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Abstract

We develop a new method to prove communication lower bounds for composed functions of
the form f ◦gn where f is any boolean function on n inputs and g is a sufficiently “hard” two-
party gadget. Our main structure theorem states that each rectangle in the communication
matrix of f ◦gn can be simulated by a nonnegative combination of juntas. This is the strongest
yet formalization for the intuition that each low-communication randomized protocol can
only “query” few inputs of f as encoded by the gadget g. Consequently, we characterize the
communication complexity of f ◦ gn in all known one-sided zero-communication models by a
corresponding query complexity measure of f . These models in turn capture important lower
bound techniques such as corruption, smooth rectangle bound, relaxed partition bound, and
extended discrepancy.

As applications, we resolve several open problems from prior work: We show that SBPcc

(a class characterized by corruption) is not closed under intersection. An immediate corollary
is that MAcc 6= SBPcc. These results answer questions of Klauck (CCC 2003) and Böhler et
al. (JCSS 2006). We also show that approximate nonnegative rank of partial boolean matrices
does not admit efficient error reduction. This answers a question of Kol et al. (ICALP 2014)
for partial matrices.
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1 Introduction

Most functions studied in communication complexity (e.g., equality, set-disjointness, inner-product,
gap-hamming; see [KN97, Juk12]) are composed functions of the form f◦gn where f : {0, 1}n → {0, 1}
is a partial function and g : X × Y → {0, 1} is some small two-party function, often called a gadget.
Here Alice and Bob are given inputs x ∈ X n and y ∈ Yn, respectively; we think of the inputs as
being partitioned into blocks xi ∈ X and yi ∈ Y for i ∈ [n]. Their goal is to compute

(f ◦ gn)(x, y) := f(g(x1, y1), . . . , g(xn, yn)).

Intuitively, the difficulty in computing f ◦ gn stems from the fact that for any i, the i-th input
zi := g(xi, yi) to f remains unknown to either party until they decide to communicate enough
information about xi and yi. Indeed, an educated guess is that—assuming g is chosen carefully—the
communication complexity of f ◦ gn should be explained by some query measure of f .

This work is about formalizing the above intuition. Our main result is the following.

Simulation Theorem (Theorem 2, informally). Many types of randomized protocols for f ◦ gn
can be simulated by a corresponding type of randomized decision tree for f .

This result makes it easy to prove strong lower bounds for f ◦ gn in all known one-sided (and
some two-sided) zero-communication models. Here a zero-communication protocol is understood in
the sense of [KLL+12] as a probability distribution over (labeled) rectangles R = X × Y (where
X ⊆ X n and Y ⊆ Yn) together with some acceptance criterion. Such models can be used to
capture all known rectangle-based lower bound techniques used in communication complexity.
This includes widely studied measures such as corruption [Yao83, BFS86, Raz92, Kla03, BPSW06,
She12a, GW14], smooth rectangle bound [JK10, Kla10, CKW12, JY12, HJ13, KMSY14], relaxed
partition bound [KLL+12], and extended discrepancy [Kla03, GL14]; see [JK10] for an extensive
catalog. The Simulation Theorem applies to all these measures: it reduces the task of understanding
a specific communication complexity measure of f ◦ gn to the task of understanding a corresponding
query complexity measure of f , which is typically a far easier task.

1.1 Main structural result: Junta Theorem

In order to motivate our approach (and to introduce notation), we start by reviewing some previous
influential work in communication complexity.

Prior work: Approximation by polynomials. A long line of prior work has developed a
framework of polynomial approximation to analyze the communication complexity of composed
functions. Building on the work of Razborov [Raz03], a general framework was introduced by
Sherstov [She09, She11a] (called the pattern matrix method) and independently by Shi and
Zhu [SZ09] (called the block-composition method). See also the survey [She08]. Both meth-
ods have since been studied in the two-party setting [LZ10, RS10, She11b] and also the multiparty
setting [LS09b, AC08, Cha08, She12b, She13, RY14].

One way to phrase the approach taken in these works (a “primal” point of view championed
in [She12b]) is as follows. Let Π be a randomized protocol and let accΠ(x, y) denote the probability
that Π accepts an input (x, y). For example, if Π computes a two-party function F with error at
most 1/4, then accΠ(x, y) ∈ [3/4, 1] for every 1-input (x, y) ∈ F−1(1) and accΠ(x, y) ∈ [0, 1/4] for
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every 0-input (x, y) ∈ F−1(0). When F := f ◦ gn is a composed function, we can define accΠ(z)
for z ∈ dom f (domain of f) meaningfully as the probability that Π accepts a random two-party
encoding of z. More specifically, letting E denote expectation and Uz the uniform distribution over
(gn)−1(z) we define

accΠ(z) := E
(x,y)∼Uz

accΠ(x,y).

The centerpiece in the framework is the following type of structure theorem: assuming g is chosen
carefully, for any cost-c protocol Π there is a degree-O(c) multivariate polynomial p(z) such that
accΠ(z) ≈ p(z). Here the approximation error is typically measured point-wise. Consequently, if f
cannot be approximated point-wise with a low-degree polynomial, one obtains lower bounds against
any bounded-error protocol computing f ◦ gn.

A technical convenience that will be useful for us is that since randomized protocols are essentially
linear combinations of 0/1-labeled rectangles R, it suffices to study the acceptance probability
of each individual rectangle R. More formally, it suffices to understand accR(z), defined as the
probability that (x,y) ∈ R for a random encoding (x,y) ∼ Uz of z. Put succinctly,

accR(z) := Uz(R).

An important feature of the polynomial framework is that it often yields tight lower bounds
for two-sided (i.e., closed under complement) randomized models. However, polynomials are not
the most precise modeling choice when it comes to understanding one-sided (i.e., not closed under
complement) randomized models, such as randomized generalizations of NP and measures like
nonnegative rank.

This work: Approximation by conical juntas. In this work, we show that randomized
protocols for composed functions can be simulated by conical juntas, a nonnegative analog of
polynomials. Let h : {0, 1}n → R≥0 be a function. We say that h is a d-junta if it only depends on
at most d of its input bits—we stress that all juntas in this work are nonnegative by definition. More
generally, we call h a conical d-junta if it lies in the nonnegative cone generated by d-juntas, i.e., if
we can write h =

∑
i aihi where ai ≥ 0 are nonnegative coefficients and hi are d-juntas. Equivalently,

a conical d-junta can be viewed as a nonnegative combination of width-d conjunctions (i.e., functions
of the form (`1 ∧ · · · ∧ `w) where w ≤ d and each `i is an input variable or its negation).

For concreteness, we state and prove our results for logarithmic-size inner-product gadgets. That
is, throughout this work, we restrict our attention to the following setting of parameters:

• The gadget is given by g(x, y) := 〈x, y〉 mod 2, where x, y ∈ {0, 1}b.
• The block length b = b(n) satisfies b(n) ≥ 100 log n.

(†)

(However, our results hold more generally whenever g is a sufficiently strong two-source extractor;
see Remark 1.)

We are now ready to state our key structural result. The result essentially characterizes the
computational power of a single rectangle in the communication matrix of f ◦ gn. Note that the
theorem makes no reference to f .
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Figure 1: Models and lower bound methods at a glance. Arrows denote class inclusions.

Theorem 1 (Junta Theorem). Assume (†). For any d ≥ 0 and any rectangle R in the domain of
gn there exists a conical d-junta h such that, for all z ∈ {0, 1}n,

accR(z) ∈ (1± 2−Θ(b)) · h(z) ± 2−Θ(db). (1)

Discussion. Theorem 1 is similar in spirit to the approach taken by Chan et al. [CLRS13]. They
gave a black-box method for converting Sherali–Adams lower bounds into size lower bounds for
extended formulations. A key step in their proof is to approximate a single nonnegative rank-1
matrix with a single junta. In our approach, we approximate a single rectangle with a whole
nonnegative combination of juntas. This allows us to achieve better error bounds that yield tight
characterizations for many communication models (as discussed in Section 1.2 below). In the
language of communication complexity, the lower bounds of [CLRS13] went up to about Ω(log2 n).

The additive error 2−Θ(db) in Theorem 1 is essentially optimal, and the same additive error
appears in the polynomial approximation framework. The multiplicative error (1± 2−Θ(b)) is new:
this is the cost we end up incurring for using juntas instead of polynomials. Such multiplicative
error does not appear in the polynomial approximation framework. Whether one can achieve better
multiplicative accuracy in Theorem 1 is left as an open problem (see Section 1.4).

Maybe the biggest drawback with Theorem 1 is that our proof assumes block length b = Ω(log n)
(cf. the pattern matrix method assumes b = Θ(1)). Whether Theorem 1 can be improved to b = Θ(1)
is left as an open problem.

1.2 Communication versus query: Simulation Theorem

The most intuitive way to formalize our Simulation Theorem is in terms of different randomized
models of computation rather than in terms of different lower bound measures. Indeed, we consider
several models originally introduced in the context of Turing machine complexity theory: for any
such model C one can often associate, in a canonical fashion, a communication model Ccc and a
decision tree model Cdt. We follow the convention of using names of models as complexity measures
so that Ccc(F ) denotes the communication complexity of F in model Ccc, and Cdt(f) denotes the
query complexity of f in model Cdt. In this work, we further identify Ccc with the class of partial
functions F with Ccc(F ) ≤ poly(log n). We stress that our complexity classes consist of partial
functions (i.e., promise problems)—for total functions many surprising collapses are possible (e.g.,
NPcc ∩ coNPcc = Pcc for total functions [KN97, §2.3]).

Our methods allow us to accurately analyze the models listed below (see also Figure 1). Our
discussion in this introduction is somewhat informal; see Section 3 for precise definitions.
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• NP: Nondeterminism. We view an NP computation as a randomized computation where 1-inputs
are accepted with non-zero probability and 0-inputs are accepted with zero probability. The
communication analog NPcc was formalized in the work of Babai et al. [BFS86] that introduced
communication complexity analogs of classical complexity classes.

• WAPP: Weak Almost-Wide PP [BGM06]. A WAPP computation is a randomized computation
such that 1-inputs are accepted with probability in [(1 − ε)α, α], and 0-inputs are accepted
with probability in [0, εα] where α = α(n) > 0 is arbitrary and ε < 1/2 is a constant. The
communication analog WAPPcc is equivalent to the (one-sided) smooth rectangle bound of Jain
and Klauck [JK10] and also to approximate nonnegative rank by a result of Kol et al. [KMSY14].
We also study a two-sided model WAPP∩ coWAPP whose communication analog corresponds to
the two-sided smooth rectangle bound, which was called the relaxed partition bound by [KLL+12].

• SBP: Small Bounded-Error Probability [BGM06]. An SBP computation is a randomized com-
putation such that 1-inputs are accepted with probability in [α, 1] and 0-inputs are accepted
with probability in [0, α/2] where α = α(n) > 0 is arbitrary. The communication analog SBPcc

is equivalent to the (one-sided) corruption bound originally defined in [Yao83] (see [GW14]).

• PostBPP: Postselected BPP [Aar05]. (Equivalent to BPPpath [HHT97].) A PostBPP computation
is a randomized computation that may sometimes output ⊥ (representing “abort” or “don’t
know”), but conditioned on not outputting ⊥ the output is correct with probability at least 3/4.
The communication analog PostBPPcc was first studied in [Kla03] (under the name “approximate
majority covers”) and subsequently in [GL14] (under the generic name “zero-communication
protocols”) where the term extended discrepancy was coined for the dual characterization of
PostBPPcc.

We apply the Junta Theorem to show that when C is one of the above models, any Ccc protocol
for f ◦ gn can be converted into a corresponding Cdt decision tree for f . Hence lower bounds on
Ccc(f ◦ gn) follow in a black-box way from lower bounds on Cdt(f).

Theorem 2 (Simulation Theorem). Assume (†). For any partial f : {0, 1}n → {0, 1} we have

Ccc(f ◦ gn) = Θ(Cdt(f) · b) for C ∈ {NP,WAPP,SBP},
Ccc(f ◦ gn) ≥ Ω(Cdt(f) · b) for C = PostBPP.

(Here we crucially ignore constant factors in the error parameter ε for C = WAPP.)

Naturally, the upper bounds in Theorem 2 follow from the fact that a communication protocol
for f ◦ gn can simulate the corresponding decision tree for f : when the decision tree queries the
i-th input of f , the protocol spends b + 1 bits of communication to figure out zi = g(xi, yi) in a
brute-force manner. (There is one subtlety concerning the two-sided model PostBPP; see Remark 3.)

