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Abstract

We exhibit ε-biased distributions D on n bits and functions f : {0, 1}n → {0, 1}
such that the xor of two independent copies (D + D) does not fool f , for any of the
following choices:

1. ε = 2−Ω(n) and f is in P/poly;

2. ε = 2−Ω(n/ logn) and f is in NC2;

3. ε = n− logΩ(1) n and f is in AC0;

4. ε = n−c and f is a one-way space O(c log n) algorithm, for any c;

5. ε = n−0.029 and f is a mod 3 linear function.

All the results give one-sided distinguishers, and extend to the xor of more copies for
suitable ε.

Meka and Zuckerman (RANDOM 2009) prove 5 with ε = O(1). Bogdanov, Dvir,
Verbin, and Yehudayoff (Theory Of Computing 2013) prove 2 with ε = 2−O(

√
n). Chen

and Zuckerman (personal communication) give an alternative proof of 4.
1-4 are obtained via a new and simple connection between small-bias distributions

and error-correcting codes. We also give a conditional result for DNF formulas, and
show that 5-wise independence does not hit mod 3 linear functions.
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1 Introduction and our results

Small-bias distributions, introduced by Naor and Naor [NN93], cf. [ABN+92, AGHP92,
BT13], are distributions that look random to parity functions over {0, 1}n. They can be
generated using a seed of O(log n/ε) bits, if each parity outputs 1 with a probability that is
within ε of 1/2. Since their introduction, they have become a fundamental object in theo-
retical computer science and have found their uses in many areas including derandomization
and algorithm design.

In the last decade or so researchers have considered the sum (i.e., bit-wise xor) of several
independent copies of small-bias distributions. The first paper to explicitly consider it is
[BV10a]. This distribution appears to be significantly more powerful than a single small-
bias copy, while retaining a modest seed length. In particular, two main questions have been
asked:

Question: RL. Reingold and Vadhan (personal communication) asked whether the sum
of two copies of 1/poly(n)-bias distributions fools one-way logarithmic space, aka one-way
polynomial-size branching programs, which would imply RL=L. It is known that a small-
bias distribution fools one-way width-2 branching programs (Saks and Zuckerman, see also
[BDVY13] where a generalization is obtained). We are not aware of any result showing that
more copies help for width-3 programs.

Question: polynomials. The papers [BV10a, Lov09, Vio09b] show that the sum of d
small-bias generators fools GF(2) polynomials of degree d. (We note that by replacing Or
with Parity on a random subset of the inputs these results also apply to d-DNF.) However, the
proofs only apply when d ≤ (1− Ω(1)) log n. Still, the construction is candidate to working
even for larger d. If true, that would make progress on long-standing open problems in circuit
complexity regarding AC0 with parity gates [Raz87], cf. the survey [Vio09a, Chapter 1].

In this space we highlight the following basic question: what is the smallest ε2 = ε2(ε)
such that the xor of any two ε-biased distributions over {0, 1}n ε2-fools the inner product
polynomial x1x2 + x3x4 + . . . + xn−1xn mod 2? We only know 1.99ε < ε2 ≤ O(

√
ε). The

details of the first inequality are omitted. The second can be found in [BV10a, Vio09b].

In terms of negative results, Meka and Zuckerman [MZ09] show that the sum of 2 dis-
tributions with constant bias does not fool mod3 linear functions. Bogdanov, Dvir, Verbin,
and Yehudayoff [BDVY13] show that for ε = 2−O(

√
n/k), the sum of k ε-biased distributions

does not fool circuits of size poly(n) and depth O(log2 n) (NC2).
In this work we improve on both these results and obtain other limitations of the sum of

small-bias distributions.

1.1 Our results

The following theorem states our main counterexamples. We denote by D +D the bit-wise
xor of two independent copies of a distribution D.
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Theorem 1. There exists an explicit ε-biased distribution D over {0, 1}n and an explicit
function f , such that f(D + D) = 0 and Prx∼{0,1}n [f(x) = 0] ≤ p, where ε, f, p are of any
one of the following choices:

i. ε = 2−Ω(n), f is a poly(n)-size circuit, and p = 2−Ω(n);

ii. ε = 2−Ω(n/ logn) , f is a fan-in 2, poly(n)-size circuit of depth O(log2 n), and p = 2−n/3;

iii. for any c, ε = n− logc n, f is an nO(c)-size circuit of unbounded fan-in and depth O(c)

( AC0), and p = n− logΩ(1) n/3;

iv. for any c, ε = 1/nc, f is a one-way O(c log n)-space algorithm, and p = O(1/nc);

v. ε = n0.029, f is a mod3 linear function, and p = 1/2.

Moreover, all our results extend to more copies of D as follows. The input D + D to f
can be replaced by the bit-wise xor of k independent copies of D if ε is replaced by ε2/k, where
k is at most the following quantities corresponding to the above items: i. n/60; ii. n/6 log n;
iii. logc+1 n/6(c+ 1) log log n; iv. 2c; v. O(log n/ log log n).

Theorem 1.i is tight up to the constant in the exponent because every ε2−n-biased dis-
tribution is ε-close to uniform.

Theorem 1.ii would also be true with ε = 2−Ω(n), if a decoder for certain algebraic-
geometric codes runs in NC2, which we conjecture it does. [BDVY13] prove Theorem 1.ii
with ε = 2−O(

√
n/k).

Theorem 1.iii is tight in the sense that n−(logn)O(d)
bias fools AC0 circuits of size nd and

depth d, as shown in the sequence of works [Baz09, Raz09, Bra09, Tal14].
Theorem 1.iv can also be obtained in the following way, pointed out to us by Chen and

Zuckerman (personal communication). Observe that since one can distinguish a set of size s
from uniform with a width s+1 branching program, and there exist ε-bias distributions with
support size O(n/ε2), the sum of two such distributions can be distinguished from uniform
in space O(c log n) when ε = n−c. Both their proof and ours (presented later) apply to
c > 0.01; but for smaller c Theorem 1.v kicks in.

Theorems 1.iv and 1.v come close to addressing the “RL question,” without answering
it: 1.v shows that polynomial bias is necessary even for width-3 regular branching programs,
while 1.iv shows that the bias is at least polynomial in the width. [MZ09] prove Theorem 1.v
with ε = Ω(1).

We have not been able to say anything on the “Polynomials question.”

There exist other models of interest. For read-once DNF no counterexample with large
error is possible because Chari, Rohatgi, and Srinivasan [CRS00], building on [EGL+98],
show that (just one) n−O(log 1/δ)-bias distribution fools any read-once DNF on n variables with
error δ, cf. Appendix A. The [CRS00] result is rediscovered by De, Etesami, Trevisan, and
Tulsiani [DETT10], who also show that it is essentially tight by constructing a distribution
which is nΩ(log 1/δ)/ log log 1/δ-biased yet does not δ-fool a read-once DNF. In particular, fooling
with polynomial error requires super-polynomial bias.
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It would be interesting to know whether the xor of two copies overcomes this limitation,
i.e., if it δ-fools any read-once DNF on n variables if each copy has bias poly(n/δ). If true,
this would give a generator with seed length O(log n/δ), which is open.

