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Abstract

The noisy population recovery problem is a basic statistical inference problem.
Given an unknown distribution in {0, 1}n with support of size k, and given access only
to noisy samples from it, where each bit is flipped independently with probability 1/2−
ε, estimate the original probability up to an additive error of ε. We give an algorithm
which solves this problem in time polynomial in (klog log k, n, 1/ε). This improves on
the previous algorithm of Wigderson and Yehudayoff [FOCS 2012] which solves the
problem in time polynomial in (klog k, n, 1/ε). Our main technical contribution, which
facilitates the algorithm, is a new reverse Bonami-Beckner inequality for the L1 norm
of sparse functions.

1 Introduction

Consider a database of patients in a hospital, where for each patient the database lists a
large number of traits. Researchers are interested in obtaining this database to perform
various statistical studies, but due to privacy concerns the database cannot be released. A
possible solution (other than deleting identifying parameters of patients, such as their name)
is to delete information at random from the database, or even better, add randomness to the
information, with the goal that this will maintain the privacy of the original database, but
would still provide researchers with useful information. The question is: does this process
ensure privacy, or can the original database be recovered (up to its row order) from a lossy
or noisy version of it?

The problem of recovery of data from lossy or noisy samples was studied extensively in
statistics in the context of continuous distributions, and was introduced to computer science
by Kearns et al. [KMR+94] who focused on discrete distributions. The problem regained
attention recently in a work by Dvir et al. [DRWY12], who related it to the problem of
learning DNFs from partial information.
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A formal description of the learning problem is as follows. Suppose there is an unknown
distribution π over binary strings of length n, and an error parameter 0 < µ < 1. Lossy
samples from it are obtained as follows:

• Sample a string x ∈ {0, 1}n according to π.

• Replace each coordinate of x independently with a ? with probability 1− µ.

Noisy samples from it are obtained as follows:

• Sample a string x ∈ {0, 1}n according to π.

• Flip each coordinate of x independently with probability (1− µ)/2.

In both cases, the goal is to reconstruct π up to a small additive error ε. That is, we would
like to output a list of strings S and an estimate π̃(x) for x ∈ S, such that |π̃(x)− π(x)| ≤ ε
for all x ∈ S, and π(x) < ε for x /∈ S.

It should be clear that the problem is trivial when µ = 1 (as no error is introduced), is
harder the smaller µ is, and is intractable for µ = 0. Moreover, the recovery problem from
lossy samples is easier than the recovery problem from noisy samples, since if we replace each
? with a random bit, we obtain the noisy model. Indeed, the known algorithms for the lossy
problem are better than those known for the noisy problem. In [DRWY12] a polynomial time
algorithm (in n, 1/ε) for the lossy recovery problem was given whenever µ ' 0.365. This
was improved to µ > 1− 1/

√
2 ≈ 0.3 in [BIMP13]. Finally, a polynomial time algorithm for

any µ > 0 was given in [MS13].
For the noisy problem, algorithms are known only when the support size of π, which we

denote by k, is bounded. Kearns et al. [KMR+94] gave an algorithm which is exponential in
k. Wigderson and Yehudayoff [WY12] developed a framework called ”partial identification”,
and gave an algorithm which runs in time polynomial in (klog k, n, 1/ε) for any µ > 0.
Moreover, they showed that their framework cannot obtain algorithms running in time better
than polynomial in klog log k. In this work, we develop an alternative framework, which gives
an algorithm running in time polynomial in klog log k.

Theorem 1.1. For any µ > 0 there exists an algorithm for the noisy recovery problem,
running in time poly(klog log k, n, 1/ε).

A related problem is that of enumerating elements with noticeable probability. Here, the
goal is to give a list S of elements containing all elements x for which π(x) ≥ ε, and possibly
a few other elements, without estimating their probabilities. An algorithm for this problem
was given in [BIMP13] which runs in time polynomial in (n, (1/ε)log log 1/ε). Ideas from that
work inspired some of the ideas in the current paper.

