
Negation-Limited Formulas

Siyao Guo ∗ Ilan Komargodski †

Abstract

We give an efficient structural decomposition theorem for formulas that depends on their
negation complexity and demonstrate its power with the following applications:

• We prove that every formula that contains t negation gates can be shrunk using a random
restriction to a formula of size O(t) with the shrinkage exponent of monotone formulas. As
a result, the shrinkage exponent of formulas that contain a constant number of negation
gates is equal to the shrinkage exponent of monotone formulas.

• We give an efficient transformation of formulas with t negation gates to circuits with log t
negation gates. This transformation provides a generic way to cast results for negation-
limited circuits to the setting of negation-limited formulas. For example, using a result of
Rossman (CCC ’15), we obtain an average-case lower bound for formulas of polynomial-size
on n variables with n1/2−ε negations.

In addition, we prove a lower bound on the number of negations required to compute one-way
permutations by polynomial-size formulas.

1 Introduction

Understanding the complexity of classical computational models for Boolean functions is the holy
grail of theoretical computer science. We focus on one of the simplest and most well studied models
known as Boolean formulas over the De Morgan basis. Such a formula is a Boolean formula over
the basis that includes AND, OR and NOT gates, where the former two are of fan in two. The size
of a formula is defined as the number of leaves it contains. A formula is said to be monotone if it
does not contain any negation gate.

One of the things that makes it so difficult to prove lower bounds on the size of formulas is
the presence of negation gates. The best such lower bound known for formulas is almost cubic
(see [H̊as98, Tal14]), whereas in the setting of monotone formulas, exponential lower bounds are
known (see [HR00, GP14] and references therein).1 Bridging this gap is a major challenge since
even a super-polynomial lower bound on the size of formulas (for a function that is constructible
deterministically in polynomial-time) would separate P from NC1.

In 1962 Nechiporuk [Nec62] considered the model of formulas with a limited number of negation
gates and proved the following classical result: dn/2e negation gates are sufficient to compute

∗Chinese University of Hong Kong. Email: syguo@cse.cuhk.edu.hk. Supported by RGC GRF grant CUHK
410111. Part of this work done while visiting IDC Herzliya, supported by the European Research Council under the
European Union’s Seventh Framework Programme (FP/2007-2013) / ERC Grant Agreement n. 307952.
†Weizmann Institute of Science, Israel. Email: ilan.komargodski@weizmann.ac.il. Supported in part by a grant

from the I-CORE Program of the Planning and Budgeting Committee, the Israel Science Foundation, BSF and the
Israeli Ministry of Science and Technology.

1More precisely, there exists an explicit Boolean function on n inputs such that every formula that computes it
must be of size n3−o(1) (see [H̊as98, Tal14]). Moreover, there exists an explicit monotone function on n inputs such
that every monotone formula that computes it must be of size 2Ω(n/ logn) (see [GP14]).

1

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Revision 1 of Report No. 26 (2015)

any Boolean function on n variables by a formula, and moreover, any formula can be efficiently
transformed into a formula that computes the same function but contains at most dn/2e negation
gates (see [Nec62, Mor09] and [Juk12]).

In this paper, we continue this line of research and study negation-limited formulas with two
main perspectives. The first perspective, which is motivated by bridging the gap between monotone
and non-monotone formulas, is that we view negation-limited formulas as a natural extension of
monotone formulas and try to extend various complexity properties of monotone formulas to the
negation-limited setting. The second perspective, which is motivated by separating the power of
circuits and formulas, is that we view negation-limited formulas as a restricted form of negation-
limited circuits and ask natural questions about negation-limited circuits in the setting of formulas.

1.1 Our Contributions

The main tool: efficient decomposition of negation-limited formulas

We prove an efficient structural decomposition theorem for negation-limited formulas. Specifically,
we prove that any function f that can be computed using a formula of size s that contains t
negation gates can be decomposed (in polynomial-time) into T + 1 functions h, g1, . . . , gT such that
f(x) ≡ h(g1(x), . . . , gT (x)), where T = O(t), h is a read-once formula, each gi is a monotone function
and the total (monotone) formula size of all the gi’s is at most 2s. That is, roughly speaking, we
are able to (efficiently) push all the negation gates to the root of the formula while increasing its
size only by a small constant factor (i.e., 2).

This decomposition theorem serves us as the main tool to extend results for monotone formulas to
negation-limited formulas, and to leverage results concerning negation-limited circuits to negation-
limited formulas. We give two applications to demonstrate the usage of our main tool.

Application 1: shrinkage of negation-limited formulas under random restrictions. One
of the most successful methods for proving lower bounds in several computational models is the
method of shrinkage under random restrictions.2 This method was invented and first used by
Subbotovskaya [Sub61] who proved a lower bound of Ω(nΓ) on size of formulas that compute the
parity function on n variables, where Γ ≥ 1.5 is referred to as the shrinkage exponent of (De
Morgan) formulas under random restrictions. Subsequent improvements on the constant Γ led to
improved lower bounds on formula size. Impagliazzo and Nisan [IN93] and Paterson and Zwick
[PZ93] proved that Γ ≥ 1.55 and Γ ≥ 1.63, respectively, H̊astad [H̊as98] proved that Γ ≥ 2 − o(1)
and very recently Tal [Tal14] closed the gap and proved that Γ = 2. Apart from being useful for
proving lower bounds, shrinkage results have a broad scope of applications in other areas including
pseudorandomness [IMZ12], Fourier concentration [IK14] and #SAT algorithms [CKK+14, CKS14].

A major open problem (mentioned e.g., in [PZ93, H̊as98, Tal14]) is to understand what is the
shrinkage exponent of monotone formulas.3 We study the related question of understanding the
shrinkage exponent of negation-limited formulas and provide a trade-off between the number of
negations and the shrinkage exponent. More precisely, we prove that every formula that contains t
negation gates can be shrunk using a random restriction to size O(t) with the shrinkage exponent

2A random restriction with parameter p ∈ [0, 1] is a vector ρ ∈ {0, 1, ?}n such that with probability p each entry
gets the value ? and with probability 1− p each entry is assigned, with equal probabilities, to 0 or 1. Given a function
f : {0, 1}n → {0, 1} and a random restriction ρ as above, the restricted function f |ρ is defined in the following way: if
ρi ∈ {0, 1} then the ith input variable of f is fixed to 0 or 1, respectively, and otherwise it is still an unfixed variable.
We say that formulas have shrinkage exponent Γ if for every function f the expected formula size of f |ρ is at most
O(pΓ · L(f) + 1), where L(f) is the formula size of f and the expectation is over the choice of ρ.

3It is conjectured that the shrinkage exponent of monotone formulas is equal to 3.27, the shrinkage exponent of
read-once formulas (see Conjecture 3 in [PZ93]).

