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Abstract

A black-white combinatorial game is a two-person game in which the pieces are colored either
black or white. The players alternate moving or taking elements of a specific color designated
to them before the game begins. A player loses the game if there is no legal move available for
his color on his turn.

We first show that some black-white versions of combinatorial games can only assume combi-
natorial game values that are numbers, which indicates that the game has many nice properties
making it easier to solve. Indeed, numeric games have only previously been shown to be hard
for NP. We exhibit a language of numeric games (specifically, black-white poset games) that is
PSPACE-complete, closing the gap in complexity for the first time between these numeric games
and the large collection of combinatorial games that are known to be PSPACE-complete.

In this vein, we also show that the game of Col played on general graphs is also PSPACE-
complete despite the fact that it can only assume two very simple game values. This is interesting
because its natural black-white variant is numeric but only complete for PNP[log]. Finally, we
show that the problem of determining the winner of black-white Graph Nim is in P using a
flow-based technique.
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1 Introduction

This paper considers perfect information, two-player combinatorial games. In particular, we in-
vestigate whether the value1 of these games influences the computational complexity of deciding
which player should win under optimal play. We consider games that follow the normal gameplay
convention: the players alternate moves according to the rules of the game until no move is possible
for some player; that player then loses the game.

A combinatorial game is impartial if the allowed moves depend only on the position of the game
and not on which of the two players is currently moving. Examples of impartial games are Nim,
poset games, and Geography, all of which have well-understood complexity [Bou01, Gri13, Sch78].
In contrast, black-white games have no options common to both players at any position.2 Examples
include games such as chess, checkers, and go. We explore simple black-white variants of well-known
games in Appendix B.

There is general theory of combinatorial games developed by Conway [Con76] and Berlekamp,
Conway, & Guy [BCG82] that has served as one of the major tools in the area. It can be thought of
as a sort of generalization or analogy to the famous Sprague-Grundy theorem for impartial games
[Gru39, Spr36], which neatly distills the properties of Nim that allow it to be solved in polynomial
time. In particular, this general theory distinguishes a class of combinatorial games that correspond
directly to real numbers and hence share arithmetic operations and order properties with the real
numbers. We call these numeric games, and we review their properties in Section 2. We encourage
readers who are unfamiliar with game values to read Appendix A, which gives a more thorough
investigation of their properties. Numeric games are special in that it is never beneficial for either
player to make a move. More specifically, if a player can win by moving, (s)he can also win by
skipping a turn. Notice that this is not a property universally held by all black-white games (e.g.
Amazons, black-white Node Kayles, Hex).

The standard decision problem associated with a game is to determine whether a given player
has a winning strategy. As pointed out in [DH08], most two-player games with bounded length are
either PSPACE-complete or in P. Until now, however, there were no classes of numeric games known
(to the authors of this paper) to be PSPACE-complete. Furthermore, the few results that are known
about numeric games only show NP-hardness (see Blue-Red Hackenbush [BCG82]). In this paper,
we present a natural class of two-player bounded-length numeric games that is PSPACE-complete,
namely, black-white poset games. Since numeric games have previously only been shown to be as
hard as NP, there existed hope prior to this result that restricting the set of game theoretic values
of a game may make the game easier to play and thus influence its complexity. By presenting a
PSPACE-complete numeric game, we provide evidence that no such connection exists.

Despite the fact that numeric games have relatively simple game values, they can still assume
game values that are arbitrarily large. Perhaps then it is not merely the nature of the values that
affects the complexity of a game but also the number of game values that it can assume. To this
end, we investigate the game of Col [BCG82] played on general graphs. We prove that although this
class of games can only assume two possible game values, it is still PSPACE-complete3. Informally,
this has the following consequence for playing many games of Col side-by-side for which we know
the corresponding game values. We can perform an extremely simple computation to decide which

1Informally, the value of a game indicates which player will win the game and by how much. A more precise
definition is given in Appendix A.

2These are sometimes called red-blue games in the literature.
3To clear possible confusion, Col was mistakenly referenced as being proven PSPACE-complete in [Cin09].
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game to play in, but to decide which move to make in that game, we would need to solve a
PSPACE-complete problem!

Interestingly, if you take the game of Col and convert it to a black-white version of the game
in the natural way, then the game does become simpler to solve. In particular, we show the
game becomes PNP[log]-complete. We conclude the paper with a flow-based technique for solving
black-white Graph Nim.

1.1 Black-White poset games

Games on partially ordered sets, called poset games, are a class of two-player impartial games
that have been widely studied. Given a partially ordered set, a player’s turn consists of choosing
one element e from the set. This element e is then removed along with all elements in the set
that are greater than e. Well-studied subfamilies of poset games are Nim, Chomp, Divisors, and
Hackendot. In the black-white version of the game each element of the set has a color, black or
white, and players are only allowed to choose elements of their own color (but choosing an element
still removes everything above it, regardless of color).

Grier [Gri13] showed that (impartial) poset games are PSPACE-complete. His proof is a reduc-
tion from Node Kayles, showed PSPACE-complete by T. J. Schaefer, who also implicitly showed
that black-white Node Kayles is PSPACE-complete [Sch78]. To show that black-white poset
games are also PSPACE-complete, an obvious approach is to adapt Grier’s reduction to use the
black-white version of Node Kayles. However, Grier’s construction crucially relies on the fact
that both players can remove the same elements, and there is no obvious way to circumvent this
restriction. In Section 3, we introduce novel techniques to show that black-white poset games are
PSPACE-complete.

1.2 Generalized Col

The game of Col [BCG82] is a two-player combinatorial strategy game played on a simple planar
graph. During the game, the players alternate coloring vertices of the graph. One player colors
vertices White and the other player colors vertices Black. A player is not allowed to color a vertex
neighboring a vertex of the same color. The first player unable to color a vertex loses.

A well-known theorem about Col is that the value of any game is either x or x+∗ where x is a
number. We remove the restriction that Col games be played on planar graphs and consider only
those games in which no vertex is already colored. We prove that deciding whether an initially
uncolored graph is a win of for the first player is a PSPACE-complete problem. Furthermore, it is
easy to adapt the theorem about Col to show that the versions of Col we consider only assume the
two very simply game values 0 and ∗.

1.3 Nim on graphs

The game of NimG simultaneously generalizes the well-known game of Nim and Geography. A
graph G is given where each vertex contains a positive number of sticks, and a token rests on a
designated start vertex. In the “move-remove” variant we consider4—due to Stockman, Frieze, and
Vera [SFV04], which we call Vertex NimG—each move consists of moving the token along an

4Other variants are possible; see Fukuyama [Fuk03] for example, where sticks are placed on edges.
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edge to a vertex v then removing at least one stick from v. We will here consider the game on
directed graphs and treat undirected graphs as a special case.

Geography and Nim are both special cases of Vertex NimG. Lichtenstein & Sipser [LS80]
showed that Geography is PSPACE-complete for bipartite graphs, hence NimG is PSPACE-hard,
even in the bipartite case, i.e., the black-white version. Burke and George [BG11] consider another
variant called Neighboring NimG, which corresponds to NimG on graphs where every vertex has
a self-loop. They show that Neighboring NimG is PSPACE-hard already for undirected graphs
with ≤ 2 sticks per vertex. In contrast, Geography on undirected graphs is in P [FSU93].

All the considered extensions of Nim on graphs are in PSPACE when the number of sticks is
polynomially bounded. However, it is an open problem whether the winner can be determined in
PSPACE when we allow exponentially many sticks, i.e., where the numbers of sticks are given in
binary. (Clearly, EXP is an upper bound for the general case.)