An interesting property of the noisy recovery problem is that the algorithmic problem re-
duces to a purely information theoretic problem. Let Tµ denote the noise operator operating
on functions f : {0, 1}n → R, defined as

(Tµf)(x) = Ee[f(x+ e)]
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where e ∈ {0, 1}n is sampled as Pr[ei = 0] = (1 +µ)/2, Pr[ei = 1] = (1−µ)/2 independently
for all i ∈ [n]. If π is a distribution on {0, 1}n, then Tµπ is the distribution of its noisy samples.
Now, if π1, π2 are two distributions on {0, 1}n, each of support of size k and with a noticeable
statistical distance, then any recovery algorithm would need to distinguish the two noisy
distributions. In particular, there should be noticeable statistical distance between Tµπ1 and
Tµπ2. Surprisingly, it turns out that if this holds for any pair of distributions, then the noisy
recovery problem can be solved efficiently, for example by computing the maximum likelihood
estimator which is a convex optimization problem. See eg [BIMP13, MS13] for details. Thus,
we can formulate the following information theoretic problem, which is equivalent to the
existence of efficient algorithms for noisy population recovery.

Let f : {0, 1}n → R be a function of bounded support (e.g. f = 1
2
(π1 − π2)). Let

‖f‖1 =
∑

x |f(x)|. Define

∆(k, µ) := sup
supp(f)≤k

‖f‖1
‖Tµf‖1

.

Then ∆(k, µ) is a lower bound on any recovery algorithm for noisy population recovery with
error ε ≤ 1/k; and on the other hand, the maximum likelihood estimator converges to the
correct solution in time polynomial in (∆(k, µ), n, ε−1). Our main technical contribution
is the following theorem, which shows that ∆(k, µ) ≤ kO(log log k+log 1/µ). Theorem 1.1 then
follows by the above discussion.

Theorem 1.2. Let f : {0, 1}n → R with supp(f) = k. Then

‖Tµf‖1 ≥ k−O(log log k+log 1/µ)‖f‖1.

Related works. Other than works related to population recovery which were already
mentioned, the relation between a function f and its noisy version Tµf is well studied.
Bounds of the form ”Tµf is smoother than f” are known as the Bonami-Beckner hyper-
contractive inequalities [Bon70, Bec75, Gro75]. They are a central tool in the analysis of
boolean functions, see e.g. the book of O’Donnel [O’D14] for their many applications. The
reverse inequality ”Tµf is not much smoother than f” is called the reverse Bonami-Beckner
inequality, and were proved by Borell [Bor82] for non-negative functions. It also has a
few applications in computer science, see e.g. [MOO05, MOR+06, MOS13]. One may view
Theorem 1.2 as a specific form of a reverse Bonami-Beckner inequality for functions with
sparse support, but which are not restricted to be non-negative.

Proof overview. Let f : {0, 1}n → R be a function with support of size k, where we may

assume ‖f‖1 = 1. If we could find a noticeable Fourier coefficient f̂(S) where S has low
hamming weight, we could lower bound ‖Tµf‖1 since

‖Tµf‖1 ≥ |T̂µf(S)| = µ|S||f̂(S)|.

As a first step, we show (Lemma 3.1) an extension of this lower bound. If we define a function
g(x) = f(x) Pre[x+ e ∈ E], where e is distributed as the noise (e.g. Pr[ei = 0] = (1 + µ)/2,
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Pr[ei = 1] = (1− µ)/2 independently for all i ∈ [n]), and E ⊂ {0, 1}n is any subset, then

‖Tµf‖1 ≥ µ|S||ĝ(S)|.

Next, we choose the subset E to control the properties of g. Let supp(f) = {x1, . . . , xk}
and assume |f(x1)| is maximal, and in particular |f(x1)| ≥ 1/k. We choose E to contain only
points which are closer to x1 than to all the other xi which are far enough from x1. With
this choice, we prove (Lemma 3.2) that g(x1) ≈ f(x1) while g(xi) decays exponentially fast
in the hamming distance between x1 and xi. This allows us to approximate g by a function
h supported on a small hamming ball around x1.

Finally, we restrict our attention to functions supported on small hamming balls. We
show that if h has support of size k and is supported in a hamming ball of radius r, then
there exists S ⊂ [n] of size |S| ≤ log k such that |ĥ(S)| ≥ k−O(log r). Putting these together,
it turns out that one should consider balls of radius r = O(log k log log k), which imply the
bound.

