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Abstract

Consider a large database of n data items that need to be stored using m servers. We study how
to encode information so that a large number k of read requests can be performed in parallel while the
rate remains constant (and ideally approaches one). This problem is equivalent to the design of multiset
Batch Codes introduced by Ishai, Kushilevitz, Ostrovsky and Sahai [17].

We give families of multiset batch codes with asymptotically optimal rates of the form 1−1/poly(k)
and a number of servers m scaling polynomially in the number of read requests k. An advantage of our
batch code constructions over most previously known multiset batch codes is explicit and deterministic
decoding algorithms and asymptotically optimal fault tolerance.

Our main technical innovation is a graph-theoretic method of designing multiset batch codes using
dense bipartite graphs with no small cycles. We modify prior graph constructions of dense, high-girth
graphs to obtain our batch code results. We achieve close to optimal tradeoffs between the parameters
for bipartite graph based batch codes.

1 Introduction

Batch codes were introduced by Ishai, Kushilevitz, Ostrovsky and Sahai in [17], motivated by applications to
load balancing in distributed storage and private information retrieval. An (n,N, k,m) batch code encodes
a string x of n symbols to a string y of N symbols to be stored at m distinct servers (also called buckets), so
that any k read requests for symbols of x can be performed by reading at most 1 (more generally t) symbols
from each bucket.

In this paper we study batch codes in the context of their applications in distributed storage. Consider a
large database of n data items that need to be stored usingm servers. The simplest and most frequently used
way of introducing redundancy in distributed storage systems is replication. Assume that the whole database
is replicated k times using m = k servers. One advantage of k-replication is that any k read requests can
be processed in parallel1 This includes k requests to read one item, k/2 requests to read any two items, etc.

∗A. G. Dimakis would like to acknowledge support from grants NSF CCF-1422549, CCF-1344364, and CCF-1344179.
†A. Gál would like to acknowledge support from grant NSF CCF-1018060.
1We assume that each server can serve only one read request at a time, but this can be easily generalized.
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Further, replication provides fault tolerance since any k−1 server failures can be tolerated with no data loss.
The disadvantage, of course, is that the rate of this storage scheme is vanishing as 1/k. This large storage
overhead of replication is a major cost bottleneck for large-scale storage clusters that motivates the use of
distributed storage codes in systems like Windows Azure and Hadoop [16, 35].

The central question is how to encode information so that a scaling number k of read requests can be per-
formed in parallel while the rate remains constant (and ideally approaches one). This problem is equivalent
to designing multiset batch codes with good parameters. Multiset batch codes were also introduced in [17].
These are batch codes that allow read requests that form a multiset, that is the same item xi from x may be
requested multiple times. For any k (not necessarily distinct) requests xi1 , . . . , xik there must be a partition
of them servers into k disjoint groups S1, . . . , Sk, such that the j-th request xij can be recovered by reading
at most 1 symbol from each server of the group Sj . Thus, in the context of distributed storage, multiset
batch codes also allow multiple parallel reads, a very useful property when storing frequently accessed data.
For example, if item x1 is requested by k different users, it can be retrieved simultaneously, by accessing
distinct groups of servers, and reading only one symbol from each server.

The central code design question for this scenario involves minimizing the number of used servers m
while maximizing the rate ρ = n/N for some given number of objects n and required number of parallel
reads k. Clearly, for any scheme m ≥ k. Note that m = k is achievable by k-replication but with vanishing
rate ρ = 1/k. An important contribution of [17] was the design of codes that for any constant rate ρ < 1
achieve polynomial dependency of the number of servers on k, that is m = kc for some constant c that
depends on the rate ρ. One limitation is that this exponent c is fairly large and grows arbitrarily large as the
rate ρ approaches 1. We note that for low rates [17] proposed a different construction that is near-optimal.
Specifically, they showed that using Reed-Muller codes it is possible to obtain batch codes of rate ρ = 1/kε

and m = k log2+1/ε+o(1) k for any constant ε > 0. It remained open if it is possible to construct multiset
batch codes with rates approaching optimality ρ = 1 − o(1). Further, it would be ideal to achieve this
using few servers, i.e., m = kc for some small exponent c. By a connection between multiset batch codes
and smooth codes observed by Ishai et al. (Theorem 3.9 in [17]), the recent constructions of high rate
locally decodable codes by Kopparty et al. [19] imply multiset batch codes with these properties, e.g. rate
1−O(log log k/ log k) achieved withm < k1+O(1/ log log k), however this has not been explicitly mentioned
in the literature. Other constructions of high rate locally decodable codes appear in [14, 15].

As far as we know, the only constructions of batch codes published after [17] have been replication
based batch codes - referred to as combinatorial batch codes in the literature (see e.g. [1, 4–6, 26, 34, 36]).
Note that combinatorial batch codes do not provide multiset batch codes.

A limitation of most previous multiset batch codes including all multiset batch codes of [17] with poly-
nomial number of servers m = poly(k) is that they do not have explicit deterministic decoders. They
provide randomized decoding algorithms, and imply the existence of the disjoint groups of servers required
for decoding, but do not construct the disjoint groups, and do not identify which servers to use for the par-
allel reads explicitly. The multiset batch codes with deterministic decoders in [17] have superpolynomial
number of servers with respect to k.
Contributions: We introduce the first families of multiset batch codes with explicit and deterministic decod-
ing algorithms and a polynomial number of servers with respect to k. Our codes also achieve asymptotically
optimal rates 1 − o(1), and asymptotically optimal fault tolerance. Our constructions exhibit a tradeoff
between m (the number of servers) and the rate as functions of k. Note that we are trying to minimize m
and maximize the rate as functions of k. We obtain several constructions that give different tradeoffs. The
smallest m we can achieve (as a function of k) while still having rate 1 − o(1) is m = k3+ε for any fixed
ε > 0, achieved with rate at least 1 − 1

kε/4
. These tradeoffs are close to optimal for bipartite graph based
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multiset batch codes. A different setting of parameters in this construction gives m = O(k3) servers and
rate at least 1− 1

c for any constant c ≥ 2. In another construction we require m = k4+ε and achieve rate at
least 1 − 1

kε , for any constant 1 ≥ ε > 0. The first construction gives a better tradeoff between the number
of servers and the rate when ε is small. We also present a construction that gives m = k4 achieved with
rate at least 1 − 1√

k
. This gives a better rate than any of the other two constructions when the number of

servers m = k4. We also show that the zig-zag code construction [39] allows us to design batch codes with
m = Θ(kk

1+ε+1+ε) and rate at least 1 − 1
kε for any ε > 0. While they require substantially more servers,

zig-zag based codes offer the benefit of logarithmic locality, i.e., each of the parallel reads needs to contact
only O(polylogn) servers in the worst case. Table 1 summarizes the parameters obtained by various code
constructions considered in this paper.

Construction Rate Number of servers (m)

Theorem 3, Section 4.1 ≥ 1− 1
kε/4

(for ε > 0) k3+ε

Theorem 5, Section 4.2 ≥ 1− 1
kε (for 1 ≥ ε > 0) k4+ε̃ + o(k4+ε̃)

Theorem 6, Section 4.3 ≥ 1− 1/
√
k (1 + ok(1))k4

Theorem 7, Section 4.4 ≥ 1− 1
kε (for ε > 0) Θ(kk

1+ε+1+ε)

Theorem 4, Section 4.1 ≥ 1− 1
c (for constant c ≥ 2) O(k3)

Table 1: Summary of the constructions of multiset batch codes presented in this paper. For the multiset
batch codes constructed in Section 4.2, ε̃ < ε is a rational number which depends on ε. Note that we have
deterministic decoding algorithm for all our constructions.

