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Abstract

We prove that proper PAC learnability implies compression. Namely, if a con-

cept C ⊆ ΣX is properly PAC learnable with d samples, then C has a sample

compression scheme of size 2O(d). In particular, every boolean concept class with

constant VC dimension has a sample compression scheme of constant size. This an-

swers a question of Littlestone and Warmuth (1986). The proof uses an approximate

minimax phenomenon for boolean matrices of low VC dimension.

1 Introduction

Learning and compression are known to be deeply related to each other. Learning proce-

dures perform compression, and compression is an evidence of and is useful in learning.

For example, support vector machines, which are commonly applied to solve classification

problems, perform compression (see Chapter 6 in [6]), and compression can be used to

boost the accuracy of learning procedures (see [16, 11] and Chapter 4 in [6]).

About thirty years ago, Littlestone and Warmuth [16] provided a mathematical frame-

work for studying compression in the context of learning theory. In a nutshell, they showed

that compression implies learnability and asked whether learnability implies compression.

1.1 Definitions

Concepts and samples. Let Σ, X be finite sets (we focus on this case to eliminate

measurability and similar issues but the arguments presented here are more general). A

concept is a function c : X → Σ. A concept class C ⊆ ΣX is a collection of concepts.

A subset Y of X is thought of as a collection of sample points. For Y ⊆ X and c ∈ C,

let c|Y be the restriction of the function c to the set Y . We think of c|Y as the labeling
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of Y according to c. A C-labelled sample is a pair (Y, y), where Y ⊆ X and y = c|Y for

some c ∈ C. The size of a C-labelled sample (Y, y) is |Y |. For an integer k, denote by

LC(k) the set of C-labelled samples of size at most k. Denote by LC(∞) the set of all

C-labelled samples of finite size.

PAC learning. Probably approximately correct (PAC) learning was defined in Valiant’s

seminal work [25]. We use the following definition. The concept class C is PAC learnable

with d samples if there is a map that generates hypotheses H : LC(d) → ΣX so that for

every c ∈ C and for every probability distribution µ on X,

Pr
µd

[{
Y ∈ Xd : µ({x ∈ X : hY (x) 6= c(x)}) ≤ 1/3

}]
≥ 2/3,

where hY = H(Y, c|Y ). Roughly speaking, an hypothesis generated by H using d inde-

pendent samples is a µ-approximation of c with reasonable probability. If the image of H

is contained in C, we say that C is properly PAC learnable.

VC dimension. A boolean concept class is C ⊆ {0, 1}X . A set Y ⊆ X is shattered

in C if for every Z ⊆ Y there is c ∈ C so that c(x) = 1 for all x ∈ Z and c(x) = 0 for

all x ∈ Y − Z. The Vapnik-Chervonenkis (VC) dimension of C, denoted VC(C), is the

maximum size of a shattered set in C [26].

A fundamental and well-known result of Blumer, Eherenfeucht, Haussler, and War-

muth [4], which is based on an earlier work of Vapnik and Chervonenkis [26], states that

every boolean concept class C can be properly PAC learned with1 O(VC(C)) examples

(in fact the sample complexity of PAC learning for boolean classes is captured by the VC

dimension).

Sample compression schemes. Sample compression schemes were defined by Little-

stone and Warmuth [16]. Roughly speaking, a sample compression scheme takes a long

list of samples and compresses it to a short sub-list of samples in a way that allows to

invert the compression. Formally, a k-sample compression scheme for C with information

I, where I is a finite set, consists of two maps κ, ρ for which the following hold:

(κ) The compression map

κ : LC(∞)→ LC(k)× I

takes (Y, y) to ((Z, z), i) with Z ⊆ Y and y|Z = z.

(ρ) The reconstruction map

ρ : LC(k)× I → ΣX

1Big O and Ω notation means up to absolute constants.
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is so that for all (Y, y) in LC(∞),

ρ(κ(Y, y))|Y = y.

The size of the scheme is2 k + log(|I|+ 1), and its kernel size is k.

In the language of coding theory, the side information I can be thought of as list

decoding; the map ρ has a short list of possible reconstructions of a given (Z, z), and the

information i indicates which element in the list is the correct one.

See [9, 10, 18] for more discussions of this definition, and some insightful examples.

1.2 Background

Littlestone and Warmuth [16] proved that compression implies learnability (see Theo-

rem 1.1 below), and asked whether learnability implies compression for boolean concept

classes: “Are there concept classes with finite dimension for which there is no scheme with

bounded kernel size and bounded additional information?”