We also mention that the result for the simplest model C = NP does not require the full power
of the Junta Theorem: it is possible to prove it using only a proper subset of the ideas that we
present for the other randomized models.

1.3 Applications

Using the Simulation Theorem we can resolve several questions from prior work.
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SBP and corruption. Our first application is the following.

Theorem 3. SBPcc is not closed under intersection.

We prove this theorem by first giving an analogous lower bound for query complexity: there
exists a partial f such that SBPdt(f) ≤ O(1), but SBPdt(f∧) ≥ nΩ(1), where f∧ : {0, 1}2n → {0, 1} is
defined by f∧(z, z′) := f(z) ∧ f(z′). This query separation alone yields via standard diagonalization
(e.g., [AW09, §5]) an oracle relative to which the classical complexity class SBP is not closed under
intersection, solving an open problem posed by [BGM06]. Applying the Simulation Theorem to
f ◦ gn and f∧ ◦ g2n = (f ◦ gn)∧ we then obtain Theorem 3.

Theorem 3 has consequences for Arthur–Merlin communication (MAcc, AMcc) which has been
studied in [Kla03, RS04, AW09, GS10, Kla11, GR13, GPW15]. Namely, Klauck [Kla03] asked
(using the language of uniform threshold covers) whether the known inclusion MAcc ⊆ SBPcc is
strict. (This was also re-asked in [GW14].) Put diffferently, is corruption a complete lower bound
method for MAcc up to polynomial factors? Since MAcc is closed under intersection, we conclude
that the answer is “no”.

Corollary 4. SBPcc 6⊆ MAcc.

Proving explicit lower bounds for AMcc remains one of the central challenges in communication
complexity. Motivated by this [GPW15] studied a certain unambiguous restriction of AMcc, denoted
UAMcc, as a stepping stone towards AMcc. They asked whether UAMcc ⊆ SBPcc. In other words,
does corruption give lower bounds against UAMcc in a black-box fashion? They showed that the
answer is “no” for query complexity. Using the Simulation Theorem it is now straightforward to
convert this result into an analogous communication separation.

Corollary 5. UAMcc 6⊆ SBPcc.

Intriguingly, we still lack UAMcc lower bounds for set-disjointness. Corollary 5 implies that such
lower bounds cannot be blindly derived from Razborov’s corruption lemma [Raz92].

WAPP and nonnegative rank. Kol et al. [KMSY14] asked whether the error parameter ε in the
definition of WAPP can be efficiently amplified, i.e., reduced. It is known that such amplification
is possible for the closely related two-sided model AWPP, Almost-Wide PP (related to smooth
discrepancy and approximate rank), using “amplification polynomials”; see [Fen03, §3] (or [LS09a,
§3.2] and [Alo03] for approximate rank). In [KMSY14] it was shown that no one-sided analog of
amplification polynomials exists, ruling out one particular approach to amplification.

We show unconditionally that WAPPcc (and hence rank+
ε , approximate nonnegative rank) does

not admit efficient error amplification in the case of partial functions. For total functions, this at
least shows that no “point-wise” method can be used to amplify ε, since such methods would also
work for partial functions. We write WAPPcc

ε for the measure corresponding to error ε.

Theorem 6. For all constants 0 < ε < δ < 1/2 there exists a two-party partial function F such
that WAPPcc

δ (F ) ≤ O(log n) but WAPPcc
ε (F ) ≥ nΩ(1).

Corollary 7. For all constants 0 < ε < δ < 1/2 there exists a partial boolean matrix F such that

rank+
δ (F ) ≤ nO(1) but rank+

ε (F ) ≥ 2n
Ω(1)

.
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In order to conclude Corollary 7 from Theorem 6 we actually need a stronger equivalence of
WAPPcc and approximate nonnegative rank than the one proved by Kol et al. [KMSY14]: they
showed the equivalence for total functions while we need the equivalence for partial functions. The
extension to partial functions is nontrivial, and is related to the issue of “unrestricted” vs. “restricted”
models of communication.

Unrestricted vs. restricted models. So far we have discussed “restricted” communication
models. We can also define their “unrestricted” counterparts in analogy to the well-studied pair
of classes PPcc (a.k.a. discrepancy [Kla07, §8]) and UPPcc (a.k.a. sign-rank [PS86]). Recall that a
PP computation is a randomized computation such that 1-inputs are accepted with probability in
[1/2+α, 1], and 0-inputs are accepted with probability in [0, 1/2−α] where α = α(n) > 0 is arbitrary.
In the unrestricted model UPPcc the parameter α > 0 can be arbitrarily small (consequently, the
model is defined using private randomness), whereas in the restricted model PPcc the cost of a
protocol with parameter α is defined as the usual communication cost plus log(1/α). It is known
that PPcc ( UPPcc where the separation is exponential [BVdW07].

One can analogously ask whether the unrestricted–restricted distinction is relevant for the models
considered in this work. (The question was raised and left unresolved for SBP in [GW14].) In fact,
the separation of [BVdW07] already witnesses PostBPPcc ( UPostBPPcc where the latter is the
unrestricted version of the former. By contrast, we prove that the distinction is immaterial for WAPP
and SBP, even for partial functions: the unrestricted models UWAPPcc and USBPcc (see Section 3
for definitions) are essentially no more powerful than their restricted counterparts. Consequently, the
Simulation Theorem can be applied to analyze these unrestricted models, too—but the equivalences
are also interesting in their own right.

Theorem 8. SBPcc(F ) ≤ O(USBPcc(F ) + log n) for all F .

Theorem 9. WAPPcc
δ (F ) ≤ O(UWAPPcc

ε (F ) + log(n/(δ − ε))) for all F and all 0 < ε < δ < 1/2.

The seemingly more powerful models USBPcc and UWAPPcc admit characterizations in terms of
the nonnegative rank of matrices: instead of rectangles, the protocols compute using nonnegative
rank-1 matrices. In particular, UWAPPcc turns out to capture rank+

ε ; it is Theorem 9 that will be
used in the proof of Corollary 7 above.

1.4 Open problems

• Does Theorem 1 continue to hold for b = O(1)? If so, this would among other things also give
a different proof of Razborov’s corruption lower bound [Raz92] for set-disjointness. The main
hurdle here seems to be a question about two-source extractors: Is inner-product an extractor
for block-wise dense sources (a notion introduced in Section 2.2) even when b = O(1)?

• Can the multiplicative accuracy in Theorem 1 be improved? This issue seems to be what is
preventing us from quantitatively improving on the lower bounds obtained by [CLRS13] for the
LP extension complexity of approximating Max-Cut.

• Raz and McKenzie [RM99] obtained a simulation theorem that converts deterministic communi-
cation protocols for f ◦ gn into deterministic decision trees for f , where f is a certain type of
structured search problem and g a certain polynomial-size gadget. Can our methods be used to
simplify their proof, or to extend their result to a larger class of f ’s and g’s?
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• Our focus in this work has been on partial functions. It remains open whether SBPcc = MAcc

for total functions, or whether efficient error amplification exists for WAPPcc for total functions.

1.5 Notational conventions

We always write random variables in bold (e.g., x,y, z). Capital letters X,Y are reserved for subsets
of inputs to G = gn (so all rectangles R are of the form X × Y ). We identify such sets with flat
distributions: we denote by X the random variable that is uniformly distributed on X. Given a
distribution D and an event E we denote by (D | E) the conditional distribution of D given E,
specifically, (D | E)( · ) := D( · ∩ E)/D(E). We also use the shorthand D( · | E) := (D | E)( · ).

2 Proof of the Junta Theorem

In this section we prove Theorem 1, restated here for convenience.

Theorem 1 (Junta Theorem). Assume (†). For any d ≥ 0 and any rectangle R in the domain of
gn there exists a conical d-junta h such that, for all z ∈ {0, 1}n,

accR(z) ∈ (1± 2−Θ(b)) · h(z) ± 2−Θ(db). (1)

2.1 Proof overview

We write G := gn for short. Fix d ≥ 0 and a rectangle L ⊆ domG. Our goal is to approximate
accL(z) by some conical d-junta h(z). (We are going to use the symbol L for the “main” rectangle
so as to keep the symbol R free for later use as a more generic rectangle.) The high-level idea in
our proof is extremely direct: to find a suitable h we partition—or at least almost partition—the
rectangle L into subrectangles R ⊆ L that behave like width-d conjunctions.

Definition 10 (Conjunction rectangles). A rectangle R is a (d, ε)-conjunction if there exists a
width-d conjunction hR : {0, 1}n → {0, 1} (i.e., hR can be written as (`1 ∧ · · · ∧ `w) where w ≤ d and
each `i is an input variable or its negation) such that accR(z) ∈ (1± ε) · aRhR(z) for some aR ≥ 0
and all z ∈ {0, 1}n.

The proof is split into three subsections.

(§ 2.2) Block-wise density: We start by discussing a key property that is a sufficient condition
for a subrectangle R ⊆ L to be a conjunction rectangle.

(§ 2.3) Reduction to a packing problem: Instead of partitioning L into conjunctions, we show
that it suffices to find a packing (disjoint collection) of conjunction subrectangles of L that
cover most of L relative to a given distribution over inputs. This will formalize our main
technical task: solving a type of packing-with-conjunctions problem.

(§ 2.4) Solving the packing problem: This is the technical heart of the proof: we describe an
algorithm to find a good packing for L.
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2.2 Block-wise density

In this subsection we introduce a central notion that will allow us to extract close to uniform output
from sufficiently random inputs to G = gn : {0, 1}bn × {0, 1}bn → {0, 1}n. Recall that in the setting
of two-source extractors (e.g., [Vad12]), one considers a pair of independent random inputs x and y
that have high min-entropy, defined by H∞(x) := minx log(1/Pr[x = x ]). In our setting we think
of G = gn as a local two-source extractor: each of the n output bits depends only on few of the
input bits. Hence we need a stronger property than high min-entropy on x and y to guarantee that
z := G(x,y) will be close to uniform. This property we call block-wise density. Below, for I ⊆ [n],
we write xI for the restriction of x to the blocks determined by I.

Definition 11 (Block-wise density). A random variable x ∈ {0, 1}bn is δ-dense if for all I ⊆ [n]
the blocks xI have min-entropy rate at least δ, that is, H∞(xI) ≥ δb|I|.
Definition 12 (Multiplicative uniformity). A distribution D on {0, 1}m is ε-uniform if D(z) ∈
(1± ε) · 2−m for all outcomes z.

Lemma 13. Assume (†). If x and y are independent and 0.6-dense, then G(x,y) is 2−b/20-uniform.

Proof. Let z := G(x,y). First observe that for any I ⊆ [n] the parity of the output bits zI is simply
〈xI ,yI〉 mod 2. We use the fact that inner-product is a good two-source extractor to argue that this
parity is close to an unbiased random bit. Indeed, by 0.6-density we have H∞(xI)+H∞(yI) ≥ 1.2·b|I|
and this implies by a basic theorem of Chor and Goldreich [CG88, Theorem 9] that for I 6= ∅,∣∣ Pr[ 〈xI ,yI〉 mod 2 = 0 ]− 1/2

∣∣ ≤ 2−0.1·b|I|+1. (2)

This bound is enough to yield ε-uniformity for ε := 2−b/20, as we next verify using standard
Fourier analysis (see, e.g., [O’D14]).1 Let D be the distribution of z. We think of D as a function
{0, 1}n → [0, 1] and write it in the Fourier basis as

D(z) =
∑
I⊆[n]

D̂(I)χI(z)

where χI(z) := (−1)
∑

i∈I zi and D̂(I) := 2−n
∑

z D(z)χI(z) = 2−n · Ez∼D[χI(z) ]. Note that

D̂(∅) = 2−n because D is a distribution. In this language, property (2) says that, for all I 6= ∅,
2n · |D̂(I)| = |E[ (−1)〈xI ,yI〉 ]| ≤ 2−0.1·b|I|+2, which is at most ε2−2|I| logn by our definition of b and ε.
Hence,

2n
∑
I 6=∅

|D̂(I)| ≤ ε
∑
I 6=∅

2−2|I| logn = ε

n∑
k=1

(
n

k

)
2−2k logn ≤ ε

n∑
k=1

2−k logn ≤ ε.