Analogously with Geography, the black-white version of NimG is equivalent to the game
on bipartite graphs. Since the black-white version of Geography remains PSPACE-complete, this
holds for black-white NimG too. As our one “easiness” result, we show that the black-white version
of NimG on undirected graphs is contained in P, even for an exponential number of sticks.

2 Black-white poset games are numbers

The sole purpose of this section is to establish Proposition 2.1, which asserts that black-white
poset games are all numbers. In Section 3 below, we will show that determining the winner of a
black-white poset game is PSPACE-complete, thus providing the first known instance of a PSPACE-
complete numeric game. We start this section by briefly describing numeric games and how they fit
in to the more general theory of combinatorial games. We give just enough description to define the
notion of a numeric game in the sense of Conway [Con76] or Berlekamp et al. [BCG82], which then
allows us to present Proposition 2.1. A more general, detailed background with formal definitions
is in Appendix A.

A black-white poset is a partially ordered set P = ⟨P,≤⟩ and partition P = PB ∪ PW with PB

and PW pairwise disjoint. Elements of PB are black and elements of PW are white. For x ∈ P let
Px denote the black-white subposet of P with domain {y ∈ P ∣ x /≤ y}.

Every finite black-white poset P naturally corresponds to a game where, starting with P , in
each move a player (Black or White) chooses an element x (∈ PB or ∈ PW , respectively) of the
remaining subposet R and removes all elements y ≥ x from R, resulting in the new position Rx.
As usual, the first player unable to move loses. When referring to a poset as a game, we always
assume that it is finite.

2.1 Operations on poset games

Two poset games can be added in a natural way: If P and Q are black-white posets, then P +Q
denotes the disjoint union of P and Q, where no elements of P are comparable with any elements
of Q. In the corresponding game, the next player can then choose to play in one poset or the other.
This operation is clearly commutative and associative (at least up to isomorphism). We can also
negate P by making all white nodes in P black and all black nodes white. The resulting black-white
poset game, denoted −P , is then equivalent to P but with the roles of the players swapped. We
write Q−P as shorthand for Q+(−P ). It is not hard to see that −(−P ) = P and −(P +Q) = −P −Q
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(up to isomorphism) for any black-white posets P and Q.

2.2 Comparisons on poset games

Given a black-white poset game P , we say that P is a first-move win for White if White has a
winning strategy when she plays first. Otherwise, we say that P is a first-move loss for White and
we denote this P ≥ 0. Similarly, P is a first-move win for Black if Black has a winning strategy
when he plays first. Otherwise, we say that P is a first-move loss for Black and we denote this
P ≤ 0. Notice that P ≥ 0 if and only if −P ≤ 0. It can also be shown that if P and Q are black-white
poset games and P ≥ 0 and Q ≥ 0, then P +Q ≥ 0. These basic relations allow us to compare any
two black-white poset games P and Q:

• We define P ≤ Q to mean Q − P ≥ 0 (equivalently, P −Q ≤ 0).
• We define P < Q to mean P ≤ Q and Q /≤ P .
• We define P ≈ Q to mean P ≤ Q and Q ≤ P .

It can be shown that this ≤ relation is reflexive and transitive, and hence ≈ is an equivalence relation.

2.3 Numeric games

A black-white poset game P is a number if and only if, for all x ∈ PB and y ∈ PW , we have Px < Py.
That is, every option for Black is strictly less then every option for White.

Proposition 2.1. All black-white poset games are numbers.

Proof. If P is a black-white poset (game), then all options Px of P have fewer elements than P ,
so we may use induction on the cardinality of P , i.e., we can assume that all smaller black-white
poset games are numbers. It then suffices to show that: (i) Px < P for every x ∈ PB; and (ii) P < Py

for every y ∈ PW . Let x be a black node of P and consider the game G ∶= Px − P = Px + (−P ).
We just need to show that G < 0, that is, G is a win for White (regardless of who moves first). If
White moves first, then she first chooses the white node x ∈ −P corresponding to the black node
x ∈ P . The resulting position is then Px −Px, which is a zero game, i.e., a second player win; since
Black makes the next move, White wins. If Black moves first, then White responds according to
the following strategy: If Black chooses an element of Px or an element of −P that is not above x,
then White responds with the corresponding element (oppositely colored) in the other poset. This
can continue throughout the play (resulting in a win for White) unless Black at some point chooses
some y ∈ −P such that y ≥ x. At this point, White immediately responds by choosing x ∈ −P (which
is still present), and the resulting position is of the form Q −Q for some subposet Q of P . Since
Q −Q is a zero game and Black makes the next move, White wins. This proves that Px < P .

To show that P < Py for all y ∈ PW , we first apply the above proof to −P , showing that
−Py < −P for all y ∈ (−P )B. The result follows by negating both sides, which reverses the sense of
the inequality, giving P < Py for all y ∈ (−P )B = PW .

Proposition 2.1 is important because it establishes a crucial part of our assertion that there is
a numeric game that is PSPACE-complete.

Proposition 2.1 implies that if P is a black-white poset game, then Px < P for all x ∈ PB, and
P < Py for all y ∈ PW . Also, any two numeric P and Q satisfy P ≤ Q or Q ≤ P , and so the
≈-equivalence classes of numbers are totally ordered by ≤.
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3 PSPACE-completeness of black-white poset games

Our goal in this section is to show that deciding the winner of a black-white poset game is PSPACE-
complete. By standard methods the problem can be solved in polynomial space, so we will focus
on the other half of this claim:

Theorem 3.1. Black-white poset games are PSPACE-hard.

The proof is by a reduction from true quantified Boolean formulas (TQBF), a PSPACE-complete
problem. We give the details of the reduction, and prove its correctness in the following subsections.

3.1 Construction

Suppose we are given a fully-quantified boolean formula φ of the form

∃x1∀x2∃x3⋯∃x2n−1∀x2n∃x2n+1f(x1, x2, . . . , x2n+1)

where f = c1 ∧ c2 ∧ ⋯ ∧ cm is in conjunctive normal form, with clauses c1, . . . , cm. We define a
game (not a poset game) based on this formula, called the TQBF game, where players take turns
assigning the variables either 0 or 1 in turn. That is, white chooses an assignment for x1, black
chooses an assignment for x2, and so on. When all the variables are assigned, the game ends and
white wins if f is true under that assignment, otherwise black wins.

We define our black-white poset game G based on φ as follows, where (X,≤) is the poset.
• The poset is divided into sections. There is a section (called a stack) for each variable, a

section for the clauses (the clause section), and a section for fine-tuning the balance of the
game (balance section).

• The ith stack consists of a set of incomparable waiting nodes Wi above (i.e., greater than) a
set of incomparable choice nodes Ci. We also have a pair of anti-cheat nodes, αi and βi, on
all stacks except the last stack. For odd i, the choice nodes are white, the waiting nodes are
black, and the anti-cheat nodes are black. The colours are reversed for even i.

• The set of choice nodes Ci, consists of eight nodes corresponding to all configurations of three
bits (i.e., 000,001, . . . ,111), which we call the left bit, assignment bit and right bit respectively.

• The number of waiting nodes is defined to be

∣Wi∣ = (2n + 2 − i)M

where M is the number of non-waiting nodes in the entire game. We will use the fact that
∣Wi∣ ≥ ∣Wi+1∣ +M later in the proof.