This question and variants of it lead to a rich body of work that revealed profound

properties of VC dimension and learning. These works also discovered and utilized connec-

tions between sample compression schemes, and model theory, topology, combinatorics,

and geometry.

Floyd and Warmuth [9, 10] constructed sample compression schemes of size log |C| for

every concept class C. Freund [11] showed how to compress a sample of size m to a sample

of size O(d log(m)) with some side information for boolean classes of VC dimension d.

As the study of sample compression schemes deepened, many insightful and optimal

schemes for special cases have been constructed: Floyd [9], Helmbold et al. [12], Floyd

and Warmuth [10], Ben-David and Litman [3], Chernikov and Simon [5], Kuzmin and

Warmuth [13], Rubinstein et al. [22], Rubinstein and Rubinstein [23], Livni and Simon [17]

and more.

Finally, in our recent work with Shpilka and Wigderson [18], we constructed sample

compression schemes of size O(d · 2d · log log |C|) using some side information for every

boolean concept class C of VC dimension d.

Compression implies learnability. Littlestone and Warmuth proved that the sample

complexity of PAC learning is at most (roughly) the size of a compression scheme [16].

Theorem 1.1 (Compression implies learnability [16]). Let C ⊆ ΣX and c ∈ C. Let µ be a

distribution on X, and x1, . . . , xm be m independent samples from µ. Let Y = (x1, . . . , xm)

2Logarithms in this text are of base two.
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and y = c|Y . Let κ, ρ be a k-sample compression scheme for C with additional information

I. Let h = ρ(κ(Y, y)). Then, for every ε > 0,

Pr
µm

[
µ({x ∈ X : h(x) 6= c(x)}) > ε

]
< |I|

k∑
j=0

(
m

j

)
(1− ε)m−j.

In particular, C can be PAC learned with O(k log(k) + log(|I|+ 1)) samples.

Proof sketch. There are
∑k

j=0

(
m
j

)
subsets T of [m] of size at most k. There are |I| choices

for i ∈ I. Each choice of T, i yields a function hT,i = ρ((T, yT ), i) that is measurable

with respect to xT = (xt : t ∈ T ). The function h is one of the functions in {hT,i :

|T | ≤ k, i ∈ I}. For each hT,i, the coordinates in [m] − T are independent, and so if

µ({x ∈ X : hT,i(x) 6= c(x)}) > ε then the probability that all these m− |T | samples agree

with c is less than (1− ε)m−|T |. The union bound completes the proof.

1.3 Learning is compressing

Our main theorem says that proper PAC learnability implies sample compression schemes

of constant size.

Theorem 1.2 (Proper learnability implies compression). If C ⊆ ΣX is properly PAC

learnable with d samples, then C has a sample compression scheme of size 2O(d).

The theorem specifically answers Littlestone and Warmuth’s question [16]; every

boolean concept class of finite VC dimension has a sample compression scheme of fi-

nite size. The theorem, however, only provides an exponential dependence on d, whereas

many of the known compression schemes for special cases (e.g. [10, 3, 13, 23, 17]) have size

O(d). Warmuth’s question [27] whether O(d)-sample compression schemes always exist

remains open.

Our construction (see Section 3) of sample compression schemes is overall quite short

and simple, but uses a different perspective of the problem than in previous work (men-

tioned above). It is inspired by Freund’s work [11] where majority is used to boost the

accuracy of learning procedures. It also uses several known properties of PAC learnabil-

ity and VC dimension, together with von Neumann’s minimax theorem (these appear in

Section 2).

2 Preliminaries

Sample complexity. There are many generalization of VC dimension to non-boolean

concept classes (see [2] and references within). Here we use the following one. Let C ⊆ ΣX .
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For every c ∈ C, define a boolean concept class Bc ⊆ {0, 1}X as the set of all bh, for h ∈ C,

defined by bh(x) = 1 if and only if h(x) = c(x). Define the distinguishing dimension of C

as

DD(C) = max{VC(Bc) : c ∈ C}.

This definition of dimension is similar to notions used in [19, 7, 2]. If C is boolean then

VC(C) = DD(C).

Vapnik and Chervonenkis [26] and Blumer et al. [4] proved that VC dimension is

equivalent to the sample complexity of PAC learning. The distinguishing dimension is a

lower bound on the sample complexity of PAC learning (see [4, 8, 2]).