We are unable to resolve this for read-once DNF. However we show that the corresponding
result for general DNF implies long-standing circuit lower bounds [Val77]. This can be
interpreted as saying that such a result for DNF is either false or extremely hard to prove.
We also get a conditional counterexample for depth-3 circuits.

Theorem 2. Suppose polynomial-time ( P) has fan-in 2 circuits of linear size and logarithmic
depth. Theorem 1 also applies to the following choices of parameters:

i. ε = n−ω(1), f is a depth-3 circuit of size no(1) and unbounded fan-in, and p = n−ω(1).

ii. ε = n−ω(1), f is a DNF formula, and p = 1− 1/no(1).

Moreover, all our results extend to more copies of D as follows. The input D +D to f can
be replaced by the bit-wise xor of k ≤ log n independent copies of D if ε is replaced by ε2/k.

All the above results except Theorem 1.v are based on a new, simple connection between
small-bias generators and error-correcting codes, discussed in §1.2. We also go the other
way around and obtain some results on the complexity of decoding. For example, we show
some limitations for low-degree polynomials on detecting codewords with errors (Claim 30),
and that for codes with large minimum distance, AC0 and read-once branching programs
cannot decode when the number of errors is close to half of the minimum distance of a code
(Claim 29).

Theorem 1.v instead follows [MZ09] and bounds the mod 3 dimension of small-bias distri-
butions, which is the dimension of the subspace spanned by the support of the distributions
over GF(3). It turns out that upper bounds on the mod3 dimension of k-wise independent
distributions would allow us to reduce the bias in Theorem 1.v, assuming long-standing con-
jectures on correlation bounds for low-degree polynomials (which may be taken as standard):

Claim 3. Suppose

1. the parity of k copies of mod3 parity on disjoint inputs of length m has correlation
2−Ω(k) with any GF (2) polynomial of degree

√
m, and

2. for every c, there exists a c log n-wise independent distribution whose support on {0, 1}n ⊆
GF (3)n = {0, 1, 2}n has mod3 dimension n0.49.

Then the “RL question” is false, i.e., there exists an n−ω(1)-biased distribution D such that
D +D does not fool a one-way O(log n)-space algorithm.

Counterpositively, an affirmative answer to the “RL question,” even for permutation,
width-3 branching programs, implies lower bounds on the mod3 dimension of k-wise inde-
pendent distributions, or that the aforementioned correlation bounds are false.

Therefore, we initiate a systematic study of the mod3 dimension of (almost) k-wise in-
dependent distributions, and obtain the following lower and upper bounds. First, we give
an Ω(k log n) lower bound for almost k-wise independent distributions, specifically, distribu-
tions such that any k coordinates are 1/10 close to being uniform over {0, 1}k (Claim 14).
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This also gives an exponential separation between mod 3 dimension and seed length for such
distributions.

We then prove the following upper bounds, see Claim 23 and Claim 27.

Theorem 4. For infinitely many n, there exists k-wise independent distributions over {0, 1}n
with mod3 dimension d for any of the following choices of k and d:

i. k = 2, d ≤ n0.72;

ii. 3 ≤ k ≤ 5, d ≤ n− 1.

We note that an upper bound of n− 1 on the mod3 dimension of a k-wise independent
distribution is equivalent to saying that there exists a k-wise independent distribution that
is supported on the set of binary strings whose Hamming weight is divisible by three. In
particular, such a distribution does not fool mod3 in a strong, one-sided sense. We ask
what is the largest k∗ = k∗(n) such that there exists a k-wise independent distribution with
mod 3 dimension ≤ n−1. We present a general framework using duality and symmetrization
towards obtaining such bounds. By combining our framework with a computer program we
have shown that for every n ≤ 900, k∗ ≥ n/3. Hence, we conjecture the bound k∗(n) = Ω(n).
Analytically, we show k∗ ≥ 5 for infinitely many n, as reported in Theorem 4.ii.

1.2 Our techniques

All our counterexamples in Theorem 1 and 2, except Theorem 1.v, come from a new connec-
tion between small-bias distributions and linear codes, which we now explain. Let C ⊆ Fn
be a linear error correcting code over a field of characteristic 2. Abusing notation, we also
use C to denote the uniform distribution over the code C. It is well-known that if C⊥ has
minimum distance d⊥, then C is (d⊥ − 1)-wise independent.

Define Ne to be the “noise” distribution over Fn obtained by repeating the following
process e times: Pick a uniformly random position from [n], and set it to a uniform symbol
in F. Then every linear test has zero bias if one of its positions is set to random. Thus, Ne

has bias at most (1− d⊥/n)e over tests of size at least d⊥.
Now, define De to be the small-bias distribution obtained from adding Ne to C, and we

have the following fact.

Fact 5. De is (1− d⊥/n)e-biased.

Our main observation is that the xor of two noisy codewords is also a noisy codeword,
with the number of errors injected to the codeword doubled. That is,

De +De = C +Ne + C +Ne = C +N2e = D2e.

Now suppose an algorithm can distinguish whether a string is within 2e errors of a
codeword or if it is uniform. Then it can be used to distinguish De+De from uniform. More
generally, if a circuit can distinguish a codeword with ke errors from a uniform string, then
it can distinguish the xor of k independent copies of De from uniform. Contrapositively,
if D + D fools f , then f cannot detect codewords in C within 2e errors. Thus, to obtain
counterexamples we only have to exhibit appropriate distinguishers. We achieve this by
drawing from results in coding theory. This is explained below after a remark.
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Remark 1. Our distinguisher is only required to tell apart noisy codewords and uniform
random strings. This is a weaker condition than decoding. In fact, similar distinguishers
have been considered in the context of tolerant property testing [GR05, KS09, RU10], where
tolerant testers are designed to decide if the input is close to being a codeword or far from
every codeword, by looking at as few positions of the input as possible.

We also note that our connection between ε-bias distributions and linear codes is different
from the well-known connection in [NN93], which shows that for a binary linear code with
relative minimum and maximum distance ≥ 1/2−ε and ≤ 1/2+ε respectively, the columns of
its k×n generator matrix form the support of an ε-biased distribution over {0, 1}k. However,
the connection to codes is lost once we consider the sum of the same distributions. In contrast,
the sum of our distributions bears the code structure of a single copy.