2

of monotone formulas. As a simple instantiation of our result, we get that the shrinkage exponent
of formulas that contain a constant number of negation gates is exactly the same as the shrinkage
exponent of monotone formulas.

Application 2: efficient transformation from negation-limited formulas to circuits. The
decomposition theorem gives a way to efficiently transform formulas with t negations into circuit
with roughly log t negations. Specifically, we prove that a formula of size s that contains t negations
can be transformed into a circuit of size 2s + O(t · log t) that contains only log t + O(1) negation
gates.

This transformation also provides a generic way to cast results for negation-limited circuits to
the setting of negation-limited formulas. Informally, algorithms for circuits with log t negation gates
will apply for formulas with t negation gates (with almost the same size and depth), and lower
bound for circuits with log t negations will imply lower bounds for formulas with t negation gates
(with almost the same size and depth). As an example, this allows us to cast the recent average-case
lower bound for mNC1 [Ros15], lower bounds for several cryptographic primitives [GMOR15], and
the upper bound on learning circuits with few negations [BCO+15] to the setting of negation-limited
formulas as we elaborate in Section 4.2.1.

More Results

Lower bound on negation complexity of one-way permutations. We prove a lower bound for
implementing one-way permutations by negation-limited formulas. Specifically, we show that every
permutation on n bits that can be computed by a formula of size s that contains t negation gates can
be inverted (on every image) in time 22t ·s. This implies, in particular, that every implementation of
a one-way permutation as a polynomial-size formula must contain at least ω(log n) negation gates.
As a comparison, Guo et al. [GMOR15] left open the question of whether one-way permutations are
computable by circuits that contain a single negation gate.

Upper bound on the total influence. Total influence has many applications in various areas of
theoretical computer science. Most relevant to our context, it serves as the main tool in recent studies
of negation-limited circuits in computational learning [BCO+15] and cryptography [GMOR15].

The literature on negation complexity defines a measure, a(·), called “alternation complexity”
which denotes the maximal number of times a function f : {0, 1}n → {0, 1} changes its value along
a chain (i.e., a monotone sequence of strings) starting at 0n and ending at 1n. Blais et al. [BCO+15]
proved (using their inefficient decomposition theorem) that for any function f it holds that Inf(f) ≤
O(a(f) ·

√
n). We give a simple direct probabilistic argument for this fact.

1.2 Related Work

An inefficient decomposition theorem for negation-limited circuits into monotone circuits explicitly
appeared in [BCO+15]. They proved that any function f that can be computed using a circuit with t
negations can be decomposed into T +1 functions h, g1, . . . , gT such that f(x) ≡ h(g1(x), . . . , gT (x)),
where T = O(2t), h is either the parity function or its negation and each gi is a monotone function.4

An efficient version of this decomposition theorem (with related parameters) appeared explicitly in
[GMOR15] and implicitly in [AM05, Ros15].

Besides the above, the power of negations in different models has been studied in many works
including [Mar58, Nec62, Fis75, SW91, RW89, TNB96, BNT98, ST04, AM05, Mor09, IMT09]. For

4We refer to this decomposition as “inefficient” since the decomposed monotone components (i.e., the gi’s) may
have exponential size.

3

more information on negations in complexity theory we refer to Jukna’s book [Juk12, §10] and
references therein.

1.3 Overview of Our Techniques

In this section we present a high-level overview of the techniques used to obtain some of our results.

Efficient decomposition of negation-limited formulas. Using the theorem of Nechiporuk
[Nec62] it is quite straightforward to cast the decomposition theorem of [BCO+15] to the setting
of negation-limited formulas which results in the same statement except that T = O(t) (rather
than T = O(2t)). More precisely, it gives that and function f can be rewritten as f(x) ≡
h(g1(x), . . . , gT (x)), where T = O(t), h is either the parity function or its negation and each gi
is a monotone function. Unfortunately, such a decomposition is not enough for us since it is inef-
ficient, in particular, it does not preserve the size or depth of the original formula. Note that the
efficiency of the decomposition was mostly not an issue in [BCO+15, GMOR15], whereas for us it
is crucial since, for example, shrinkage is a combinatorial property that general circuits do not have
(unlike formulas).

To overcome this we prove an efficient version in which the resulting formula has almost the
same size and depth as the original one.5 Technically, our decomposition is more involved than the
inefficient version and is influenced by ideas and techniques used in recent papers on De Morgan
formulas [IMZ12, KRT13, Tal14].

As an applications of this theorem, we prove the shrinkage result and the transformation from
negation-limited formulas to circuits. The shrinkage theorem relies on two properties of the de-
composition: it does not introduce much overhead in the formula size and the gi’s are monotone,
and thus, shrink as well as monotone formulas. To get the transformation result, we use our ef-
ficient decomposition theorem for formulas, view h as a circuit on t inputs, and apply Fischer’s
transformation [Fis75] (see also [BNT98]) to implement h with dlog2(t+ 1)e negations.

Negation complexity of one-way permutations. Our lower bound on the number of negations
required to compute one-way permutations relies crucially on the fact that the fan-out of formulas is
1. We take advantage of this fact together with Talagrand’s inequality [Tal96] in a way that might
be of independent interest. We emphasize that previously it was known that one-way permutations
cannot be computed by a monotone circuit.

1.4 Paper Organization

The remainder of this paper is organized as follows. In Section 2 we provide an overview of the
notation, definitions, and tools underlying our proofs. In Section 3 we present our central tool: the
decomposition theorem for negation-limited formulas. In Sections 4.1 to 4.4 we give the statements of
the shrinkage result, the transformation from negation-limited formulas to negation-limited circuits,
the lower bound for one-way permutations, and the influence bound for negation-limited formulas.

2 Preliminaries

In this section we present the notation and basic definitions that are used in this work. For an
integer n ∈ N we denote by [n] the set {1, . . . , n}. For a distribution X we denote by x ← X the
process of sampling a value x from the distribution X. Similarly, for a set X we denote by x← X

5We note that our transformation is efficient in a strong sense: (1) it can be implemented in polynomial-time in the
size of the input formula, and (2) it results with a formula of polynomial-size (close to the size of the input formula).

4

the process of sampling a value x from the uniform distribution over X . Unless explicitly stated, we
assume that the underlying probability distribution in our equations is the uniform distribution over
the appropriate set. Further, we let U` denote the uniform distribution over {0, 1}`. We use log x
to denote a logarithm in base 2. We denote by wt(x) the Hamming weight of a string x ∈ {0, 1}n
(i.e., the number of 1’s in the string).

Boolean Formulas

We recall some standard definitions and notation regarding formulas. We refer to [Juk12] for a
thorough introduction. We consider formulas over the De Morgan basis BDM = {AND,OR,NOT},
where the AND and OR gates are of fan-in two. Whenever we refer to formulas we actually refer to
De Morgan formulas.