Paper organization. We review basic definitions in Section 2. We prove Theorem 1.2 in
Section 3. We discuss some open problems in Section 4.

2 Preliminaries

For x ∈ {0, 1}n let |x| denote the hamming weight of x. For x, y ∈ {0, 1}n let dist(x, y)
denote their hamming distance. Let B(n, r) = {x ∈ {0, 1}n : |x| ≤ r} denote the hamming
ball of radius r in {0, 1}n. Let F = {f : {0, 1}n → R} denote the space of real functions
on the boolean cube, with inner product given by 〈f, g〉 =

∑
x f(x)g(x). We will mostly

be interested in the L1 norm ‖f‖1 =
∑
|f(x)|. For an operator T : F → F its L1 to L1

norm is defined as ‖T‖1→1 = sup ‖Tf‖1/‖f‖1, where the supremum is taken over all nonzero
functions. The support of a function f is the set of elements with nonzero value, supp(f) =
{x : f(x) 6= 0}. For S ⊂ [n] its associate character is χS(x) = (−1)〈x,S〉. The Fourier

coefficients of f are f̂(S) = 〈f, χS〉 =
∑

x f(x)(−1)〈x,s〉 with f(x) = 2−n
∑

S f(x)(−1)〈x,S〉.
For a noise parameter 0 < µ < 1, let Dµ denote the distribution of e ∈ {0, 1}n given by

Pr[ei = 0] = (1 + µ)/2 and Pr[ei = 1] = (1 − µ)/2 independently for all i ∈ [n]. The noise
operator Tµ : F → F is defined as

(Tµf)(x) = Ee∼Dµ [f(x+ e)].

3 Lower bounding the norm of noisy functions

Let f : {0, 1}n → R with bounded support. We restate Theorem 1.2 for the convenience of
the reader.

Theorem 1.2 (restated). Let f : {0, 1}n → R with supp(f) = k. Then

‖Tµf‖1 ≥ k−O(log log k+log 1/µ)‖f‖1.
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We may assume without loss of generality that ‖f‖1 = 1. A simple lower bound on
‖Tµf‖1 follows if f has a noticeable Fourier coefficient of low hamming weight. For any
S ⊂ [n],

‖Tµf‖1 ≥ |T̂µf(S)| = µ|S||f̂(S)|.

As a first step, we show that the same bound holds if one replaces f with any function of
the form g(x) = f(x) Pr[x+ e ∈ E], where e ∼ Dµ and E ⊂ {0, 1}n is any subset.

Lemma 3.1. Let f : {0, 1}n → R be a function and let E ⊂ {0, 1}n. Define g : {0, 1}n → R
by

g(x) = f(x) Pr
e∼Dµ

[x+ e ∈ E].

Then for any S ⊂ [n] we have
‖Tµf‖1 ≥ µ|S||ĝ(S)|.

Lemma 3.1 is proved in Section 3.1. Assume that supp(f) = {x1, . . . , xk} with |f(x1)| ≥
1/k. We choose E so that g(x1) ≈ f(x1) but g(xi) decays exponentially in dist(x1, xi). This
will allow us to approximate g by a function bounded in a hamming ball of low radius.
Specifically, we choose

E =
{
y ∈ {0, 1}n : dist(x1, y) < dist(xi, y)

for all xi such that dist(x1, xi) ≥ log(k)/µ2
}

(1)

Lemma 3.2. For the set E defined in (1) and g = f · Tµ1E we have

1. |g(x1)| ≥ |f(x1)|/2 ≥ 1/2k.

2. If dist(x1, xi) ≥ log(k)/µ2 then |g(xi)| ≤ |f(xi)| · exp(−µ2 · dist(x1, xi)).

Lemma 3.2 is proved in Section 3.2. As the values in g decay exponentially fast, we can
well approximate g with a function supported on a hamming ball of low radius.

Corollary 3.3. Let f : {0, 1}n → R with |supp(f)| = k, and let g = f · Tµ1E for the set E
defined in (1). For any r ≥ log(k)/µ2 there exist a function h : {0, 1}n → R such that

1. supp(h) ≤ k, supp(h) ⊆ B(n, r), ‖h‖1 ≥ 1/2k.