For general circuits (Theorem 1.i), we consider the asymptotically good binary linear
code with constant dual relative distance, based on algebraic geometry and exhibited by Gu-
ruswami in [Shp09]. We conjecture that the corresponding distinguisher can be implemented
in NC2. However we are unable to verify this. Instead, for NC2 circuits (Theorem 1.ii),
we use Reed-Solomon codes and the Peterson-Gorenstein-Zierler syndrome-decoding algo-
rithm [Pet60, GZ61] which we note is in NC2. By scaling the NC2 result down to polylogn
bits followed by a depth reduction we obtain our results for AC0 circuits (Theorem 1.iii).
This result could also be obtained by scaling down a result in [BDVY13], although it was
not stated there.

Our counterexample for one-way log-space computation (Theorem 1.iv) also uses Reed-
Solomon codes. The decoder is simply syndrome decoding: from e errors it can be realized by
computing the syndrome in a one-way fashion using space O(e log q), where q is the size of the
underlying field of the code. For a given constant c, setting q = n, k = d⊥−1 = n−O(c), and
e = O(c) we obtain a one-way space O(c log n) distinguisher for the sum of two distributions
with bias n−c.

Naturally, one might try to eliminate the dependence on c in the O(c log n) space bound
with a different choice of e and q, which would answer the “RL question” in the negative. In
Claim 8 however we show that to obtain n−c bias, the space e log q for syndrome decoding
must be of Ω(c log n), regardless of the code and the alphabet. Thus our result is the
best possible that can be obtained using syndrome decoding. We raise the question of
whether syndrome decoding is optimal for one-way decoding in this setting of parameters,
and specifically if it is possible to devise a one-way decoding algorithm using space o(e log q).
There do exist alternative one-way decoding algorithms, cf. [RU10], but apparently not for
our setting of parameters of e = O(1) and k = n−O(1).

Our conditional result for depth-3 circuits and DNF formulas (Theorem 2) follows from
scaling down to barely superlogarithmic input length, and a depth reduction [Val77] (cf. [Vio09a,
Chapter 3]) of the counterexample for general circuits (Theorem 1.i). We note that the
2−Ω(n)-bias in Theorem 1.i is essential for this result, in the sense that 2−n/ logn-bias would
be insufficient to obtain Theorem 2. We also remark that since O(log2 n)-wise independence
suffices to fool DNF formulas [Baz09], one must consider linear codes with dual distance less
than log2 n in our construction, and so D has bias at most 2−O(log2 n).

The connection between codes and small-bias distributions motivate us to study further
the complexity of decoding. [Vio06, Chapter 6] and [SV10], cf. [Vio06, Chapter 6], show that
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list-decoding requires computing the majority function. In Claim 29 we extend their ideas
and prove that the same requirement holds even for decoding up to half of the minimum
distance. This gives some new results for AC0 and for branching programs. Finally, since
logO(1) n-wise independence fools AC0 [Bra09, Tal14], we obtain that AC0 cannot distinguish
a codeword from a code with logΩ(1) n dual distance from uniform random strings. This also
gives some explanation of why scaling is necessary to obtain Theorem 1.iii from Theorem 1.ii.

Theorem 1.v. Meka and Zuckerman [MZ09] construct the following constant-bias distri-
bution D over n :=

(
d
5

)
bits with mod3 dimension less than

√
n: Each output bit is the

square of mod3 of 5 out of the d uniform random bits, which can be written as a degree-5
GF(2)-polynomial. Since any parity of the output bits is also a degree-5 polynomial over
{0, 1}d, D has constant bias. To show that D + D does not hit a mod3 function, they
observe that D has mod3 dimension at most d2 <

√
n, and from Fact 10 that D + D has

mod3 dimension at most (d2)2 = d4 < n.
We extend their construction using ideas from the Nisan-Wigderson generator [NW94]:

We pick a design consisting of n sets where each set has size nβ and the intersection of any
two sets has size log n. Such design exists provided the universe has size n2β. The output
distribution is again the square of mod3 on each set.

For any test of size at least log n bits, let J be any log n bits of the test. We fix the
intersections of their corresponding sets in the universe to make them independent. After
we do this, every bit in J is still a mod3 function on nβ − |J | log n ≥ 0.9nβ bits.

We further fix every bit outside the |J | sets in the universe. This will not affect the bits
in J . Now consider any bit b in the test that is not in J , this corresponds to a set which
has intersection at most log n with each of the sets corresponding to the bits in J . Thus, b
is now a mod3 function on at most |J | log n = log2 n input bits and thus can be written as
a degree log2 n GF(2) polynomial. Hence, the parity of the bits outside J is also a GF(2)
polynomial of the same degree, and we call this polynomial p.

Observe that the bias of the test equals to the correlation between the parity of the bits
in J and p. Since each bit in J is a mod3 function on nβ bits, it has constant correlation
with p. In Lemma 13 we prove a variant of Impagliazzo’s XOR lemma [Imp95] to show that
the xor of log n independent such bits makes the correlation drop from constant to ε = n−β/4.
This variant of XOR lemma may be folklore, but we are not aware of any reference.

This handles tests of size at least log n. For smaller tests we xor the above distribution
with an 1/nΩ(1)-almost log n-wise independent distribution, which gives us ε bias for tests
less than log n and has sufficiently small dimension. We then show that the xor of the two
distributions has dimension less than

√
n and conclude as in the previous paragraph.

Organization. In §2 we describe our counterexamples and prove Theorem 1 and 2, and
Claim 3. In §3 we prove our lower bounds and upper bounds on the mod3 dimension of
k-wise independence. The results on the complexity of decoding are in §4.
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2 Our counterexamples

We are now ready to prove Theorem 1 and 2, and Claim 3. We consider linear codes with
different parameters, the bias of D follows from Fact 5. Then we present our distinguishers.
In the end, we explain how our results hold for k copies instead of 2.

2.1 General circuits

Venkatesan Guruswami [Shp09] exhibits the following family of constant-rate binary linear
codes whose primal and dual relative minimum distance are both constant.

Theorem 6 (Theorem 4 in [Shp09]). For infinitely many n, there exists a binary linear
[n, n/2] code C which can be constructed, encoded, and decoded from n/60 errors in time
poly(n). Moreover, the dual of C has minimum distance at least n/30.

Proof of Theorem 1.i. Applying Fact 5 with e = n/120 to the code in Theorem 6, we obtain
a distribution D that is 2−n/1800-biased. To detect C within 2e errors, the detector f decodes
and encodes the input, and accepts if and only if the input and the re-encoded string differ
by at most 2e blocks. Since both the encoding and decoding algorithms run in polynomial
time, so does f .

Note that f accepts at most 2n/2 ·
∑2e

i=0

(
n
i

)
= 2n/2 ·22nH(1/60)+o(n) ≤ 20.75n possible strings,

where H(·) is the binary entropy function. Hence, f distinguishes D +D from the uniform
distribution with probability at least 1− 2−0.25n.

2.2 NC2 circuits

Proof of Theorem 1.ii. Consider the [q, q/2, q/2 + 1] Reed-Solomon code C over F2log q . C
has dual minimum distance q/2 + 1 and can decode from q/4 errors. Applying Fact 5 to C
with e = q/12, we obtain a distribution D over n := q log q bits that is 2−Ω(n/ logn)-biased.

