Xyl11] T. Xylouris. On the least prime in an arithmetic progression and estimates
for the zeros of Dirichlet L-functions. Acta Arithmetica, 150:65–91, 2011.

[Yao90] Andrew Chi-Chih Yao. On ACC and threshold circuits. In IEEE Symposium
on Foundations of Computer Science (FOCS), pages 619–627, 1990.

6 Appendix A: Proof of Lemma 1

In this section, we present a detailed proof of Lemma 1, showing the adjustments that
need to be made, in order to deal with arbitrary MODm gates.

Here is a reminder of the statement of Lemma 1: Let m be any natural number,
m > 1. For each ` ∈ N, there is a family of constant-depth, polynomial-size, probabilistic
circuits consisting of unbounded-fan-in MODm gates, AND gates of fan-in O(log n),
and O(log n) probabilistic bits, computing the OR of n bits, with error probability <
1/n`.

Proof. Our presentation here is a slight adjustment of the proof in [AJMV98]. There
are no significant changes in the proof, which relies crucially on the fact that one can
replace an OR gate with a MOD gate, when there is a guarantee that at most one of
the inputs to the OR gate evaluates to 1.

The construction in [CRS95] gives a depth 5 probabilistic circuit that computes
the NOR correctly with probability at least 1

2 and uses O(log n) random bits. More
precisely, using the terminology of [CRS95], let m′ = d log ne, let S = {1, . . . ,m′}, and
let F be the collection of subsets of S, such that A ∈ F iff the bit string k of length
m′ = dlog ne representing the characteristic sequence of A corresponds to a binary
number k ≤ n such that the k-th bit of the input sequence x1, . . . , xn has value 1. That
is, the OR of x1, . . . , xn evaluates to 1 iff F is not empty. The strategy of [CRS95] is
to use probabilistic bits to define a way of assigning a “weight” to each set Ak ∈ F so
that if F is not empty, then with high probability there is a unique element of F having
minimum weight. The next paragraph explains how this is done.

Let c = d log m′e and let t = dm′/ce. For any 1 ≤ i ≤ m′ and 0 ≤ j ≤ t − 1, define
bi,j as follows:

bi,j =
{

2i−jc if jc < i ≤ (j + 1)c
0 otherwise

(It may help the reader’s intuition to consider an m′-bit sequence k = k1, . . . , km′ . Divide
this sequence into blocks; Block(j) has positions kjc+1, kjc+2, . . . , k(j+1)c. Clearly, km′ is
in Block(kt−1). Now, if ki 6∈ Block(j), then bi,j = 0, else bi,j = 2i−jc. Note that i− jc is
the position of ki within Block(j).)

Choose t numbers r0, . . . , rt−1 in the range 1 ≤ rj ≤ 50 log5 n uniformly and inde-
pendently at random (and note that this amounts to choosing O(log n) random bits).
Finally, define wi to be equal to

∑t−1
j=0 bi,jrj . The weight of a set A is then

∑
i∈A wi. The

19

analysis in Proposition 2 of [CRS95] shows that if F is not empty, then with probability
at least .99, there is a unique minimal weight set in F .

This paragraph explains how to implement this system as a uniform constant-depth
circuit. Note first that for any k ≤ n and for any fixed p ≤ log7 n, there is a depth 2
circuit of MODm gates and small-fan-in AND gates that evaluates to 1 iff the weight
of Ak is equal to p. Here Ak is that subset of S whose characteristic sequence is the
binary representation of k. (To see this, note that the only inputs to this circuit are
the O(log n) probabilistic bits. Thus the DNF for this function can be computed in
logspace, and the OR gate at the root can be replaced by a MODm gate with m − 1
additional 1 inputs. Here we are making use of the fact that there can only be one of
the AND gates that feed into to the MODm gate that returns 1, namely the one where
the weight of Ak = p.)