2. ‖g − h‖1 ≤ exp(−rµ2)‖f‖1. In particular, |ĝ(S)| ≥ |ĥ(S)| − exp(−rµ2)‖f‖1 for any
S ⊂ [n].

Proof. Take h(x) = g(x) if |x| ≤ r, and h(x) = 0 otherwise. The properties follow immedi-
ately from Lemma 3.2.

This motivates the study of functions supported in a hamming ball of low radius. We
may assume the hamming ball is centered around 0 by shifting the function. We show that
such functions have noticeable Fourier coefficients of low hamming weight.
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Lemma 3.4. Let h : {0, 1}n → R be a function with |supp(h)| = k, supp(h) ⊆ B(n, r). Then
there exists S ⊂ [n], |S| ≤ log k such that

|ĥ(S)| ≥ k− log(4r)‖h‖1.

Lemma 3.4 is proved in Section 3.3. Theorem 1.2 follows by combining Lemma 3.1,
Corollary 3.3 and Lemma 3.4.

Proof of Theorem 1.2. Assume without loss of generality that ‖f‖1 = 1. Set E ⊂ {0, 1}n
as given in (1), and set g(x) = f(x) Pr[x + e ∈ E] where e ∼ Dµ. By Lemma 3.1 we have
‖Tµf‖1 ≥ |ĝ(S)|µ|S| for all S ⊆ [n]. Let r ≥ log(k)/µ2 to be optimized later, and apply
Corollary 3.3 to find a function h : {0, 1}n → R such that |supp(h)| = k, supp(h) ⊂ B(n, r)

and |ĝ(S)| ≥ |ĥ(S)|−exp(−rµ2). Applying Lemma 3.4 to h, there exists S ⊆ [n], |S| ≥ log k

such that |ĥ(S)| ≥ k− log(4r)‖h‖1. We also know that ‖h‖1 ≥ 1/2k. Putting these together,
we obtain the lower bound

‖Tµf‖1 ≥ µlog k
(
(1/2k) · k− log(4r) − exp(−rµ2)

)
.

Setting r = O(log k · log log k · log(1/µ)/µ2) we get that exp(−rµ2) ≤ (1/4k)k− log(4r) and
hence

‖Tµf‖1 ≥ k−O(log log k+log 1/µ).

3.1 Proof of Lemma 3.1

We restate Lemma 3.1 for the convenience of the reader.

Lemma 3.1 (restated). Let f : {0, 1}n → R be a function and let E ⊂ {0, 1}n. Define
g : {0, 1}n → R by

g(x) = f(x) Pr
e∼Dµ

[x+ e ∈ E].

Then for any S ⊂ [n] we have
‖Tµf‖1 ≥ µ|S||ĝ(S)|.

We will need a few auxiliary claims first. For i ∈ [n] define Tµ,i : F → F to be the
operator that adds noise only in coordinate i,

(Tµ,if)(x) =
1 + µ

2
· f(x) +

1− µ
2
· f(xi),

where xi is the element obtain by flipping the i-th bit of x. The following claim bounds the
norm of Tµ,i and its inverse.

Claim 3.5. ‖Tµ,i‖1→1 = 1 and ‖T−1µ,i ‖1→1 = 1/µ.
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Proof. The bound ‖Tµ,i‖1 ≤ ‖f‖1 is immediate, and is tight for f = 1. To derive the bound
on T−1µ,i , let x0, x1 be such that (x0)i = 0, (x1)i = 1 and (x0)j = (x1)j for all j 6= i. If

(f(x0), f(x1)) = (a, b) then T−1µ,1f = (1/2µ) · ((1 +µ)a− (1−µ)b,−(1−µ)a+ (1 +µ)b). Then

|(T−1µ,i f)(x0)|+ |(T−1µ,i f)(x1)| ≤ (1/µ)|a+ b| = (1/µ)(|f(x0)|+ |f(x1)|). The claim follows by
summing over all choices for x0, x1, and noting that the bound is tight for f(x) = (−1)xi .