Let α be a primitive element of F2log q . Let H be a parity check matrix of C. We first
recall the Peterson-Gorenstein-Zierler syndrome-decoding algorithm [Pet60, GZ61].

Given a corrupted codeword y, let (s1, . . . , sq/2)T := Hy be the syndrome of y. Suppose
y has v < q/2 errors. Let E denote the set of its corrupted positions. Let Λv(x) :=∏

i∈E(x − αi) = 1 +
∑v

i=1 λix
i be the error locator polynomial. The syndromes and the

coefficients of Λ are linearly related by

λvsj−v + λv−1sj−t+1 + . . .+ λ1sj−1 = 0,

for j > v. These form a linear system with unknowns λi’s. The algorithm decodes by
attempting to solve the corresponding linear systems with v errors, where v ranges from e
to 1.

Note that the system has a unique solution if and only if y and some codeword differ
by exactly v positions, for some v between 1 and 2e. Thus, our detector f computes the
determinants of the 2e < q/4 systems and accepts if and only if one of them is nonzero.
Since computing determinant is in NC2 [Ber84], f can be computed by an NC2 circuit. The
system always has a solution when inputs are under D + D and so f always accepts. On
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the other hand, f accepts at most qq/2 ·
∑2e

i=0

(
q
i

)
(q− 1)i ≤ qq/2 · 2qH(1/6)+o(1)qq/6 ≤ 22n/3+o(n)

possible strings, where H(·) is the binary entropy function. Therefore, f distinguishes D+D
from the uniform distribution with probability at least 1− 2−n/3.

2.3 Constant-depth circuits

By scaling down the previous counterexample to polylogn bits and applying standard depth
reduction, we have the following result for AC0 circuits.

Proof of Theorem 1.iii. Let D and f be the distribution and distinguisher in Theorem 1.ii
respectively. Since f is a fan-in 2 circuit of poly(n)-size and depth O(log2 n), it can be
evaluated by traversing the circuit once while maintaining the values of the evaluated subtree
at each level, which takes time poly(n) and space O(log2 n).

Let Dn′ and fn′ be the scaled distribution and distinguisher of D and f on n′ = logc+1 n
bits respectively (We set the rest of the n − n′ bits at uniformly random). Dn′ has bias

2
−Ω( n′

logn′ ) = n−Ω(logc n). From the above observation, fn′ runs in time logcb n for some universal
constant b and space S := O((log log n)2), and distinguishes Dn′ + Dn′ from uniform with
probability 1 − n− logc n/3. It follows from the following claim that fn′ can be implemented
by a circuit of polynomial-size and depth O(c).

Claim 7. Every problem on n bits that is decidable in time logc n and space S = o(log n)
can be decided by a circuit of polynomial-size and depth 2c+O(1).

Proof. LetA be the decider. Consider all the possible configurations ofA. Define φi : {0, 1}2S →
{0, 1} so that φi(Cs, Ct) takes two configurations Cs and Ct, and accepts if and only if on in-
put x, A’s configuration goes from Cs to Ct in ( logn

S
−1)i steps. φi can be written recursively

as

φi(Cs, Ct) :=
∨

Cs=C1,C2,...,C logn
S

=Ct

logn
S
−1∧

j=1

φi−1(Cj, Cj+1).

Note that φ0(Cs, Ct) has a constant size circuit and we have |φi| =
(

2S
logn
S

)
( logn

S
− 1)|φi−1|.

Therefore, A can be implemented by a circuit of polynomial-size and depth 2c+O(1).

2.4 One-way log-space computation

Proof of Theorem 1.iv. Consider the [q, q− 6c, 6c+ 1]2log q Reed-Solomon code C over F2log q ,
which has dual minimum distance 6c and can decode from 3c errors. Applying Fact 5 to C
with e = c, we obtain a distribution D over n := q log q bits that is (log n/n)c-biased.

Let H be a parity check matrix of C. On input y ∈ Fq
2log q , our distinguisher f computes

s2e+1, . . . , s4e from the syndrome s := Hy. Clearly this can be implemented in one-pass and
(4e+O(1)) log q space. Finally f accepts if and only if there exists a u with Hamming weight
at most 2e such that Hu = Hy.

Since f accepts at most qq−3c · O(q2c) = O(qq−c) strings, f distinguishes D + D from
uniform with probability 1−O(log n/n)c.
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Computing the input for syndrome decoding requires space 2e log q. We now show that
in order to obtain n−c bias via our construction, 2e log q = Ω(c log n).

Claim 8. Let C be a [n, k, d] code over Fq which decodes from e errors, and d⊥ be its dual
minimum distance. If C satisfies (1 − d⊥/n)e < n−c for sufficiently large c, then we have
e log q = Ω(c log n).

Proof. If d⊥ > (1 − 1/q)n, then by Plotkin bound on the dual code, n − k = O(1). By
Singleton bound, e ≤ d ≤ n− k and so we have e = O(1). Hence, (1− d⊥/n)e > 1/nc, and
therefore the condition is not satisfied.

On the other hand, suppose d⊥ ≤ (1− 1/q)n. Then (1− d⊥/n)e ≥ (1/q)e. The condition
(1/q)e ≤ n−c implies e log q ≥ 2c log n.

2.5 Depth 3 circuits and DNF formulas

Proof of Theorem 2. First we apply Valiant’s depth reduction [Val77, Val83], cf. [Vio09a,
Theorem 25], to f in Theorem 1.i, which gives us an unbounded fan-in depth-3 circuit f ′ of
size 2n/ log logn. Then we scale down n to n′ = log n log log log log n bits (We set the rest of
the n − n′ bits at uniformly random) to get an n−ω(1)-biased distribution Dn′ and a circuit
f ′n′ of size no(1) and depth 3 that distinguishes Dn′ + Dn′ from uniform with probability at
least 1− n−ω(1). This proves Theorem 1.i.

To prove Theorem 1.ii, note that f ′n′ accepts with probability 1 under Dn′ + Dn′ and
without loss of generality we can assume f ′n′ is an AND-OR-AND circuit. Hence, it contains
a DNF f ′′ such that (1) f ′′ accepts under Dn′ + Dn′ with probability 1, and (2) f ′′ rejects
with probability at least 1/2no(1) under the uniform distribution.

2.6 Mod 3 linear functions

First we define our key concept.

Definition 9. Identify F3 with {0, 1, 2}. Let S ⊆ Fn3 be a set of vectors. Define the mod 3
dimension of S, denoted by dim3(S), to be the dimension of its spanning subspace over F3.
We also define the mod 3 dimension of a distribution D to be the mod 3 dimension of its
support.