• The anti-cheat node αi is above nodes in Ci with right bit 0 and nodes in Ci+1 with left bit
0. Similarly, βi is above nodes in Ci with right bit 1 and nodes in Ci+1 with left bit 1.

• The clause section contains a black clause node bj for each clause cj , in addition to a black
dummy node. The clause nodes and dummy node are all above a single white interrupt node.
The clause node bj is above a choice node z in Ci if the assignment bit of z is 1 and xi appears
positively in cj , or if the assignment bit of z is 0 and xi appears negatively in cj .

• The balance section or balance game is incomparable with the rest of the nodes. The game
consists of eight black nodes below a white node, which is designed to have game-theoretic
value −71

2 . All nodes in this section are called balance nodes.
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W1 W2 W3 χ

C1 C2 C3 ⋯

α1 β1 α2 β2

Figure 1: An example game with three variables (n = 1). Circles represent individual nodes, blobs
represent sets of nodes, and χ is the set of clause nodes. An edge indicates that some node in the
lower node set is less than some node in the upper node set. The dotted lines divide the nodes into
sections (stacks, clause section and balance section).

The basic idea is that players take turns taking choice nodes, and the assignment bits of the nodes
they choose constitute an assignment of the variables, x1, . . . , x2n+1. The assignment destroys
satisfied clause nodes, and it turns out that black can win if there remains at least one clause node.
The waiting nodes and anti-cheat nodes exist to ensure players take nodes in the correct order.
The interrupt node and dummy node control how much of an advantage a clause node is worth
(after the initial assignment), and the balance node ensures the clause node advantage can decide
whether white or black wins the game.

It is not hard to see that the number of nodes is polynomial in m and n, so the poset can be
efficiently constructed from an instance of TQBF.

3.2 Strategy

We claim that white can force a win if and only if the formula is true. To show this, we need to
give a strategy for white when the formula is true, and prove that it guarantees a win. We also
need to show black has a winning strategy when the formula is false.

Suppose that white and black have an informal agreement to simulate the TQBF game in G
by playing as follows. Suppose white’s first move in the TQBF game is to assign x1 to a1. The
corresponding move in G is to take a choice node in C1, such that the assignment bit is a1 and the
other bits are arbitrary. Similarly, if black’s reply in TQBF is to assign x2 to a2 then he should take
a choice node in C2 with assignment bit a2 and arbitrary right bit. White’s first move destroyed
either α1 or β1, so black should choose the left bit of his reply to preserve the remaining black
anti-cheat node in stack 1. Then white takes a node in C3 such that the assignment bit reflects
her assignment of x3 in the TQBF game, the left bit preserves her anti-cheat node in the previous
stack, and the right bit is arbitrary. This continues until white makes the final move in the TQBF
game, corresponding to taking a choice node in C2n+1. At this point the TQBF game ends, but
there are still nodes in G; we assume the players continue under optimal play.

Assuming both players stick to the agreement, we claim (and will eventually prove) that the
winner of the TQBF game is also the winner of G (under optimal play) and therefore deciding the
winner of G tells us whether φ is true. This is complicated by the fact that players may cheat by
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taking the wrong nodes. Our goal is to show that the winner of the TQBF can also win G, even if
the other player cheats.

We think of the game as having two phases. The first phase ends when the players have taken
at least one node from each Ci. The second phase begins when the first phase ends, and lasts until
the end of the game. If the players simulate a TQBF game as described above then the last move in
first phase coincides with the last move in the TQBF game. We analyze the two phases separately.

3.2.1 Phase one strategy and analysis

In phase one, our strategy for white is the same as our strategy for black: play fair (no cheating!)
until our opponent cheats. If our opponent cheats then reply according to the following rules, and
continue to reply according to these rules for future moves. For the following rules, stack i is the
leftmost stack containing waiting nodes of our colour (i.e., we are waiting for our opponent to play
in stack i).

• If the opponent’s move ends phase one, play according to the phase two strategy. This should
only happen when the opponent is white.

• If the opponent moves in Cj then
– if j = 2n + 1 then take a waiting node in Wi.
– if it is their first move in Cj , reply in Cj+1. Choose a node that saves one of your

anti-cheat nodes and destroys your opponent’s anti-cheat nodes where possible. The
assignment bit of your reply will not matter.

– if it is not their first move in Cj , take a waiting node in Wi.
• If the opponent takes a waiting node in Wj+1 then take a node in Wj .
• If the opponent takes an anti-cheat node, a clause node, the dummy node, the interrupt node,

or a balance node then take a waiting node in Wi.
Observe that we take a waiting node in Wj if the opponent takes a non-waiting node (this can
happen at most M times) or takes a waiting node in Wj+1. By construction, ∣Wj ∣ ≥ M + ∣Wj+1∣,
so we cannot run out of waiting nodes. Similarly, we only take a node in Cj+1 when the opponent
takes their first node from Cj , so we have all eight nodes to choose from when we play in Cj+1. In
other words, the strategy never asks us to take a node that isn’t there; the reply moves are always
feasible.

Lemma 3.2. Suppose player A (either black or white) commits to following the strategy above.
Then it is optimal for player B (white or black) to avoid moves that make player A take a waiting
node.

Proof. Consider two games: in the first game, player B takes a node x, which causes player A to
take a waiting node (as prescribed by the strategy) and in the second game, player B skips that
move (i.e., does not take x) and plays the next move in the sequence. Since A is playing according
to our strategy, her moves do not depend on whether x is present, only on B’s most recent move.
Therefore both players make the same moves in the same order as the first game, except that B
does not take x and A does not take the corresponding waiting node.

Compare the positions in the two games at the end of phase one. If the positions are the same
then B has done just as well without taking x. Otherwise, suppose the position is P in the first
game and Q in the second game. Every node in P must still be present in Q. Conversely, every
node in Q except x and its ancestors must still be present in P . In other words, taking x in position
Q yields P . Recall that black-white poset games are numbers, so players always prefer not to play.
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That is, Q is a better position for player B than any position B can move to from Q, including P .
We conclude that B is in a better position in the second game, when he skips taking x.

Repeating this argument as many times as necessary, we see that B can skip some moves in
an optimal sequence in such a way that optimality is preserved and A does not take any waiting
nodes.

We may therefore assume that player A never takes a waiting node, which narrows down
the possible moves for player B. Specifically, player B must take a choice node from a previous
untouched stack, otherwise player A will wait. Player B can still cheat by taking a choice node from
the wrong stack, and we need to analyze phase two to understand how anti-cheat nodes prevent
that kind of cheating.

3.2.2 Phase Two Strategy and Analysis

Let H be the black-white poset game at the start of phase two, and let k be the number of surviving
clause nodes in H. Each player took exactly one choice node from each stack in phase one, and
since there are more white Ci’s, black has the first move in phase two. The waiting nodes in Wi are
gone because some node in Ci is missing for all i. Similarly, there is at most one anti-cheat node
in each stack, since at least one was destroyed by the missing choice nodes on either side.

Our analysis of phase two begins with a series of lemmas.
• We claim a player can always avoid destroying their own anti-cheat nodes in H, and therefore

we may assume it is impossible for a player to destroy their own anti-cheat node. This gives
us a new, equivalent game H ′.

• It is optimal (in H ′) for white to take the interrupt node after black’s first move, as long as
the dummy node is intact.