A Boolean formula is a Boolean circuit whose fan-out is at most one. A De Morgan formula is
represented by a tree such that every leaf is labeled by an input variable and every internal node is
labeled by an operation from B2. A formula is said to compute a function f : {0, 1}n → {0, 1} if on
input x ∈ {0, 1}n it outputs f(x). The computation is done in the natural way from the leaves to
the root. The size of a formula F , denoted by L(F), is defined as the number of leaves it contains.
For a function f , we denote by L(f) the size of the smallest formula that computes the function f .

A formula is called read-once if every input variable labels at most one leaf. A formula F
that does not contain negation gates is called a monotone formula. We say that a formula F is
anti-monotone if F is the negation of a monotone formula.

Consider a formula F . Let q be a node in F (q can be either an internal node or a leaf). We
refer to the tree rooted at q as a subformula of F or a subtree of F .

Let f : {0, 1}n → {0, 1}m be a Boolean multi-bit output function. Such a function can be
computed by m formulas F1, . . . , Fm such that Fi computes the ith output bit of f . The size of the
formula that computes f is the sum of the sizes of F1, . . . , Fm. Moreover, the number of negation
gates in f is the sum of the number of negation gates in F1, . . . , Fm.

Decrease, Alternating and Inversion Complexity

For two strings x, y ∈ {0, 1}n, we write x � y if xi ≤ yi for every i ∈ [n]. If x � y and x 6= y,
then we write x ≺ y. A chain X = (x1, . . . , xt) is a monotone sequence of strings over {0, 1}n, i.e.,
xi � xi+1 for every i ∈ [t]. We say i is a jump-down position of f along a chain X = (x1, x2, . . . , xt)
if f(xi) = 1 and f(xi+1) = 0. We let d(f,X) be the number of all jump-down positions of f on
chain X We say a chain X = (x1, x2, . . . , xt) is k-alternating with respect to a function f if there
exist indexes i0 < i1 < . . . < ik such that f(xij) 6= f(xij+1), for every j ∈ [0, k − 1]. We let a(f,X)
be the size of the largest set of indexes satisfying this condition. The decrease of a Boolean function
f is given by d(f)

def
= maxX d(f,X) and the alternating complexity of a Boolean function f is given

by a(f)
def
= maxX a(f,X), where X is a chain over {0, 1}n. Note that a(f) ≤ 2d(f) + 1.

For a Boolean function f , we define the inversion complexity of f , denoted by I(f), as the
minimum number of NOT gates in any formula that computes f . The relation between the inversion
complexity and decrease complexity is stated in the following theorem.

Theorem 2.1 ([Nec62, Mor09]). For every Boolean function f it holds that

I(f) = d(f),

where I(f) is the inversion complexity of f and d(f) is the decrease of f .

5

Fourier Basis and Influence

For each S ⊆ [n], define χS : {0, 1}n → {−1, 1} as χS(x) =
∏
i∈S(−1)xi . It is well known that

the set {χS}S⊆[n] is an orthonormal basis (called the Fourier basis) for the space of all functions
f : {0, 1}n → R. It follows that every function f : {0, 1}n → R can be represented as

f(x) =
∑
S⊆[n]

f̂(S)χS(x),

where f̂ : {0, 1}n → R, and f̂(S)
def
= Ex[(−1)

∑
i∈S xi+f(x)] is called the Fourier coefficient of f at

S ⊆ [n].
We use Infi(f) to denote the influence of the i-th input variable on f , i.e.,

Infi(f)
def
= Pr

x
[f(x) 6= f(x⊕i)],

where x⊕i denotes the string obtained from x by flipping its i-th coordinate. The influence of f
(also known as average-sensitivity) is defined as Inf(f)

def
=
∑

i∈[n] Infi(f). We refer to O’Donnell’s
book [O’D14] for an introduction to Fourier analysis.

Some of our proofs rely on the following inequality for monotone Boolean functions.

Proposition 2.2 (Talagrand [Tal96]). For any pair of monotone Boolean functions f, g : {0, 1}n →
{0, 1}, it holds that

Pr
x

[f(x) = 1 ∧ g(x) = 1] ≥ Pr
x

[f(x) = 1] · Pr
x

[g(x) = 1] + ψ
(∑
i∈[n]

Infi(f) · Infi(g)
)
,

where ψ(x)
def
= c · x/ log (e/x), e is the base of the natural logarithm and c > 0 is a fixed constant

independent of n.

One-Way Functions and One-Way Permutations

We say that a function f : {0, 1}n → {0, 1}m is an (s, ε)-secure one-way function (OWF) if for every
circuit C of size at most s,

Pr
x←{0,1}n, y=f(x)

[C(y) ∈ f−1(y)] ≤ ε.

If m = n, we say that f is length-preserving. If f is an (s, ε)-secure one-way function that is
lengh-preserving and one-to-one, we say that f is an (s, ε)-secure one-way permutation (OWP).

3 Efficient Decomposition for Negation-Limited Formulas

In this section we present our main tool, an efficient structural decomposition theorem for formulas
which, intuitively, pushes all negation gates to the root of the formula.

Theorem 3.1. Let f : {0, 1}n → {0, 1} be a Boolean function computed by a formula F of size s
containing t > 0 negation gates. Then, there exist T ≤ 15(t + 1) functions g1, . . . , gT : {0, 1}n →
{0, 1} and a function h : {0, 1}T → {0, 1} such that f(x) = h(g1(x), . . . , gT (x)), h is computable by
a read-once formula and g1, . . . gT are computable by monotone formulas of total size at most 2s.

6

We first need the following claim that states that any formula that has t negation gates can be
decomposed into 2(t + 1) subformulas such that each of them is monotone or anti-monotone (i.e.,
either it has zero negations or it has one negation in the root). Moreover, each such subformula
has at most two “special” children which are subformulas by themselves. We note that the proof
of Theorem 3.1 draws ideas from a proof of a different decomposition theorem used by Tal [Tal14]
which, in turn, is partially built on ideas that were used before in [IMZ12] and then in [KRT13].
However, since the properties of our decomposition are very different, we cannot use the other
theorems as a black-box.

Claim 3.2. Let F be a formula of size s that contains t > 0 negations. Then, F can be decomposed
into at most 2(t + 1) subformulas of total size s, such that (1) each subformula has at most one
negation gate in its root, and (2) each subformula has at most two “special” children which are other
subformulas.

Proof. Execute the following step t times: let g1, . . . , gs be the nodes of the formula F sorted by
their distance from the root gs. For any i = 1, . . . s if gi = NOT we set Fi to be the subformula rooted
at gi and set F = F \ Fi. This process results with T = t + 1 subformulas F1, . . . , FT whose total
size is s and each is either monotone (i.e., does not include a NOT gate) or includes one NOT gate
located at its root (i.e., it is anti-monotone). This process results with at most t+ 1 subformulas.