Theorem 2.1 (Lower bound for sample complexity [4, 8, 2]). The number of samples

needed to PAC learn C is at least Ω(DD(C)).

Dual classes. Let C ⊆ {0, 1}X be a boolean concept class. The dual concept class

C∗ ⊆ {0, 1}C of C is defined as the set of all functions fx : C → {0, 1} so that fx(c) = 1

if and only if c(x) = 1. If we think of C as a binary matrix whose rows are concepts

in C and columns are elements of X, then C∗ corresponds to the distinct rows of the

transposed matrix. Assouad [1] bounded VC(C∗) in terms of VC(C).

Claim 2.2 (VC dimension of dual [1]). If VC(C) = d then VC(C∗) ≤ 2d+1.

Approximations. The following theorem shows that every distribution can be approx-

imated by a distribution of small support, when the statistical tests belong to a class of

small VC dimension. This phenomenon was first proved by Vapnik and Chervonenkis [26],

and was later quantitively improved in [14, 24].

Theorem 2.3 (Approximations for bounded VC dimension [26, 14, 24]). Let C ⊆ {0, 1}X
of VC dimension d. Let µ be a distribution on X. For all ε > 0, there exists a multi-set

Y ⊆ X of size |Y | ≤ O(d/ε2) such that for all c ∈ C,∣∣∣∣µ({x ∈ X : c(x) = 1})− |{x ∈ Y : c(x) = 1}|
|Y |

∣∣∣∣ ≤ ε.

Minimax. Von Neumann’s minimax theorem [20] is a seminal result in game theory

(see the textbook [21]). Assume that there are 2 players, a row player and a column

player. A pure strategy of the row player is r ∈ [m] and a pure strategy of the column

player is j ∈ [n]. Let M be a boolean matrix so that M(r, j) = 1 if and only if the row

player wins the game when the pure strategies r, j are played.

The minimax theorem says that if for every mixed strategy (a distribution on pure

strategies) q of the column player, there is a mixed strategy p of the row player that
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guarantees the row player wins with probability at least V , then there is a mixed strategy

p of the row player so that for all mixed strategies q of the column player, the row player

wins with probability at least V . A similar statement holds for the column player. This

implies that there is a pair of mixed strategies that form a Nash equilibrium (see [21]).

Theorem 2.4 (Minimax [20]). Let M ∈ Rm×n be a real matrix. Then,

min
p∈∆m

max
q∈∆n

ptMq = max
q∈∆n

min
p∈∆m

ptMq,

where ∆` is the set of distributions on [`].

The arguments in the proof of Theorem 1.2 below imply the following variant of the

minimax theorem, which may be of interest in the context of game theory. The minimax

theorem holds for a general matrix M . In other words, there is no assumption on the set

of winning/losing states in the game.

We observe that a combinatorial restriction on the winning/losing states in the game

implies that there is an approximate efficient equilibrium state. Namely, if the rows of M

have VC dimension d, then for every ε > 0, there is a multi-set of O(2d/ε2) pure strategies

R ⊆ [m] for the row player, and a multi-set of O(d/ε2) pure strategies J ⊆ [n] for the

column player, so that a uniformly random choice from R, J guarantees the players a gain

that is ε-close to the gain in the equilibrium strategy.

Lipton, Markakis and Mehta [15] call such a pair of mixed strategies an ε-Nash equi-

librium. They showed that in every game there are ε-Nash equilibriums with logarithmic

support, and used this to find an approximate Nash equilibrium in quasi-polynomial time.

The ideas presented here show that if the matrix of the game has constant VC dimen-

sion then there are ε-Nash equilibriums with constant support, and that consequently an

approximate Nash equilibrium can be found in polynomial time.

3 A compression scheme

In the proof of Theorem 1.2, we use the following simple lemma. The lemma can be seen as

an approximate, combinatorial version of Carathéodory’s theorem from convex geometry.

Let C ⊆ {0, 1}n ⊂ Rn and denote by K the convex hull of C in Rn. Carathéodory’s

theorem says that every point p ∈ K is a convex combination of at most n + 1 points

from C. Lemma 3.1 says that if C has constant VC dimension then every p ∈ K can be

approximated by a convex combination of small support. Namely, if VC(C) = d then p

can be ε-approximated in `∞ by a convex combination of at most O(2d/ε2) points from

C.
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Lemma 3.1 (Sampling for bounded VC dimension). Let C ⊆ {0, 1}X of VC dimension

d. Let p be a distribution on concepts in C, and let ε > 0. Then, there is a multi-set

F ⊆ C of size |F | ≤ O(2d/ε2) so that for every x ∈ X,∣∣∣∣p({c ∈ C : c(x) = 1})− |{f ∈ F : f(x) = 1}|
|F |

∣∣∣∣ ≤ ε.