Our constructions offer several benefits compared to prior work. The first is in decoding: the choice of
which servers to use for each of the k parallel reads is deterministic and obtained using an efficient algorithm.
This is in contrast with previous constructions of multiset batch codes with polynomial number of servers
with respect to k that choose these sets randomly and only show the existence of assignments of disjoint
groups of servers to read requests. The second benefit is that our multiset batch codes achieve rate of the
form 1− 1

poly(k) with a polynomial number of servers, which is larger than the rate 1−O(log log k/ log k)
of batch codes implied by the recent high rate locally decodable codes of [19]. Finally, our batch codes
offer fault tolerance. Specifically, we show how to augment the code with extra parity symbols to provide
distance asymptotically approaching that of Maximum Distance Separable (MDS) codes. We note that while
this transformation can be applied to any batch code, batch codes with rate 1− o(1) are necessary to obtain
asymptotically optimal fault tolerance.
Techniques: Our main technical innovation is a graph-theoretic method of designing multiset batch codes
using dense bipartite graphs with no short cycles. Consider first the case where each server stores one symbol
(i.e. N = m), called a primitive batch code. Primitive batch codes are subsequently used as building blocks
to construct more general batch codes.

Consider a bipartite graph with n left nodes and N −n right nodes. Each left node corresponds to a data
symbol and each right node to a parity symbol. Let the left nodes all have degree k, indicating that each
data symbol xi is included in k parities. It is not hard to see that if this bipartite graph has no 4-cycle, these
k parities must have disjoint neighborhoods, excluding xi. Therefore, if there are no 4-cycles, each symbol
xi can be reconstructed k times in parallel, by reading these parities and their disjoint neighborhoods.
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This simple observation allows k parallel reads for one symbol but cannot support for example k/2 reads
for x1 and k/2 reads for x2 since all the parities of x1 and x2 might involve other common data symbols.
Our main lemma shows that if there are no 4-cycles or 6-cycles, the number of parities that are blocked
by each read request can be bounded by a local argument and any k reads can be supported. Using this
graph theoretic lemma we show that bipartite graphs with n left nodes, N − n right nodes, left degree at
least k and girth at least 8 yield primitive multiset batch codes with parameters (n,N, k,m). Therefore
optimizing batch code parameters becomes an extremal graph problem: Maximize the left minimum degree
in a (simple, undirected) bipartite graph with N vertices so that it contains no 4-cycle or 6-cycle subgraphs.
Here subgraphs are not necessarily induced and this condition is equivalent to the bipartite graph having
girth (length of shortest cycle) at least 8.

The difficulty in code constructions is now clear: making the left degree k large without short cycles
requires many right nodes. However, as the number of right nodes (i.e. parities) is N − n, this pushes the
rate n/N low. The question of constructing dense bipartite graphs of high girth and in particular bipartite
graphs without 4- and 6-cycles and as many edges as possible has been extensively studied. The strongest
constructions of such graphs have been given by Lazebnik, Ustimenko, Woldar [20] and by de Caen and
Székely [7]. The construction by Lazebnik et al. is obtained by embedding Chevalley group geometries in
Lie algebras [41]. The constructions of de Caen and Székely are based on known constructions of general-
ized quadrangles [27, 40]. We modify a construction of Balbuena [3] based on Latin Squares to obtain our
results with m = k3+ε and rate at least 1 − 1

kε/4
. This gives close to optimal tradeoffs for bipartite graph

based multiset batch codes, since as we discuss in Section 4.5 rate at least 1− 1
kε/4

implies m = Ω(k3+ε/2).
Note that the graphs of Balbuena [3] only give rate 1/2, but we apply a simple transformation to amplify the
rate. We could apply a similar transformation to any of our bipartite graph based constructions, but these
would not lead to significantly different tradeoffs.

1.1 Related work

Our work is inspired by work of Ishai et al. [17]. Batch codes were originally motivated for load balancing
applications which are traditionally different from erasure codes like Reed-Solomon [32] and information
dispersal [29] used for distributed data storage [28]. The difference is that batch codes are useful for storing
many small items while standard erasure codes provide fault tolerance for a single large object split in
multiple symbols.

One issue that blurs this difference, however, is the so-called repair problem of distributed storage
codes [10, 11]. When a systematic code is used for storage across servers a very common operation is
the access of a single systematic symbol. Typically, each symbol of a code is stored in a different server.
When the particular server storing the desired systematic symbol has failed or is temporarily unavailable
the problem of reconstructing a single symbol from as few other codeword symbols as possible arises. The
locality of a symbol [13, 25] is the smallest number of other symbols that need to be read to reconstruct
it. We refer to that set of symbols as a repair group for the given symbol. Batch codes enable multiple (k)
repair groups for each symbol that are also disjoint and hence allow these reads to be performed in parallel,
a property very useful for high performance storage systems. Since these groups must be disjoint, some of
them must be small so batch codes implicitly enforce locality. The weaker problem of enabling multiple
parallel reads of a single symbol was recently investigated in [31]. The constructions we present in this
paper resolve an open question stated in [31].

Fault tolerance is another useful property for distributed storage codes. Gopalan et al. [13] determined
the largest possible distance for codes with locality, generalizing the Singleton bound [23]. This was re-
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cently further generalized for nonlinear codes [25] and several explicit constructions of locally repairable
codes have been investigated (e.g. [18, 24, 30, 37, 38]). Note that locally repairable codes are related but
fundamentally different from locally decodable codes [42]. Prior batch code constructions with good rates
have very poor distance properties, namely d = o(n). We construct batch codes that have near-optimal
distance, linear in n and asymptotically approaching the Singleton bound.

We note that girth and graph representations have been considered before (see e.g. [1, 26] in the con-
text of 2-uniform combinatorial batch codes, that is replication based batch codes where each message
symbol is repeated exactly twice. However, this connection is very different from our technical contribu-
tions. 2-uniform combinatorial batch codes can be viewed as graphs the following way: since each symbol
is stored at exactly two servers, one can represent these codes by a graph whose vertex set is the set of
servers, and an edge is placed for each symbol, connecting the two servers where the symbol is stored.
Note that combinatorial batch codes repeating symbols more than twice give rise to hypergraphs. In the
case of 2-uniform combinatorial batch codes, the corresponding graph cannot contain certain configurations
as subgraphs, and in particular the girth of the graph is also relevant. [1] uses a construction of Lazebnik,
Ustimenko, Woldar [21] of high girth graphs to construct 2-uniform combinatorial batch codes. However,
this is a different construction and a different paper than the construction in [20] that we use, and our graph
representation and connection between high girth graphs and multiset batch codes is completely different.

1.2 Organization of the paper

In Section 2, we provide necessary background on batch codes, including the gadget lemma [17]. The
gadget lemma allows us to convert a primitive batch code to a general batch code without the restriction that
the number of servers be equal to the number of code symbols. We describe our main technical contribution
connecting dense high-girth graphs to multiset batch codes in Section 3. We first associate a natural bipartite
graph representation GC with a systematic linear code C in Section 3.1, and define the notion of repair groups
for such codes in Section 3.2. In Section 3.3, we establish that having an induced subgraph of GC with left
degree at least k and girth at least 8 is a sufficient condition for the code to be a primitive multiset batch
code, which can support any sequence of k reads requests. In Section 4 we use this result with various
explicit constructions of dense bipartite graphs with girth at least 8 to obtain multiset batch codes with rate
1 − o(1). In Section 4.5 we discuss the limitations of our bipartite graph based approach. In Section 5, we
combine the load balancing aspect of batch codes with fault tolerance, and describe a simple way to obtain
batch codes that are arbitrarily close to the Singleton bound.

Notation: A quick note on the notation that we follow throughout the paper. We use boldface lower
case letters to denote vectors. For a strictily positive integer n, [n] denotes the set {1, 2, . . . , n}. For two
integers 0 ≤ n1 ≤ n2, we use [n1 : n2] to represent the set {n1, n1 + 1, . . . , n2}. The notations which are
specific to various sections of the paper are defined where we use them.