Fact 10 (Lemma 7.1 and 7.2 in [MZ09]). Let S be a set of vectors in {0, 1}n ⊆ Fn3 . Define S2

to be the set {x×3 x : x ∈ S}, where x×3 y denote the pointwise product of two vectors x and
y (over F3). Then (1) dim3(S2) ≤ dim3(S)2 and (2) dim3(S +2 S) ≤ dim3(S) + dim3(S)2.

Proof. Let d = dim3(S) and {β1, . . . , βd} be a basis of S. Let x =
∑d

i=1 ciβi and y =∑d
j=1 djβj be any two vectors in S. We have

x×3 x =
∑
i,j∈[d]

cicj(βi ×3 βj).

9



Thus {βi×3 βj}i,j∈[d] forms a basis of S2, proving (1). For (2), observe that for any a, b ∈ F3,
a+2 b = a+3 b+3 a×3 b. Hence we have

x+3 y +3 x×3 y =
d∑
i=1

(ci + di)βi +
∑
i,j∈[d]

cidj(βi ×3 βj),

and thus {βi}i∈[d] ∪ {βi ×3 βj}i,j∈[d] forms a basis of S +2 S.

The following lemma is well-known (cf. [Nis91]). We include a proof here for completeness.

Lemma 11. There exists a design (S1, . . . , Sn) over the universe [d] such that

1. |Si| = t for every i ∈ [d], and

2. |Si ∩ Sj| ≤ t̂ for every i 6= j ∈ [d],

where d = n2β, t = nβ, t̂ = log n for any β < 0.5.

Proof. It suffices to show that given S1, . . . , Si−1, there exists a set S such that |S| ≥ t and
|S∩Sj| ≤ t̂ for j < i. Consider picking each element in [d] with probability p = 0.1 log n/nβ.
We have E[|S|] = pd ≥ 2nβ. By Chernoff bound,

Pr[|S| < t = nβ] ≤ 2−n
β/4 < 1/2.

We also have E[|S ∩ Sj|] = pt = 0.1 log n. Again by Chernoff bound,

Pr[|S ∩ Sj| > t̂ = log n] ≤ 2−4 logn < 1/2n.

It follows by a union bound that with nonzero probability there is an S which satisfies the
two conditions above.

Proof of Theorem 1.v. Let α = 1/34 and β = 4α. Also let d, t, t̂ be the parameters and
S1, . . . , Sn be the design specified in Lemma 11. Define the function L : {0, 1}d → {0, 1}n
whose i-th output bit yi equals

mod2
3(xSi) := (

∑
j∈Si

xj)
2 mod 3.

Let T1 be the image set of L. Without the square, this set has mod3 dimension d and so by
Fact 10, dim3(T1) = O(d2) = O(n16α). Let T2 be an ε-almost k-wise independent set, where
ε = 1/nα and k = 2 log n. Known constructions [NN93, AGHP92] produce such a set of size
O((k log n)/ε) and therefore dim3(T2) is at most O(nα log2 n).

Consider the set T := T1+2T2. By Fact 10, T+2T has dimension at most O(n34α log4 n) <
n because α < 1/34. Therefore, there is a non-zero mod 3 linear function ` such that `(y) = 0
(mod 3) for any y ∈ T , while Pr[`(y)] ≤ 1/2 for a uniform y. It remains to show that T is
O(1/nα)-biased. For any test on I ⊆ [n], we consider the cases (1) when |I| ≤ k, and (2)
when |I| > k separately.

Write y = y1 ⊕ y2, where y1 ∈ T1 and y2 ∈ T2. Case (1) follows from the fact that T2 is
1/nα-almost k-wise independent. Case (2) follows from the following claim.
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Claim 12. For any |I| > k, |Ey1 [χI(y1)]| ≤ O(1/nα), where χI(y) := (−1)
∑
i∈I yi.

Proof. Pick a subset J ⊆ I of size k. Define f, p : {0, 1}n → {0, 1} by f(x) :=
∑

i∈J mod
2
3(xSi) and p(x) :=

∑
i∈I\J mod2

3(xSi) respectively. Observe that∣∣Exi:i∈[d][χI(y1)]
∣∣ =

∣∣Exi:i∈[d][(−1)(f(x)+p(x))]
∣∣ ,

which is the correlation between f and p.
Consider the sets Sj ⊆ [d] with j ∈ J . Let B1 be the set of indices appearing in

their pairwise intersections. That is, B1 := {k ∈ [d] : k ∈ Si ∩ Sj for some distinct i, j ∈ J}.
Fixing the value of every xk ∈ B1, each mod 2

3(Sj) in f becomes a function on m := nβ−t̂·k ≥
0.9nβ bits.

Let B2 be the set of indices in [d] outside the subsets indexed by J , which do not affect the
bits in J . Fixing their values, each mod2

3(Sj) in p is a function on at most t̂ · k = O(log2 n)
bits and so can be written as a degree O(log2 n) GF(2)-polynomial. Since p is a parity of
the mod2

3(Sj)’s, it can also be written as a degree O(log2 n) GF(2) polynomial.
To build intuition, note that after fixing the input bits in B1 and B2, for each of the

mod 2
3(Sj) in f , by [Smo87] we have |Exi:i∈[d][(−1)( mod 2

3(Sj)+p(x))]| ≤ 1−Ω(1). In the following
lemma we prove a variant of Impagliazzo’s XOR Lemma [Imp95] to show that

|Exi:i∈[d][(−1)(f(x)+p(x))]| ≤ O(1/m0.249) = O(1/nα).

Averaging over the values of the xk’s in B1 and B2 finishes the proof.

Lemma 13. Let k = 2 logm, define f : {0, 1}m×k → {0, 1} by f(x(1), . . . , x(k)) := mod
2
3(x(1)) + . . .+ mod 2

3(x(k)). Let p : {0, 1}m×k → {0, 1} be any polynomial of degree O(log2m).
We have Cor(f, p) := Ex∼{0,1}m×k [(−1)f(x)+p(x)] ≤ O(1/m0.249).

Proof. We will use the fact that [Smo87] holds for degree nΩ(1) polynomials to get correlation
1/nΩ(1) for polynomials of much smaller degree (polylog(n)).

As in the proof in [Imp95] we first show the existence of a measure M : {0, 1}m×k → [0, 1]
of size |M | :=

∑
xM(x) = 2mk/4 such that with respect to its induced distribution D(x) :=

M(x)
|M | , mod2

3 is 1/m0.249-hard for any polynomial p of degree O(log2m), i.e.,

Prx∼D[mod2
3(x) = p(x)] ≤ 1/2 + 1/m0.249.

Suppose not. Lemma 1 in [Imp95] implies that one can obtain a function q by taking the
majority of 32m0.499 polynomials of degree O(log2m) such that

Prx∼{0,1}m×k [mod2
3(x) = q(x)] > 3/4.

Note that q can be represented as a degree O(m0.499 log2m) polynomial. From [Smo87],
Prx∼{0,1}m×k [mod2

3(x) = p(x)] ≤ 3/4 + Θ(δ) for any degree δm1/2 polynomial p, a contradic-
tion.