We use this to show that |D(z)− 2−n| ≤ ε2−n for all z ∈ {0, 1}n, which proves the lemma. To this
end, let U denote the uniform distribution (note that Û(I) = 0 for all I 6= ∅) and let 1z denote the
indicator for z defined by 1z(z) = 1 and 1z(z

′) = 0 for z′ 6= z (note that |1̂z(I)| = 2−n for all I).
We can now calculate

|D(z)− 2−n| = |〈1z,D〉 − 〈1z,U〉| = |〈1z,D − U〉| = 2n · |〈1̂z, D̂ − Û〉|

≤ 2n ·
∑

I 6=∅|1̂z(I)| · |D̂(I)| =
∑

I 6=∅|D̂(I)| ≤ ε2−n.

1This fact resembles the classic “Vazirani XOR-Lemma” [Vaz86], except that the latter only guarantees the
distribution is close to uniform in statistical distance, and it assumes a single bound on the bias of all parities (whereas
we assume a bound that depends on the size of the parity).
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Remark 1. The only properties of inner-product we needed in the above proof were that it is a
strong two-source extractor and that it satisfies an XOR-lemma. However, all sufficiently strong
two-source extractors have the latter property automatically [Sha03], so we could have fixed g to be
any such extractor in Theorem 1. It is known [LSŠ08] that an XOR-lemma holds even under the
weaker assumption of g having low discrepancy (not necessarily under the uniform distribution over
dom g). Hence it is plausible that Theorem 1 could be extended to handle such g, as well.

We have the following corollary; here we write Ī := [n] r I for short.

Corollary 14. Assume (†). Let R = X × Y and suppose there is an I ⊆ [n] such that XI and YI
are fixed while XĪ and YĪ are 0.6-dense. Then R is an (|I|, O(2−b/20))-conjunction.

Proof. Let z := G(X,Y ) and note that zI is fixed. Write ε := 2−b/20 for short. Applying Lemma 13
to x = XĪ and y = YĪ (x and y are 0.6-dense) shows that |G−1(z)∩R|/|R| ∈ (1±ε) ·2−|Ī| whenever
zI = zI (and 0 otherwise). It can be seen by direct calculation that |G−1(z)|/22bn ∈ (1± ε) · 2−n for
all z ∈ {0, 1}n (though this can also be seen by another application of Lemma 13—to uniform x,y ∈
{0, 1}bn, which are 1-dense). Therefore accR(z) = |G−1(z)∩R|/|G−1(z)| ∈ (1±O(ε)) · 2|I|−2bn|R| if
zI = zI and accR(z) = 0 if zI 6= zI . This is of the form (1±O(ε)) · aRhR(z) (where hR(z) = 1 iff
zI = zI), as required.

2.3 Reduction to a packing problem

The purpose of this subsection is to massage the statement of the Junta Theorem into an alternative
form in order to uncover its main technical content. We will end up with a certain type of packing
problem, formalized in Theorem 16 at the end of this subsection.

Fix some “multiplicative” error bound ε := 2−Θ(b) for the purposes of the following discussion.
Whenever C is a packing (disjoint collection) of (d, ε)-conjunction subrectangles of L we let

hC :=
∑
R∈C

aRhR.

Write ∪C := ∪R∈CR for short. Then acc∪C :=
∑

R∈C accR is multiplicatively approximated by the
conical d-junta hC in the sense that acc∪C (z) ∈ (1 ± ε) · hC (z). Hence if we could find a C that
partitioned L = ∪C , we would have proved the theorem—without incurring any additive error.

Unfortunately, there are a few obstacles standing in the way of finding a perfect partition C .
One unavoidable issue is that we cannot multiplicatively approximate a tiny rectangle L with a
low-degree conical junta. This is why we allow a small additive error and only multiplicatively
approximate the acceptance probabilities of those z that have large enough accL(z). Indeed, we set

Z := { z ∈ {0, 1}n : accL(z) ≥ 2−db/20 },

and look for a C that covers most of each of the sets G−1(z) ∩L for z ∈ Z. More precisely, suppose
for a moment that we had a packing C such that for each z ∈ Z,

Uz(∪C | L) ≥ 1− ε, (3)

where Uz(∪C | L) = acc∪C (z)/ accL(z) by definition. Indeed, assuming (3) we claim that

(1− ε) · hC (z) ≤ accL(z) ≤ (1 +O(ε)) · hC (z) + 2−Θ(db). (4)
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In particular, hC achieves the desired approximation (1). For the first inequality, since ∪C ⊆ L
we never multiplicatively overestimate accL, that is, we have accL ≥ acc∪C ≥ (1− ε) · hC . For the
second inequality, for z ∈ Z we have accL(z) ≤ (1− ε)−1 · acc∪C (z) ≤ (1− ε)−1 · (1 + ε) · hC (z) ≤
(1 +O(ε)) · hC (z), and for z /∈ Z we have simply accL(z) < 2−Θ(db) by the definition of Z.

Unfortunately, we do not know how to construct a packing C satisfying (3) as well. Instead, we
show how to find a randomized packing C that guarantees (3) in expectation. More precisely, our
construction goes through the following primal/dual pair of statements that are equivalent by the
minimax theorem.

Primal: ∃ distribution C over C ’s ∀ z ∈ Z EC∼C Uz(∪C | L) ≥ 1− ε

Dual: ∀ distribution µ over Z ∃ C Ez∼µ Uz(∪C | L) ≥ 1− ε

Suppose the primal statement holds for some C. Then we claim that the convex combination
h := EC∼C hC achieves the desired approximation. The right side of (4) can be reformulated as

hC (z) ≥ (1−O(ε+ εz)) · (accL(z)− 2−Θ(db)) (5)

where εz := 1 − Uz(∪C | L) is a random variable depending on C (so EC∼C[ εz ] ≤ ε). Applying
linearity of expectation to (5) shows (along with the left side of (4)) that h satisfies (1).

Therefore, to prove Theorem 1 it remains to prove the dual statement. This will preoccupy
us for the whole of Section 2.4 where, for convenience, we will prove a slightly more general claim
formalized below.

Definition 15 (Lifted distributions). A distribution D on the domain of G is said to be a lift of a
distribution µ on the codomain of G if D(x, y) = µ(z)/|G−1(z)| where z := G(x, y). Note that a
lifted distribution is a convex combination of distributions of the form Uz.

Theorem 16 (Packing with conjunctions). Assume (†). Let d ≥ 0 and let L be a rectangle. There
is an ε := 2−Θ(b) such that for any lifted distribution D with D(L) ≥ 2−db/20 there exists a packing
C consisting of (d, ε)-conjunction subrectangles of L such that D(∪C | L) ≥ 1− ε.

The dual statement can be derived from Theorem 16 as follows. We need to check that for any
distribution µ on Z there is some lifted distribution D such that D(L) ≥ 2−db/20 and D( · | L) = E( · )
where E( · ) := Ez∼µ Uz( · | L) is the probability measure relevant to the dual statement. Consider a
distribution µ′ given by µ′(z) := γµ(z)/Uz(L) where γ := (Ez∼µ 1/Uz(L))−1 is a normalizing constant.
Let D( · ) := Ez∼µ′ Uz( · ) be the lift of µ′. Then D(L) = Ez∼µ′ Uz(L) ≥ Ez∼µ′ 2

−db/20 = 2−db/20

since µ′ is supported on Z. On the other hand, noting that D(L) = γ, we have D( · | L) =
D(L)−1D( · ∩ L) = γ−1

∑
z µ
′(z)Uz( · ∩ L) =

∑
z µ(z)Uz( · ∩ L)/Uz(L) = Ez∼µ Uz( · | L) = E( · ), as

desired.

2.4 Solving the packing problem

In this section we prove Theorem 16. Fix an error parameter ε := 2−b/100.
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Notation. In the course of the argument, for any rectangle R = X × Y , we are going to associate
a bipartition of [n] into free blocks, denoted freeR, and fixed blocks, denoted fixR := [n] r freeR.
We will always ensure that X and Y are fixed on the blocks in fixR. (However, if X and Y are
fixed on some block i, we do not require that i ∈ fixR.) We stress that fixR and freeR are not
functions of R, but just some data that we choose depending on the context. We say that the free
marginals of R are (δ,D)-dense if for xy ∼ (D | R) we have that xfreeR and yfreeR are δ-dense.
Note that if D = U is the uniform distribution, then the definition states that XfreeR and YfreeR

are δ-dense. The following is a rephrasing of Corollary 14.

Proposition 17. If the free marginals of R are (0.6,U)-dense then R is a (|fixR|, ε)-conjunction.

We also use the following notation: if C is a condition (e.g., of the form (xI = α) or (xI 6= α))
we write XC for the set of x ∈ X that satisfy C. For example, X(xI=α) := {x ∈ X : xI = α}.

Roadmap. The proof is in two steps. In the first step we find a packing with subrectangles whose
free marginals are (0.8,D)-dense. In the second step we “prune” these subrectangles so that their
free marginals become (0.6,U)-dense. These two steps are encapsulated in the following two lemmas.

Lemma 18 (Core packing step). There is a packing C ′ of subrectangles of L such that D(∪C ′ |
L) ≥ 1− ε and for each R ∈ C ′ we have |fixR| ≤ d and the free marginals of R are (0.8,D)-dense.

Lemma 19 (Pruning step). For each R ∈ C ′ there is a subrectangle R′ ⊆ R with fixR′ = fixR
such that D(R′ | R) ≥ 1− ε and the free marginals of R′ are (0.6,U)-dense.

Theorem 16 follows immediately by stringing together Lemma 18, Lemma 19, and Proposition 17.
In particular, the final packing C will consist of the pruned rectanglesR′ (which are (d, ε)-conjunctions
by Proposition 17) and we have D(∪C | L) ≥ (1− ε)2 ≥ 1− 2ε. (We proved the theorem with error
parameter 2ε instead of ε.)

2.4.1 Core packing step

We will now prove Lemma 18. The desired packing C ′ of subrectangles of L will be found via a
packing algorithm given in Figure 2.

Informal overview. The principal goal in the algorithm is to find subrectangles R ⊆ L whose
free marginals are (0.8,D)-dense while keeping |fixR| small. To do this, we proceed in rounds.
The main loop of the algorithm maintains a pool P of disjoint subrectangles of L and in each
round we inspect each R ∈ P in the subroutine Partition. If we find that R does not have
dense free marginals, we partition R further. The output of Partition(R) is a partition of R into
subrectangles each labeled as either dense, live, or error. We are simply going to ignore the error
rectangles, i.e., they do not re-enter the pool P. For the live subrectangles R′ ⊆ R we will have
made progress: the subroutine will ensure that the free marginals of R′ will become more dense as
compared to the free marginals of R.

The subroutine Partition works as follows. If the input rectangle Rin satisfies the density
condition on its free marginals, we simply output Rin labeled as dense. Otherwise we find some
subset I of free blocks that violates the density condition on one of the marginals. Then we consider
the subrectangle Rout ⊆ Rin that is obtained from Rin by fixing the non-dense marginal to its
overly-likely value on I and the other marginal to each of its typical values on I. Intuitively, these
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Packing Algorithm for L:

1: Initialize P := {L} where fixL := ∅ and L is labeled live
2: Repeat for n+ 1 rounds
3: Replace each R ∈P by all the non-error subrectangles output by Partition(R)
4: Output C ′ := P

Subroutine Partition (with error parameter δ := ε/2n)

Input : A rectangle Rin

Output : A partition of Rin into dense/live/error subrectangles

5: Initialize R := Rin with fixR := fixRin

6: While the following two conditions hold

(C1): D(R | Rin) > δ
(C2): The free marginals of R are not both (0.8,D)-dense

7: Let xy ∼ (D | R) and let X and Y be such that R = X × Y
8: We may assume that xfreeR is not 0.8-dense (otherwise consider yfreeR)
9: Let I ⊆ freeR and α be such that Pr[xI = α ] > 2−0.8·b|I|

10: Let B :=
{
β : Pr[yI = β | xI = α ] > δ · 2−b|I|

}
11: For each β ∈ B
12: Let Rout := X(xI=α) × Y(yI=β) with fixRout := fixR ∪ I
13: Output Rout labeled as live
14: End for
15: Output X(xI=α) × Y(yI /∈B) labeled as error
16: Update R := X(xI 6=α) × Y (with the same fixR)
17: End while

18: Output R labeled as dense if (C2) failed, or as error if (C1) failed

Figure 2: Packing algorithm.

fixings have the effect of increasing the “relative density” in the remaining free blocks, and so we
have found a single subrectangle where we have made progress. We then continue iteratively on the
rest of Rin until only a δ := ε/2n fraction of Rin remains, which we deem as error.