For each subformula Fi with more than two subformula children, find a subformula F ′i of Fi with
exactly two subformula children, and divide Fi into F ′i and Fi \ F ′i . Note that Fi \ F ′i now has one
fewer subformula children. Continue doing this until all subformulas have at most two subformula
children. This process results with the desired number of subformulas, 2(t + 1), since the above
process can happen at most the original number of subformulas.

Proof of Theorem 3.1. Let F be as in the lemma. Apply the decomposition from Claim 3.2 on
F to get the subformulas F1, . . . , FT ′ , where T ′ = 2(t + 1). We show by induction on T ′ that one
can construct a read-once formula H of size T ≤ 7T ′ and T monotone formulas G1, . . . , GT of size
s such that F (x) = H(G1(x), . . . , GT (x)). For t = 0 (and T ′ = 1) the statement holds trivially.

Assume that the root of the formula F is a node in the subformula F1, and that the subformula
F1 has two subformula children F2 and F3. (The case in which F1 has only one subformula child is

handled similarly). Denote by k
(1)
2 , k

(1)
3 ∈ F1, k

(2)
1 ∈ F2 and k

(3)
1 ∈ F3 the nodes such that k

(2)
1 and

k
(3)
1 are the roots of F2 and F3, respectively, k

(1)
2 is the father of k

(2)
1 , and k

(1)
3 is the father of k

(3)
1 .

Disconnect F2 and F3 from F1 and add two new leaves labeled by z2 and z3 to F1 as a child of k
(1)
2

and k
(1)
3 , respectively.

Call the formula F1 with the two new leaves F ′. Notice that by Claim 3.2, F ′ is either monotone
or anti-monotone, namely a negation of a monotone function. We prove the case when F ′ is anti-
monotone and the argument for monotone case is similar. Let F ′1 be the minimal subformula of
F ′ that contain both z2 and z3 and let F ′2 and F ′3 be the corresponding subformulas such that
F ′1 = F ′2 gate F ′3, where gate ∈ {AND,OR}, and F ′2 contains z2 (but not z3) and F ′3 contains z3 (but
not z2). We will construct a formula which is equivalent to F ′1.

We observe that F ′2 = F ′2|z2=0 OR (F ′2|z2=1 AND z2). This is true since F ′2 is monotone (i.e., does
not contain any negation gates). Similarly, F ′3 = F ′3|z3=0 OR (F ′3|z3=1 AND z3). Thus,

F ′1 = (F ′2|z2=0 OR (F ′2|z2=1 AND z2)) gate (F ′3|z3=0 OR (F ′3|z3=1 AND z3)).

Replacing F ′1 with a new leaf z (where z is a new special variable) we have (by a similar argument)
that F1 = F1|z=1 OR (F1|z=0 AND z) (this follows by the anti-monotonicity of F1). By expanding

7

according to the definition of z we get that

F1 = F1|z=1 OR (F1|z=0 AND ((F ′2|z2=0 OR (F ′2|z2=1 AND z2)) gate

(F ′3|z3=0 OR (F ′3|z3=1 AND z3)))).

Now, we observe that the right hand side can be rewritten as F ′′(G1, . . . , G6, z2, z3), where F ′′ is
read-once and G1, . . . , G6 are formulas of size at most s (defined over the same set of variables as
the initial F).

Let t2 and t3 be the number of subformulas which are descendants of F2 and F3 in the for-
mula decomposition, respectively. By induction the subformula of F rooted at k

(2)
1 is equivalent to

F ′2(G
(2)
1 (x), . . . , G

(2)
6t2

(x)), where F ′2 is read-once and G
(2)
i is of size at most s. Similarly, the subfor-

mula of F rooted at k
(3)
1 is equivalent to F ′3(G

(3)
1 (x), . . . , G

(3)
6t3

(x)), where F ′3 is read-once and G
(3)
i is

of size at most s. Thus,

F (x) = F ′′(G1(x), . . . , G6(x), F ′2(G
(2)
1 (x), . . . , G

(2)
6t2

(x)), G
(3)
1 (x), . . . , G

(3)
6t3

(x))).

By rearranging the right hand size we get a read-once formula of size T ≤ 6 + 6t2 + 6t3 ≤ 7T ′ and T
monotone subformulas each of size at most s such that their composition is equivalent to F . To see
that the total size of the subformulas is bounded by 2s notice that every subformula was duplicated
at most once.

4 The Complexity of Negation-Limited Formulas

4.1 Shrinkage under Random Restrictions

A well known property of formulas is called shrinkage. We begin with several definitions. Let
f : {0, 1}n → {0, 1} be a Boolean function. A restriction ρ is a vector of length n of elements
from {0, 1, ?}. We denote by f |ρ the function f restricted according to ρ in the following sense: if
ρi = ? then the i-th input bit of f is unassigned and otherwise the i-th input bit of f is assigned
to be ρi. A p-random restriction is a restriction as above that is sampled as follows. For every
i ∈ [n], independently with probability p set ρi = ? and with probability 1−p

2 set ρi to be 0 and 1,
respectively. We denote this distribution of restrictions by Rp.

Definition 4.1 (Shrinkage exponent). Let F be a class of formulas. The shrinkage exponent of F
is said to be Γ if for any F ∈ F

E
ρ←Rp

[L(F |ρ)] ≤ O
(
pΓ · L(F) + 1

)
.

Denote by Γ,Γ0,Γ
∗ the shrinkage exponent of (De Morgan) formulas, monotone formulas and

read-once formulas, respectively. Denote by Γt the shrinkage exponent of formulas that contain
at most t negation gates. It is known that (1) Γ = 2 [H̊as98, Tal14], (2) Γ∗ = log√5−1 2 ≈ 3.27
[DZ94, HRY95], and (3) for every t ≥ 0 it holds that Γ∗ ≥ Γt ≥ Γt+1 ≥ Γ = 2. Figuring out
the value of Γ0, the shrinkage exponent of monotone Boolean formulas, is a major open problem
[PZ93, H̊as98, Tal14].

Our main theorem of this section is a trade-off between the number of negations in the formula
and its shrinkage exponent. In particular, we get that the shrinkage exponent of formulas that
contain a constant number of negation gates is equal to Γ0.

8

Theorem 4.2. Let F be a formula that contains t > 0 negation gates. It holds that

E
ρ←Rp

[L(F |ρ)] ≤ O
(
pΓ0 · L(F) + t

)
.