• It is optimal for black to take a clause node on his first move in H ′.
It follows that the clause nodes are gone by black’s second move. Then every section (i.e., each
stack, the clause section, or the balance section) is incomparable with the rest of the nodes. We
use the following basic result about poset games to divide the game into a sum of much simpler
games. Given the number of anti-cheat nodes of each colour and the number of clause nodes, we
use this to rapidly determine the winner in a number of scenarios, proving the main result.

Let us start with our first result. Informally, it is a claim that a player cannot be forced to
destroy their own anti-cheat nodes, so we may assume it is impossible for a player to destroy their
own anti-cheat nodes.

Lemma 3.3. Let H be as above. Construct a game H ′ from a copy of H by making αi and βi
incomparable with nodes in stack i + 1, for all i. That is, let the anti-cheat nodes be incomparable
with nodes of the same colour. Then H =H ′ in the game theoretic sense.

Proof. For each i, either αi or βi is missing. We assume (without loss of generality) that all βi’s
have been destroyed.

We claim that H + (−H ′) is a win for the second player. The strategy is the same whether the
second player is white or black: when your opponent takes a node in H (resp. −H ′), take the twin
node in −H ′ (resp. H), with a few exceptions, listed below.

• Suppose our opponent takes a choice node x = x`xaxr in some Ci+1 from −H ′, where x`, xa
and xr are the three constituent bits of x. The nodes 0xaxr and 1xaxr are indistinguishable
in the poset for −H ′, so we assume our opponent takes 1xaxr first and then 0xaxr.
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When our opponent plays 1xaxr, we take the twin node. When our opponent plays 0xaxr,
there are no longer any nodes above its twin, except possibly αi, since we destroyed all other
nodes when we took 1xaxr (or when someone took 1xaxr in phase one). If αi exists then we
take it, otherwise we take 0xaxr.

• If our opponent takes αi in −H ′ then we take its twin in H, if possible. If not, then at some
point we took αi instead of some choice node 0xaxr in stack i+ 1, so now we can take 0xaxr.

We conclude that H =H ′.

Note that in H ′, a move in one stack does not affect any other stack directly. However, taking
a node in Ci may destroy clause nodes, which will indirectly affect the optimal move in some other
stack. The stacks in H ′ will not be completely independent until we can get rid of the clause nodes.
We prove a lemma and corollary which show that clause nodes will not survive for very long.

Lemma 3.4. Let H ′ be as above. It is optimal for white to take the interrupt node in H ′ after
black’s first move, as long as the dummy node exists.

Proof. Let K be the position after black’s first move and consider the alternatives for white.
• Take the interrupt node.
• Take a choice node x in some stack i.
• Take an anti-cheat node αi (the analysis is similar for βi).
• Take the white balance node, w. This may not be possible, depending on black’s move.

Call the resulting positions Kint, Kchoice, Kcheat, and Kbal respectively. We claim Kint is the best
for white, so we need to show that Kint+(−Kchoice), Kint+(−Kcheat) and Kint+(−Kbal) are wins for
white when black goes first. We use the same kind of mirroring strategy as we did in the previous
lemma: when your opponent takes a node in one subgame, you take the twin node in the other
subgame, with a few exceptions.
Kint + (−Kchoice)

There are two exceptions: the interrupt node, and the anti-cheat node above x.
• When black takes the interrupt node in −Kchoice then let white take the choice node x

in Kint (there is no interrupt node in Kint). Clearly x has no twin in −Kchoice, and there
are no nodes below x, so it will exist when black takes the interrupt node.

• If black takes αi in Kint then let white take the twin in −Kchoice if possible. If the twin
does not exist in −Kchoice then it must be because αi is above x. We deduce that x still
exists in Kint, so the interrupt node still exists −Kchoice. The dummy node still exists
because it has no twin and the interrupt node exists below it, so white may take the
dummy node.

Kint + (−Kcheat)

The only black node that does not have a twin is the interrupt node, but we also have to
account for black nodes that could destroy αi.

• If black takes a choice node y in Kint and destroys αi then take the dummy node in
−Kcheat. Note that αi is the only node destroyed by taking y, since there are no clause
nodes in Kint.

• If black takes the interrupt node in −Kcheat then take αi if possible. Otherwise αi is
missing because we took it in the previous exception, but there is a leftover twin for y
in −Kcheat instead.

Kint + (−Kbal)

The exceptional nodes are the interrupt node and black balance nodes.

10



• If black takes a node z in the balance game (in Kint) it will destroy w and nothing else.
We reply by taking the dummy node.

• If black takes the interrupt node in −Kcheat then we take w if possible. Otherwise we
must have destroyed w according to the exception above, so we can now take z’s twin
in −Kbal instead.

In each game, white has a reply for every move black makes, so white will win when black eventually
runs out of moves. We conclude that taking the interrupt node is optimal for white.

If we can show that black does not take the dummy node on his first move, then the lemma
tells us how white will respond, and we can use that information to determine black’s optimal first
move.

Corollary 3.5. Let H ′ be as above. If there are any clause nodes in H ′ (i.e., k ≥ 1) then it is
optimal for black to take a clause node.

Proof. Let Jclause be the position after black takes a clause node bj in H ′. Let Jdummy be the
position after black takes the dummy node. We claim it is better for black to take any clause node
than to take the dummy node, so we need to show that Jclause + (−Jdummy) is a win for black when
white goes first. As usual, the strategy for black is to mirror white’s moves, with one exception.
If white takes bj in Jdummy then we take the dummy node in Jclause. It is not hard to show that
the dummy node will exist if bj exists, since they are above the interrupt nodes in their respective
games. We conclude that taking any clause node is at least as good for black as taking the dummy
node, and we may assume black does not take the dummy node.

Given that black does not take the dummy node, we may assume (by Lemma 3.4) that whatever
black chooses to do, white will take the interrupt node. Observe that if black takes a non-clause
node x and white takes the interrupt node then we end up in the same position as if white took
the interrupt node (out of turn, since black has the first move in H ′) and black took x. In other
words, the two moves commute. On the other hand, if black takes a clause node (or a dummy
node) and white takes the interrupt node, then it is the same as if black did not move at all and
white took the interrupt node. The position after white takes the interrupt node is a poset game
(with a number value), so it is better for black not to move. In other words, it is optimal for black
to take some clause node.

Once the clause nodes are gone, each stack in H ′ is completely independent of the rest of the
nodes. Let Hi be the black-white poset game by restricting H ′ to the nodes in stack i. We present
without proof the following proposition about the value of Hi.

Proposition 3.6. Let Hi be as above. Then Hi has value ±7 without an anti-cheat node, and ±61
2

with an anti-cheat node, where the sign is (−1)i+1. Note that the last stack, i = 2n + 1, does not
contain an anti-cheat node.

The balance section is also independent of the rest of the nodes, and its value is −71
2 by

construction. Assuming all the anti-cheat nodes survive, the stacks and balance nodes sum up
to a value of

61
2

2n

∑
i=1

(−1)i+1 + 7 − 71
2 = −

1

2
.

We say the baseline value of the game is −1
2 , and adjust it up or down depending on how many

anti-cheat nodes there are of each colour, and how the clause section (containing the clause nodes,
interrupt node and dummy node) plays out. We can now prove our main result.
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Theorem 3.7. White has a winning strategy for G if and only if φ is true.

Proof. It suffices to show that white can win G if she can win the TQBF game, and black can win
G if he can win the TQBF game.