Note that, at the end of n + 1 rounds, each R ∈ C ′ must be labeled dense because once a
rectangle R reaches fixR = [n], the density condition on the free marginals is satisfied vacuously. It
remains to argue that the other two properties in Lemma 18 hold for C ′.

Error analysis. We claim that in each run of Partition at most a fraction 2δ of the distribution
(D | Rin) gets classified as error. This claim implies that ∪C ′ covers all but an ε fraction of (D | L)
since the total error relative to (D | L) can be easily bounded by the number of rounds (excluding the
last round, which only labels the remaining live rectangles as dense) times the error in Partition,
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which is n · 2δ = ε under our claim.
To prove our claim, we first note that the error rectangle output on line 18 contributes a fraction

≤ δ of error relative to (D | Rin) by (C1). Consider then error rectangles output on line 15. Here
we have (using notation from the algorithm) Pr[yI /∈ B | xI = α ] ≤ δ by the definition of B so we
only incur ≤ δ fraction of error relative to (D | R′) where R′ := X(xI=α) × Y . In the subsequent line
we redefine R := RrR′, which ensures that the errors on line 15 do not add up over the different
iterations. Hence, altogether, line 15 contributes a fraction ≤ δ of error relative to (D | Rin). The
total error in Partition is then at most δ + δ = 2δ, which was our claim.

Number of fixed blocks. Let R ∈ C ′. We need to show that |fixR| ≤ d. Let Ri, i ∈ [n + 1],
be the unique rectangle in the pool at the start of the i-th round such that R ⊆ Ri. Let ` be the
largest number such that R` is labeled live. Hence |fixR| = |fixR`|. Let Q ⊇ R` consist of all the
inputs that agree with R` on the fixed coordinates fixR. We claim that

D(Q) ≤ 2−(2b−2)|fixR|, (6)

D(R`) ≥ 2−1.9·b|fixR|−db/20. (7)

Let us first see how to conclude the proof of Lemma 18 assuming the above inequalities. Since
D(Q) ≥ D(R`) we can require that (6) ≥ (7) and (taking logarithms) obtain the inequality
−(2b− 2)|fixR| ≥ −1.9 · b|fixR| − db/20. But this implies |fixR| ≤ d, as desired.

To prove (6), write D(Q) = Ez∼µ Uz(Q) for some µ since D is a lifted distribution. Here
for each fixed z we either have Uz(Q) = 0 in case the fixings of Q are inconsistent with z, or
otherwise Uz(Q) =

∏
j∈fixR 1/|g−1(zj)| ≤ 2−(2b−2)|fixR| (where we used the fact that the gadget g is

approximately balanced: |g−1(1)|, |g−1(0)| ≥ 22b/4). Hence D(Q) is a convex combination of values
that satisfy (6).

To prove (7), note that D(R`) = D(R` | L) ·D(L) ≥ D(R` | L) · 2−db/20. Hence it suffices to show
that D(R` | L) ≥ 2−1.9·b|fixR|. To this end, write |fixR| =

∑`−1
i=1 |Ii| where Ii is the set of blocks that

were fixed to obtain Ri+1 = Rout from Ri = Rin and use the following claim inductively.

Claim 20. Each Rout output labeled as live (on line 13) satisfies D(Rout | Rin) ≥ 2−1.9·b|I|.

Proof. Using notation from the algorithm,

D(Rout | Rin) = D(Rout | R) · D(R | Rin)

≥ D(Rout | R) · δ (by (C1))

= Pr[xI = α and yI = β ] · δ
≥ 2−0.8·b|I| · δ · 2−b|I| · δ
= 2−1.8·b|I|−b/50−2 logn−2 (definition of ε, δ)

≥ 2−1.9·b|I|.

2.4.2 Pruning step

We will now prove Lemma 19. Let R = X × Y ∈ C ′ and xy ∼ (D | R). For notational convenience,
we assume that fixR = ∅, i.e., we forget about the fixed blocks and think of x and y as 0.8-dense. As
will be clear from the proof, if fixR was non-empty, it would only help us in the ensuing calculations.

We want to find a “pruned” subrectangle R′ := X ′ × Y ′ ⊆ R such that
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(i) Pr[xy ∈ X ′ × Y ′ ] ≥ 1− ε,
(ii) X′ and Y ′ are 0.6-dense.

In fact, it is enough to show how to find an X ′ ⊆ X such that

(i’) Pr[x ∈ X ′ ] ≥ 1− ε/2,
(ii’) X′ is 0.6-dense.

Indeed, we can run the argument for (i’,ii’) twice, once for X and once for Y in place of X. The
property (i) then follows by a union bound.

We will obtain X ′ by forbidding some outcomes of XI that are too likely. We build up a set C
of conditions via the following algorithm. We use the notation XC = ∩C∈CXC below.

1: Initialize C := ∅
2: Repeat
3: If XC = ∅, then halt with a failure
4: If XC is 0.6-dense, then halt with a success
5: Otherwise let I and α be such that Pr[ (XC)I = α ] > 2−0.6·b|I|

6: Add the condition (xI 6= α) to C
7: End repeat

This process eventually halts since |XC | decreases every time we add a new condition to C. Let F
denote the set of final conditions when the process halts. We show that X ′ := XF satisfies (i’,ii’).
Write F = ∪s∈[n]Fs where Fs denotes conditions of the form (xI 6= α), |I| = s, in F .

Claim 21. |Fs| ≤ 20.7·bs.

Proof of claim. The effect of adding a new condition (xI 6= α), |I| = s, to C is to shrink the size of
XC by a factor of Pr[ (XC)I 6= α ] < 1− δ where δ := 2−0.6·bs. Our initial set has size |X| ≤ 2bn and
hence we cannot shrink it by such a condition more than k ≥ |Fs| times where k is the smallest
number satisfying |X|(1 − δ)k < 1. Solving for k gives k ≤ O(bn/δ) = O(bn · 20.6·bs), which is at
most 20.7·bs given our definition of b.

We can now verify (i’) by a direct calculation:

Pr[x /∈ X ′ ] = Pr[x /∈ XF ]

≤
∑

s Pr[x /∈ XFs ]

≤
∑

s

∑
(xI 6=α)∈Fs

Pr[xI = α ]

≤
∑

s |Fs| · 2−0.8·bs (H∞(xI) ≥ 0.8 · b|I|)
≤
∑

s 2−0.1·bs (Claim 21)

≤ ε/2.

This also proves (ii’) because the calculation implies that X ′ 6= ∅ which means that our process
halted with a success. This concludes the proof of Lemma 19.
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3 Definitions of models

In Section 3.1 we introduce our restricted-by-default communication models, justify why they can
be viewed as “zero-communication” models, and explain their relationships to known lower bound
techniques. In Section 3.2 we define their corresponding unrestricted versions. In Section 3.3 we
describe the query complexity counterparts of our communication models.

3.1 Restricted communication models

We define NP protocols in a slightly nonstandard way as randomized protocols, just for stylistic
consistency with the other models. The acronyms WAPP and SBP were introduced in [BGM06]
(their communication versions turn out to be equivalent to the smooth rectangle bound and the
corruption bound, as argued below). We introduce the acronym 2WAPP (for lack of existing notation)
to correspond to a two-sided version of WAPP (which is equivalent to the zero-communication with
abort model of [KLL+12]). We use the notation PostBPP [Aar05] instead of the more traditional
BPPpath [HHT97] as it is more natural for communication protocols.

A protocol outputs 0 or 1, and in some of these models it may also output ⊥ representing “abort”
or “don’t know”. In the following definition, α can be arbitrarily small and should be thought of as
a function of the input size n for a family of protocols.

Definition 22. For C ∈ {NP, 2WAPPε,WAPPε, SBP,PostBPP} and F : {0, 1}n×{0, 1}n → {0, 1} a
partial function, define Ccc(F ) as the minimum over all α > 0 and all “α-correct” public-randomness
protocols for F of the communication cost plus log(1/α) (this sum is considered to be the cost),
where α-correctness is defined as follows.

NP : If F (x, y) = 1 then Pr[ Π(x, y) = 1 ] ≥ α, and if F (x, y) = 0 then Pr[ Π(x, y) = 1 ] = 0.

2WAPPε : The protocol may output ⊥, and for all (x, y) ∈ domF , Pr[ Π(x, y) = F (x, y) ] ≥ (1−ε)α
and Pr[ Π(x, y) 6= ⊥ ] ≤ α.

WAPPε : If F (x, y) = 1 then Pr[ Π(x, y) = 1 ] ∈ [(1− ε)α, α], and if F (x, y) = 0 then Pr[ Π(x, y) =
1 ] ∈ [0, εα].2

SBP : If F (x, y) = 1 then Pr[ Π(x, y) = 1 ] ≥ α, and if F (x, y) = 0 then Pr[ Π(x, y) = 1 ] ≤ α/2.

PostBPP : The protocol may output ⊥, and for all (x, y) ∈ domF , Pr[ Π(x, y) 6= ⊥ ] ≥ α and
Pr[ Π(x, y) = F (x, y) | Π(x, y) 6= ⊥ ] ≥ 3/4.

The “syntactic relationships” among the four models 2WAPP, WAPP, SBP, PostBPP is summa-
rized in the below table. The meaning of the column and row labels is as follows. For the columns,
“two-sided” means that the protocol outputs values in {0, 1,⊥} and conditioned on not outputting
⊥, the output is correct with high probability. For a “one-sided” protocol we only measure its
probability of outputting 1 and compare it against the correctness parameter α > 0. For the rows,
“bounded” means that the non-abort probability—that is, the probability of not outputting ⊥ for
two-sided models, or the probability of outputting 1 for one-sided models—is uniformly upper
bounded by α, whereas “unbounded” means that the non-abort probability need not be upper
bounded by α.

2The definition of WAPP in [BGM06] uses ε in a different way: 1
2

+ ε and 1
2
− ε instead of 1− ε and ε.

17



Two-sided One-sided

Bounded non-abort 2WAPP WAPP

Unbounded non-abort PostBPP SBP

It is straightforward to see that the relative computational power (“semantic relationships”)
of the models is as follows (recall Figure 1): for all F and all constants 0 < ε < 1/2, we have
2WAPPcc

ε (F ) ≥ WAPPcc
ε (F ) ≥ Ω(SBPcc(F )) ≥ Ω(PostBPPcc(F )) and NPcc(F ) ≥ SBPcc(F ). Fur-

thermore, exponential separations are known for all these relationships: unique-set-intersection
is easy for WAPPcc

0 but hard for 2WAPPcc
ε (indeed, for coSBPcc [Raz92, GW14]); set-intersection

is easy for SBPcc (indeed, for NPcc) but hard for WAPPcc
ε [Kla10]; set-disjointness is easy for

PostBPPcc (indeed, for coNPcc) but hard for SBPcc [Raz92, GW14]; equality is easy for SBPcc

(indeed, for coRPcc) but hard for NPcc. Moreover, WAPPcc is a one-sided version of 2WAPPcc

in the sense that 2WAPPcc
ε (F ) ≤ O(WAPPcc

ε/2(F ) + coWAPPcc
ε/2(F )) (so the classes would satisfy

2WAPPcc = WAPPcc ∩ coWAPPcc if we ignore the precise value of the constant ε).
The reason we do not include an ε parameter in the SBPcc and PostBPPcc models is because

standard amplification techniques could be used to efficiently decrease ε in these models (rendering
the exact value immaterial up to constant factors). Another subtlety concerns the behavior of
correct protocols on the undefined inputs {0, 1}n×{0, 1}nr domF . For example, for 2WAPPcc

ε , the
corresponding definitions in [KLL+12] also require that for every undefined input (x, y), Pr[ Π(x, y) 6=
⊥ ] ∈ [(1− ε)α, α]. We allow arbitrary behavior on the undefined inputs for stylistic consistency, but
our results also hold for the other version. As a final remark, we mention that our definition of NPcc

is only equivalent to the usual definition within an additive logarithmic term; see Remark 2 below.

Relation to zero-communication models. The following fact shows that protocols in our
models can be expressed simply as distributions over (labeled) rectangles; thus these models can
be considered “zero-communication” since Alice and Bob can each produce an output with no
communication, and then have the output of the protocol be a simple function of their individual
outputs.