2 Background

Let Σ denote a finite alphabet2 and x = (x1, x2, . . . , xn) ∈ Σn represent a length-n message vector. We use
the (multi-)set {i1, i2, . . . , ik} to represent the sequence of k read requests that correspond to the message
symbols xi1 , xi2 , . . . , xik . Note that a multiset with k elements from [n] denotes a sequence of k read
requests where some message symbols may be requested multiple times. In what follows, we also refer to a
sequence of k read requests as a k-request pattern. We start with the definition of batch codes [17]:

2We subsequently assume Σ to be a finite field.
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Definition 1. (Batch codes [17]) An (n,N, k,m, t) batch code encodes n message symbols over Σ to N
code symbols over Σ. These N code symbols are partitioned into m buckets (servers) such that any k-
request pattern represented by a set with k distinct elements from [n], i.e., parallel reads for k distinct
message symbols, can be served by downloading at most t code symbols from each of the m buckets.

The notion of batch codes is further strengthened into multiset batch codes which also support the k-
request patterns represented by mutlisets with k elements from the set [n]:

Definition 2. (Multiset batch codes [17]) An (n,N, k,m, t) multiset batch code encodes nmessage symbols
over Σ to N code symbols over Σ. These N coded symbols are partitioned into m buckets such that any
k-request pattern represented by a multiset with k elements from [n] can be served by downloading at most
t code symbols from each of the m buckets. In addition, all read requests are required to be served from the
code symbols downloaded from disjoint sets of buckets.

Remark 1. A particular sub-class of batch codes where the number of buckets is equal to the length of
codewords, i.e., m = N , is referred to as primitive batch codes. Note that primitive batch codes correspond
to batch codes with each of their buckets comprising exactly one code symbol.

Remark 2. In this paper we focus on batch codes with t = 1, i.e., at most only one symbol can be read from
each of the buckets during the process of serving a k-request pattern. Given an (n,N, k,m, 1) batch code,
one can obtain an (n,N, tk,m, t) batch code and an (n,N, k,

⌈
m
t

⌉
, t) batch code [17, Lemma 2.4.2]. In

what follows, we refer to an (n,N, k,m, 1) batch code as an (n,N, k,m) batch code.

In [17], Ishai et al. highlight a basic operation to convert a primitive batch code to a general batch code
with suitable parameters. The following result describes this operation.

Lemma 1. (Gadget lemma [17]) Given an (n,N, k,m) multiset batch code C, for any g ∈ N, it is possible
to construct a (gn, gN, k,m) multiset batch code g · C.

For completeness, we include a proof of the gadget lemma.
Proof. We prove the Lemma by presenting an explicit construction for a (gn, gN, k,m) multiset batch

code g · C which utilizes the given (n,N, k,m) multiset batch code C. Let x = (x1, x2, . . . , xgn) be a
message vector of length gn. We partition the message vector into g sub-vectors x1,x2, . . . ,xg such that

xi = (x(i−1)n+1, x(i−1)n+2, . . . , xin), for i ∈ [g].

Assuming that C(xi) denotes the length-n codeword corresponding to xi in C, we assign the following
codeword in g · C to the message vector x.

g · C(x) = c = (c1, c2, . . . , cN ).

Here, for j ∈ [N ] = [m], cj = (C(x1)j , C(x2)j , . . . , C(xg)j) represents the j-th bucket associated with the
codeword c ∈ g · C(x). We now establish that g · C is indeed a (gn, gN, k,m) multiset batch code.

It is clear from the construction described above that the codewords in g · C are obtained by stacking
up g codewords in C, one for each of the g sub-vectors {xi}i∈[g]. Given this structure of the codewords in
g · C, we can associate any k-request pattern for x to a k-request pattern for x1 = (x1, x2, . . . , xn): for any
j ∈ [n], we map a read request for the message symbol x(i−1)n+j to a read request for the message symbol
xj . For j ∈ [n], let kj denote the number of read requests from the k-request pattern for x that are mapped
to the read requests for the message symbol xj . Note that we have

∑n
j=1 kj = k. Since C is an (n,N, k,m)

primitive batch code, we can assign the k read requests for the symbols in the sub-vector x1 to disjoint sets
of buckets. Now, for any j ∈ [n], one can serve all kj read requests mapped to xj by reading the appropriate
code symbols from the assigned sets of buckets.
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3 Obtaining Multiset Batch Codes from Bipartite Graphs

This section presents the primary technical contribution of this paper. Here, we focus on systematic linear
codes and provide a sufficient condition for such a code to be a primitive multiset batch code. For the
remainder of the paper, we assume Σ to be a finite field over which our linear codes are defined. In particular,
the parity symbols of our codes correspond to linear combinations of the message symbols with coefficients
chosen from Σ.

For every systematic linear code, we associate a bipartite graph with the code. We then show that an
[n,N ] systematic code3 is an (n,N, k,m = N) primitive multiset batch code if the associated bipartite
graph has an induced subgraph with girth at least 8 and left degree at least k. The proof of the fact that a
systematic code which satisfies the aforementioned graph theoretic conditions is a multiset batch code has
an added advantage. The proof involves showing that for such codes any k-request pattern can be assigned
to disjoint sets of code symbols by a greedy and efficient algorithm (see Figure 4).

3.1 Graph representation for systematic codes

Given an [n,N ] systematic code C, we define a bipartite graph GC = (V1 ∪V2, E) with |V1| = n and |V2| =
N−n. The n left nodes and theN−n right nodes in the graph GC respresent the nmessage symbols and the
N−n parity symbols of the code C, respectively. Moreover, there exists an edge (i, j) ∈ E ⊆ V1×V2 iff the
i-th message symbol participates in the j-th parity symbol. Alternatively, given G = [In×n | En×(N−n)] as
the n×N generator matrix of the code C, the matrix E is supported on the incidence matrix of the bipartite
graph GC .

Example 1. Let C be a [3, 8] systematic code which encodes the message vector x = (x1, x2, x3) to a
length-8 codeword c such that

c = (c1, c2, . . . , c8) = (x1, x2, x3, x1 + x2, x1, x2 + x3, x1 + x3, x1 + x2 + x3).

Figure 1 describes the graph representation for C.

Remark 3. Note that the graph representation considered here is different from the prevalent Tanner graph
representation of the parity check matrix of a code [33]. In the graph GC , all nodes represent the symbols of
a generic codeword with the left nodes and the right nodes representing the message and the parity symbols,
respectively. On the other hand, the variable and check nodes in a Tanner graph represent the code symbols
and the different constraints satisfied by the codewords, respectively. However, there is a correspondence
between these two graph representations for a systematic code as one can be obtained from the other.

3.2 Repair groups of a systematic code

We now define the notion of repair groups for a systematic linear code C. For i ∈ [n], let ci1 , ci2 , . . . , ciu(i)
denote the u(i) parity symbols that involve the message symbol xi. For j ∈ {i1, i2, . . . , iu(i)}, we use
xΓ(i,j) ⊆ {x1, . . . , xi−1, xi+1, . . . , xn} to represent the collection of the message symbols other than xi that
participate in the construction of the parity symbol cj . This implies that for each j ∈ {i1, i2, . . . , iu(i)}, one

3An [n,N ] systematic code is a linear code over finite field Σ that encodes n message symbols over Σ to length-N codewords
over Σ. Moreover, without loss of generality we assume that the nmessage symbols (systematic part) appear at the first n positions
of the codewords in C.
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x1

x2

x3

c4

c5

c6

c7

c8

Message symbol

Parity symbol

Figure 1: Graph representation GC for the [3, 8] code described in Example 1.

can obtain xi by removing the contributions of the symbols in xΓ(i,j) from cj . Noting this, we refer the u(i)
collections of the symbols

{
xΓ(i,j) ∪ {cj}

}
j∈{i1,i2,...,iu(i)}

as u(i) repair groups for the message symbol xi.

In terms of the graph representation GC , for i ∈ [n], the left node xi has degree u(i). The right nodes
associated with the parity symbols ci1 , ci2 , . . . , ciu(i) constitute the u(i) neighbors of the left node xi. More-
over, for j ∈ {i1, i2, . . . , iu(i)}, the left nodes associated with the message symbols xΓ(i,j) correspond to all
the neighbors of the right node cj other than the left node xi.