For S ⊂ [n] define the operator Tµ,S : F → F to add noise to the coordinates in S.
Formally, Tµ,S =

∏
i∈S Tµ,i. Note that Tµ = Tµ,[n]. Claim 3.5 implies that

‖Tµ,S‖1→1 ≤ 1, ‖T−1µ,S‖1→1 ≤ (1/µ)|S|. (2)

Proof of Lemma 3.1. Note that for any two functions f ′, f ′′ ∈ F we have

〈f ′, Tµf ′′〉 = Ee∼Dµ
∑

x∈{0,1}n
f ′(x)f ′′(x+ e) = Ee∼Dµ

∑
x∈{0,1}n

f ′(x+ e)f ′′(x) = 〈Tµf ′, f ′′〉 .

We have g(x) = f(x) ·(Tµ1E)(x). Define an operator XS : F → F by (XSf)(x) = f(x)χS(x).
Then

ĝ(S) =
∑

x∈{0,1}n
f(x)Tµ1E(x)χS(x) = 〈XSf, Tµ1E〉 = 〈TµXSf, 1E〉 .

In particular, since ‖1E‖∞ = 1 we obtain that

|ĝ(S)| ≤ ‖TµXSf‖1. (3)

Next, let Sc = [n] \ S be the complement of S, and decompose Tµ = Tµ,STµ,Sc . Note that
the operators Tµ,Sc and XS commute. Hence

TµXSf = Tµ,STµ,ScXSf = Tµ,SXSTµ,Scf = Tµ,SXST
−1
µ,STµf.

To conclude, we bound

‖TµXSf‖1 ≤ ‖Tµ,S‖1→1‖XS‖1→1‖T−1µ,S‖1→1‖Tµf‖1 ≤ (1/µ)|S|‖Tµf‖1,

where we apply Claim 3.5 and the obvious bound ‖XS‖1→1 = 1.

3.2 Proof of Lemma 3.2

We restate Lemma 3.2 for the convenience of the reader.

Lemma 3.2 (restated). For the set E defined in (1) and g = f · Tµ1E we have

1. |g(x1)| ≥ |f(x1)|/2 ≥ 1/2k.

2. If dist(x1, xi) ≥ log(k)/µ2 then |g(xi)| ≤ |f(xi)| · exp(−µ2 · dist(x1, xi)).
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Proof. We first lower bound |g(x1)|. Let s = log(k)/µ2. By definition g(x1) = f(x1) Pr[x1 +
e ∈ E], where e ∼ Dµ. If we let y = x1 + e then we can upper bound the probability that
x1 + e /∈ E by the union bound

Pr[x1 + e /∈ E] ≤
∑

i:dist(x1,xi)≥s

Pr[dist(x1, y) ≥ dist(xi, y)].

Let Si denote the coordinates in which x1, xi differ, where |Si| ≥ s. Then dist(x1, y) ≥
dist(xi, y) iff the hamming weight of e restricted to S is at least |S|/2. As each bit of e is 1
with probability (1− µ)/2 independently, we apply the Chernoff bound and obtain

Pr[dist(x1, y) ≥ dist(xi, y)] = Pr

[∑
j∈Si

ej ≥ |Si|/2

]
≤ exp(−2|Si|µ2) ≤ 1/2k.

Hence Pr[x1 + e ∈ E] ≥ 1/2 and |g(x1)| ≥ |f(x1)|/2. To upper bound |g(xi)|, we upper
bound Pr[xi + e ∈ E]. Now, if xi + e ∈ E then in particular dist(x1, xi + e) < dist(xi, xi + e),
or equivalently the hamming weight of e restricted to Si exceeds |Si|/2. Applying again the
Chernoff bound,

Pr[xi + e ∈ E] ≤ Pr

[∑
j∈Si

ej ≥ |Si|/2

]
≤ exp(−2|Si|µ2).

3.3 Proof of Lemma 3.4

We restate Lemma 3.4 for the convenience of the reader. For convenience, we denote the
function studied by f .

Lemma 3.4 (restated). Let f : {0, 1}n → R be a function with |supp(f)| = k, supp(f) ⊆
B(n, r). Then there exists S ⊂ [n], |S| ≤ log k such that

|f̂(S)| ≥ k− log(4r)‖f‖1.