Proof of Theorem 4.2. Given a formula F we decompose it using Theorem 3.1 to getH,G1, . . . , GT ,
where T ≤ 15(t + 1),

∑T
i=1 L(Gi) ≤ 2 · L(F) and F (x) = H(G1(x), . . . , GT (x)). Clearly we have

that the formula size of F is at most the sum of the sizes of the Gi’s. Namely,

L(F) ≤
T∑
i=1

L(Gi) ≤ 2 · L(F), (4.1)

where the second inequality is true by the guarantee of the decomposition from Theorem 3.1. Let
ρ← Rp be a random restriction. For each i ∈ [T] since Gi is monotone, we have that Eρ[L(Gi|ρ)] ≤
O(pΓ0 · L(Gi) + 1). Thus, the expected size of L(F) after applying ρ is

E
ρ
[L(F |ρ)] ≤

T∑
i=1

E
ρ

[L (Gi|ρ)] (Linearity of expectation)

≤
T∑
i=1

O
(
pΓ0 · L (Gi) + 1

)
(Each Gi is monotone)

≤O
(
pΓ0 · L(F) + t

)
. (Equation (4.1))

Notice that when t = O(1) we get that Eρ[L(F)|ρ] ≤ O(pΓ0 · L(F) + 1) which means that
the shrinkage exponent of such formulas is exactly equal to the shrinkage exponent of monotone
formulas. More generally, Theorem 4.2 implies that every formula F that contains t > 0 negation
gates can be shrunk in two steps of random restrictions such that in the first step the formula F
shrinks to size O(t) as monotone formulas shrink (i.e., with Γ0 as the shrinkage exponent) and in the
second step the formula (of size O(t)) shrinks as formulas shrink (with Γ as the shrinkage exponent).
To be more precise, F can be restricted with a random restriction ρ1 ← Rp1 , where p1 = Γ0

√
t/L(F),

to get a formula F1 of size O(t) and then it can be restricted with a random restriction ρ2 ← Rp for
any p to get a formula F2 of size O(pΓ · t+ 1). In the following corollary we state a shrinkage result
parameterized by t, the number of negations, p, the restriction parameter, and L(F), the formula
size.

Corollary 4.3. Let F be a formula that contains t = t(L(F)) > 0 negations and let c > 0 be a
constant. Then, for p ≥ Γ0

√
(c · t)/L(F), it holds that

E
ρ←Rp

[L(F |ρ)] ≤ O
(
pΓ0 · L(F)

)
.

4.2 Efficient Transformation from Negation-Limited Formulas to Circuits

In this section we show that negation-limited formulas can be transformed into negation-limited
circuits with exponentially smaller number of negations with almost linear blowup in the size and
depth. An inefficient transformation was previously known due to the theorems of Markov [Mar58]
and Nechiporuk [Nec62].6

6By the theorem of Nechiporuk [Nec62], the decrease of a function computable by a formula with t negations is t.
Then, by the theorem of Markov [Mar58], any function with decrease t is computable by a circuit with dlog (t+ 1)e
negations. The size of the resulting circuit, however, is unbounded (i.e., it can be exponential in the number of inputs).

9

Theorem 4.4. Let F : {0, 1}n → {0, 1} be a formula of size s and depth d and t negations, then
there is a circuit C of size s′, depth d′ and t′ negations computing F such that s′ = 2s+O(t log t),
d′ = d+O(log t) and t′ = log t+O(1).

Fischer’s theorem [Fis75] can efficiently transform negation-limited formulas with t negations
into negation-limited circuits with log n negations. Our theorem combines Fischer’s theorem and
our decomposition theorem (Theorem 3.1) to efficiently transform the negation-limited formulas
with t negations into negation-limited circuits with log t negations.

Proof. Our decomposition theorem (Theorem 3.1) states that the function f computed by F can
be written as f(x) = h(g1(x), . . . , gT (x)) where T ≤ 15(t + 1), g1, . . . , gT : {0, 1}n → {0, 1} are
computable by monotone formulas of total size at most 2s (also depth at most d) and h : {0, 1}T →
{0, 1} is computable by a read-once formula. We use the efficient version of Markov’s theorem to
get a circuit with few negations that compute h.

Proposition 4.5 ([Fis75, BNT98]). If a function on n variables can be computed by circuit over
a basis that includes AND, OR and NOT gates of size s and depth d, then it can be computed by a
circuit of size at most 2s+O(n log n) and depth d+O(log n) using at most dlog (n+ 1)e negations.

The read-once formula computing h has input size T so that size is at most T and depth is at
most log T . By the above theorem, we conclude that h can be computed by a circuit of size at
most 2T + O(T log T) = O(t log t) and depth O(log T) using at most dlog (T + 1)e = log t + O(1)
negations. It is easy to see we can compose the circuit for h with formulas for g1, . . . , gT to compute
f . Since g1, . . . , gT are computable by monotone formulas of total size at most 2s and depth at most
d, we can further conclude that f are computable by a circuit of size at most 2s+O(t log t), depth
d+O(log t) and O(log t) negations.

4.2.1 Applications

In this section we exemplify the usefulness of Theorem 4.4.

Average-case lower bounds for negation-limited formulas. An average-case computation
(a.k.a. approximate computation) of a function f : {0, 1}n → {0, 1} is a computation that is required
to agree with f only on a 1/2+ δ fraction of the inputs. Besides being interesting in their own right,
average-case lower bounds (a.k.a. correlation bounds) have proved useful in many fields of complexity
theory, such as derandomization (e.g., [Nis91, NW94]).

Recently, Rossman [Ros15] proved the first average-case lower bound for mNC1, the class of
polynomial-size logarithmic-depth monotone circuits, or equivalently, polynomial-size monotone for-
mulas. More precisely, for every ε > 0, Rossman gives an explicit monotone function on n variables
which is (1/2 + n−1/2+ε)-hard to approximate in mNC1 under the uniform distribution. His bound
for mNC1 extends to circuits in NC1 with at most (1/2− ε) log n negations. Using Theorem 4.4 and
[Ros15], we get the following corollary.

Corollary 4.6. For every ε > 0, there is an explicit function f : {0, 1}n → {0, 1} such that for every
polynomial-size formula F with n1/2−ε negations, it holds that Prx←{0,1}n [F (x) = f(x)] ≤ 1/2+o(1).

We remark that Corollary 4.6 crucially relies on that the transformation in Theorem 4.4 is
efficient.

Cryptography in negation-limited formulas. One of the goals of cryptography is to study
how simple cryptographic primitives can be, where simplicity can be measured by e.g., the required
assumptions, the circuit depth and more. Recently, Guo et al. [GMOR15] (following on [GI12])

10

proved lower bounds on the number of negations required to represent many cryptographic primitives
as circuits. The simplicity of a cryptographic primitive can also be measured by the simplicity of
the model in which it can be implemented (see e.g., [AIK06] and concrete examples in [H̊as87,
NR04]). Using Theorem 4.4, one can easily cast some of the results of [GMOR15] to the setting
of negation-limited formulas and obtain exponentially higher lower bounds on several primitives
including pseudorandom functions, hardcore predicates and extractors. (We refer the reader to
[GMOR15] for the relevant notation and definitions.)

Corollary 4.7. If f : {0, 1}λ × {0, 1}n → {0, 1} is a (poly(n), 1/3)-secure pseudorandom function,
then any Boolean formula computing f contains at least Ω(n) negation gates.