For the [3, 8] code described in Example 1 (see Figure 1), the message symbol x1 participates in four
parity symbols c4, c5, c7, c8. Therefore, the message symbol x1 has the following four repair groups,

{x2, c4}, {c5}, {x3, c7}, {x2, x3, c8}.

The repair groups for the message symbols x2 and x3 can be listed in a similar manner.

3.3 Sufficient condition for multiset batch codes

As our main technical contribution, the following result presents a sufficient condition for a linear systematic
code to be a primitive multiset batch code.

Theorem 1. Let C be an [n,N ] systematic code with the graph representation GC = (V1,V2, E). Assume
that there exists an induced subgraph G̃C = (V1, Ṽ2 ⊆ V2, Ẽ)4 ⊆ GC such that the following two conditions
hold.

(i) Each node in V1 has degree at least k in the bipartite graph G̃C .

(ii) The bipartite graph G̃C ⊆ GC has girth (length of the shortest cycle) at least 8.

Then, C is an (n,N, k,m = N) primitive multiset batch code.

Before proceeding to establish Theorem 1, we present Lemma 2 and 3. These two lemmas characterize
the interaction among those repair groups of the message symbols that are associated with a suitable induced
subgraph G̃C ⊆ GC . Note the requirement (i) in Theorem 1 requires the graph to be dense, while the
requirement (ii) demands that the graph be not too dense.

Lemma 2. Let C be an [n,N ] systematic code with the graph representation GC = (V1,V2, E). Assume that
there exists an induced subgraph G̃C = (V1, Ṽ2 ⊆ V2, Ẽ) ⊆ GC such that the following two conditions hold.

4For Ṽ2 ⊆ V2, the edge set associated with G̃C is defined as Ẽ := {(i, j) ∈ E : j ∈ Ṽ2}.
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(i) Each node in V1 has degree at least k in the bipartite graph G̃C ,

(ii) The bipartite graph G̃C ⊆ GC has no 4-cycle, i.e., cycle of length 4.

Then, each message symbol has at least k disjoint repair groups.

Proof. Let C̃ denote the systematic code associated with the subgraph G̃C ⊆ GC . Without loss of
generality, we assume that Ṽ2 ⊆ V2 corresponds to the first |Ṽ2| out of |V2| = N − n right nodes of
the graph GC5. Then, every codeword c = (c1, c2, . . . , cN ) ∈ C is associated to a unique codeword c̃ =
(c1, c2, . . . , cn+|Ṽ2|) ∈ C̃ obtained by removing the last |V2| − |Ṽ2| code symbols from the codeword c. In
the rest of the proof we focus only on the repair groups that contain the parity symbols associated with the
set Ṽ2. In other words, we work with the code C̃.

xi

ci1

xj

ci2

Figure 2: Illustration of a 4-cycle {xi, ci1 , xj , ci2} when two repair groups of the message symbol xi have a
common message symbol xj .

Since each left node has degree at least k in the bipartite graph G̃C , this implies that for any i ∈ [n],
the message symbol xi has at least k repair groups (see Section 3.2). Next, we argue that all of these repair
groups are disjoint, i.e., they do not have any common code symbol. In order to establish contradiction,
we assume that for an i ∈ [n], there exists two repair groups of the message symbol xi with at least one
common code symbol. Since two repair groups for a message symbol involve distinct parity symbols, let ci1
and ci2 denote the parity symbols in these two intersecting repair groups. Assume that xj , for j ∈ [n]\{i},
be one of the common message symbol in the two underlying repair groups. This implies that the nodes
{xi, ci1 , xj , ci2} form a cycle in the graph G̃C (see Figure 2). This leads to contradiction as the graph G̃C has
no 4-cycle.

Lemma 3. Let C be an [n,N ] systematic code with the graph representation GC = (V1,V2, E). Assume that
there exists an induced subgraph G̃C = (V1, Ṽ2 ⊆ V2, Ẽ) ⊆ GC such that the following two conditions hold.

(i) Each node in V1 has degree at least k in the bipartite graph G̃C ,

(ii) The bipartite graph G̃C ⊆ GC has girth (length of the shortest cycle) at least 8.

Then, each message symbol has at least k disjoint repair groups. Moreover, for any i, j ∈ [n] with i 6= j,
any one of the disjoint repair groups for the message symbol xi has common symbols with at most one of
the disjoint repair groups for the message symbol xj .

Proof. Here, we use ideas which are similar to those employed in the proof of Lemma 2. In particular,
we associate a code C̃ to the subgraph G̃C ⊆ GC . Note that for every codeword c = (c1, c2, . . . , cN ) ∈ C,

5If this is not the case, we can re-index the parity symbols of the codewords in C to get this property.
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xi

cj1

xj xl

cj2

(a) 4-cycle {xj , cj1 , xl, cj2}

xi

ci1

xu xv

cj1 cj2

xj

(b) 6-cycle {xj , cj1 , xu, ci1 , xv, cj2}

Figure 3: Illustration of the cycles in G̃C when one repair group of the message symbol xi intersects with
two disjoint repair groups of the message symbol xj .

there exists a unique codeword c̃ = (c1, c2, . . . , cn+|Ṽ2|) ∈ C̃. Again in the rest of the proof we only focus

on those repair groups that are associated with C̃, i.e., the repair groups that do not contain the codes symbols
c
n+|Ṽ2|+1

, . . . , cn from a codeword c = (c1, . . . , cN ) ∈ C.

Since the sub graph G̃C has girth at least 8, it does not contain a 4-cycle. It then follows from Lemma 2
that each of the n message symbols has at least k disjoint repair groups. Next, we establish the second claim
in the lemma that for any i, j ∈ [n] with i 6= j, any one of the disjoint repair groups for the message symbol
xi has common symbols with at most one of the disjoint repair groups for the message symbol xj .

Toward this, we assume that the opposite is true and there exist two message symbols, say xi and xj ,
such that at least one repair group of the message symbol xi has common code symbols with at least two
repair groups of the message symbol xj . Let ci1 be the parity symbol corresponding to one such repair
groups of xi that intersects with two repair groups of the message symbol xj . Assume that cj1 and cj2
represent the distinct parity symbols associated with the underlying two repair groups the message symbol
xj . There are two cases that need to be considered:

• i1 = j1 or i1 = j2: Without loss of generality, we assume that i1 = j1. Let xl be the message symbol
that is common between the repair group of xi and the repair group of xj corresponding to the parity
symbol cj2 . As described in Figure 3a, this implies the existence of a 4-cycle {xj , cj1 , xl, cj2} in the
bipartite graph G̃C .

• i1 6= j1 and i1 6= j2: In this case, let xu represent a common symbol between the repair group of
xi and the first repair group of xj corresponding to the parity symbol cj1 . Similarly, assume that xv
denotes a symbol which is common between the repair group of xi and the second repair group of
xj corresponding to the parity symbol cj2 . This translates to a 6-cycle {xj , cj1 , xu, ci1 , xv, cj2} in the
bipartite graph G̃C (see Figure 3b).

Since the girth of the bipartite graph G̃C is at least 8, both cases above lead to contradiction. This
completes the proof.
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Essentially, Lemma 3 implies that given an induced subgraph G̃G with girth at least 8, among the repair
groups associated with G̃C , each repair group of one message symbol can block at most one repair group of
any other message symbol. In the following, we utilize this to prove Theorem 1.

Proof of Theorem 1. Given the code C, we assign each symbol from the codeword c ∈ C to a different
bucket. This implies that m = N . Here, we provide an algorithmic proof of the fact that C can support any
k-request pattern by serving different read requests from the disjoint sets of buckets. In particular, under the
assumptions on the bipartite graph G̃C stated in Theorem 1, we provide an algorithm which always maps k
read requests in any k-request pattern to k disjoint sets of code symbols (buckets). The algorithm described
here is deterministic as opposed to the randomized algorithm used for Subset codes by Ishai et al. in [17].

Let {i1, i2, . . . , ik} ⊂ [n] be a multiset corresponding to a k-request pattern. For the k-request pattern
and j ∈ [n], let kj denote the number of read requests for the message symbol xj in the k-request pattern,
i.e.,

kj = |{u ∈ [k] : iu = j}|, for j ∈ [n].