Now we show that there is a set S ⊆ {0, 1}m×k of size 2mk/8 such that mod 2
3 is 1/m0.249-

hard-core on S for any polynomial p of degree O(log2m), i.e.,

Prx∼S[mod3
2(x) = p(x)] ≤ 1/2 + 1/m0.249.

11



Let p be any degree-O(log2m) polynomial. For any measure M : {0, 1}m×k → [0, 1], define
Advp(M) by Advp(M) :=

∑
xM(x)(−1) mod 2

3(x)+p(x). We construct S probabilistically by
picking each x to be in S with probability M(x). Let MS be the indicator function of

S. Then ES[Advp(MS)] = Advp(M) ≤ |M |
2m0.249 . Note that Advp(MS) is the sum of 2mk

independent random variables, where each variable is over [−1, 0] or [0, 1]. By Hoeffding’s
inequality,

PrS[Advp(MS) > |M |/m0.249] ≤ 2−|M |
2/2m·2m0.49

= 2−2m/128m0.49

.

Note that there are 2mk
O(log2 m)

polynomials of degree log2m. Moreover, since ES[|S|] =
2mk/4, again by Hoeffding’s inequality, PrS[|S| < 2mk/8] ≤ 1/2. Hence, by a union bound,
the required S exists.

It follows that there exists a set of inputs S ⊆ {0, 1}m×k of size 2mk/8 such that mod2
3

is 1/m0.249-hard-core on S for any polynomial of degree O(log2m). By Lemma 4 in [Imp95]
and our choice of k, for any polynomial p of degree O(log2m),

Prx[f(x) = p(x)] ≤ 1/2 + 1/m0.249 + (7/8)k = 1/2 +O(1/m0.249).

Hence f is O(1/m0.249)-hard for any polynomial of degree O(log2m), and the lemma follows.

Proof of Claim 3. We replace the design in the proof of Theorem 1.v with one that has set
size t = O(log4 n) and intersection size t̂ = O(log n). Using the same idea as in the proof of
Lemma 11 one can show that such design exists provided the universe is of size d = O(log8 n).
Now, using the same argument, for tests of size larger than c log n, we apply (1) to f and p,
which are the parity of c log n copies of mod 3 parity on m = O(log4 n) bits and an O(log2 n)
degree polynomial respectively. This gives bias O(1/nc). Note that the image set T1 now
has mod3 dimension d2 = O(log16 n).

For tests of size at most c log n, we replace the almost k-wise independent set with the
k-wise independent distribution given by (2), which has zero bias, and we denote the support
of the distribution by T2.

By Fact 10, T := T1 +2 T2 has mod3 dimension O(n0.49 log16 n) < n. Hence, T +2 T has
dimension less than n and the claim follows.

2.7 Sum of k copies of small-bias distributions

We now show that the results hold for k copies when ε is replaced by ε2/k, proving the
“Moreover” part in Theorem 1 and 2.

Proof of “Moreover” part in Theorem 1 and 2. To prove Theorem 1.i, 1.ii and 1.iv, we can
replace e by 2e/k in their proofs to obtain distributions D′ that are ε2/k-biased. Since we
have to throw in at least one error, k ≤ 2e. The rest follows by noting the sum of k copies
of D′ is identical to D +D.

By scaling down the above small-biased distributions D′ for Theorem 1.i and 1.ii to n′

bits as in the proofs of Theorem 1.iii and 2 respectively, we obtain ε2/k-biased distributions
D′n′ so that the sum of k copies of D′n′ is identical to Dn′ +Dn′ in Theorem 1.iii and 2. Since
we have to throw in at least one error, k ≤ en′ , where en′ is the scaled down e = e(n).
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For Theorem 1.v, let α := log(1/ε)/ log n and so ε2/k = n−2α/k. We set β = 8α/k
instead of 4α in the construction of T1 and replace T2 by a 1/n−2α/k-almost 2 log n-wise
independent set in the proof, and call them T ′1 and T ′2 respectively. We now have dim3(T ′1) =
O(n32α/k) and dim3(T ′2) = O(n2α/k log2 n). Thus, the set T ′ := T ′1 +2 T

′
2 has dimension at

most O(n34α/k log2 n) and therefore the sum of k copies has dimension at most dim3(T ′)k =
O(n34α log2k n) < n, for k < O(log n/ log log n). The bias of T ′ follows from the facts that
T ′2 has bias n−2α/k against tests of size at most k, and T1 has bias O(n−2α/k) for tests of size
greater than k.

3 Mod 3 dimension of k-wise independence

In this section, we begin a systematic investigation on the mod3 dimension of k-wise inde-
pendent distributions.

Recall Definition 9 of mod3 dimension. We also define the mod3 dimension of a matrix
to be the mod3 dimension of its rows. We also write rank3 for mod3 dimension. This
notion is naturally generalized to dimension over Fp for arbitrary p, written rankp.

We will sometimes work with vectors over {−1, 1} instead of {0, 1}. Note that the map
(1 − x)/2 convert the values 1 and −1 to 0 and 1 respectively, and so the mod3 dimension
of a set will differ by at most 1 when we switch vector values from {−1, 1} to {0, 1}, and
vice versa.

While we state our results for mod3, all the results in this section can be extended to
modp for any odd prime p naturally.

3.1 Lower bound for almost k-wise independence

In the following claim we give a dimension lower bound on almost k-wise independent dis-
tributions. Here “almost” is measured with respect to statistical distance (another possible
definition is the max bias of any parity).

Claim 14. Let D be any set in {0, 1}n. If dim3(D) = t, then D is not 1/10-almost ct/ log n-
wise independent, for a universal constant c.

This actually rules out even k−1 independence because xi ∈ {0, 1}. Moreover, this gives
an exponential separation between seed length and dimension for almost d⊥-wise indepen-
dence. Indeed, for k = O(1), the seed length is Θ(log log n), whereas the dimension must be
Ω(log n).

Proof. Let C be the span of D over F3 and C⊥ be its orthogonal complement. C⊥ has
dimension n− t. We view C⊥ as a linear code over F3 and let d⊥ be its minimum distance.
Since C⊥ is linear, d⊥ equals the minimum Hamming weight of its non-zero elements. We
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have

(d⊥ log2 n)/4 ≤
⌊
d⊥ − 1

2

⌋
log2 n−

⌊
d⊥ − 1

2

⌋
log2

⌊
d⊥ − 1

2

⌋
+

⌊
d⊥ − 1

2

⌋

= log2

(
n

bd⊥−1
2
c

)b d⊥−1
2
c

+

⌊
d⊥ − 1

2

⌋
≤ log2

((
n

bd⊥−1
2
c

)
2b

d⊥−1
2
c
)

≤ log2

b d
⊥−1
2
c∑

i=0

(
n

i

)
2i


≤ t log2 3,

where the last inequality follows from the Hamming bound:

3n−t
b d−1

2 c∑
i=0

(
n

i

)
2i ≤ 3n.