Proof. By Claim 2.2, the VC dimension of the dual class C∗ is at most 2d+1. Every x ∈ X
corresponds to a concept in C∗. The distribution p is a distribution on the domain of the

functions in C∗. The lemma follows by Theorem 2.3 applied to C∗.

3.1 The construction

Proof of Theorem 1.2. Since C is properly PAC learnable with d samples, let

H : LC(d)→ C

be so that for every c ∈ C and for every probability distribution q on X, there is Z ⊆
supp(q) of size |Z| ≤ d so that q({x ∈ X : hZ(x) 6= c(x)}) ≤ 1/3 where hZ = H(Z, c|Z).

Compression. Let (Y, y) ∈ LC(∞). Let

H = HY,y = {H(Z, z) : Z ⊆ Y, |Z| ≤ d, z = y|Z} ⊆ C.

The compression is based on the following claim.

Claim 3.2. There are T sets Z1, Z2, . . . , ZT ⊆ Y , each of size at most d, with T ≤ K :=

2O(d) so that the following holds. For t ∈ [T ], let

ft = H(Zt, y|Zt). (1)

Then, for every x ∈ Y ,

|{t ∈ [T ] : ft(x) = y(x)}| > T/2. (2)

Given the claim, the compression κ(Y, y) is defined as

Z =
⋃
t∈[T ]

Zt and z = y|Z .

The additional information i ∈ I allows to recover the sets Z1, . . . , ZT from the set Z.

There are many possible ways to encode this information, but the size of I can be chosen
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to be at most kk with k := K · d+ 1 ≤ 2O(d).

Proof of Claim 3.2. By choice of H, for every distribution q on Y , there is h ∈ H so that

q ({x ∈ Y : h(x) = y(x)}) ≥ 2/3.

By Theorem 2.4, there is a distribution p on H such that for every x ∈ Y ,

p({h ∈ H : h(x) = y(x)}) ≥ 2/3.

Let B ⊆ {0, 1}Y be the set of concepts bh, for h ∈ H, defined by bh(x) = 1 if and only if

h(x) = y(x). The distribution p induces a distribution pB on B so that for every x ∈ Y ,

pB({b ∈ B : b(x) = 1}) ≥ 2/3.

Since C is PAC learnable with d samples, Theorem 2.1 implies DD(C) ≤ O(d). Hence,

VC(B) ≤ O(d). By Lemma 3.1 applied to B and pB with ε = 1/8, there is a multi-set

E ⊆ B of size |E| ≤ K := 2O(d) so that for every x ∈ Y ,

|{e ∈ E : e(x) = 1}|
|E|

≥ pB({b ∈ B : b(x) = 1})− 1/8 > 1/2.

The multi-set E ⊆ B corresponds to a multi-set F = {f1, f2, . . . , fT} ⊆ H of size T = |E|
so that for every x ∈ Y ,

|{t ∈ [T ] : ft(x) = y(x)}| > T/2. (3)

For every t ∈ [T ], let Zt be a subset of Y of size |Zt| ≤ d so that

H(Zt, y|Zt) = ft.

Reconstruction. Given ((Z, z), i), the information i is interpreted as a list of T subsets

Z1, . . . , ZT of Z, each of size at most d. For t ∈ [T ], let

ht = H(Zt, z|Zt).

Define h = ρ((Z, z), i) as follows: For every x ∈ X, let h(x) be a symbol that appears

most in the list

λx((Z, z), i) = (h1(x), h2(x), . . . , hT (x)),

where ties are arbitrarily broken.
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Correctness. Fix (Y, y) ∈ LC(∞). Let ((Z, z), i) = κ(Y, y) and h = ρ((Z, z), i). For

x ∈ Y , consider the list

φx(Y, y) = (f1(x), f2(x), . . . , fT (x))

defined in the compression process of (Y, y). The list φx(Y, y) is identical to the list

λx((Z, z), i); this follows from Equation (1), from that i allows to correctly recover

Z1, . . . , ZT , and from that y|Zt = z|Zt for all t ∈ [T ]. By (3), for every x ∈ Y , the

symbol y(x) appears in more than half of the list λx((Z, z), i) so indeed h(x) = y(x).
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