Note that
∑n

j=1 kj = k. Moreover, each k-request pattern can be alternatively defined by a set{
(1, k1), (2, k2), . . . , (n, kn)

}
∈ [n]× [k],

where (j, kj) implies that there are kj read requests for the message symbol xj in the k-request pattern. We
now use the algorithm described in Figure 4 to map the k read requests to disjoint sets of code symbols
(buckets).

It follows from Lemma 3 that each message symbol has at least k disjoint repair groups in C. Let
j∗ = min{j ∈ [n] : kj > 0}. The algorithm can successfully assign the kj∗ read requests for the message
symbol xj∗ to the buckets storing xj∗ itself and kj∗ − 1 disjoint repair groups of xj∗ . In order to complete
the proof of Theorem 1, it is enough to show that for any j > j∗, the algorithm is always able to find kj sets
of disjoint code symbols (buckets) to serve kj read requests for the message symbol xj .

Towards this, we assume that for a j > j∗, kj > 0 and the algorithm is able to map read requests{
(1, k1), (2, k2), . . . , (j − 1, kj−1)

}
to disjoint sets of code symbols. Let S1,S2, . . . ,S∑j−1

u=1 ku
denote the disjoint sets of code symbols used by

the algorithm to serve these
∑j−1

u=1 ku read requests. Note that the set Sv, for v ∈ [
∑j−1

u=1 ku], corresponds
to a message symbol in {x1, x2, . . . , xj−1} or a repair group of a message symbol in {x1, x2, . . . , xj−1}.
It follows from Lemma 3 that the message symbol xj has at least k disjoint repair groups. Moreover, each
of the sets S1,S2, . . . ,S∑j−1

u=1 ku
has common code symbols with at most one repair group for the message

symbol xj . Therefore, the algorithm can find kj ≤ (k−
∑j−1

u=1 ku) repair groups for the message symbol xj
which consist of code symbols that do not appear in the sets S1,S2, . . . ,S∑j−1

u=1 ku
.

4 New Constructions of Multiset Batch Codes

We now utilize Theorem 1 to obtain new constructions of (n,N, k,m) multiset batch codes with rate 1 −
ok(1)6. Note that the requirement (i) in Theorem 1 translates to the graph being dense, while the requirement
(ii) demands that the graph be not too desnse. Here, we also point out that for C to be an (n,N, k,m = N)
primitive multiset batch code, it is necessary for each node in V1 to have degree at least k in the original

6Here, b = ok(a) implies that b
a
→ 0 as k →∞
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Algorithm: Assignment of k read requests to k disjoint sets of code symbols (buckets).

Input: An [n,N ] systematic code C that satisfies the assumptions stated in Theorem 1, and k-request pattern{
(1, k1), (2, k2), . . . , (n, kn)

}
.

1: j = 1, λ = 0.
2: while

∑k
l=j kl > 0 do

3: if kj > 0 and the code symbol xj is not used to serve read requests for x1, x2, . . . , xj−1 then
4: Serve one of the kj read requests for xj using the bucket storing the message symbol xj .
5: λ = 1. /* λ = 1 indicates that 1 request for xj has been served. */
6: end if
7: Select kj − λ disjoint repair groups for xj that do not contain any code symbol used to serve the read

requests for x1, x2, . . . , xj−1.
8: Map kj − λ (remaining) read requests for xj to the selected kj − λ disjoint repair groups.
9: j = j + 1.

10: λ = 0.
11: end while

Figure 4: Description of the algorithm to serve k read requests by using disjoint sets of code symbols
(buckets).

graph GC . In this section we take known explicit constructions of dense bipartite graphs with girth at least 8
and study the parameters of multiset batch codes obtained from these graphs. These graphs strike a balance
between the two counteracting requirements in Theorem 1.

4.1 Constructions based on the Balbuena graphs [3]

Balbuena [3] proposed a method based on Latin Squares to construct the adjacency matrices of regular
bipartite graphs of girth 8. The construction of these graphs involves the concept of quasi row-disjoint
matrices from [2]. The main result in [3] can be summarized as follows:

Proposition 1. ( [3]) Let q be a prime power and w be an integer such that 3 ≤ w ≤ q. Then, there exists
an explicit w-regular balanced bipartite graph of girth 8 on 2(wq2 − q) nodes.

The bipartite graphs from [3] along with Theorem 1 yield multiset batch codes with rate 1/2 and the
following parameters.

Theorem 2. For any prime power k, and a large enough integer n, there is an explicit (n,N, k,m) Batch
code with rate 1

2 , m = 2k3 − 2k, and

N =

⌈
n

k3 − k

⌉
m

Proof. Apply Proposition 1 and setw = q = k to obtain an (n1 = k3−k,N1 = 2(k3−k), k,m1 = N1)
primitive multiset batch code. Now, we can complete the proof by applying the gadget lemma.

As we have seen, using the graphs from [3] directly, we obtain multiset batch codes with rate 1/2. We
can modify the graph construction of [3], and obtain multiset batch codes with rate 1− ok(1) as follows.
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Theorem 3. For any ε > 0, any large enough prime power q, and large enough integer n, there is an explicit
(n,N, k,m) multiset batch code with rate at least 1− 1

kε/4
, m = k3+ε + o(k3+ε), and

N =
⌈ n

k3+ε

⌉
m

where k =
⌊ q
b

⌋
, b =

⌈
(q3 − q)β

⌉
and β = 1

3
ε

4+ε .

Proof. We start with the 4 and 6-cycle free regular bipatite graph G = (V1,V2, E) obtained by applying
Proposition 1 and setting w = q = k. Thus, in the graph G, |V1| = |V2| = q3 − q. We use r to denote this
number, that is r = q3 − q. Recall that the degree of every vertex in G is q.

Next, we modify this construction, to obtain a new graph G′ = (V ′1,V ′2, E′) as follows. Let β = 1
3

ε
4+ε ,

and b =
⌈
(q3 − q)β

⌉
. To keep the presentation simple, from now on we assume that b divides q.

In the new graph G′, the number of vertices on the right side remains the same as in G, but we take
b “copies” of the left hand side vertices. We distribute the edges adjacent to the left nodes of the graph
between the “copies”, thus the degree of every vertex in V ′1 in G′ will be k = q

b , and the degree of every
vertex in V ′2 in G′ remains q. Note that β < 1/3 holds for any ε > 0, thus k > 1 holds for large enough q.

More formally, let |V ′1| = b|V1| = br, V ′2 = V2, and |E ′| = |E|. Thus each node in V1 corresponds to b
nodes in V ′1 and we think of these as copies of the original node in V1. Let V ′1 = {1, 2, · · · , br}. Then for
i′ = 1, 2 · · · , br, we have i′ = ur + i for u = 0, 1, · · · , b − 1 and i = 1, 2, · · · , r. Thus, for a given node
i ∈ V1, we have the copies i, r + i, 2r + i, · · · , (b− 1)r + i in V ′1.

We define the edges of G′ as follows. Suppose that the neighbors of node i ∈ V1 in G are N (i) =
{j1, j2, · · · , jq}. Then the neighbors of node ur+i ∈ V ′1 in G′ areN ′(ur+i) = {ju q

b
+1, ju q

b
+2, · · · , ju q

b
+ q
b
}.

That is, each copy of a given node i keeps a 1
b faction of its original neighbors (and each vertex in V ′1 has

k = q/b neighbors).
Next we prove that G′ has no 4-cycles or 6-cycles.
Assume that G′ has a 4-cycle, without loss of generality, suppose i′1, i′2, j1, j2 form a 4-cycle. Notice

that if
i′1 ≡ i′2 (mod r) (1)

then in graph G, there are two edges between the nodes i1 and j1, where i1 ≡ i′1 (mod r), 1 ≤ i1 ≤ r.
This is a contradiction, since G does not have parallel edges. Otherwise, if (1) does not hold, then there
exists a 4-cycle (formed by i1, i2, j1, j2) in the graph G, where i1 ≡ i′1 (mod r), i2 ≡ i′2 (mod r), and
1 ≤ i1, i2 ≤ r. This is a contradiction, since G does not have 4-cycles.