Suppose white has a winning strategy for the TQBF game. Suppose further that white plays
according to our strategy (outlined in Section 3.2) and black does not cheat. That is, white takes
a node in C1, black takes a node in C2, and so on until white takes a node in C2n+1 and phase two
begins. Since white can win the TQBF game, she can force an assignment that satisfies all clauses
in the formula, so there are no clause nodes left. The dummy node and interrupt node together
have a value of 1

2 , so with the baseline value of −1
2 for the other nodes, the total value of the game

is 0, a win for white, the second player.
Now suppose black tries to cheat to prevent white from winning. We assume that black cheats

by taking choice nodes from a stack too early, since our phase one analysis rules out any other kind
of cheating. Black’s cheating may be enough to keep a clause node alive, since changing the order
of quantifiers can easily affect the outcome of the TQBF game. We know that black will then take
the clause node (by Corollary 3.5) and white takes the interrupt node (by Lemma 3.4).

The price black pays for cheating is one anti-cheat node. For instance, suppose black cheats by
taking a node in Cj+1 before white has taken Cj , destroying one of the anti-cheat nodes, αj and
βj , in stack j. When white eventually takes a node in Cj , she can choose the right bit to destroy
the other anti-cheat node in stack j. White plays according to strategy, so she will not take Cj

until black takes a node in Cj−1, so white can also choose the left bit to preserve her own anti-cheat
nodes. At the end of phase one, white will have n anti-cheat nodes and black will have at most
n− 1, leading to a 1

2 advantage for white over the baseline of −1
2 . The net value is 0, and therefore

a win for white.
The analysis for black is similar. Suppose black has a winning strategy for the TQBF game.

If white does not cheat, then black can force there to be an unsatisfied clause. Black takes the
corresponding clause node at the beginning of phase two, and then white takes the interrupt node.
The remaining game has no clause section and both sides have n anti-cheat nodes, so the value is
the baseline value, −1

2 , and a win for black. If white tries to cheat then she may be able to destroy
all clause nodes, but at the expense of at least one anti-cheat node. The clause section adds 1

2 , but
losing an anti-cheat node subtracts 1

2 , so we are back to the baseline, −1
2 and a win for black.

4 Generalized Col is PSPACE-complete

Let Col be the language of Col games on uncolored general graphs where the first player has a
winning strategy. Assume that the graphs are represented in some explicit manner, such as an adja-
cency matrix. We will show that Col is PSPACE-complete by giving a reduction from a game played
on propositional formulas known to be PSPACE-complete [Sch78]. The game, Gpos(POS CNF), is
played on a positive CNF formula. The players take turns choosing a variable that appears in the
formula. Player 1 sets variables to true, and Player 2 sets variables to false. Once all the variables
have been chosen, Player 1 wins if the formula evaluates to true, and Player 2 wins if the formula
evaluates to false.

Theorem 4.1. Col is PSPACE-complete.

Most of the rest of this section (Section 4) is dedicated to proving Theorem 4.1. The diagrams in
the proof use the interpretation of Col in which the players remove vertices from the graph, tinting
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their neighbors so as to reserve them for the other player. Figure 2 shows this simple coloring
scheme.

- Only available to Black.

- Only available to White.

- Available to both players.

Figure 2: Coloring Scheme for Col graph.

Let G be the graph for some Col game which may already be partially colored. Assuming that
vertices x and y in G are not already colored, we will let Gb(x)w(y) denote the graph G where x
has been chosen by black and y has been chosen by white. Other game states are defined in an
analogous fashion.

4.1 Preliminaries

We will first show that a slight variation of Gpos(POS CNF) is also PSPACE-complete. Let
G*

pos(POS CNF) be identical to Gpos(POS CNF) except that Player 1 sets variables to false in
an attempt to make the formula false and Player 2 sets variables to be true with the goal opposite
to that of Player 1. We will show that this game is also PSPACE-complete. Let X be the set of
variables in the Gpos(POS CNF) game and let c1, c2, . . . , cm be the clauses. Let the G*

pos(POS CNF)
game be played with variables X ∪ {u} and formula (c1 ∨ u) ∧ (c2 ∨ u) ∧ . . . ∧ (cm ∨ u). Notice that
if Player 1 does not make u false, then Player 2 will make u true and win the game. It is now easy
to see that Player 1 wins the Gpos(POS CNF) game iff Player 2 wins the G*

pos(POS CNF) game.

4.2 Main Construction

Let X = {x1, x2, . . . , xn} be the set of variables for the G*
pos(POS CNF) game played on CNF

formula with clauses C = {c1, c2, . . . , cm}. We will construct a Col graph G = (V,E) such that
Player 1 wins the G*

pos(POS CNF) game on ϕ iff the second player wins the Col game on G. The
elements of G are as follows:

• V =X ∪ Y ∪C ∪ {z}.
• X is the set of variables in the G*

pos(POS CNF) game.

• Y = {y1, y2, . . . , yn} is a copy of the set of variables in the G*
pos(POS CNF) game such that xi

refers to the same variable as yi for 1 ≤ i ≤ n.
• C is the set of clauses in the G*

pos(POS CNF) game.
• E = A ∪B ∪C ∪D.
• A = {(yi, xi) ∣ 1 ≤ i ≤ n}.
• B = {(xi, cj) ∣ variable xi appears in clause cj}.
• C = {(ci, cj) ∣ 1 ≤ i < j ≤m}.
• D = {(z, cj) ∣ 1 ≤ j ≤m}.
An example of this construction on the formula is given in Figure 3.

4.3 Assumptions that can be made about optimal gameplay

We will now give several lemmas that show how the Col game is to be played when constructed
from some valid G*

pos(POS CNF) instance. In order to simplify the exposition of the proof, we will
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x1 y1 x2 y2 x3 y3 x4 y4

(x1 ∨ x2)

(x1 ∨ x3)

(x2 ∨ x3 ∨ x4)

z

Figure 3: Example of Col construction on (x1 ∨ x2) ∧ (x1 ∨ x3) ∧ (x2 ∨ x3 ∨ x4).

assume without loss of generality that White is the first player and Black is the second player.

Lemma 4.2. Let G be the Col game constructed from some valid G*
pos(POS CNF) instance. We

have Gw(x) > 0 for x ∈ V − {z}.

Proof. Notice first that in the Col game played on G, each player can only hope to color a maximum
of n + 1 vertices during the game. A player can color n + 1 vertices if he colors one of the vertices
of each (xi, yi) pair and one of either z or c1, c2, . . . , cm. The second player, who we are assuming
is Black, wins the game if is able to choose at least as many vertices as the first player. Thus, if
White chooses x ∈ V − {z}, then Black will respond by choosing z. Since z is not a neighbor to any
(xi, yi) pair, Black will be able to color n + 1 vertices and eventually win the game. So, Gw(x) /≤ 0.
Using this logic, it is also clear that Gw(x) ≥ 0. Since Black can win as both first and second player,
Gw(x) > 0. This completes the lemma.

Thus, White must choose the vertex z on his first turn if he hopes to win. The remaining
lemmas make this assumption.

Lemma 4.3. Let G be the partially colored graph representing the state of the Col game constructed
from a G*

pos(POS CNF) instance such that an (xi, yi) pair is not yet colored. Regardless of which

player’s turn it is, coloring yi is always just as good or better than coloring xj. That is, Gw(yi) ≤

Gw(xj) and Gb(xj) ≤ Gb(yi).