Corollary 4.8. Assume that there exists a family f = {fn}n∈N of (poly(n), n−ω(1))-secure one-way
functions, where each fn : {0, 1}n → {0, 1}n. Then, for every ε > 0, there exists a family gε =
{gn}n∈N of (length-preserving) (poly(n), n−ω(1))-secure one-way functions for which the following
holds. If h = {hn}n∈N is a (poly(n), n−ω(1))-secure hardcore predicate for gε, then for every n
sufficiently large, any formula computing hn contains at least Ω(n1/2−ε) negations.

Corollary 4.9. Let 0 < α < 1/2 be a constant, and m = m(n) ≥ 100. Further, suppose that
H ⊆ {h | h : {0, 1}n → {0, 1}m} is a family of functions such that each output bit hi : {0, 1}n → {0, 1}
of a function h ∈ H is computed by a formula and the total number of negations of a function h ∈ H
is at most t. Then, if H is an (n

1
2
−α, 1/2)-extractor, then t = Ω(nα).7

Uniform-distribution learnability of negation-limited formulas. Monotone functions are
known to be somewhat efficiently learnable with high accuracy given uniformly distributed examples.
Namely, Bshouty and Tamon [BT96] showed that any monotone Boolean function on n variables
can be learned from uniformly distributed examples to error ε in time O(n

√
n/ε). Recently, Blais

et al. [BCO+15] studied the question of learning negation-limited circuits. They showed that any
function on n variables that can be computed by a circuit with t negations can be learned from
uniformly distributed examples to error ε in time nO(2t·

√
n/ε). Using Theorem 4.4 we obtain the

following corollary.

Corollary 4.10. There is a uniform-distribution learning algorithm that learns any Boolean function
f on n variables that can be computed by a formula with t negations to error ε in time nO(t·

√
n/ε).

4.3 One-Way Functions and Permutations in Negation-Limited Formulas

In this section we study the negation-limited complexity of one-way functions and one-way permu-
tations in the model of Boolean formulas. We start with a simple observation (see Observation 4.11)
that if one-way functions in NC1 exist, then there exist one-way functions that can be computed by
monotone logarithmic-depth formulas. Then, in Theorem 4.12, we show that any one-way permu-
tation is not computable by a formula that has O(log n) negations.

Observation 4.11. Assume that there is a one-way function in NC1. Then, there is a one-way
function computable by a logarithmic-depth monotone formula.

Proof. Recall the transformation of Goldreich and Izsak [GI12] that transformed every one-way
function into a monotone one-way function. Let C be a circuit that computes a one-way function
and let C ′ be a circuit obtained from C by pushing all negation gates to the leaves and replacing

7We remark that the above bound can be further improved to Ω(m · nα) if one combines the proof of [GMOR15]
(with slight modifications) and the total influence upper bound given in Theorem 4.13.

11

negated variables by auxiliary variables, namely, C(x) = C ′(x, x̄), where x̄i = ¬xi. Let Thk :
{0, 1}n → {0, 1} be a function such that Thk(x) = 1 if and only if the hamming weight of x is
at least k. Notice that for any x of hamming weight k it holds that ¬xi = Thk(x ∧ 1i−101n−i).
Therefore, N(x) = (Thk(x ∧ 01n−1), . . . ,Thk(x ∧ 1n−10)) and we get that

C ′′(x) = (Thn/2 ∧ C ′(x,N(x))) ∨ Th(n/2)+1(x)

is a monotone function which is efficiently computable and weakly one-way. Then, applying the
standard hardness amplification process they obtain a one-way function (we refer to [GI12] for the
exact detail).

We observe that if we start with a one-way functions in NC1, then the reduction of [GI12] results
with a monotone one-way function which is in NC1. Then, we use the standard transformation
from circuits in NC1 to formulas. Since this transformation preserves monotonicity and depth, we
complete the proof. We note that the above transformation of [GI12] uses threshold functions which
are computable by (uniform) formula of logarithmic depth (using sorting networks [AKS83]).

Theorem 4.12. Let f : {0, 1}n → {0, 1}n be a permutation. If f is computable by a formula of size
s that contains t negations, then there exists a deterministic algorithm whose running time is 22t · s
such that given as input any y = f(x) outputs x. In particular, if s ∈ poly(n) and t = O(log n),
then the algorithm runs in polynomial-time.

Proof. Let fi : {0, 1}n → {0, 1} be the Boolean function corresponding to the i-th output bit of f
and Fi : {0, 1}n → {0, 1} be a formula computing fi. Let S = {i ∈ [n] | Fi is monotone}, i.e., the
collection of indices i ∈ [n] for which Fi contains no negations. Since f has t < n negations, we
obtain |S| ≥ n − t. Let S1 = {i ∈ S | ∃j ∈ [n],∀x ∈ {0, 1}n : Fi(x) = xj}, i.e., the collection of
indices i ∈ S for which Fi is a dictator function. Let Ii = {j ∈ [n] | Infj(fi) 6= 0}, i.e., the set of
input variables that fi depends on.

Consider functions f` and fk, where ` 6= k ∈ S. By Talagrand’s inequality (Proposition 2.2),

Pr
x

[f`(x) = 1 ∧ fk(x) = 1] ≥ Pr
x

[f`(x) = 1] · Pr
x

[fk(x) = 1] + ψ
(∑
i∈[n]

Infi(f`) · Infi(fk)
)
.

Since f is a permutation, Prx[f`(x) = 1 ∧ fk(x) = 1] = 1/4 and Prx[f`(x) = 1] = Prx[fk(x) = 1] =
1/2. Thus, since f` and fk are monotone and using the definition of ψ, we get that∑

i∈[n]

Infi(f`) · Infi(fk) = 0.

Therefore, I` ∩ Ik = ∅, i.e., f` and fk depend on a disjoint set of input variables. Since the above
holds for every pair `, k such that ` 6= k ∈ S, we obtain

n ≥
∣∣∣ ⋃
i∈S

Ii

∣∣∣ =
∑
i∈S
|Ii| =

∑
i∈S1

|Ii|+
∑

i∈S\S1

|Ii| . (4.2)

For i ∈ S \ S1, since the function fi is non-constant we have that |Ii| ≥ 2. Plugging this into
Equation (4.2), we obtain

n ≥
∑
i∈S1

1 +
∑

i∈S\S1

2 = 2 |S| − |S1| ≥ 2(n− t)− |S1| ,

which implies that |S1| ≥ n− 2t.
Given y = f(x), we can invert y and find x′ = x using following algorithm:

12

1. For every i ∈ S1, we set x′j to be yi where j is the only element in the set Ii.

2. Go over all possible assignments on the unassigned variables in x′ until f(x′) = y,

3. Output x′.

After the first step, |S1| ≥ n−2t variables are assigned correctly. The number of unassigned variables
is at most 2t, so that we can try all possible assignments on the remaining unassigned variables in
time 22t · s, where s is the evaluation time of the permutation. If s ∈ poly(n) and t = O(log n), we
get that the above algorithm runs in polynomial-time.