Fact 23. Without loss of generality, in each of the five models from Definition 22, for each outcome
of the public randomness the associated deterministic protocol is of the following form.

NP, WAPPε, SBP : There exists a rectangle R such that the output is 1 iff the input is in R.

2WAPPε, PostBPP : There exists a rectangle R and a bit b such that the output is b if the input is
in R and is ⊥ otherwise.

Proof. Consider a protocol Π in one of the models from Definition 22, and suppose it has com-
munication cost c and associated α > 0, so the cost is c + log(1/α). We may assume that each
deterministic protocol has exactly 2c possible transcripts. Transform Π into a new protocol Π′ that
operates as follows on input (x, y): Sample an outcome of the public randomness of Π, then sample
a uniformly random transcript with associated rectangle R and output-value b, then execute the
following.

If (x, y) ∈ R then output b, otherwise output

{
0 if NP, WAPPε, SBP

⊥ if 2WAPPε, PostBPP
.
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We have Pr[ Π′(x, y) = 1 ] = 2−c Pr[ Π(x, y) = 1 ], and for 2WAPPε, PostBPP we also have
Pr[ Π′(x, y) = 0 ] = 2−c Pr[ Π(x, y) = 0 ]. Thus in all cases Π′ is (2−cα)-correct. Formally, it takes
two bits of communication to check whether (x, y) ∈ R, so the cost of Π′ is 2 + log(1/2−cα), which
is the cost of Π plus 2.

Relation to lower bound measures. Using Fact 23 it is straightforward to see that, ignoring
the +2 cost of checking whether the input is in a rectangle, 2WAPPcc

ε is exactly equivalent to the
relaxed partition bound of [KLL+12] (with the aforementioned caveat about undefined inputs) and
WAPPcc

ε is exactly equivalent to the (one-sided) smooth rectangle bound3, denoted srec1 [JK10].
For completeness, the definition of srec1 and the proof of the following fact appear in Appendix A.1.

Fact 24. srec1
ε (F ) ≤WAPPcc

ε (F ) ≤ srec1
ε (F ) + 2 for all F and all 0 < ε < 1/2.

It was shown in [GW14] that SBPcc is equivalent (within constant factors) to the (one-sided)
corruption bound. We remark that by a simple application of the minimax theorem, PostBPPcc

also has a dual characterization analogous to the corruption bound.4

3.2 Unrestricted communication models

For all the models described above, we can define their unrestricted versions, denoted by prepending
U to the acronym (not to be confused with complexity classes where U stands for “unambiguous”).
The distinction is that the restricted versions charge + log(1/α) in the cost, whereas the unrestricted
versions do not charge anything for α in the cost (and hence they are defined using private
randomness; otherwise every function would be computable with constant cost.)

Definition 25. For C ∈ {NP, 2WAPPε,WAPPε,SBP,PostBPP} and F : {0, 1}n × {0, 1}n → {0, 1}
a partial function, define UCcc(F ) as the minimum over all α > 0 and all “α-correct” private-
randomness protocols for F of the communication cost, where the α-correctness criteria are as in
Definition 22.

Standard sparsification of randomness (à la Newman’s Theorem [New91], [KN97, Theorem
3.14]) can be used to show that the unrestricted models are essentially at least as powerful as their
restricted versions for all F : for C ∈ {NP, SBP,PostBPP} we have UCcc(F ) ≤ O(Ccc(F ) + log n),
and for C ∈ {2WAPP,WAPP} we have UCccδ (F ) ≤ O(Cccε (F ) + log(n/(δ − ε))) where 0 < ε < δ.

Remark 2. We note that UNPcc is actually equivalent to the standard definition of nondeterministic
communication complexity, while our NPcc from Definition 22 is only equivalent within an additive
logarithmic term. It is fair to call this an abuse of notation, but it does not affect our communication–
query equivalence for NP since we consider block length b = Ω(log n) anyway.

UWAPPcc and nonnegative rank. Of particular interest to us will be UWAPPcc which turns out
to be equivalent to approximate nonnegative rank. Recall that for M a nonnegative matrix, the
nonnegative rank rank+(M) is defined as the minimum r such that M can be written as the sum of
r nonnegative rank-1 matrices, or equivalently, M = UV for nonnegative matrices U, V with inner

3The paper that introduced this bound [JK10] defined it as the optimum value of a certain linear program, but
following [KMSY14] we define it as the log of the optimum value.

4The maximum over all distributions µ over {0, 1}n × {0, 1}n of the minimum log(1/µ(R)) over all rectangles R
that are unbalanced in the sense that µ(R ∩ F−1(1)) and µ(R ∩ F−1(0)) are not within a factor of 2 of each other.
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dimension r for the multiplication. Below, we view a partial function F : {0, 1}n × {0, 1}n → {0, 1}
as a 2n × 2n partial boolean matrix.

Definition 26 (Approximate nonnegative rank). For partial F , rank+
ε (F ) is defined as the minimum

rank+(M) over all nonnegative matrices M such that Mx,y ∈ F (x, y)± ε for all (x, y) ∈ domF (in
other words, ‖F −M‖∞ ≤ ε on domF ).

For completeness, the straightforward proof of the following fact appears in Appendix A.2.

Fact 27. log rank+
ε (F ) ≤ UWAPPcc

ε (F ) ≤ dlog rank+
ε/2(F )e+ 2 for all F and all 0 < ε < 1/2.

3.3 Query models

A randomized decision tree T is a probability distribution over deterministic decision trees, and the
query cost is the maximum height of a decision tree in the support.

Definition 28. For C ∈ {NP, 2WAPPε,WAPPε,SBP,PostBPP} and f : {0, 1}n → {0, 1} a partial
function, define Cdt(f) as the minimum over all α > 0 and all “α-correct” randomized decision trees
for f of the query cost, where the α-correctness criteria are as in Definition 22 (but where protocols
Π(x, y) are replaced with randomized decision trees T (z)).

Completely analogously to how the zero-communication models can be viewed w.l.o.g. as
distributions over (labeled) rectangles (Fact 23), their query counterparts can be viewed w.l.o.g. as
distributions over (labeled) conjunctions.

Fact 29. Without loss of generality, in each of the five models from Definition 28, for each outcome
of the randomness the associated deterministic decision tree is of the following form.

NP, WAPPε, SBP : There exists a conjunction h such that the output is 1 iff the input is in h−1(1).

2WAPPε, PostBPP : There exists a conjunction h and a bit b such that the output is b if the input
is in h−1(1) and is ⊥ otherwise.

Proof. Consider a randomized decision tree T in one of the models from Definition 28, and suppose
it has query cost d and associated α > 0. We may assume that each deterministic decision tree has
a full set of 2d leaves and the queries along each root-to-leaf path are distinct. Hence each leaf is
associated with a width-d conjunction that checks whether the input is consistent with the queries
made in its root-to-leaf path. Transform T into a new randomized decision tree T ′ that operates as
follows on input z: Sample an outcome of the randomness of T , then sample a uniformly random
leaf with associated conjunction h and output-value b, then execute the following.

If h(z) = 1 then output b, otherwise output

{
0 if NP, WAPPε, SBP

⊥ if 2WAPPε, PostBPP
.

We have Pr[ T ′(z) = 1 ] = 2−d Pr[ T (z) = 1 ], and for 2WAPPε, PostBPP we also have Pr[ T ′(z) =
0 ] = 2−d Pr[ T (z) = 0 ]. Thus in all cases T ′ is (2−dα)-correct, and T ′ also has query cost d.

We defined our query models without charging anything for α, i.e., α is unrestricted. This
means that deriving communication upper bounds for f ◦gn in restricted models from corresponding
query upper bounds for f is nontrivial; this is discussed in Section 4.2. Nevertheless, we contend
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that Definition 22 and Definition 28 are the “right” definitions that correspond to one another.
The main reason is because in the “normal forms” (Fact 23 and Fact 29), all the cost in the
communication version comes from α, and all the cost in the query version comes from the width
of the conjunctions—and when we apply the Junta Theorem in Section 4.1, the communication α
directly determines the conjunction width.

4 Proof of the Simulation Theorem

In this section we derive the Simulation Theorem (Theorem 2) from the Junta Theorem (Theorem 1).
The proof is in two parts: Section 4.1 for lower bounds and Section 4.2 for upper bounds.

4.1 Communication lower bounds

The Junta Theorem implies that for functions lifted with our hard gadget g, every distribution R over
rectangles can be transformed into a distribution H over conjunctions such that for every z ∈ {0, 1}n,
the acceptance probability under H is related in a simple way to the acceptance probability under R
averaged over all two-party encodings of z. This allows us to convert zero-communication protocols
(which are distributions over (labeled) rectangles by Fact 23) into corresponding decision trees
(which are distributions over (labeled) conjunctions by Fact 29).

More precisely, let R be a distribution over rectangles in the domain of G = gn. First, apply the
Junta Theorem to each R in the support of R to get an approximating conical d-junta hR. Now we
can approximate the convex combination

accR(z) = E
R∼R

accR(z) ∈ E
R∼R

(
(1± o(1)) · hR(z)± 2−Θ(db)

)
⊆ (1± o(1)) ·

(
E

R∼R
hR(z)

)
± 2−Θ(db)

by the conical d-junta ER∼R hR with the same parameters as in the Junta Theorem (we settle for
multiplicative error (1± o(1)) since it suffices for the applications). But conical d-juntas are—up
to scaling—convex combinations of width-d conjunctions. Specifically, we may write any conical
d-junta as accH(z)/a where a > 0 is some constant of proportionality and accH(z) := Eh∼H h(z)
where H is a distribution over width-d conjunctions. Finally, we rearrange the approximation so the
roles of accH(z) and accR(z) are swapped, since it is more convenient for the applications. Hence
we arrive at the following reformulation of the Junta Theorem.

Corollary 30 (Junta Theorem—reformulation). Assume (†). For any d ≥ 0 and any distribution
R over rectangles in the domain of gn there exists a distribution H over width-d conjunctions and a
constant of proportionality a > 0 such that, for all z ∈ {0, 1}n,

accH(z) ∈ a ·
(
(1± o(1)) · accR(z) ± 2−Θ(db)

)
. (8)

We will now prove the lower bounds in Theorem 2. Here the error parameters for WAPP are
made more explicit.

Theorem 31. Assume (†). For any partial f : {0, 1}n → {0, 1} and constants 0 < ε < δ < 1/2,

Ccc(f ◦ gn) ≥ Ω(Cdt(f) · b) for C ∈ {NP,SBP,PostBPP},
Cccε (f ◦ gn) ≥ Ω(Cdtδ (f) · b) for C ∈ {2WAPP,WAPP}.
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Proof. For convenience of notation we let Ccc := Cccε and Cdt := Cdtδ in the C ∈ {2WAPP,WAPP}
cases. Given an α-correct cost-c Ccc protocol Π for f ◦ gn assumed to be in the “normal form” given
by Fact 23, we convert it into a cost-O(c/b) Cdt decision tree T for f .

For C ∈ {NP,WAPP,SBP}, Π is a distribution over rectangles, so applying Corollary 30 with
d := O(c/b) so that 2−Θ(db) ≤ o(2−c) = o(α), there exists a distribution T over width-d conjunctions
and an a > 0 such that for all z ∈ {0, 1}n, accT (z) ∈ a ·

(
(1 ± o(1)) · accΠ(z) ± o(α)

)
. Note that

accΠ(z) obeys the α-correctness criteria of f since it obeys the α-correctness criteria of f ◦gn for each
encoding of z. Hence accT (z) obeys the (aα′)-correctness criteria for some α′ ∈ α · (1± o(1)). (For
C = SBP slight amplification may be needed. Also, for C = NP we need to ensure that accT (z) = 0
whenever accΠ(z) = 0, but this is implicit in the proof of the Junta Theorem; see the left side
of (4).) In conclusion, T is a cost-d Cdt decision tree for f .