Proof. First consider i = j. Intuitively, since each player can only pick at most one of xi or yi, yi is
the better move because it is not connected to any other vertices ofG. Playing xi potentially reserves
moves for your opponent. Formally, the game Gw(yi) −Gw(xi) ≤ 0 by the obvious correspondence
between the vertices shown in Figure 4. A similar argument shows Gb(xi) ≤ Gb(yi). Using the
dominating rule, we can assume then that under optimal gameplay each player will color the
element yi.

Next consider i ≠ j. Suppose it is White’s turn and yj has already been colored by Black,
reserving xj for White. Using a mirroring strategy, White wins the game as the second player
on Gw(yi) − Gw(xj) shown in Figure 5. The strategy is as follows. If at any time Black plays in
Gw(yi) then White plays the same move in −Gw(xj) and vice versa unless Black colors a vertex of
type xi, xj , or yi. Table 1 is a list of winning responses to each move of Black. These moves will
necessarily leave two points of type xi, xj , or yi, which natural correspond to each other. It is easy
to see that this mirroring strategy allows White to win as the second player.
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There are three remaining cases with proofs that are left up to the reader due to their similarity
to the argument above: Black’s turn and yj has already been colored by White; White’s turn and
yj has not yet been colored; Black’s turn and yj has not yet been colored.

xi

Gr(yi)

yi

Gr(xi)

Figure 4: Visualization of the game Gw(yi) − Gw(xi). Right wins as the second player by using
simple mirroring strategy.

xj xi

Gr(yi)
yi

xi

Gr(xj)

Figure 5: Visualization of the game Gw(yi) − Gw(xj). White wins as the second player by using
mirroring strategy in conjunction with the moves in Table 1.

Black’s Move xi ∈ G
w(yi) xi ∈ −G

w(xj) yi ∈ −G
w(xj)

White’s Response xi ∈ −G
w(xj) yi ∈ −G

w(xj) xj ∈ G
w(yi)

Table 1: Table of winning responses for White playing on the game depicted in Figure 5. They are
not unique.

Proof of Theorem 4.1. Let G be the Col game constructed from some valid G*
pos(POS CNF) in-

stance, and assume without loss of generality that White plays first and that both players are
playing optimally. By Lemma 4.2, White must take vertex z first. The players will then alternate
choosing all of the y vertices due to Lemma 4.3. At this stage in the game all of vertices that remain
in the graph are tinted, so no move of Black will affect White and vice versa. Furthermore, Black
can only win if he can color more vertices than White, so he might as well proceed by choosing
all of the x vertices now available to him. Since there are an even number of variable vertices and
Black chooses the first variable vertex, White will play the last variable vertex. So Black wins the
game iff there is a clause vertex available after all variable vertices are chosen.

So we can think of the game as the following. When White chooses a variable yi, he is essentially
letting xi be true in the G*

pos(POS CNF) game. And when Black chooses a variable yi, he is
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essentially letting xi be false in the G*
pos(POS CNF) game. If the formula is false at the end of

variable selection, then there will be some clause that is available to Black, and he will win. If
however, the formula is true at the end of variable selection, then Black cannot play in any of the
clauses and will lose.

Thus, Player 1 has a winning strategy on the G*
pos(POS CNF) game iff Black has a winning

strategy on the constructed Col game. Since the construction is clearly in polynomial time, this
shows that Col on general graphs is PSPACE-hard. Furthermore, a simple enumeration of all
possible game paths shows that finding the winner of any game of Col on general graphs is in
PSPACE. This completes the proof.

The complexity of Col does, in fact, stem from the vertices available to both players. First
notice that the game of Col can also be thought of in the following manner. If Black chooses a
vertex, delete that vertex and tint all neighboring vertices white, so that they are now only available
to White. Similarly, if White chooses a vertex, delete that vertex and tint all neighboring vertices
black, preserving them for Left. If a node is tinted both white and black, then it is available to
neither player and can be deleted for clarity. For the purposes of displaying Col graphs in this
paper, this interpretation will be used. Furthermore, this interpretation begets a natural black-
white version of Col. That is, given a general graph where all nodes are initially tinted black or
white, decide which player has the winning strategy.

Theorem 4.4. Black-white Col is PNP[log] − complete.

Proof. Suppose there is some edge between a vertex tinted white and a vertex tinted black. This
edge can be removed without affecting the game because selecting either vertex would not affect
the tint of the other vertex. The players then are simply vying to choose the largest independent
set from the vertices that remain. This problem was proven PNP[log]-complete in [SV00].

5 Black-white NimG on undirected graphs is in P

We consider the following problem associated with the game of NimG.

Undirected black-white NimG
Input : An undirected bipartite graph G = (V,E), a weight function w ∶ V Ð→ N, and a
node v ∈ V .
Question: Is v a winning position in the NimG game (G,w)?

We show the problem is in P even with a binary encoding of weights by providing a polynomial-time
reduction to the maximum flow problem.

Let G = (V,E) be a bipartite undirected graph. Let V = B ∪W be the partition of V into black
and white nodes, and w be the weight function such that w(u) is the number of sticks on node u.
Let v denote the vertex on which the token is placed currently. Remember that in a turn, a player
moves the token to a neighbor u of v and removes, say, r sticks from u. The weight function w′

after the move is given w′(u) = w(u) − r and w′(x) = w(x) for x ≠ u.
Observe that we may assume that each player removes only r = 1 stick at each turn. This

is because White removes sticks only from white vertices, and similarly for Black. Therefore a
winning strategy for a player remains winning when the number of sticks removed in each turn is
decreased to one.
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We now construct a flow network GN with capacity function c from G and w as shown in
Figure 6. The following lemma characterizes the winning positions in a game. See [FF62] or some

(GN , c)(G,w)

b1

b2

b3

w1

w2

w3

v

b1

b3

v

s

w3

w1

t
w2b2

Figure 6: A bipartite graph G = (B ∪W,E) with weight function w on the vertices, and the flow
network GN constructed from G. We add s and t and connect s to all vertices of B and all vertices
of W to t. As capacities define c(s, v) = w(v) for v ∈ B and c(v, t) = w(v) for v ∈W . The original
edges of E (i.e., the edges going from B to W ) have unbounded capacity. Edges that are not
present in GN have capacity zero.

other standard textbook for more details on flow terminology and the properties of flows that are
used in the proof.

Lemma 5.1. Let (G,w) be a weighted undirected bipartite graph and (GN , c) be the flow network
associated with (G,w). Then a node v is a winning position for the current player if and only if he
can move so that the resulting flow network has the same maximum flow value as (GN , c).

Notice that no move in (G,w) can ever increase the max flow value of the corresponding flow
network, because edge capacities never increase. Lemma 5.1 then follows straightforwardly from
the next two claims:

Claim 5.2. Let (G,w) and (GN , c) be as in Lemma 5.1. Any two consecutive moves starting with
(G,w) result in a position whose flow network has max flow value less than that of (GN , c).

Proof. Let u and v be the two vertices with sticks removed in any two consecutive moves starting
with (G,w). Then u and v are on opposite sides of the bipartition of G—so we assume without
loss of generality that u ∈ B and v ∈ W—and further, (u, v) is an edge of G (it is not important
which vertex is chosen first). Let (GN , c

′) be the corresponding flow network after the two moves.
Then c′(s, u) = c(s, u) − 1 and c′(v, t) = c(v, t) − 1. Thus any feasible flow f ′ in (GN , c

′) can be
augmented through the path s → u → v → t to obtain a feasible flow f in (GN , c) whose value is
one plus that of f ′. Thus (GN , c

′) has smaller max flow value than (GN , c).