Hence d⊥ ≤ O(t/ log n). Let y be a codeword in C⊥ with Hamming weight d⊥. Let I :=
{i | yi 6= 0}. Note that for every x ∈ D, we have 〈y, x〉3 = 0 on I. On the other hand,
for a uniformly distributed x we have 〈y, x〉3 = 0 with constant probability. (Here we are
using that d⊥ ≥ 2 w.l.o.g.) Therefore, D is constant bounded away from uniform on the bits
indexed in I.

3.2 2-wise independence

We now show that the mod3 dimension of a 2-wise independent set can be as small as n0.72.
Then we give evidence that our approach cannot do any better.

Definition 15. We say H is a Hadamard matrix of order n if it satisfies HHT = nIn, where
In is the n× n identity matrix.

It is well-known that the rows of a Hadamard matrix form a 2-wise independent set.
In the following we will work with vectors whose entries are from {−1, 1} = {2, 1}. The

following two claims show that certain Hadamard matrices cannot have dimension smaller
than n/2. They are taken from [Wil12]. First we give a lower bound to the modp rank from
the determinant of any square matrix.

Claim 16 (Theorem 1 in [Wil12]). Let A be an n×n matrix. Then rankp(A) ≥ n−e, where
e is the largest s such that ps | det(A), i.e., pe | det(A) and pe+1 6 | det(A).

Proof. Suppose nullityp(A) = n − r. Let (β1, . . . , βn−r) be a basis of null space of A over
Fp. Extend the basis to (β1, . . . , βn) so that it forms a basis of Fnp . Let B be the matrix
whose columns are β′is. Note that det(B) 6= 0 mod p and det(AB) = det(A) det(B). Thus,
ps | det(A) if and only if ps | det(AB). By construction, β1, . . . , βn−r are in the null space of
A over Fp and so the first n− r columns of AB are zero modp. Hence pn−r | det(A).
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Claim 17 (Theorem 2 in [Wil12]). Let H be an n × n Hadamard matrix. Let p be an odd
prime such that p | n and p2 6 | n. Then rankp(H) ≥ n/2.

Proof. Since H is a Hadamard matrix, we have HHT = nI and so det(H) det(HT ) =
det(H)2 = nn. Hence |det(H)| = nn/2. By the condition of p, pn/2 | nn/2 and pn/2+1 6 | nn/2.
Hence, it follows from Claim 16 that rankp(H) ≥ n/2.

The following claims characterize Hadamard matrices with modp rank at most n/2.

Claim 18. Let A be an n×m matrix such that AAT = mIn. If p | m, then rankp(A) ≤ m/2.

Proof. If p | m, AAT = 0 (mod p). Suppose rankp(A) = rankp(A
T ) = k. We know that

the basis of AT are contained in the null space of A. Hence nullity(A) = m − k ≥ k and
therefore k ≤ m/2.

Claim 19. Let H be an n×n Hadamard matrix. If p | n, then rankp(H) ≤ n/2. Otherwise,
rankp(A) = n.

Proof. The first part follows from the previous claim. For the second part, if p 6 | n then
det(H)2 = det(H) det(HT ) 6= 0 (mod p) and so det(H) 6= 0 (mod p). Hence rankp(H) =
n.

Now we give a generic transformation that reduces the dimension of Hadamard matrices
whose order violates the condition in Claim 17. Note that the affine bijection L : {−1, 1}n →
{0, 1}n defined by L(v) = (1−v)/2, where 1 is the all-ones vector, maps vectors from {−1, 1}n
to {0, 1}n. We have the following facts.

Fact 20. Let S ⊆ {−1, 1}n be a set consisting of the all-ones vector. Then dim3(L(S)) ≤
dim3(S).

Fact 21. If A and B are two Hadamard matrices over {−1, 1}, then A⊗B is also a Hadamard
matrix.

Fact 22. Let A,B be two matrices over any field. We have rank3(A ⊗ B) ≤ rank3(A) ·
rank3(B), where A⊗B is the tensor product of A and B.

Proof. Let α1, . . . , αu and β1, . . . , βv be two bases of A and B respectively. We show that
(αi ⊗ βj)i,j is a basis of A⊗B. Indeed, given any vector a :=

∑u
i=1 ciαi and b :=

∑v
j=1 djβj,

a⊗ b =

(
u∑
i=1

ciαi

)
⊗

(
v∑
j=1

djβj

)
=

u∑
i=1

v∑
j=1

cidj(αi ⊗ βj).

Claim 23. There exists an infinite family of 2-wise independent distributions over {0, 1}n
with mod3 dimension at most n0.72.

Proof. Starting with a Hadamard matrix H12 over {−1, 1} = {2, 1} ⊆ F3 (its existence is
guaranteed by Paley construction [Pal33]), for every n that is a power of 12, we construct
the Hadamard matrix Hn := H⊗r12 , where r = log12 n. It follows from Claim 17 and 19 that
rank3(H12) = 6. Hence, by Fact 22, Hn has dimension 6log12 n = n0.72. By rows and column
operations, we can assume H12 contains the all-ones vector. Thus, Hn also contains the
all-ones tensor, and the claim follows from Fact 20.
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The smaller m we start from any m × m Hadamard matrix with dimension m/2, the
better exponent we get. Since Hadamard matrices must be of order 1, 2, or multiple of 4,
Claim 17 implies that 12 is indeed the smallest possible m.

3.3 k-wise independence with dimension n− 1

We restrict our attention on the subspace M := {x ∈ {−1, 1}n |
∑n

i=1 xi = 0 mod 3} and
look for the largest k so that there exists a k-wise distribution supported on M . To this
end, we give a sufficient condition for its existence and show that k ≥ 5. We note that by
formulating the condition as a linear program, our empirical results from the LP solver show
that for n ≤ 900, k ≥ n/3.

Claim 24. The following statements are equivalent:

(1) There exists a k-wise independent distribution over {−1, 1}n supported on M .

(2) For every polynomial p : {−1, 1}n → R of degree k with no constant term, there exists
an x ∈M such that p(x) ≤ 0.

Proof. For every S ⊆ [n], define χS : {−1, 1}n → {−1, 1} by χS(x) :=
∏

i∈S xi. We formulate
(1) as the following linear system:∑

x∈M

µx = 1,∑
x∈M

µxχS(x) = 0 ∀S : 0 < |S| ≤ k,

µx ≥ 0 ∀x ∈M.

By Farkas’ lemma, a solution exists if and only if the following linear system has no solution:∑
S:0≤|S|≤k

p̂SχS(x) ≥ 0 ∀x ∈M,

p̂∅ < 0.

This is equivalent to ∑
S:1≤|S|≤k

p̂SχS(x) > 0 ∀x ∈M. �

The next step is symmetrization.