For C ∈ {2WAPP,PostBPP}, Π can be viewed as a convex combination π0Π0 + π1Π1 where
Π0 is a distribution over 0-labeled rectangles and Π1 is a distribution over 1-labeled rectangles.
Applying the above argument to Π0 and Π1 separately, we may assume the scaling factor a is
the same for both, by assigning some probability to a special “contradictory” conjunction that
accepts nothing. We get a distribution over labeled width-d conjunctions T := π0T0 +π1T1 such that
Pr[ T (z) = 0 ] = π0 accT0(z) ∈ π0a·

(
(1±o(1))·accΠ0(z)±o(α)

)
⊆ a·

(
(1±o(1))·Pr[ Π(z) = 0 ]±o(α)

)
where we use the shorthand Pr[ Π(z) = 0 ] := Exy∼Uz Pr[ Π(x,y) = 0 ]. An analogous property holds
for outputting 1 instead of 0. Note that Pr[ Π(z) = 0 ] and Pr[ Π(z) = 1 ] obey the α-correctness
criteria since they do for each encoding of z. Hence Pr[ T (z) = 0 ] and Pr[ T (z) = 1 ] obey the
(aα′)-correctness criteria for some α′ ∈ α · (1± o(1)). (For C = PostBPP slight amplification may be
needed.) In conclusion, T is a cost-d Cdt decision tree for f .

4.2 Communication upper bounds

Theorem 32. Let C ∈ {NP, 2WAPPε,WAPPε,SBP}. For any partial f : {0, 1}n → {0, 1} and any
gadget g : {0, 1}b × {0, 1}b → {0, 1}, we have Ccc(f ◦ gn) ≤ O(Cdt(f) · (b+ log n)).

Proof. On input (x, y) the communication protocol just simulates the randomized decision tree
on input z := gn(x, y), and when the decision tree queries the i-th bit of z, the communication
protocol evaluates zi := g(xi, yi) by brute force. This has communication cost Cdt(f) · (b+ 1), and
it inherits the α parameter from the randomized decision tree. The nontrivial part is that the
query models allow arbitrarily small α, which could give arbitrarily large + log(1/α) cost to the
communication protocol. For these particular query models, it turns out that we can assume without
loss of generality that log(1/α) ≤ O(Cdt(f) · log n). We state and prove this for SBPdt below. (The
other three models are no more difficult to handle.)

Proposition 33. Every partial function f admits an α-correct SBPdt decision tree of query cost
d := SBPdt(f) where α ≥ 2−d

(
n
d

)−1 ≥ 2−O(d·logn).

Proof. Consider an α′-correct cost-d SBPdt decision tree for f in the “normal form” given by Fact 29.
We may assume each deterministic decision tree in the support is a conjunction with exactly d
literals (and there are 2d

(
n
d

)
many such conjunctions). The crucial observation is that it never

helps to assign a probability larger than α′ to any conjunction: if some conjunction appears with
probability p > α′, we may replace its probability with α′ and assign the leftover probability p− α′
to a special “contradictory” conjunction that accepts nothing. This modified randomized decision
tree is still α′-correct for f . Finally, remove all probability from the contradictory conjunction and
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scale the remaining probabilities (along with α′) to sum up to 1. Let α be the scaled version of α′.
Now we have that α is greater than or equal to each of 2d

(
n
d

)
many probabilities, and hence α must

be at least the reciprocal of this number.

Remark 3. In the case of PostBPPdt we cannot assume w.l.o.g. that log(1/α) ≤ poly(d, log n). The
canonical counterexample is a decision list function f : {0, 1}n → {0, 1} defined relative to a binary
vector (a1, . . . , an) ∈ {0, 1}n so that f(x) := ai where i ∈ [n] is the smallest number such that
xi = 1, or f(x) := 0 if no such i exists. Each decision list admits a cost-1 PostBPPdt decision tree,
but for some decision lists the associated α must be exponentially small in n; see, e.g., [BVdW07]
for more details. Indeed, two-party lifts of decision lists have been used in separating unrestricted
communication models from restricted ones as we will discuss in Section 6.

5 Applications of the Simulation Theorem

In this section we use the Simulation Theorem to derive our applications. We prove Theorem 3
and Theorem 6 in Section 5.1 and Section 5.2, respectively. Both proofs use the following basic
calculation (given in Appendix A.3 for completeness).

Fact 34. Let h : {0, 1}n → {0, 1} be a width-d conjunction with i positive literals. Then h accepts
a uniformly random string of Hamming weight w with probability ∈ (w/n)i · (1 ± o(1)) provided
w ≤ o(

√
n) and d ≤ o(

√
w).

Above and throughout this section we use o(1) to denote a quantity that is upper bounded by
some sufficiently small constant, which may be different for the different instances of o(1).

5.1 Nonclosure under intersection

Recall that f∧(z, z′) := f(z) ∧ f(z′). Here f∧ is not to be thought of as a two-party function; we
study the query complexity of f∧, whose input we happen to divide into two halves called z and z′.
We start with the following lemma.

Lemma 35. There exists a partial f such that SBPdt(f) ≤ O(1), but SBPdt(f∧) ≥ Ω(n1/4).

Let k := o(
√
n) and define a partial function f : {0, 1}n → {0, 1} by

f(z) :=


1 if |z| ≥ k
0 if |z| ≤ k/2
∗ otherwise

where |z| denotes the Hamming weight of z.
In proving the lower bound in Lemma 35 we make use of the following duality principle for

SBPdt, which we phrase abstractly in terms of a collection H of “basic functions” over some finite
set of inputs Z. In our concrete case H consists of decision trees of height d, or equivalently width-d
conjunctions by Fact 29, and Z ⊆ {0, 1}n is the domain of the partial function f . We state the
duality principle for acceptance gap [0, α/2)-vs-(α, 1] rather than [0, α/2]-vs-[α, 1] as this implicitly
ensures α > 0. The slight difference in the multiplicative gap, (> 2)-vs-(≥ 2), is immaterial as the
gap can be efficiently amplified for SBP affecting only constant factors.
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Fact 36. For all H ⊆ {0, 1}Z and non-constant f : Z → {0, 1}, the following are equivalent.

(i) There exists a distribution H over H such that for all (z1, z0) ∈ f−1(1)× f−1(0),

Pr
h∼H

[h(z1) = 1 ] > 2 · Pr
h∼H

[h(z0) = 1 ]. (9)

(ii) For each pair of distributions (µ1, µ0) over f−1(1) and f−1(0) there is an h ∈H with

Pr
z1∼µ1

[h(z1) = 1 ] > 2 · Pr
z0∼µ0

[h(z0) = 1 ]. (10)

The direction (i) ⇒ (ii) is trivial and is all we need for our proof, but it is interesting that the
converse direction (ii) ⇒ (i) also holds, by a slightly non-standard argument. We include a full
proof in Appendix A.4.

Proof of Lemma 35. Let f and f∧ be as above. We have SBPdt(f) = 1 via the decision tree that
picks a random coordinate and accepts iff the coordinate is 1. For the lower bound on SBPdt(f∧),
we use the contrapositive of (i) ⇒ (ii). Let H consist of all conjunctions of width o(n1/4). Let Zw
denote the uniform distribution over n-bit strings of weight w, intended to be used as either the
first input z or the second input z′ to f∧. We construct a hard pair of distributions (µ1, µ0) over
f−1
∧ (1) and f−1

∧ (0), respectively, by

µ1 := Zk ×Zk, µ0 :=
1

2
(Zk/2 ×Z2k) +

1

2
(Z2k ×Zk/2).

Here × denotes concatenation of strings, e.g., (z, z′) ∼ µ1 is such that z, z′ ∼ Zk and z and z′

are independent. Let h : {0, 1}2n → {0, 1} be an arbitrary conjunction in H , and suppose h has i
positive literals in z and j positive literals in z′. Then by Fact 34 we have

Pr(z,z′)∼µ1
[h(z, z′) = 1 ]

Pr(z,z′)∼µ0
[h(z, z′) = 1 ]

∈ (k/n)i · (k/n)j

1
2 · (k/2n)i · (2k/n)j + 1

2 · (2k/n)i · (k/2n)j
· (1± o(1))

=
1

1
2 · 2j−i + 1

2 · 2i−j
· (1± o(1))

≤ 1 · (1± o(1))

≤ 2.

This means that ¬(ii) and hence ¬(i). Therefore f∧ has no cost-o(n1/4) SBPdt decision tree.

We can now prove Theorem 3, restated here from the introduction.

Theorem 3. SBPcc is not closed under intersection.

Proof. Let f and f∧ be as above. Define F := f ◦gn and F∧ := f∧◦g2n = (f ◦gn)∧ where g : {0, 1}b×
{0, 1}b → {0, 1}, b = Θ(log n), is our hard gadget from (†). Then by the Simulation Theorem
(Theorem 2), we have SBPcc(F∧) ≥ Ω(SBPdt(f∧) · b) ≥ Ω(n1/4 · b) which is not polylogarithmic in
the input length so that F∧ /∈ SBPcc. Furthermore, we have SBPcc(F ) ≤ O(SBPdt(f) · b) ≤ O(b)
which is logarithmic in the input length so that F ∈ SBPcc; this implies that F∧ is the intersection
of two functions in SBPcc (one that evaluates F on the first half of the input, and one that evaluates
F on the second half).
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|z|
0 kρk

accT (z)
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Lower bound

|z|
0 kρk

accT (z)

0
εα

(1− ε)α
α

Figure 3: Illustration for the proof of Theorem 6.

5.2 Unamplifiability of error

Our next application of the Simulation Theorem shows that the error parameter ε for WAPPcc

cannot be efficiently amplified. Combining this with the results illustrated in Figure 4 (in particular,
the fact that the equivalence holds for partial functions) shows that also for approximate nonnegative
rank, ε cannot be efficiently amplified.

Theorem 6. For all constants 0 < ε < δ < 1/2 there exists a two-party partial function F such
that WAPPcc

δ (F ) ≤ O(log n) but WAPPcc
ε (F ) ≥ nΩ(1).

Proof. Let k := o(
√
n), ρ := (1− 2δ)/(1− δ), and define a partial function f : {0, 1}n → {0, 1} by

f(z) :=


1 if |z| ∈ [ρk, k]

0 if |z| = 0

∗ otherwise

where |z| denotes the Hamming weight of z. By the Simulation Theorem (Theorem 31 and
Theorem 32), it suffices to prove that WAPPdt

δ (f) ≤ O(1) and WAPPdt
ε (f) ≥ Ω(n1/4).

Upper bound. Consider a cost-1 decision tree T ′ that picks a random coordinate and accepts iff
the coordinate is 1. Then accT ′(z) = |z|/n. Let α := k/n and define T as follows: on input z accept
with probability δα, reject with probability δ(1− α), and run T ′(z) with the remaining probability
(1− δ). It is now a routine calculation to check that accT (z) behaves as plotted on the left side of
Figure 3. In particular, T is an α-correct WAPPdt

δ decision tree for f .
Lower bound. The WAPPdt

δ decision tree designed above is “tight” for f in the following sense:
If we decrease the error parameter from δ to any ε < δ, there is no longer any convex function of |z|
that would correspond to the acceptance probability of an α-correct WAPPdt

ε decision tree for f .
This is suggested on the right side of Figure 3: only a non-convex function of |z| can satisfy the
α-correctness requirements for f . We show that the acceptance probability of any low-cost WAPPdt

ε

decision tree can indeed be accurately approximated by a convex function, which then yields a
contradiction.

Suppose for contradiction that T is a distribution over width-o(n1/4) conjunctions (by Fact 29)
forming an α-correct WAPPdt

ε decision tree for f , for some arbitrary α > 0. Consider the function
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Q : {0, 1, . . . , k} → R defined by Q(w) := Ez : |z|=w accT (z) where the expectation is over a uniformly
random string of Hamming weight w. Note that Q(0) ∈ [0, εα] and Q(w) ∈ [(1−ε)α, α] for w ∈ [ρk, k]
by the correctness of T . Letting ih denote the number of positive literals in conjunction h, by
Fact 34 we have

Q(w) = E
h∼T

Pr
z : |z|=w

[h(z) = 1 ] ∈ E
h∼T

(w/n)ih · (1± o(1)) = P (w) · (1± o(1)) (11)

where P (w) := Eh∼T (w/n)ih is a polynomial with nonnegative coefficients and hence convex. We
can now calculate

Q(ρk) ≤ (1 + o(1)) · P (ρk) (using (11))

≤ (1 + o(1)) · ((1− ρ)P (0) + ρP (k)) (convexity of P )

≤ (1 + o(1)) · ((1− ρ)Q(0) + ρQ(k)) (using (11))

≤ (1 + o(1)) · ((1− ρ)εα+ ρα) (correctness of T )

= (1 + o(1)) · (ε/(1− ε) + ρ)︸ ︷︷ ︸
<1

·(1− ε)α.

Hence Q(ρk) < (1− ε)α which contradicts the correctness of T .