Taking the AND of this circuit with the input bit xk results in a depth three circuit
that evaluates to 1 iff Ak ∈ F and the weight of Ak is equal to p. Thus there is a
polynomial-size depth-4 circuit with a MODm gate at the root (with m− 1 additional
1 inputs) that evaluates to 1 iff the number of sets in F that have weight p is equivalent
to 1 mod m. Hence there is a uniform depth-5 circuit with an OR at the root that
evaluates to 1 iff there is some weight p such that the number of sets in F having weight
p is equivalent to 1 mod m. By the remarks in the preceding paragraph, if the OR of
x1, . . . , xn evaluates to 1, then with probability at least .99, our depth-5 circuit will also.
(Clearly, if the OR is zero, then the depth-5 circuit also evaluates to zero.) If we replace
the OR gate at the root with AND and negate each of the MODm gates that feed into
that OR gate (recalling that a unary MODm gate is a NOT gate) we obtain our desired
circuit for the NOR function. Let us denote this circuit by C(x, r).

It remains only to reduce the error probability from 1
100 to 1

nl , without using too many
additional probabilistic bits. Consider a graph with vertices for each of our O(log n)-bit
probabilistic sequences, the edge relation is given by the construction of an expander
graph presented in [GG81], where each vertex has degree five. Inspection of [GG81]
shows that, in logspace, one can take as input one of our original probabilistic sequences
r as well as a new probabilistic sequence s ∈ {1, 2, 3, 4, 5}c` log n (for some constants c and
`) and output the vertex r′ reached by starting in vertex r and following the sequence
of edges indicated by s. Since this function depends on only O(log n) bits, the DNF for
this function can be computed in logspace, and (as above) can be implemented using a
MODm gate and AND gates of small fan-in. Let this circuit be denoted by R(r, s).

Thus we can construct a constant-depth circuit that computes the AND for all
i ≤ cl log n of C(x,R(r, s[1..i])) (where s[1..i] denotes the prefix of s of length i, where
r and s are probabilistically chosen. By Section 2 of [IZ89], this circuit computes the
NOR correctly with probability 1− 1

nl . Adding a MODm gate at the root allows us to
compute the OR, as desired. This completes the proof of the lemma.

20

7 Appendix B: diagram of new macro and micro inclusions

SAC1

#SAC1(Fp) = VP(Fp) AC1

LVP(Fpn) = L#SAC1(Fpn) = LVP(Q)

AC1[p] = log-AC1[p]

L#WSAC1(ZL)
ACC1 = ∪p#AC1(Fp) = ∪pΛP(Fp) =

∪p1...pkAC1[p1 . . . pk] = ∪mAC1[m] = ∪m2-AC1[m]

TC1 = #AC1(Fpn) = LΛP(Fpn) = AC1[pn]

```
```

`̀
((((

((((
(

((((
(((

((((
((((

(

PP
PP

PP
PP

PP
PP

PP
PP

PP
PP

P

��
��

��
���

XX
XX

XX
XXX

Figure 1: Macro inclusions within TC1

SAC1

VP(F5) VP(F2) VP(F3) VP(F7)AC1 = ΛP(F2)

#WSAC1(F5) #WSAC1(F3) #WSAC1(F7)
#WSAC1(F2) = #AC1(F2)
= ΛP(F3) = ΛP(F5) = . . .

#AC1(F5) = ΛP(F11) ΛP(F29)#AC1(F3) = ΛP(F7) = ΛP(F13)

#AC1(F7) = ΛP(F43)

...

```
```

```
```

`̀

H
HH

HH
H

��
�
��
�

�
�
�

�
�
�

A
A
A

A
A
A

@
@
@

�
�
�
�
��

Q
Q

Q
Q

Q
Q

QQ

�
�
�
�
�

��
��

��
��

��
��

��
�

A
A
A
A
AA

L
L
L
L
L
L
L
L���

���
XXX

XXX
�
�
�
�
�

C
C
C
CC A

AA

Figure 2: Micro inclusions within ACC1

21

ECCC ISSN 1433-8092

http://eccc.hpi-web.de