In order to prove Lemma 3.4, we find a low degree polynomial p which computes f on
its support. A function p : {0, 1}n → R is a degree d polynomial if p(x) =

∑
|S|≤d pS · χS(x).

We note that in our normalization, p̂(S) = 2npS. To simplify notation define |p| =
∑

S |pS|.

Proposition 3.6. Let f : {0, 1}n → R be a function with |supp(f)| = k, supp(f) ⊆ B(n, r).
Then there exists a polynomial p of degree at most log k such that

(i) p(x) = f(x) for all x ∈ supp(f).

(ii) |p| ≤ k · rlog k · ‖f‖1.
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We first show that Lemma 3.4 follows immediately from Proposition 3.6.

Proof of Lemma 3.4 from Proposition 3.6. Consider 〈f, p〉. On the one hand,

〈f, p〉 =
∑
x

f(x)p(x) =
∑
x

f(x)2 ≥ 1/k.

On the other hand, by Parseval’s identity,

〈f, p〉 =
∑
S

f̂(S)pS ≤ max{|f̂(S)| : |S| ≤ log k} · |p|.

Hence there exists S ⊂ [n], |S| ≤ log k such that f̂(S) ≥ 1/(k|p|).

We now move to prove Proposition 3.6 by induction. We first define F (k, r) to be the
minimal bound on |p| for which Proposition 3.6 holds. For technical reasons, we will require
p(x) = f(x) also for some x outside the support of f . Formally, we define f : X → R where
we implicitly assume that f(x) = 0 for all x /∈ X, but it could be that f(x) = 0 for some
x ∈ X. We require that p(x) = f(x) for all x ∈ X.

Definition 3.7 (F (k, r) function). For k, r ≥ 1 define F (k, r) ≥ 0 to be the minimal quantity
such that the following holds. For any n ≥ 1, any set X ⊂ B(n, r) of size |X| ≤ k and any
function f : X → R, there exists a polynomial p of degree at most log k such that

(i) p(x) = f(x) for all x ∈ X.

(ii) |p| ≤ F (k, r)‖f‖1.

If no such polynomial exists, set F (k, r) =∞.

We will also need a refinement based on the sum of hamming weights in X. Define
W (X) =

∑
x∈X |x| to be the sum of hamming weights in X.

Definition 3.8 (F (k, r;w) function). For k, r, w ≥ 1 define F (k, r;w) ≥ 0 to be the minimal
quantity such that the following holds. For any n ≥ 1, any set X ⊂ B(n, r) of size |X| ≤ k
and W (X) ≤ w and any function f : X → R, there exists a polynomial p of degree at most
log k such that

(i) p(x) = f(x) for all x ∈ X.

(ii) |p| ≤ F (k, r;w)‖f‖1.

If no such polynomial exists, set F (k, r;w) =∞.

Note that F (k, r; kr) = F (k, r). We now prove a recursive formula on F (k, r;w);

Proposition 3.9. F (k, r;w) ≤ max1≤a≤k/2{F (k, r;w − a) + F (a, r)}.
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Proof. We prove the proposition by induction on n. Let X ⊂ B(n, r) with |X| ≤ k, W (x) ≤
w and let f : X → R. We assume without loss of generality that ‖f‖1 = 1. Define
X0, X1, X∗ ⊆ {0, 1}n−1 as

X0 = {x ∈ {0, 1}n−1 : x0 ∈ X, x1 /∈ X},
X1 = {x ∈ {0, 1}n−1 : x1 ∈ X, x0 /∈ X},
X∗ = {x ∈ {0, 1}n−1 : x0, x1 ∈ X}.

Note that X0, X1, X∗ are disjoint and that |X0|+ |X1|+ 2|X∗| = |X| ≤ k. Let {i, j} = {0, 1}
be such that |Xi| ≤ |Xj|. Define Y, Z ⊆ {0, 1}n−1 by

Y = X0 ∪X1 ∪X∗
Z = Xi ∪X∗

Note that by our assumption, |Z| ≤ k/2. If |Z| = 0 then the last bit in all elements of X
is always j, hence we can reduce to dimension n − 1 and continue by induction. Thus, we
assume that |Z| ≥ 1. Define a function g : Y → R by

g(x) =

{
f(xj) if x ∈ Xj ∪X∗
f(xi) if x ∈ Xi

and a function h : X → R by

h(x) =

{
0 if x ∈ Xi

f(xi)− f(xj) if x ∈ X∗
.