Corollary 7. For all constants 0 < ε < δ < 1/2 there exists a partial boolean matrix F such that

rank+
δ (F ) ≤ nO(1) but rank+

ε (F ) ≥ 2n
Ω(1)

.

Proof sketch. Theorem 6 together with Theorem 9 (proved in the next section) imply that for all
0 < ε < δ < 1/2 there is a partial F such that UWAPPcc

δ (F ) ≤ O(log n) and UWAPPcc
ε (F ) ≥ nΩ(1).

Unfortunately, there is a slight problem with applying Fact 27 to conclude a similar separation for
rank+

ε as this direct simulation loses a factor of 2 in the error parameter ε. This loss results from
the following asymmetry between the measures UWAPPcc

ε and rank+
ε : the acceptance probabilities

of 1-inputs are in [(1− ε)α, α] in the former, whereas 1-entries can be approximated with values
in [1− ε, 1 + ε] in the latter. However, this annoyance is easily overcome by considering modified
versions of WAPPcc

ε and UWAPPcc
ε where the acceptance probability on 1-inputs is allowed to lie

in [(1− ε)α, (1 + ε)α]. It can be verified that under such a definition Theorem 6, Theorem 9, and
Fact 27 continue to hold, and the “new” Fact 27 does not lose the factor 2 in the error.

6 Unrestricted–restricted equivalences

In this section we prove our unrestricted–restricted equivalence results, Theorem 8 and Theorem 9,
restated below. In Section 6.1 we prove a key “Truncation Lemma”, and in Section 6.2 we use the
lemma to prove the equivalences.

As already alluded to in the introduction, Buhrman et al. [BVdW07] exhibited a function F
with UPostBPPcc(F ) ≤ O(log n) and PPcc(F ) ≥ Ω(n1/3). This simultaneously gives an exponential
separation between PostBPPcc and UPostBPPcc and between PPcc and UPPcc. For our other models,
we will show that the unrestricted and restricted versions are essentially equivalent. We state and
prove this result only for SBPcc and WAPPcc as the result for 2WAPPcc is very similar.

Theorem 8. SBPcc(F ) ≤ O(USBPcc(F ) + log n) for all F .
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Fact 24

WAPPcc ≡ srec1

Theorem 9, all F ≡ ≡ [KMSY14], total F

UWAPPcc ≡ log rank+
ε

Fact 27

Figure 4: Summary of equivalences.

Theorem 9. WAPPcc
δ (F ) ≤ O(UWAPPcc

ε (F ) + log(n/(δ − ε))) for all F and all 0 < ε < δ < 1/2.

Hence, roughly speaking, SBPcc and USBPcc are equivalent and WAPPcc and UWAPPcc are
equivalent. Here “equivalence” is ignoring constant factors and additive logarithmic terms in the
cost, but much more significantly it is ignoring constant factors in ε (for WAPPcc), which is important
as we know that ε cannot be efficiently amplified (Theorem 6).

Discussion of Theorem 8. The equivalence of SBPcc and USBPcc implies an alternative proof of
the lower bound USBPcc(Disj) ≥ Ω(n) for set-disjointness from [GW14] without using information
complexity. Indeed, that paper showed that SBPcc(Disj) ≥ Ω(n) follows from Razborov’s corruption
lemma [Raz92]. It was also noted in [GW14] that the greater-than function Gt (defined by
Gt(x, y) := 1 iff x > y as n-bit numbers) satisfies USBPcc(Gt) = Θ(1) and SBPcc(Gt) = Θ(log n),
and thus the + log n gap in Theorem 8 is tight. Our proof of Theorem 8 shows, in some concrete
sense, that Gt is the “only” advantage USBPcc has over SBPcc. Theorem 8 is analogous to, but
more complicated than, Proposition 33 since both say that without loss of generality α is not too
small in the SBP models.

Discussion of Theorem 9. The equivalence of WAPPcc and UWAPPcc implies the equivalence
of the smooth rectangle bound (see Fact 24 below) and approximate nonnegative rank (see Fact 27
below), which was already known for total functions [KMSY14]. Our Theorem 9 implies that the
equivalence holds even for partial functions, which was crucially used in the proof of Corollary 7.
The situation is summarized in Figure 4.

6.1 The Truncation Lemma

The following lemma is a key component in the proofs of Theorem 8 and Theorem 9.

Definition 37. For a nonnegative matrix M , we define its truncation M to be the same matrix
but where each entry > 1 is replaced with 1.

Lemma 38 (Truncation Lemma). For every 2n × 2n nonnegative rank-1 matrix M and every d
there exists a O(d+ log n)-communication public-randomness protocol Π such that for every (x, y)
we have accΠ(x, y) ∈Mx,y ± 2−d.
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We describe some intuition for the proof. We can write Mx,y = uxvy where ux, vy ≥ 0. First,
note that if all entries of M are at most 1, then accΠ(x, y) = Mx,y can be achieved in a zero-
communication manner: scaling all ux’s by some factor and scaling all vy’s by the inverse factor, we
may assume that all ux, vy ≤ 1; then Alice can accept with probability ux and Bob can independently
accept with probability vy. Truncation makes all the entries at most 1 but may destroy the rank-1
property. Also note that in general, for the non-truncated entries there may be no “global scaling”
for which the zero-communication approach works: there may be some entries with uxvy < 1 but
ux > 1, and other entries with uxvy < 1 but vy > 1. Roughly speaking, we instead think in terms of
“local scaling” that depends on (x, y).

As a starting point, consider a protocol where Alice sends ux to Bob, who then declares acceptance
with probability min(uxvy, 1). We cannot afford to communicate ux exactly, so we settle for an
approximation. We express ux and vy in “scientific notation” with an appropriate base and round
the mantissa of ux to have limited precision. The exponent of ux, however, may be too expensive
to communicate, but since ux, vy are multiplied, all that matters is the sum of their exponents.
Determining the sum of the exponents exactly may be too expensive, but the crux of the argument
is that we only need to consider a limited number of cases. If the sum of the exponents is small, then
the matrix entry is very close to 0 and we can reject without knowing the exact sum. If the sum
of the exponents is large, then the matrix entry is guaranteed to be truncated and we can accept.
Provided the base is large enough, there are only a few “inbetween” cases. Determining which case
holds can be reduced to a greater-than problem, which can be solved with error exponentially small
in d using communication O(d+ log n).

We now give the formal proof.

Proof of Lemma 38. Let Mx,y = uxvy where ux, vy ≥ 0, and define δ := 2−d/2 and B := 1/δ.
Henceforth we fix an input (x, y). For convenience we let all notation be relative to (x, y), so we

start by defining u := ux and v := vy, and note that Mx,y = min(uv, 1). Assuming u > 0, define
i := dlogB ue (so u ∈ (Bi−1, Bi]) and a := u/Bi (so a ∈ (δ, 1]). Similarly, assuming v > 0, define j :=
dlogB ve (so v ∈ (Bj−1, Bj ]) and b := v/Bj (so b ∈ (δ, 1]). Note that uv = abBi+j ∈ (Bi+j−2, Bi+j ].
The protocol Π is as follows. (Line 4 is underspecified but we will address that later.)

1: If u = 0 or v = 0 then reject
2: Alice sends Bob ã ∈ a± δ2 (and ensuring ã ≤ 1) using O(d) bits
3: Bob computes p := ã · b
4: Determine with probability at least 1− δ which of the following four cases holds:
5: If i+ j < 0 then reject
6: If i+ j = 0 then accept with probability p
7: If i+ j = 1 then accept with probability min(pB, 1)
8: If i+ j > 1 then accept

We first argue correctness. Assume u, v > 0. We have ab ∈ (ã± δ2)b ⊆ p± δ2 (using b ≤ 1) and
thus uv ∈ (p± δ2)Bi+j . Pretending for the moment that line 4 succeeds with probability 1, we can
verify that in all four cases the acceptance probability would be ∈Mx,y ± δ:
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5: If i+ j < 0 then 0 ∈Mx,y ± δ since uv ≤ Bi+j ≤ δ.
6: If i+ j = 0 then p ∈Mx,y ± δ since uv ∈ (p± δ2)Bi+j ⊆ p± δ.
7: If i+ j = 1 then min(pB, 1) ∈Mx,y ± δ since uv ∈ (p± δ2)Bi+j ⊆ pB ± δ.
8: If i+ j > 1 then 1 = Mx,y since uv > Bi+j−2 ≥ 1.

The error probability of line 4 only affects the overall acceptance probability by ±δ, so accΠ(x, y) ∈
Mx,y ± 2δ ⊆Mx,y ± 2−d.

The communication cost is O(d) except for line 4. Line 4 can be implemented with three tests:
i+ j ≥ 0, i+ j ≥ 1, i+ j ≥ 2, each having error probability δ/3. These tests are implemented in
the same way as each other, so we just describe how to test whether i+ j ≥ 0. In other words, if we
let T denote the indicator matrix for i+ j ≥ 0, then we want to compute T with error probability
δ/3 and communication O(d+ log n). If we assume the rows are sorted in decreasing order of u and
the columns are sorted in decreasing order of v, then each row and each column of T consists of 1’s
followed by 0’s. To compute T , we may assume without loss of generality it has no duplicate rows
and no duplicate columns, in which case it is a greater-than matrix (of size at most 2n × 2n) with
the 1’s in the upper-left triangle, possibly with the all-0 row deleted and/or the all-0 column deleted.
The greater-than function can be computed with any error probability γ > 0 and communication
O(log(n/γ)) by running the standard protocol [KN97, p. 170] for O(log(n/γ)) many steps.

Remark 4. We note that the O(d+ log n) communication bound in Lemma 38 is optimal, assuming
n ≥ d. Indeed, define a nonnegative rank-1 matrix M by Mx,y := (2−d)x−y where x and y are viewed
as nonnegative n-bit integers. Consider any protocol Π with accΠ(x, y) ∈Mx,y ± 2−d, and note that
it determines with error probability 2−(d−1) whether x ≤ y. The latter is known to require Ω(log n)
communication (even for constant d) [Vio13]. Also, by a union bound there exists an outcome of
the randomness for which Π determines whether x ≤ y for all pairs x, y < 2d/2−1 (of which there
are 2d−2), which requires Ω(d) communication by the deterministic lower bound for greater-than on
(d/2− 1)-bit integers.

6.2 Proofs of unrestricted–restricted equivalences

We now give the (very similar) proofs of Theorem 8 and Theorem 9 using the Truncation Lemma.
We make use of the following basic fact.

Fact 39. Given a private-randomness protocol Π of communication cost c, label the accepting
transcripts as τ ∈ {1, 2, . . . , 2c}. Then for each accepting transcript τ there exists a nonnegative
rank-1 matrix N τ such that the following holds. For each (x, y), the probability of getting transcript
τ on input (x, y) is N τ

x,y, and thus accΠ(x, y) =
∑2c

τ=1N
τ
x,y.

For both proofs, we transform an α-correct protocol, where α might be prohibitively small,
into a (roughly) 2−c-correct protocol without increasing the communication by too much. We use
Fact 39 to express the acceptance probabilities as a sum of nonnegative rank-1 matrices. The basic
intuition is to divide everything by α to get a “1-correct” matrix sum; however, this new sum may
not correspond to acceptance probabilities of a protocol. To achieve the latter, we truncate each
summand (which does not hurt the correctness, and which makes each summand correspond to
acceptance probabilities from the Truncation Lemma), then multiply each summand by 2−c (which
essentially changes the correctness parameter from 1 to 2−c, and which corresponds to picking a
uniformly random summand).
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Proof of Theorem 8. Fix a cost-c USBPcc protocol Π for F with associated α > 0 and associated
matrices N τ from Fact 39. Thus

∑
τ N

τ
x,y is ≥ α if F (x, y) = 1 and ≤ α/2 if F (x, y) = 0. We claim

that the following public-randomness protocol Π′ witnesses SBPcc(F ) ≤ O(c+ log n):

1: Pick τ ∈ {1, 2, . . . , 2c} uniformly at random
2: Run the protocol from Lemma 38 with M τ := 1

αN
τ and d := c+ 3

We first argue correctness. We have accΠ′(x, y) ∈ 2−c
∑

τ

(
M τ

x,y ± 2−d
)

= 2−c
(∑

τ M
τ
x,y ± 2−3

)
.