Next, assume that G′ has a 6-cycle, without loss of generality, suppose i′1, i′2, i′3, j1, j2, j3 form a 6-cycle.
Let us consider the following congruences:

i′1 ≡ i′2 (mod r)

i′2 ≡ i′3 (mod r)

i′3 ≡ i′1 (mod r)

(2)

If none of the congruences (2) holds, then there exists a 6-cycle in the graph G. That 6-cycle is formed by
i1, i2, i3, j1, j2, j3, where it ≡ i′t (mod r) and 1 ≤ it ≤ r for t = 1, 2, 3. This is a contradiction, since
G does not have 6-cycles. Otherwise, supose that at least one of the congruences (2) holds. Without loss of
generality, assume that i′1 ≡ i′2 (mod r). Since i′1, i′2, i′3, j1, j2, j3 form a 6-cycle, one of j1, j2, j3, say j1
is connected to both i′1 and i′2. Then there are two edges between i1 and j1 in the graph G, where i1 ≡ i′1
(mod r) and 1 ≤ i1 ≤ r. This is a contradiction, since G does not have parallel edges.
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Thus, we have shown that G′ does not have 4-cycles or 6-cycles. Then, by Theorem 1 we obtain a
primitive multiset batch code with number of servers m = |V ′1| + |V ′2| = (b + 1)r, k = q/b, and rate
b
b+1 = 1 − 1

b+1 > 1 − 1
b . Substituting b =

⌈
(q3 − q)β

⌉
where β = 1

3
ε

4+ε , and expressing both m and the
rate as a function of k we get

m = k
3+ 12β

1−3β + k
3+ 9β

1−3β = k3+ε + o(k3+ε)

and rate at least
1− 1

k
3β

1−3β

= 1− 1

kε/4
.

Applying the Gadget Lemma with g =
⌈

n
k3+ε

⌉
we obtain an (n,N, k,m) multiset batch code with

N =
⌈ n

k3+ε

⌉
m

and rate at least 1− 1
kε/4

.

Theorem 4. For any integer c ≥ 2, any large enough prime power q, and large enough integer n, there is
an explicit (n,N, k,m) multiset batch code with rate 1− 1

c , m ≤ c(c− 1)3k3 = O(k3) and

N ≤
⌈

n

(c− 1)(q3 − q)

⌉
m ≤

⌈
1.1n

(c− 1)4k3

⌉
m = O(

n

k3
m)

where k =
⌊ q
b

⌋
and b = c− 1.

Proof. Substitute k =
⌊ q
b

⌋
and b = c− 1 in the above construction.

4.2 Constructions based on the Lazebnik, Ustimenko, Woldar graphs [20]

Here, we present the construction of bipartite graphs with girth at least 8 from [20]. These graphs allow for
a left degree k which is polynomial in the number of left nodes n while achieving the rate 1− ok(1). First,
we briefly describe the construction of these bipartite graphs and then comment on the parameters of the
multiset batch codes obtained based on these graphs.

Lazebnik et al. construction : Given an odd prime power q, let t ∈ (0, 2] and s ∈ (0, 1] be such that
qt and qs are integers. The bipartite graph Bs,t(q) = G = (V1,V2, E) with q3+t left nodes and q3+s right
nodes is constructed as follows. Let T ⊆ Fq2 and S ⊆ Fq with |T | = qt and |S| = qs. Associate q3+t left
nodes with 3-dimensional vectors such that

V1 = {l = (l1, l2, l3) : l1 ∈ T ⊆ Fq2 , l2 ∈ Fq2 , l3 ∈ Fq}.

The q3+s right nodes of the bipartite graph G are denoted by 3-dimensional vectors such that

V2 = {v = (v1, v2, v3) : v1 ∈ S ⊆ Fq, v2 ∈ Fq2 , v3 ∈ Fq}.

In the graph G, there exists an edge between the left node l = (l1, l2, l3) and the right node v = (v1, v2, v3),
i.e., (l,v) ∈ E , iff we the following two conditions are satisfied

l2 − v2 = l1v1, (3a)

l3 − v3 = f(l1)v2 + l1f(v2). (3b)
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Here, f : x 7→ f(x) represents the involutive automorphism of Fq2 with fixed field Fq. Lazebnik et al.
establish that the graph Bs,t(q) has girth at least 8 [20, Theorem 3]. Here, we paraphrase the result to make
it consistent with the rest of the paper.

Proposition 2. [20, Theorem 3] Let q be an odd prime power. Then for any t ∈ (0, 2] and s ∈ (0, 1] such
that both qt and qs are integers, the bipartite graph Bs,t(q) is biregular with q3+s + q3+t total nodes (q3+t

left nodes, and q3+s right nodes), q3+s+t edges and girth at least 8. The left degree and the right degree of
Bs,t(q) are qs and qt, respectively.

Remark 4. For the case when T = Fq2 and q ≥ 3, Lazebnik et al. show that the graph Bs(q) = Bs,2(q) has
girth exactly equal to 8.

We now present the main result of this subsection, which states the parameters of the multiset batch
codes obtained from the bipartite graphs in [20].

Theorem 5. For any 0 < ε ≤ 1, one can find an infinite sequence of odd prime powers k such that for
large enough integer n, there is an explicit (n,N, k,m) multiset batch code with rate at least 1 − 1

kε ,
m = k4+ε̃ + o(k4+ε̃), and

N =
⌈ n

k4+ε̃

⌉
m.

Here, ε̃ is a rational number which can be taken arbitrarily close to ε.

Proof. From Proposition 2, we know that for any t ∈ (1, 2] such that qt is an integer, the bipartite
graph G = Bs=1,t(q) obtained by Lazebnik et al. construction has q3+t left nodes, q3+s = q4 right nodes,
and girth at least 8. Also, note that each left node in Bs=1,t(q) has degree qs = q. Therefore, it follows
from Theorem 1 that the bipartite graph Bs=1,t(q) gives an (n1 = q3+t, N1 = q3+t + q4, k = q,m = N1)

primitive batch code C. The rate of C is q3+t

q3+t+q4
≥ 1− q4

q3+t
= 1− 1

qt−1 .
Now, for an ε > 0, we pick a rational number ε̃ such that ε ≤ ε̃ for ε̃ arbitrarily close to ε. By setting

t = 1 + ε̃ and choosing k = q to be an odd prime power so that q1+ε̃ is an integer7, we have that C is an
(n1 = k4+ε̃, N1 = k4+ε̃ + k4, k,m = N1) primitive batch code with rate at least 1− 1

kε̃
≥ 1− 1

kε . We now

apply the gadget lemma (see Section 2) with g =
⌈
n
n1

⌉
=
⌈

n
k4+ε̃

⌉
to obtain an (n,N, k,m) batch code with

rate at least 1− 1
kε , m = k4+ε̃ + o(k4+ε̃), and

N =
⌈ n

k4+ε̃

⌉
m.

4.3 Constructions based on the de Caen, Székely graphs

In [7], de Caen and Székely used known constructions of generalized quadrangles to construct bipartite
graphs with maximum number of edges and no 4- and 6-cycles. Generalized quadrangles are combinatorial
structures defined as follows. Let P be a set of points, and let L be a collection of subsets of P called lines.
(P,L) is called a generalized quadrangle of order (s, t) (s, t ≥ 1) if the following holds:

1. Each point is incident with t+ 1 lines, and two distinct points are incident with at most one line.

2. Each line is incident with s+ 1 points, and two distinct lines are incident with at most one point.
7Note that for any rational number ε̃ there is an infinite sequence of such odd prime powers.
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3. If x ∈ V is a point and L ∈ L is a line not incident with x, then there is a unique pair (y,M), where
M is a line and y is a point incident to M , such that x is incident to M and y is incident to L.