4.4 Total Influence of Negation-Limited Formulas

In this section we prove a general connection between total influence and negation complexity of
Boolean functions.

Theorem 4.13. For any function f : {0, 1}n → {0, 1}, it holds that Inf(f) ≤ O (a(f) ·
√
n), where

Inf(f) is the total influence of f and a(f) is the alternating complexity of f .
In particular, if f can be computed by a formula with t negations, then Inf(f) ≤ O (t ·

√
n).

A proof of Theorem 4.13 was given (somewhat implicitly in this full generality) in [BCO+15] using
their (inefficient) decomposition theorem. We show a direct probabilistic proof for Theorem 4.13
which arguably simplifies their arguments and might be of independent interest.

We note that the bound in Theorem 4.13 is tight up to constants. Indeed, for any n ∈ N, any
constant c ∈ N (independent of n) and any t ≤ c ·

√
n consider the function f : {0, 1}n → {0, 1}

defined as

f(x) =

{
wt(x) mod 2 if |wt(x)− n/2| ≤ t/2,
0 otherwise.

First, it is easy to see that t − 1 ≤ a(f) ≤ t + 1. Moreover, a simple analysis shows that Inf(f) ≥
Ω(t·
√
n). To see this observe that since t ≤ O(

√
n), then Prx←{0,1}n [|wt(x)− n/2| ≤ t/2] ≥ Ω(t/

√
n),

and that if x satisfies that |wt(x)− n/2| ≤ t/2, then changing each of its n coordinates will flip the
value of the function.

Proof of Theorem 4.13. The “In particular” part of the above theorem follows by Nechiporuk’s
theorem (see Theorem 2.1). We proceed with the main part.

Denote by D the set of all pairs of points in {0, 1}n that differ at one coordinate. Namely,
(x, y) ∈ D if and only if there exists an i ∈ [n] such that x⊕i = y.

We define two ways to sample edges from D and show that they define the same distribution.
The first way to sample an edge from D is by first sampling a point x ∈ {0, 1}n and then sampling
a random direction i ∈ [n]. This gives rise to the edge (x, x⊕i). Notice that for any edge e ∈ D it
holds that Prx←{0,1}n,i←[n][(x, x

⊕i) = e] = 1
n·2n−1 . Moreover, observe that by the definition of total

influence, we have that

Inf(f)

n
= Pr

x←{0,1}n,i←[n]
[f(x) 6= f(x⊕i)]. (4.3)

The second way is defined as follows. Denote by C the set of all valid chains starting from 0n and
ending at 1n. First, we sample a random chain X = (x0 = 0n, x1, . . . , xn−1, xn = 1n) from C. Notice
that wt(xi) = i for all i ∈ [n] ∪ {0}. Then, we pick the edge e(i) = (xi, xi+1) for i ∈ [n− 1] ∪ {0} on

13

the chain with probability
(
n−1
i

)
/2n−1. Notice that this is a probability distribution since we have

that
∑n−1

i=0

(
n−1
i

)
/2n−1 = 1. Also, observe that a random chain X from C contains an arbitrary edge

(x, x′) ∈ D with probability 1/(
(
n−1
wt(x)

)
·n). In total, using the above process, the probability to pick

an edge e ∈ D is

Pr
X←C,(xi,xi+1)←X

[(xi, xi+1) = e] = Pr
(xi,xi+1)←X

[(xi, xi+1) = e | e ∈ X] · Pr
X←C

[e ∈ X]

=

(
n−1
wt(x)

)
2n−1

· 1(
n−1
wt(x)

)
· n

=
1

n · 2n−1
.

Therefore, we got that the two ways to sample an edge on the cube have the same distribution.
Thus, using Equation (4.3), we get that

Inf(f)

n
= Pr
X←C,(xi,xi+1)←X

[f(xi) 6= f(xi+1)]. (4.4)

However, notice that for any X ∈ C it holds that

Pr
(xi,xi+1)←X

[f(xi) 6= f(xi+1)] ≤ a(f) · max
i∈[n−1]∪{0}

{(
n−1
i

)
2n−1

}
≤ O

(
a(f)/

√
n
)
,

where the first inequality follows by the definition of a(f) (the maximum number of alternations
at any chain) and the second inequality holds since the second term is maximized roughly when
i ≈ n/2 and it is known (by e.g., Stirling’s approximation) that

(
n
n/2

)
= O(2n/

√
n). Plugging this

back into Equation (4.4) we get that Inf(f) ≤ O(a(f) ·
√
n).

5 Open Problems

In this paper we study the power of negation gates in the model of Boolean De Morgan formulas.
Our shrinkage result (Theorem 4.2) implies that as long as t� L(F), the shrinkage exponent of F is
essentially Γ0, the shrinkage exponent of monotone formulas. In addition, we showed that formulas
with t negation gates can be efficiently transformed into circuits with roughly log t negation gates
without incurring significant blow-up in size or depth.

Morizumi [Mor09] showed that any formula F can be transformed into a formula F ′ that has
only dn/2e negations and such that L(F ′) ≤ L(F) · O(n6.3). His transformation uses as a building
block the monotone formula that compute the threshold function of Valiant [Val84] which gives a
short but non-explicit construction. We leave open the question whether one can come up with an
explicit and efficient transformation from any formula to a formula with few negations.

Lastly, we mention the important open problem of determining the shrinkage exponent of mono-
tone formulas.

Acknowledgments

We thank Avishay Tal for helpful discussions and, in particular, for a discussion that led to the
proof of Theorem 3.1. We thank Andrej Bogdanov, Moni Naor, Alon Rosen and Eylon Yogev for
inspiring discussions. Finally, we thank the reviewers for their constructive comments.

14

References

[AIK06] Benny Applebaum, Yuval Ishai, and Eyal Kushilevitz. Cryptography in NC0. SIAM J.
Comput., 36(4):845–888, 2006.

[AKS83] Miklós Ajtai, János Komlós, and Endre Szemerédi. An o(n log n) sorting network. In
Proceedings of the 15th Annual ACM Symposium on Theory of Computing, STOC, pages
1–9, 1983.

[AM05] Kazuyuki Amano and Akira Maruoka. A superpolynomial lower bound for a circuit
computing the clique function with at most (1/6) log log n negation gates. SIAM J.
Comput., 35(1):201–216, 2005.

[BCO+15] Eric Blais, Clément L. Canonne, Igor Carboni Oliveira, Rocco A. Servedio, and Li-Yang
Tan. Learning circuits with few negations. To appear in Proceedings of the 19th Inter-
national Workshop on Randomization and Computation, RANDOM, 2015. Available at
http://arxiv.org/abs/1410.8420.

[BNT98] Robert Beals, Tetsuro Nishino, and Keisuke Tanaka. On the complexity of negation-
limited boolean networks. SIAM J. Comput., 27(5):1334–1347, 1998.