Definition 25. Given a degree-k polynomial p(x) : {−1, 1}n → R, p(x) :=
∑

S:1≤|S|≤k p̂SχS(x),

let p̃ : {0, 1, . . . , n} → R be its symmetrization, defined by

p̃(t) :=
∑
x:|x|=t

p(x) =
∑

S:1≤|S|≤k

p̂S
∑
x:|x|=t

χS(x) =
k∑
i=1

cimi(t)
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for some c1, . . . , ck ∈ R, where

mi(t) :=
i∑

j=0

(
t

j

)(
n− t
i− j

)
(−1)j.

Define Z to be the set

Z := {t ∈ {0, 1, 2, . . . , n} | t mod 3 = 0}.

Because symmetrization does not change Hamming weight, if p(x) > 0 for every x ∈ M ,
then p̃(t) > 0 for every t ∈ Z. Thus, we have the following claim:

Claim 26. If for every c1, . . . , ck ∈ R, there exists a t ∈ Z such that p̃(t) :=
∑k

i=1 cimi(t) ≤ 0,
then there exists a k-wise independent distribution supported on M .

Claim 26 suggests a method to exhibit k-wise independent distributions that do not fool
mod3.

Claim 27. For sufficiently large n divisible by 6, there exists a 5-wise independent distribu-
tion supported on M .

Proof. Let q(t) := p̂(t) + p̂(n− t) = 2(c2m2(t) + c4m4(t)). It suffices to show that for every
c2 and c4, q(t) ≤ 0 for some t ∈ Z. There are three cases:

If c4 ≤ 0 and c2 > 0, we have q(n/2) = −2c2n+ 2c4n(n− 2)/4 ≤ 0.
If c4 ≤ 0 and c2 ≤ 0, we have q(0) = 2(c2

(
n
2

)
+ c4

(
n
4

)
) ≤ 0.

If c4 > 0, then c4m4(t) is negative between the two zeros at n/2 − c+(n)/2 and n/2 −
c−(n)/2, where for sufficiently large n,

c+(n) :=

√
(3n− 4) +

√
2
√

3n2 − 9n+ 8 ≥ 2.33
√
n, and

c−(n) :=

√
(3n− 4)−

√
2
√

3n2 − 9n+ 8 ≤ 0.75
√
n.

Moreover, between these two points, m2(t) has a zero at its non-critical point n/2−
√
n/2,

and so there is a t0 ∈ Z near n/2−
√
n/2 such that c2m2(t0) ≤ 0. Therefore, q(t0) ≤ 0 and

the rest follows from the previous claim.

4 Complexity of decoding

In [Vio06, Chapter 6] and [SV10] it is shown that list-decoding binary codes from error rate
1/2 − ε requires computing the majority function on 1/ε bits, which implies lower bounds
for list decoding over several computational models.

Using a similar approach, we give lower bounds on the decoding complexity for AC0

circuits and read-once branching programs. We give a reduction from ε-approximating the
majority function to decoding (1/2− ε)d errors of a code, where d is the minimum distance.

Define ε-MAJ to be the promise problem on {0, 1}n, where the YES and NO instances
are strings of Hamming weight at least (1/2 + ε)n and at most (1/2− ε)n, respectively. We
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say that a probabilistic circuit solves ε-MAJ if it accepts every YES instance with probability
2/3 and accepts every NO instance with probability at most 1/3.

Let C ⊆ {0, 1}n be a code with minimum distance d and let mx,my be two messages
whose codewords x and y differ by exactly d positions, respectively. Define ε-DECODE to
be the promise problem on {0, 1}n, where the YES and NO instances are strings that differ
from x and y at most (1/2− ε)d, respectively.

Lemma 28. If a function D : {0, 1}n → {0, 1} solves ε-DECODE, then a restriction of D
solves ε-MAJ on d bits.

Proof. Let x, y ∈ C be the codewords of mx and my respectively. Without loss of generality,
we assume x and y differ in the first d positions. We further assume xi = 0 and yi = 1 for
i ∈ [d]. Given an ε-MAJ instance w of length d, let z be the n-bit string where zi = wi
for i ∈ [d] and zi = xi(= yi) otherwise. If w has weight at most (1/2 − ε)d, then w and x
disagree in at most (1/2− ε)d positions and therefore D accepts. Similarly, if w has weight
at least (1/2 + ε)d then D rejects.

Shaltiel and Viola [SV10] show that depth-c AC0[⊕] circuits can solve ε-MAJ only if ε
is at least 1/O(log n)(c+2). Brody and Verbin [BV10b] show that ε-MAJ can be solved by a
read-once width-w branching program whenever ε is at least 1/(log n)Θ(w). Combining these
results with Lemma 28, we have the following claim.

Claim 29. Let D : {0, 1}n → {0, 1} be a function.

1. If D is computable by an AC0[⊕] circuit of depth c, then it can only solve ε-DECODE
with ε ≥ 1/O(log n)c+2.

2. If D is computable by a read-once width-w branching program, then it can only solve
ε-DECODE with ε ≥ 1/(log n)Θ(w).

We also note the following negative result for decoding by low-degree polynomials.

Claim 30. Let C ⊆ {0, 1}n be an [n, k, d] code with dual minimum distance d⊥, respectively.
If

2−t − 2k−n
te∑
i=0

(
n

i

)
> 16

(
1− d⊥

n

)e/2t−1

for some constant t and e ≤ bd−1
2
c, then any degree-t GF (2)-polynomial cannot detect code-

words of C within te errors.

Proof. Suppose on the contrary a polynomial P can detect codewords of C within te errors.
By Fact 5 and Schwarz-Zippel lemma, there exists an ε := (1 − d⊥

n
)e-biased distribution D

such that P distinguishes the sum of t independent copies of D from uniform with probability
at least 2−t−2k−n

∑te
i=0

(
n
i

)
. But by [Vio09b], the sum of t copies ofD fools P with probability

16ε1/2t−1
, a contradiction.
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A Fooling read-once DNF formulas

The following claim shows that m−O(log(1/δ))-bias suffices to δ-fool any read-once DNF for-
mulas with m terms. This directly follows from Lemma 5.2 in [CRS00].

Claim 31. Let φ be a read-once DNF formula with m terms. For 1 ≤ k ≤ m, every ε-biased
distribution D fools φ with error O(2−Ω(k) + εmk).

Proof. Write φ(x) :=
∨m
i=1Ci. By Lemma 5.2 in [CRS00], |Prx∼D[φ(x)]−Prx∼{0,1}n [φ(x)]| is

upper bounded by

2−k + e · e−k/2e +
k∑
`=1

∑
S⊆[m]:|S|=`

∣∣Prx∼D[
∧
i∈S

Ci]− Prx∼{0,1}n [
∧
i∈S

Ci]
∣∣.

The rest follows from the fact that D fools each
∧
i∈S Ci with error ε because it is an AND

of AND terms.
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