The conditions above imply that the number of points |P| = (s + 1)(st + 1) and the number of lines
|L| = (t + 1)(st + 1). Given any generalized quadrangle, we can represent it by a bipartite graph G =
(V1,V2, E) in the straightforward way, by letting V1 = L, V2 = P and (L, x) ∈ E if and only if x is incident
to L. Note that the number of edges of this graph is |L|(s+ 1) = |P|(t+ 1) = (s+ 1)(t+ 1)(st+ 1).

The first two requirements in the definition of generalized quadrangles immediately imply that the bi-
partite graph representing a generalized quadrangle cannot contain any 4-cycles, and the last condition
immediately implies that the graph cannot contain any 6-cycles. De Caen and Székely observed that the
bipartite graphs representing generalized quadrangles in fact contain the largest possible number of edges
among graphs on the same number of vertices without 4- and 6-cycles.

Generalized quadrangles have been extensively studied and several constructions are known for settings
where s and t are close to each other, e.g when s = t or s = q−1 and t = q+1. However, to obtain multiset
batch codes with rate close to 1, we need generalized quadrangles where s and t have different orders of
magnitude. There are two families of constructions of generalized quadrangles of this type known: for any
prime power q, there are generalized quadrangles of order (q, q2) and of order (q2, q3). For more details on
generalized quadrangles see [27, 40].

Generalized quadrangles of order (q, q2) yield multiset batch codes withm = (1+ok(1))k5 and rate 1−
1/(k − 1). The performance of these codes is similar to the codes based on the Lazebnik et al. construction
when taking ε = 1 in that construction.

Generalized quadrangles of order (q2, q3) yield multiset batch codes with m = (1 + ok(1))k4 and rate
1− 1/

√
k.

Theorem 6. Let q be any prime power, and let k = q2. Then for any large enough integer n there is an
explicit (n,N, k,m) multiset batch code with rate at least 1−1/

√
k, m = (1 +ok(1))k4, and N = d n

k4
em.

Proof. The known constructions of generalized quadrangles of order (q2, q3) immediately give bipartite
graphs with n1 = |V1| = (q3+1)(q5+1), |V2| = (q2+1)(q5+1), and left degree k = q2+1. We also know
that these bipartite graphs have no 4- and 6-cycles. Using Theorem 1, this gives (n1, N1, k,m) primitive
multiset batch codes with N1 = m = |V1|+ |V2| = q8 + ok(q

8) = (1 + ok(1))k4. The rate of the resulting
primitive multiset batch code is |V1|/(|V1|+ |V2|) ≥ 1− 1/q = 1− 1/

√
k. Applying the gadget lemma as

in the previous subsection gives the statement of the theorem.

4.4 Constructions based on zig-zag codes of [39]

In this subsection, we describe a construction for primitive mutliset batch codes that allow form = Θ(kk
1+ε+1+ε)

with any 0 < ε while achieving rate at least 1− (1/kε). In particular, we present a construction of biregular
bipartite graphs which are free of 4- and 6-cycles. For a given prime k and an integer r, the graph has rkr left
nodes and kr+1 right nodes. The left degree and right degree of these graphs are k and r, respectively. The
construction presented here is based on the work of Tamo et al. on zig-zag codes [39]. This construction has
been previously employed in [31], where it gives codes with disjoint repair groups, i.e., the bipartite graph
is free of 4-cycles. Here, we go one step further and show that the bipartite graphs obtained from zig-zag
construction are free of 6-cycles as well. It then follows from Theorem 1 that these bipartite graphs give
multiset batch codes.
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Zig-zag construction : Let k be a prime number8 and r be an integer. Each of the rkr left nodes of the
bipartite graph are represented by an (r + 1)-dimensional vectors such that

V1 = {l = (l0, l1, l2, . . . , lr) : l0 ∈ [r] and li ∈ [0 : (k − 1)] for i ∈ [r]}.

Similarly, kr+1 right nodes of the bipartite graphs are denoted by an (r + 1)-dimensional vectors such that

V2 = {v = (v0, v1, v2, . . . , vr) : vi ∈ [0 : (k − 1)] for i ∈ [0 : r]}.

Given a left node l = (l0, l1, l2, . . . , lr) and a right node v = (v0, v1, v2, . . . , vr), there is an edge between l
and v, i.e., (l,v) ∈ E iff

(l1, l2, . . . , lr) + v0el0 = (v1, v2, . . . , vr) (mod k). (4)

Here, el0 ∈ Zr denotes the standard unit vector which has 1 at the l0-th coordinate and zeros at other r − 1
coordinates. From (4), a given left node l, has k neighbors for k values of v0. Similarly, a right node v has r
left neighbors as for each l0 ∈ [r] there is a unique vector (l1, l2, . . . , lr) ∈ [0 : (k− 1)]r such that (4) holds.

In [31, Claim 1], it is shown that the bipartite graph obtained using zig-zag construction has no 4-cycle9.
Here, we state this result without its proof.

Lemma 4. [31] The biregular bipartite graph obtained by zig-zag construction has no 4-cycle.

Next, we establish that the bipartite graphs generated by zig-zag construction are free of 6-cycles as
well.

Lemma 5. Let G be a biregular bipartite graph obtained from zig-zag construction . Then, the girth of G is
at least 8.

Proof. We have from Lemma 4 that G is free of 4-cycles. Here, we show that it is not possible to have
a 6-cycle in G which establishes the Lemma 5. In order to show contradiction, we assume that there is a
6-cycle {l1,v1, l2,v2, l3,v3} in the graph G. Here, {l1, l2, l3} and {v1,v2,v3} represent three distinct left
and right nodes, respectively. From (4) we have the following relations.

(l11, l
1
2, . . . , l

1
r) + v1

0el10 = (v1
1, v

1
2, . . . , v

1
r ) (mod k), (5a)

(l21, l
2
2, . . . , l

2
r) + v1

0el20 = (v1
1, v

1
2, . . . , v

1
r ) (mod k). (5b)

(l21, l
2
2, . . . , l

2
r) + v2

0el20 = (v2
1, v

2
2, . . . , v

2
r ) (mod k), (6a)

(l31, l
3
2, . . . , l

3
r) + v2

0el30 = (v2
1, v

2
2, . . . , v

2
r ) (mod k). (6b)

and

(l31, l
3
2, . . . , l

3
r) + v3

0el30 = (v3
1, v

3
2, . . . , v

3
r ) (mod k), (7a)

(l11, l
1
2, . . . , l

1
r) + v3

0el10 = (v3
1, v

3
2, . . . , v

3
r ) (mod k). (7b)

8The construction also works when k is a prime power. However, for the ease of exposition, we only present the construction
when k is a prime number.

9The Claim 1 in [31] states this result in an alternative manner.
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By subtracting (7b) from (5a) we obtain

(v1
0 − v3

0)el10 = (v1
1 − v3

1, v
1
2 − v3

2, . . . , v
1
r − v3

r ) (mod k). (8)

We need to have v1
0 6= v3

0 , otherwise from (8) we have v1 = v2, which is not true as v1 and v2 are distinct
nodes. By subtracting (5b) from (5a), we obtain

(l11 − l21, l12 − l22, . . . , l1r − l2r) + v1
0(el10 − el20) = 0. (9)

Again, we need to have l10 6= l20. Otherwise, (9) implies that l1 = l2, which is not true. Similarly, we can
obtain the following sets of equations

(v1
0 − v2

0)el20 = (v1
1 − v2

1, v
1
2 − v2

2, . . . , v
1
r − v2

r ) (mod k), (10)

(v2
0 − v3

0)el30 = (v2
1 − v3

1, v
2
2 − v3

2, . . . , v
2
r − v3

r ) (mod k). (11)

and

(l21 − l31, l22 − l32, . . . , l2r − l3r) + v2
0(el20 − el30) = 0, (12)

(l31 − l11, l32 − l12, . . . , l3r − l1r) + v3
0(el30 − el10) = 0. (13)

Combining (9), (12) and (13), we obtain that l10, l
2
0 and l30 are three distinct integers in [r]. Similarly, it

follows from (8), (10), and (11) that v1
0, v

2
0 and v3

0 are distinct integers. Moreover, we have from (8), (10),
and (11) that

v1
l10
6= v3

l10
(14a)

v1
z = v3

z , for z ∈ [r]\{l10}. (14b)

v1
l20
6= v2

l20
(15a)

v1
z = v2

z , for z ∈ [r]\{l20}. (15b)

and

v2
l30
6= v3

l30
(16a)

v2
z = v3

z , for z ∈ [r]\{l30}. (16b)

Note that l10, l20, and l30 are distinct integers. Therefore, the equation (14a) to (16b) lead to contradiction as it
is not possible to simultaneously satisfy all of these equations. Thus, there is no 6-cycle in the graph G.