[BT96] Nader H. Bshouty and Christino Tamon. On the Fourier spectrum of monotone func-
tions. J. ACM, 43(4):747–770, 1996.

[CKK+14] Ruiwen Chen, Valentine Kabanets, Antonina Kolokolova, Ronen Shaltiel, and David
Zuckerman. Mining circuit lower bound proofs for meta-algorithms. In Proceedings of
the 29th Conference on Computational Complexity, CCC, pages 262–273, 2014.

[CKS14] Ruiwen Chen, Valentine Kabanets, and Nitin Saurabh. An improved deterministic
#SAT algorithm for small De Morgan formulas. In Proceedings of the 39th International
Symposium on Mathematical Foundations of Computer Science, MFCS, pages 165–176,
2014.

[DZ94] Moshe Dubiner and Uri Zwick. How do read-once formulae shrink? Combinatorics,
Probability & Computing, 3:455–469, 1994.

[Fis75] Michael. J. Fischer. The complexity of negation-limited networks–a brief survey. Au-
tomata Theory and Formal Languages, 33:71–82, 1975.

[GI12] Oded Goldreich and Rani Izsak. Monotone circuits: One-way functions versus pseudo-
random generators. Theory of Computing, 8(1):231–238, 2012.

[GMOR15] Siyao Guo, Tal Malkin, Igor Carboni Oliveira, and Alon Rosen. The power of negations
in cryptography. In Proceedings of the 12th Theory of Cryptography Conference, TCC,
pages 36–65, 2015.

[GP14] Mika Göös and Toniann Pitassi. Communication lower bounds via critical block sensi-
tivity. In Proceedings of the 46th Annual Symposium on Theory of Computing, STOC,
pages 847–856, 2014.

[H̊as87] Johan H̊astad. One-way permutations in NC0. Inf. Process. Lett., 26(3):153–155, 1987.

15

http://arxiv.org/abs/1410.8420

[H̊as98] Johan H̊astad. The shrinkage exponent of de Morgan formulas is 2. SIAM J. Comput.,
27(1):48–64, 1998.

[HR00] Danny Harnik and Ran Raz. Higher lower bounds on monotone size. In Proceedings
of the 32nd Annual ACM Symposium on Theory of Computing, STOC, pages 378–387,
2000.

[HRY95] Johan H̊astad, Alexander A. Razborov, and Andrew Chi-Chih Yao. On the shrinkage
exponent for read-once formulae. Theor. Comput. Sci., 141(1&2):269–282, 1995.

[IK14] Russell Impagliazzo and Valentine Kabanets. Fourier concentration from shrinkage. In
Proceedings of the 29th Conference on Computational Complexity, CCC, pages 321–332,
2014.

[IMT09] Kazuo Iwama, Hiroki Morizumi, and Jun Tarui. Negation-limited complexity of parity
and inverters. Algorithmica, 54(2):256–267, 2009.

[IMZ12] Russell Impagliazzo, Raghu Meka, and David Zuckerman. Pseudorandomness from
shrinkage. In Proceedings of the 53rd Annual IEEE Symposium on Foundations of
Computer Science, FOCS, pages 111–119, 2012.

[IN93] Russell Impagliazzo and Noam Nisan. The effect of random restrictions on formula size.
Random Struct. Algorithms, 4(2):121–134, 1993.

[Juk12] Stasys Jukna. Boolean Function Complexity - Advances and Frontiers, volume 27 of
Algorithms and combinatorics. Springer, 2012.

[KRT13] Ilan Komargodski, Ran Raz, and Avishay Tal. Improved average-case lower bounds
for DeMorgan formula size. In Proceedings of the 54th Annual IEEE Symposium on
Foundations of Computer Science, FOCS, pages 588–597, 2013.

[Mar58] Andrey A. Markov. On the inversion complexity of a system of functions. J. ACM,
5(4):331–334, 1958.

[Mor09] Hiroki Morizumi. Limiting negations in formulas. In Proceedings of the 36th Interna-
tional Colloquium on Automata, Languages and Programming, ICALP, pages 701–712,
2009.

[Nec62] Eduard I. Nechiporuk. On the complexity of schemes in some bases containing nontrivial
elements with zero weights. Problemy Kibernetiki, 8:123–160, 1962. In Russian.

[Nis91] Noam Nisan. Pseudorandom bits for constant depth circuits. Combinatorica, 11(1):63–
70, 1991.

[NR04] Moni Naor and Omer Reingold. Number-theoretic constructions of efficient pseudo-
random functions. J. ACM, 51(2):231–262, 2004.

[NW94] Noam Nisan and Avi Wigderson. Hardness vs randomness. J. Comput. Syst. Sci.,
49(2):149–167, 1994.

[O’D14] Ryan O’Donnell. Analysis of Boolean Functions. Cambridge University Press, 2014.

[PZ93] Mike Paterson and Uri Zwick. Shrinkage of de Morgan formulae under restriction.
Random Struct. Algorithms, 4(2):135–150, 1993.

16

[Ros15] Benjamin Rossman. Correlation bounds against monotone NC1. In Proceedings of the
30th Conference on Computational Complexity, CCC, pages 392–411, 2015.

[RW89] Ran Raz and Avi Wigderson. Probabilistic communication complexity of boolean rela-
tions (extended abstract). In Proceedings of the 30th Annual Symposium on Foundations
of Computer Science, FOCS, pages 562–567, 1989.

[ST04] Shao Chin Sung and Keisuke Tanaka. Limiting negations in bounded-depth circuits:
An extension of markov’s theorem. Inf. Process. Lett., 90(1):15–20, 2004.

[Sub61] Bella A. Subbotovskaya. Realizations of linear function by formulas using +, ·,−. Dok-
lady Akademii Nauk SSSR, 136:3:553–555, 1961. In Russian.

[SW91] Miklos Santha and Christopher B. Wilson. Polynomial size constant depth circuits
with a limited number of negations. In Proceedings of the 8th Annual Symposium on
Theoretical Aspects of Computer Science, STACS, pages 228–237, 1991.

[Tal96] Michel Talagrand. How much are increasing sets positively correlated? Combinatorica,
16(2):243–258, 1996.

[Tal14] Avishay Tal. Shrinkage of De Morgan formulae by spectral techniques. In Proceedings of
the 55th IEEE Annual Symposium on Foundations of Computer Science, FOCS, pages
551–560, 2014.

[TNB96] Keisuke Tanaka, Tetsuro Nishino, and Robert Beals. Negation-limited circuit complexity
of symmetric functions. Inf. Process. Lett., 59(5):273–279, 1996.

[Val84] Leslie G. Valiant. Short monotone formulae for the majority function. J. Algorithms,
5(3):363–366, 1984.

17

ECCC ISSN 1433-8092

http://eccc.hpi-web.de