Claim 5.3. Let (G,w) and (GN , c) be as in Lemma 5.1. Suppose some move in (G,w) decreases
the max flow value of the corresponding flow network. Then there exists an immediately subsequent
move that does not change the max flow value of the corresponding flow network.

Proof. Let u be the vertex that has a stick removed by the former move (coming from some vertex v,
say), and let (G,w′) be the resulting game position with corresponding flow network (GN , c

′). We
consider the case where u ∈W ; the case where u ∈ B is similar. We then have c′(u, t) = c(u, t) − 1,
and all other capacities are the same in (GN , c

′) as they are in (GN , c). Let f be a maximum
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feasible flow in (GN , c
′). By assumption, f is feasible but not maximal in (GN , c). Thus there

exists an augmenting s → t path p of residual capacity 1 for f in (GN , c). This path p must
traverse edge (u, t), for otherwise, p would be an augmenting path for f in (GN , c

′), contradicting
the maximality of f . Let v′ ∈ B be the predecessor of u along p, i.e., p = s→ ⋯→ v′ → u→ t.

We show next that there is a maximum feasible flow f ′ in (GN , c
′) which does not saturate

edge (s, v′) in (GN , c
′), i.e., f ′(s, v′) < c′(s, v′). We distinguish two cases:

• Path p uses edge (s, v′), that is, p = s→ v′ → u→ t. Then f(s, v′) < c(s, v′) = c′(s, v′), and so
f does not saturate (s, v′) in (GN , c

′). Thus we can take f ′ to be f .
• Path p does not use edge (s, v′), that is, p = s → ⋯ → u′ → v′ → u → t, for some node u′ ∈W .

Because c(u′, v′) = 0, an augmenting path along (u′, v′) decreases an actual flow in the other
direction, i.e., we have f(v′, u′) > 0. A positive flow from v′ can only originate from some
flow via (s, v′). Hence we have 0 < f(s, v′). We now obtain the flow f ′ by modifying f : first
adding 1 unit of flow along p, then subtracting 1 unit of flow along the path s → v′ → u → t.
The resulting flow f ′ (feasible in (GN , c)) satisfies f ′(s, v′) = f(s, v′) − 1 and has the same
value as f . It is also feasible in (GN , c

′), because f ′(u, t) = f(u, t). Now f ′ is a maximum
flow in (GN , c

′) and does not saturate (s, v′).
Since in either case, 0 ≤ f ′(s, v′) < c′(s, v′) = w′(v′), there is a stick available at v′ in (G,w′),

making the move from u to v′ legal. Let (GN , c
′′) be the flow network corresponding to the position

after the move to v′, that is, c′′(s, v′) = c′(s, v′) − 1 and c′′(e) = c′(e) for all other edges e of GN .
Figure 7 illustrates the situation. Note that f ′ is still a feasible flow in (GN , c

′′). Therefore, f ′ is
a maximum flow in (GN , c

′′) too, and the max flow values of (GN , c
′) and (GN , c

′′) are the same.

(GN , c′)

b1

b3

v

s

w3

t

u

w1 − 1

b2 w2

(GN , c′′)

b1

b3

v

s

w3

t

u

w1 − 1

b2 − 1

v′

w2

Figure 7: After the move from v to u in the network (GN , c), the resulting network is (GN , c
′).

The next move to v′ yields the network (GN , c
′′). The capacities of edges (u, t) and (s, v′) are

decreased by one because in the corresponding NimG-game the players remove one stick at u and
one at v′ in turn.

Proof of Lemma 5.1. The proof of the Lemma proceeds by induction on the total number of sticks
on the vertices of the graph, noting that each move removes a stick. In the base case, where there
is no stick in the graph, the statement is clearly true. The idea for the inductive step is that if the
current player can move without decreasing the max flow value, then the next player has no choice
but to decrease the max flow value on his subsequent move, and conversely, if the current player
cannot help but to decrease the max flow value, then the next player can move afterward without
decreasing the max flow value. First, suppose that from v there is a move that does not change
the max flow of the associated flow network. Then by Claim 5.2, the next player cannot help but
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to decrease the max flow, making his a losing position by the inductive hypothesis. Thus v is a
winning position.

Conversely, suppose that every legal move from v decreases the max flow. Then by Claim 5.3,
after any such move—to a new vertex u, say—the next player can move to maintain the same max
flow, making u a winning position by the inductive hypothesis. Thus v is a losing position. Clearly
this also holds if no move is possible from v.

Finding maximum flow values in networks with integral capacities can be done in polynomial
time, even if those capacities are given in binary (see, e.g., [Din70]). To see whether v is a winning
position in (G,w), we compute the maximum flow f in the associated network (GN , c). Now we
go through all neighbors u of v in G with w(u) > 0. Construct the networks (GN , cu), where
cu(u, t) = c(u, t) − 1 (cu is otherwise equal to c), and compute the maximum flow fu in (GN , cu).
From Lemma 5.1 it follows that we find a u such that ∣f ∣ = ∣fu∣ if, and only if, v is a winning position
in (G,w). Thus we have the following theorem.

Theorem 5.4. Black-white NimG on undirected graphs is in P.

6 Conclusion and open problems

We have shown that it is PSPACE-hard to determine the winner of a black-white poset game, which
is important in that it establishes a PSPACE-complete numeric game. We also show that a Col
played on uncolored general graphs is PSPACE-complete, which is the first game known to the
authors that can only assume two very simple game theoretic values and still be PSPACE-complete.
These two results cast doubt on the possibility that there is some connection between the range of
values that a family of games can assume and the complexity of deciding the winner of a game in
that family. An interesting open question is to definitively prove that no such connection exists.
For instance, given (reasonable) game values x and y, is it possible to construct a PSPACE-complete
game whose value always simplifies to either x or y? More concretely, now that we have a PSPACE-
completeness result for a numeric game, can we hope to use it as a template for other numeric
games with longstanding open complexity (e.g. Red-Blue Hackenbush)?

For NimG, a combination of Nim and Geography, we have considered the black-white version
on undirected graphs and have shown that it is decidable in P who wins even when one allows an
exponential number of sticks. This is somewhat surprising given that winning gameplay may require
an exponential number of moves. For all the other versions of NimG that have been considered in
the literature the exact complexity of the binary encoded versions is open. Some of these games
are known to be PSPACE-hard, and yet we still do not know about membership in PSPACE.
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A Games and numbers: some background

In this section of the appendix we review some relevant definitions and a few facts about combi-
natorial games and their associated numbers. Thorough treatments of this material, with lots of
examples, can be found in [BCG82, Con76] as well as other sources. Our terminology and notation
is somewhat different from [BCG82, Con76], but the concepts are the same. When we say, “game,”
we always mean what is commonly referred to as a combinatorial game, i.e., a game between two
players, say, Black and White, alternating moves with perfect information, where the first player
unable to move loses (and the other wins). These games can be defined abstractly by what options
each player has to move, given any position in the game.

Definition A.1. A game is an ordered pair G = (B,W ), where B and W are sets of games. The
elements of B (respectively, W ) are the black options (respectively, white options) of G. An option
of G is either a black option or a white option of G.5

For this and the following inductive definitions to make sense, we tacitly assume that the “option
of” relation is well-founded, i.e., there is no infinite sequence of games g1, g2, . . . where gi+1 is an
option of gi for all i.6 A position of a game G is any game reachable by making a finite series of
moves starting with G (the moves need not alternate colors). Formally,

Definition A.2. A position of a game G is either G itself or a position of some option of G.