Let x = x′xn with x′ ∈ {0, 1}n−1, xn ∈ {0, 1} and observe that for all x ∈ X,

f(x) = g(x′) + h(x′) · 1xn=i. (4)

We now apply the proposition inductively to g, h. For g, we have ‖g‖1 ≤ 1, Y ⊂
B(n − 1, r), |Y | ≤ k and W (Y ) = W (X) − |X1| − |X∗| − W (X∗) ≤ w − |Z|. Hence
there exists a polynomial pg of degree log k such that pg(x

′) = g(x′) for all x′ ∈ Y and
|pg| ≤ F (k, r;w − |Z|). For h, we have ‖h‖1 ≤ 1, Z ⊂ B(n − 1, r) and |Z| ≤ k/2. Hence
there exists a polynomial ph of degree log |Z| ≤ log k − 1 such that ph(x

′) = h(x′) for all
x′ ∈ Z and |ph| ≤ F (|Z|, r). Define

p(x) = pg(x
′) + ph(x

′)1xn=i

so that p(x) = f(x) for all x ∈ X. Note that since deg(pg) ≤ log k, deg(ph) ≤ log k − 1 then
deg(p) ≤ log k. Finally, we bound |p| by

|p| ≤ |pg|+ |ph1xn=i| = |pg|+ |ph||1xn=i| = |pg|+ |ph| ≤ F (k, r;w − |Z|) + F (|Z|, r).
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Proposition 3.10. F (k, r) ≤ k · rlog k.

Proof. As r never changes throughout the induction, set G(k) = F (k, r) and G(k;w) =
F (k, r;w). We prove the proposition by induction on k. By Proposition 3.9 we have

G(k;w) ≤ max
1≤a≤k/2

{G(k;w − a) +G(a)} .

Expanding G(k;w − a) recursively, we obtain the bound

G(k) = G(k; kr) ≤ max
a1+...+at≤kr,1≤a1,...,at≤k/2

{
t∑
i=1

G(ai)

}
. (5)

Let a1, . . . , at be the parameters that maximize (5). By induction, G(ai) ≤ air
log ai ≤

air
log k−1, where we used the fact that ai ≤ k/2. Hence

G(k) ≤

(
t∑
i=1

ai

)
rlog k−1 ≤ kr · rlog k−1 = k · rlog k.

4 Open problems

We show in Theorem 1.2 that if f is has sparsity k then ‖Tµf‖1 ≥ k−O(log log k+log 1/µ). We
suspect that the recovery problem can actually be solved in polynomial time.

Problem 4.1. Let f : {0, 1}n → R be a function with support of size k. Show that ‖Tµf‖1 ≥
k−O(log 1/µ)‖f‖1.

A sufficient condition for Problem 4.1 is that any sparse function has a noticeable Fourier
coefficients of low hamming weight.

Problem 4.2. Let f : {0, 1}n → R be a function with support of size k. Show that there

exists S ⊂ [n], |S| ≤ O(log k) such that |f̂(S)| ≥ k−O(1)‖f‖1.

Another interesting problem is to extend the current results to distributions with un-
bounded support, where the goal is to list the elements of large probability and approximate
that probability. The related information theoretic problem is the following, where the only
assumption is that f has a noticeable value on a single element (which can be assumed
without loss of generality to be 0).

Problem 4.3. Let f : {0, 1}n → R be a function with |f(0)| ≥ 1/k · ‖f‖1. Show that
‖Tµf‖1 ≥ k−O(log 1/µ)‖f‖1.

Again, there is a sufficient conditions on the Fourier coefficients.

Problem 4.4. Let f : {0, 1}n → R be a function with |f(0)| ≥ 1/k · ‖f‖1. Show that there

exists S ⊂ [n], |S| ≤ O(log k) such that |f̂(S)| ≥ k−O(1)‖f‖1.
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