If F (x, y) = 0 then
∑

τ M
τ
x,y ≤

∑
τ

1
αN

τ
x,y ≤ 1/2 and thus accΠ′(x, y) ≤ (5/8)2−c. Now suppose

F (x, y) = 1. If M τ
x,y ≤ 1 for all τ then

∑
τ M

τ
x,y =

∑
τ

1
αN

τ
x,y ≥ 1, and if not then we also have∑

τ M
τ
x,y ≥ maxτ M

τ
x,y = 1. In either case, accΠ′(x, y) ≥ (7/8)2−c. Since there is a constant factor

gap between the acceptance probabilities on 1-inputs and 0-inputs, we can use and-amplification in
a standard way [GW14] to bring the gap to a factor of 2 while increasing the cost by only a constant
factor. Since the communication cost of Π′ is O(d+ log n) = O(c+ log n), and the associated α′

value is 2−O(c), the overall cost is O(c+ log n).

Proof of Theorem 9. Fix a cost-c UWAPPcc
ε protocol Π for F with associated α > 0 and associated

matrices N τ from Fact 39. Thus
∑

τ N
τ
x,y is ∈ [(1− ε)α, α] if F (x, y) = 1 and ∈ [0, εα] if F (x, y) = 0.

We claim that the following public-randomness protocol Π′ witnesses WAPPcc
δ (F ) ≤ O(c+ log(n/∆))

where ∆ := (δ − ε)/2:

1: Pick τ ∈ {1, 2, . . . , 2c} uniformly at random
2: Run the protocol from Lemma 38 with M τ := 1

αN
τ and d := c+ dlog(1/∆)e

We first argue correctness. We have accΠ′(x, y) ∈ 2−c
∑

τ

(
M τ

x,y ± 2−d
)
⊆ 2−c

(∑
τ M

τ
x,y ± ∆

)
.

Define α′ := 2−c(1 + ∆). If F (x, y) = 0 then
∑

τ M
τ
x,y ≤

∑
τ

1
αN

τ
x,y ≤ ε and thus accΠ′(x, y) ∈

[0, 2−c(ε+ ∆)] ⊆ [0, δα′]. Now suppose F (x, y) = 1. Then M τ
x,y ≤ 1 for all τ (otherwise accΠ(x, y) =∑

τ αM
τ
x,y > α). Hence

∑
τ M

τ
x,y =

∑
τ

1
αN

τ
x,y ∈ [1 − ε, 1], and thus accΠ′(x, y) ∈ [2−c(1 − ε −

∆), 2−c(1 + ∆)] ⊆ [(1− δ)α′, α′]. So Π′ is a WAPPcc
δ protocol for F of cost O(d+ log n) + log(1/α′) ≤

O(c+ log(n/∆)).

Remark 5. In the proof of Theorem 9, note that if F is total then Lemma 38 is not needed: The
entries of each M τ are all bounded by 1, and thus M τ

x,y can be written as uxvy where ux, vy ∈ [0, 1].
Hence to accept with probability M τ

x,y, Alice can accept with probability ux and Bob can accept
with probability vy. This incurs no loss in the ε parameter and has communication cost 2, witnessing
that WAPPcc

ε (F ) ≤ UWAPPcc
ε (F ) + 2 if F is total.
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A Appendix: Additional proofs

A.1 Proof of Fact 24

srec1
ε (F ) is defined as the log of the optimum value of the following linear program, which has a

variable wR for each rectangle R.

minimize
∑

R wR

subject to
∑

R : (x,y)∈R wR ∈ [1− ε, 1] ∀(x, y) ∈ F−1(1)∑
R : (x,y)∈R wR ∈ [0, ε] ∀(x, y) ∈ F−1(0)

wR ≥ 0 ∀R

We first show the first inequality. Given a cost-c WAPPcc
ε protocol for F , put it in the “normal

form” given by Fact 23 so that α = 2−c and each outcome of the randomness is a rectangle. For
each rectangle R, let wR := pR/α where pR is the probability of R in the normal form protocol.
This is a feasible solution with objective value 1/α, so srec1

ε (F ) ≤ log(1/α) = c. We now show the
second inequality. Given an optimal solution, let α := 1/

∑
R wR and consider a protocol that selects

rectangle R with probability αwR. This is an α-correct WAPPcc
ε protocol for F of cost 2 + srec1

ε (F ).

A.2 Proof of Fact 27

We first show the first inequality. Fix a cost-c UWAPPcc
ε protocol Π for F with associated α > 0 and

associated matrices N τ from Fact 39. Thus
∑

τ N
τ
x,y is ∈ [(1− ε)α, α] if F (x, y) = 1 and ∈ [0, εα] if

F (x, y) = 0. Hence letting M :=
∑

τ
1
αN

τ , we have Mx,y ∈ F (x, y)± ε for all (x, y) ∈ domF and
rank+(M) ≤ 2c.

We now show the second inequality. Suppose M is such that Mx,y ∈ F (x, y) ± ε/2 for all
(x, y) ∈ domF and r := rank+(M) is witnessed by M = UV , and let t be the maximum entry in U, V .
We claim that the following private-randomness protocol Π witnesses UWAPPcc

ε (F ) ≤ dlog re+ 2:

1: Alice picks i ∈ {1, 2, . . . , r} uniformly at random and sends it to Bob
2: Alice accepts with probability Ux,i/t and sends her decision to Bob
3: Bob accepts with probability Vi,y/t and sends his decision to Alice
4: Accept iff both Alice and Bob accept

We have accΠ(x, y) = 1
r

∑
i Ux,iVi,y/t

2 = Mx,y/rt
2. Let α := (1 + ε/2)/rt2. If F (x, y) = 1

then accΠ(x, y) ∈ [(1 − ε/2)/rt2, (1 + ε/2)/rt2] ⊆ [(1 − ε)α, α]. If F (x, y) = 0 then accΠ(x, y) ∈
[0, (ε/2)/rt2] ⊆ [0, εα]. Thus the protocol is correct with respect to α.

A.3 Proof of Fact 34

We use the notation (t)m for the falling factorial t(t− 1) · · · (t−m+ 1). The acceptance probability
is (

n−d
w−i
)(

n
w

) =
(n− d)w−i

(w − i)!
· w!

(n)w
=

(w)i
(n)w / (n− d)w−i

.

We claim that
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(i) wi · (1− o(1)) ≤ (w)i ≤ wi,
(ii) nw · (1− o(1)) ≤ (n)w ≤ nw,

(iii) nw−i · (1− o(1)) ≤ (n− d)w−i ≤ nw−i.

Then the acceptance probability is in

wi

nw / nw−i
· (1± o(1)) = (w/n)i · (1± o(1)).

The three upper bounds are trivial. For the lower bound in (i), we have

(w)i = wi · (1− 0
w )(1− 1

w ) · · · (1− i−1
w )

≥ wi · 4−0/w4−1/w · · · 4−(i−1)/w

= wi · 4−i(i−1)/2w

≥ wi · (1− o(1))

since i ≤ d ≤ o(
√
w). The lower bound in (ii) follows similarly using w ≤ o(

√
n). For (iii), we have

(n− d)w−i ≥ (n− d)w−i · (1− o(1)) = nw−i · (1− o(1)) · (1− d/n)w−i

as above using w − i ≤ o(
√
n− d), and we have (1 − d/n)w−i ≥ (4−d/n)w ≥ 1 − o(1) since

d < w ≤ o(
√
n).

A.4 Proof of Fact 36

We first prove (i) ⇒ (ii). Assume (i), and consider µ1 distributed over f−1(1) and µ0 distributed
over f−1(0). We have for h ∼ H and zi ∼ µi that

Eh Prz1 [h(z1) = 1 ] = Prh,z1 [h(z1) = 1 ]

≥ minz1∈f−1(1) Prh[h(z1) = 1 ]

> 2 ·maxz0∈f−1(0) Prh[h(z0) = 1 ]

≥ 2 ·Prh,z0 [h(z0) = 1 ]

= Eh 2 ·Prz0 [h(z0) = 1 ].

If Prz1 [h(z1) = 1 ] ≤ 2 ·Prz0 [h(z0) = 1 ] for all h, then the above would be false.
We now prove (ii) ⇒ (i). Assume (ii), and define αµ1,µ0 to be the maximum of Prz1∼µ1 [h(z1) =

1 ] over all h such that Prz1∼µ1 [h(z1) = 1 ] > 2 ·Prz0∼µ0 [h(z0) = 1 ]. It is not difficult to see that
the function (µ1, µ0) 7→ αµ1,µ0 is lower semi-continuous, since if we change (µ1, µ0) infinitesimally
then Prz1∼µ1 [h(z1) = 1 ] > 2 ·Prz0∼µ0 [h(z0) = 1 ] still holds for the (previously) optimum h, and
the left side of the inequality only changes infinitesimally (but another h may become “available”
and raise the value of αµ1,µ0 , hence the function is not upper semi-continuous). It is a basic fact of
analysis that a lower semi-continuous function on a compact set attains its infimum. Since the set
of (µ1, µ0) pairs is compact, and since αµ1,µ0 > 0 for all (µ1, µ0), we have infµ1,µ0 αµ1,µ0 > 0. Let
α∗ be any real such that 0 < α∗ < infµ1,µ0 αµ1,µ0 . Hence we have αµ1,µ0 > α∗ for all (µ1, µ0).

Let M be the matrix with rows indexed by Z and columns indexed by H , such that Mz,h := h(z).
Then for every (µ1, µ0) there exists an h such that Ez1∼µ1 Mz1,h > α∗ and Ez1∼µ1 Mz1,h >
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2 · Ez0∼µ0 Mz0,h. Let M ′ be the matrix with rows indexed by Z and (infinitely-many) columns
indexed by H × [0, 1], such that M ′z,(h,s) := s ·h(z). Then for every (µ1, µ0) there exists a (h, s) such

that Ez1∼µ1 M
′
z1,(h,s)

> α∗ and Ez0∼µ0 M
′
z0,(h,s)

< α∗/2 (by choosing s to be slightly greater than

α∗/Ez1∼µ1 Mz1,h). Let A : R→ R be the affine transformation A(x) := (1− x) · α∗

1−α∗/2 . Let M ′′ be

the matrix indexed like M ′, such that M ′′z,(h,s) := M ′z,(h,s) if f(z) = 1, and M ′′z,(h,s) := A
(
M ′z,(h,s)

)
if f(z) = 0. Then for every (µ1, µ0) there exists a (h, s) such that Ez1∼µ1 M

′′
z1,(h,s)

> α∗ and, by

linearity of expectation, Ez0∼µ0 M
′′
z0,(h,s)

= A
(
Ez0∼µ0 M

′
z0,(h,s)

)
>
(
1− α∗/2

)
· α∗

1−α∗/2 = α∗.

We claim that for every distribution µ over Z there exists a (h, s) such that Ez∼µM
′′
z,(h,s) > α∗.

If µ(f−1(1)) > 0 and µ(f−1(0)) > 0 then this follows from the above using µ1 = (µ | f−1(1)) and
µ0 = (µ | f−1(0)). Otherwise if, say, µ(f−1(0)) = 0 (similarly if µ(f−1(1)) = 0) then we can let
µ1 = µ and µ0 be an arbitrary distribution over f−1(0), and apply the above.

Now by the minimax theorem (a continuous version as used in [TTV09]) the two-player zero-sum
game given by M ′′ (with payoffs to the column player) has value > α∗, and thus there exists
a distribution H′ over H × [0, 1] such that for all z ∈ Z, E(h,s)∼H′M

′′
z,(h,s) > α∗. Thus for all

z1 ∈ f−1(1) we have E(h,s)∼H′M
′
z1,(h,s) > α∗, and for all z0 ∈ f−1(0) by linearity of expectation we

have E(h,s)∼H′M
′
z0,(h,s) = A−1

(
E(h,s)∼H′M

′′
z0,(h,s)

)
< 1− α∗ · 1−α∗/2

α∗ = α∗/2.

For h ∈ H , if we define ph to be the expectation under H′ of the function that outputs s on
inputs (h, s) and outputs 0 otherwise, then for all z we have E(h,s)∼H′M

′
z,(h,s) =

∑
h ph ·Mz,h.

Finally, we define the distribution H over H so the probability of h is ph/P where P :=
∑

h ph.
Then for all z we have Prh∼H[h(z) = 1 ] = 1

P ·E(h,s)∼H′M
′
z,(h,s). Thus for all z1 ∈ f−1(1) we have

Prh∼H[h(z1) = 1 ] > α∗/P , and for all z0 ∈ f−1(0) we have Prh∼H[h(z0) = 1 ] < α∗/2P , and
hence (i) holds.
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