Starting with a game G, we imagine two players, Black and White, alternating moves as follows:
the initial position is G; given the current position P of G (also a game), the player whose turn
it is chooses one of the options of P matching her or his color, and this option becomes the new
game position. The first player faced with an empty set of options loses. The sequence of positions
obtained this way is a play of the game G. Our well-foundedness assumption implies that every
play is finite, and so there must be a winning strategy for one or the other player. We classify
games by who wins (which may depend on who moves first) when the players play optimally.

Definition A.3. Let G be a game.
• G is a first-move win for White iff there exists a white option w of G that is a first-move loss

for Black.
• G is a first-move win for Black iff there exists a black option b of G that is a first-move loss

for White.
• G is a first-move loss for White (written G ≥ 0) iff G is not a first-move win for White

(equivalently, every white option of G is a first-move win for Black).
• G is a first-move loss for Black (written G ≤ 0) iff G is not a first-move win for Black

(equivalently, every black option of G is a first-move win for White).

5It is more common in the literature to use the terms left option and right option instead of black option and
white option, respectively. It is also more traditional to use the notation {B∣W} or {b1, b2, . . . ∣w1,w2, . . .} rather than
(B,W ), where B = {b1, b2, . . .} and W = {w1,w2, . . .}.

6This follows from the Foundation Axiom of set theory, provided ordered pairs are implemented in the standard
way: (x, y) ∶= {{x},{x, y}} for all sets x and y.
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Definition A.4. Let G be a game.
• G is a zero game (or a first player loss, written G ≈ 0) iff G ≤ 0 and G ≥ 0.
• G is positive (or a win for Black, written G > 0) iff G ≥ 0 and G /≤ 0.
• G is negative (or a win for White, written G < 0) iff G ≤ 0 and G /≥ 0.
• G is fuzzy (or a first player win, written G ∥ 0) iff G /≤ 0 and G /≥ 0.

For example, the simplest game is the endgame 0 ∶= (∅,∅), which is a zero game. The game
1 ∶= ({0},∅) is positive, and the game −1 ∶= (∅,{0}) is negative, while the game ∗ ∶= ({0},{0}) is
fuzzy.

Games can be added and subtracted. The sum G+H of two games G and H is the game where
on each move, a player may decide in which of the two games to make a move. The negation −G
of G is the same as G but with the roles of Black and White reversed. Formally:

Definition A.5. Let G = (BG,WG) and H = (BH ,WH) be games. We define
• −G ∶= ({−w ∶ w ∈WG},{−b ∶ b ∈ BG}) and
• G +H ∶= ({b +H ∶ b ∈ BG} ∪ {G + b ∶ b ∈ BH},{w +H ∶ w ∈WG} ∪ {G +w ∶ w ∈WH}).

We write G−H as shorthand for G+(−H). One can show that + is commutative and associative
when applied to games, and the endgame 0 is the identity under +. One can also show for all games
G and H that −(−G) = G and −(G +H) = −G −H. Furthermore, G ≥ 0 iff −G ≤ 0, and if G ≥ 0
and H ≥ 0, then G +H ≥ 0. It is not the case, however, that G −G = 0 for all G, although G −G is
always a zero game (i.e., G −G ≈ 0).

Definition A.6. Let G and H be games.
• G and H are equivalent (written G ≈H) iff G −H ≈ 0.
• We write G ≤H to mean G −H ≤ 0 (equivalently, H −G ≥ 0).
• We write G <H to mean G ≤H but H /≤ G (equivalently, G −H < 0).

The ≤ relation on games is reflexive and transitive, which makes ≈ an equivalence relation
as the terminology suggests. The + operator respects equivalence (G ≈ G′ and H ≈ H ′ imply
G +H ≈ G′ +H ′). A special subclass of games are called numbers.

Definition A.7. A game G = (B,W ) is a number (or is numeric) iff every option of G is a number,
and in addition, b < w for every b ∈ B and w ∈W .

One can show that G = (B,W ) is a number if and only if b < G for every b ∈ B and G < w for
every w ∈W . If H is also a number, then either G ≤H or H ≤ G. The + and − operations also yield
numbers when applied to numbers. Numeric games have a peculiar property: making a move only
worsens your position (for Black this means having to choose a smaller number; for White, having
to choose a larger number). For these games, an optimal play is then easy to describe: Black
always chooses a maximum black option, and White always chooses a minimum white option.7

This intuitive is formalized in the following theorem that is referred to in the literature as the
“dominating rule”.

Theorem A.8. Let G = (B,W ) be a game. If y ≤ b for some b ∈ B, then (B,W ) = ({y} ∪B,W ).
Similarly, if y ≥ w for some w ∈W , then (B,W ) = (B,W ∪ {y}).

7This assumes that the game has a finite number of positions. In general, Black can do OK by choosing any option
b ≥ 0, and White can do OK by choosing any option w ≤ 0.
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A.1 Finite numeric games

Numeric games that are finite, i.e., that have a finite number of positions, correspond to dyadic
rational numbers according to the following “simplicity rule”:

Definition A.9. Let G = (B,W ) be a finite numeric game. The value of G, denoted v(G), is the
unique rational number a/2k such that

1. k is the least nonnegative integer such that there exists an integer a such that v(b) < a/2k for
all b ∈ B and a/2k < v(w) for all w ∈W , and

2. a is the integer with the least absolute value satisfying (1.) above.

So for example, the endgame 0 has value v(0) = 0, the game 1 has value v(1) = 1, and the
game −1 has value v(−1) = −1, as the notation suggests. In fact, for any two finite numeric
games P and Q, one can show that v(P + Q) = v(P ) + v(Q) and that v(−P ) = −v(P ). Also,
P ≤ Q if and only if v(P ) ≤ v(Q).8 Note that the valuation map v is not one-to-one; for example,
v(({−1},{1})) = v(0) = 0.

B Black-White Games with Straightforward Reductions

As a first example, consider Geography. The input is a directed graph G and a designated
vertex s of G on which a token initially rests. The two players alternate moving the token on G
from one node to a neighboring node, trying to force the opponent to move to a node that has
already been visited. Geography is a well-known PSPACE-complete game [Sch78, Sip05].

An obvious way to turn Geography into a black-white game is to color the nodes of graph G
black and white. Each player is then only allowed to move the token to a node of their own color.
Since moves are allowed only to neighboring nodes, the black-white version is equivalent to the im-
partial version on bipartite graphs. The standard method of showing that Geography is PSPACE-
complete is via a reduction from True Quantified Boolean Formulas (TQBF) to Geography (see
for example [Sip05]). Observe that the graph constructed in this reduction is not bipartite. That is,
there are nodes that potentially may be played by both players. Hence, we cannot directly conclude
that the black-white version is PSPACE-complete. However, in [LS80] Lichtenstein & Sipser show
that Geography is indeed PSPACE-complete for bipartite graphs.

We now consider the game Node Kayles. This game is defined on an undirected graph G.
The players alternately play an arbitrary node from G. In one move, playing node v removes v
and all the direct neighbors of v from G. In the black-white version of the game, we once again
color the nodes black and white. Schaefer [Sch78] showed that determining the winner of an
arbitrary Node Kayles instance is PSPACE-complete. He also extended the reduction to bipartite
graphs, which automatically yields a reduction to the black-white version of the game (see [GJ79]).
Therefore, black-white Node Kayles is also PSPACE-complete.

8One can define purely game-theoretic multiplication operation on numeric games in such a way that v(PQ) =
v(P )v(Q) for all P and Q.
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