The following result presents the parameters of the multiset batch codes obtained from zig-zag construc-
tion .

Theorem 7. For any fixed integer k, a large enough integer n, and ε > 0, there is an explicit (n,N, k,m)
multiset batch code with rate at least 1− 1

kε , m = Θ(kk
1+ε+1+ε), and

N =
⌈ n

kk1+ε+1+ε

⌉
m.
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Proof. From Lemma 5, we know that a bipartite graph G obtained by zig-zag construction has rkr left
nodes and kr+1 right nodes, and girth at least 8. Moreover, the degree of each left node in G is k. Therefore,
it follows from Theorem 1 that G provides an (n1 = rkr, N1 = (r+k)kr, k,m = N1) primitive batch code
C with rate rkr

rkr+kr+1 = r
r+k ≥ 1− k

r .
We now select r = k1+ε, which gives us the rate of the code at least 1− 1

kε
10. This particular choice for

the parameter r implies that C is an (n1 = kk
1+ε+1+ε, N1 = (kε + 1)kk

1+ε+1, k,m = N1) primitive batch
code. Now using gadget lemma (see Section 2) with g =

⌈
n
n1

⌉
=
⌈

n

kk1+ε+1+ε

⌉
, we obtain an (n,N, k,m)

batch code g · C with rate at least 1− 1
kε , m = Θ(kk

1+ε+1+ε), and

N =
⌈ n

kk1+ε+1+ε

⌉
m.

4.5 Limitations of the bipartite graph based constructions

We note that the bipartite graph based constructions described above exhibit a tradeoff between the param-
eter m as a function of k, and the rate of the codes obtained as a function of k. Ideally, we would like to
minimize m (the number of servers) as a function of k (the number of read requests that can be supported)
and maximize the rate as a function of k.

Our constructions achieve close to optimal tradeoffs by the following estimates of de Caen and Székely
[7].

Theorem 8. [7, 8] Let G = (V1,V2, E) be a bipartite graph without 4- and 6-cycles, where |V1| = n1,
|V2| = n2 and

√
n1 ≤ n2 ≤ n1. Then |E| = O(n

2/3
1 n

2/3
2 ).

Note that we can assume n2 ≥
√
n1, since otherwise |E| = O(n1) [8] which would only allow a constant

number of read requests k.
These estimates imply that assuming rate at least 1/2 the number of servers m has to be at least Ω(k3)

in multiset batch codes based on bipartite graphs without 4- and 6-cycles. More precisely, assuming rate at
least 1 − 1

kα implies m = Ω(k3+2α). Thus, our results give close to optimal tradeoffs for multiset batch
codes based on bipartite graphs.

We also note that any systematic primitive multiset batch code where decoding uses at most one non-
systematic code symbol for every request (as in our code constructions) must have an associated bipartite
graph without 4- and 6-cycles. Thus, our results in Sections 4.1 and 4.3 give close to optimal tradeoffs
between the number of servers and the rate for multiset batch codes of this type.

5 On Fault Tolerance of Batch Codes

In [17], Ishai et al. study batch codes with load balancing as the primary focus of their work. However,
in practice the codes for distributed storage systems need to allow for mechanisms to protect data against
catastrophic events. These catastrophic events may correspond to the permanent or persistent loss of a large
number of servers due to multiple reasons, including hardware failures, power outages, and loss of rack
switches in data centers [9, 12]. Therefore, it is desirable to work with codes that have large minimum

10If k1+ε is not an integer, r can be made integer by taking the floor or the ceiling of k1+ε.
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distance. Here, we note that Lipmaa and Skachek have recently shown that a binary linear batch code which
supports any k-request patterns has minimum distance at least k [22].

Here, we describe a straightforward yet powerful way to combine the notion of load balancing in batch
codes with the issue of fault tolerance. We show that one can modify a given batch code to get a code with
large minimum distance at the cost of rate loss. In particular, given a field of large enough size and a batch
code with rate 1−ok(1), one can get a code which is also a batch code and has minimum distance arbitrarily
close to the Singleton bound.

Lemma 6. Let CG be an [n,NG, dG]11 systematic linear code with minimum distance dG, and CB be
an (n,NB, k,mB = NB) systematic primitive batch code. Then, it is possible to obtain an (n,N =
NB +NG − n, k,m = N) systematic primitive batch code C = CG ◦ CB with distance at least dG.

Proof. Let CG be an [n,NG = n + p, dG] systematic linear code with minimum distance dG which
encodes a length-n message vector x = (x1, x2, . . . , xn) ∈ Σn to a codeword

cG = (cG
1 = x1, c

G
2 = x2, . . . , c

G
n = xn, c

G
n+1, . . . , c

G
NG) ∈ ΣNG

.

Let CB be an (n,NB, k,m = NB) systematic primitive batch code which encodes the length-n message
vector (x1, x2, . . . , xn) ∈ Σn to a codeword

cB = (cB
1 = x1, c

B
2 = x2, . . . , c

B
n = xn, c

B
n+1, . . . , c

B
NB).

Given CB and CG, we obtain a systematic code C = CG ◦ CB which encodes the length-n message vector
(x1, x2, . . . , xn) ∈ Σn to a codeword

c = (c1, c2, . . . , cN=NB+p) = (x1, x2, . . . , xn, c
B
n+1, . . . , c

B
NB , c

G
n+1, . . . , c

G
NG) ∈ ΣNB+NG−n.

It is clear from the construction that the minimum distance of C is at least as large as the minimum distance
of CG as the codewords of CG are sub-vectors of the codewords of C. Similarly, one can obtain the codeword
corresponding to x in CB by puncturing the codeword associated with x in C. Therefore, C is a batch code
that can support sequences of k read requests.

Remark 5. Note that Lemma 6 holds for multiset batch codes as well. Also, we state Lemma 6 only for
primitive batch codes. One can employ the gadget lemma (see Section 2) with primitive multiset batch code
C = CG ◦ CB to obtain general multiset batch codes which can tolerate the failure of any dG − 1 servers
(buckets).

Taking Σ to be a field with large enough size and CG to a systematic MDS code, we obtain the following
result. Note that if Σ is not sufficiently large, we can create parities over the extension field ΣB.

Lemma 7. For large enough integers k and n, let CB be an (n,NB, k,mB = NB) systematic primitive
batch code with rate at least 1 − ok(1). Further assume that Σ is a field with large enough size. Then for
any rate 0 < ρ < 1, it is possible to obtain an (n,N, k,m = N) primitive batch code C with minimum
distance d ≥ (N − n+ 1)− ok(n).

Proof. From the assumption on the rate of CB, we know that

n ≥ (1− ok(1))NB. (17)

11An [n,N, d] code is an [n,N ] code with minimum distance d.
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Now, we take CG in Lemma 6 to be an [n,NG, NG − n + 1] systematic MDS code, which gives us an
(n,N = NB +NG − n, k,m = N) systematic primitive batch code with minimum distance

d ≥ NG − n+ 1.

The above expression can be rewritten as

d ≥ N + n−NB − n+ 1

= N − n+ 1− (NB − n)

(i)

≥ N − n+ 1− ok(1)NB

(ii)
= N − n+ 1− ok(n). (18)

Here, (i) and (ii) follow from (17). The rate ρ of C is equal to ρG

1+ok(1) , where ρG = n
NG denotes the rate of

CG. Note that we can select ρG to be any number in the interval (0, 1).
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