
Minimizing Locality of One-Way Functions

via Semi-Private Randomized Encodings

Benny Applebaum∗ Yuval Ishai† Eyal Kushilevitz‡

March 31, 2015

Abstract

A one-way function is d-local if each of its outputs depends on at most d input bits. In [3]
it was shown that, under relatively mild assumptions, there exist 4-local one-way functions
(OWFs). This result is not far from optimal as it is not hard to show that there are no 2-local
OWFs. The gap was partially closed in [3] by showing that the existence of a 3-local OWF is
implied by the intractability of decoding a random linear code (or equivalently the hardness of
learning parity with noise).

In this note we provide further evidence for the existence of 3-local OWFs. We construct
a 3-local OWF based on the assumption that a random function of (arbitrarily large) con-
stant locality is one-way. (A similar assumption was previously made by Goldreich [11].) Our
proof consists of two steps: (1) We show that, under the above assumption, random local func-
tions remain hard to invert even when some information on the preimage x is leaked; and (2)
Such “robust” local one-way functions can be converted to 3-local one-way functions via a new
construction of semi-private randomized encoding. We believe that these results may be of
independent interest.

1 Introduction

How simple can a one-way function (OWF) be? In this paper we measure simplicity in terms
of output locality. We say that a function f : {0, 1}∗ → {0, 1}∗ is d-local if each output bit of f
depends on at most d input bits. When d is fixed (and does not grow with the input length), d-local
functions can be computed by constant-depth circuits with bounded fan-in gates as captured by the
complexity class NC0. The existence of one-way functions in NC0 was established in [3] based on
various standard cryptographic assumptions, or more generally, based on the existence of log-space
computable one-way functions. In this paper, we ask:

What is the minimal locality d for which d-local one-way functions exist?

∗School of Electrical Engineering, Tel-Aviv University, bennyp@post.tau.ac.il. Supported by Alon Fellowship,
ISF grant 1155/11, Israel Ministry of Science and Technology (grant 3-9094), and GIF grant 1152/2011.
†Department of Computer Science, Technion, yuvali@cs.technion.ac.il. Supported by the European Research

Council as part of the ERC project CaC (grant 259426), ISF grant 1361/10, and BSF grant 2008411.
‡Department of Computer Science, Technion, eyalk@cs.technion.ac.il. Supported by ISF grant 1361/10, and

BSF grant 2008411.

1

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Report No. 45 (2015)

While it is known that 2-local functions cannot be one-way [11], the results of [3] yield 4-local
one-way functions. This small gap between 2 and 4 is partially resolved by [3, 4] who show that,
assuming the intractability of decoding a random linear code (or equivalently the intractability of
learning parity with noise), there exist one-way functions with locality 3. In this paper, we provide
further evidence for the existence of 3-local one-way functions by constructing such functions based
on the one-wayness of random functions with large (expected) constant locality.

Assumption 1.1 (Random Local Functions are OWFs - Informal). For a locality parameter d ∈ N,
sample a Boolean circuit f : {0, 1}n → {0, 1}n by connecting each output gate yi to each input vari-
able xj independently at random with probability d/n, and by placing at each output-gate a random
predicate Pi chosen uniformly from all the predicates of appropriate arity. Then, the resulting
function is weakly one-way.

The assumption asserts that any efficient adversary that gets the description of f fails to invert
it (on a randomly chosen input) with some noticeable probability. Formally, this means that the
corresponding collection is weakly one-way, cf. [12, Definition 2.4.3]. Our collection of functions,
denoted by Fn,m,d/n, is closely related to Goldreich’s candidate one-way function [11], whose one-
wayness was extensively studied in the last few years. (See [2] for a survey). Further details about
the exact formulation of our assumption appear in Section 5.

We prove the following theorem:

Informal Theorem 1.2 (main). Assume that, for some large constant d, Assumption 1.1 holds.
Then, one-way functions with locality 3 exist.

2 Techniques

Background. Before introducing our techniques it is instructive to review the concept of ran-
domized encoding [14, 15] and its role in the original construction of [3]. Roughly speaking, a
function f̂(x, r) is a randomized encoding of a function f(x) if:

1. (Correctness) For every fixed input x and a uniformly random choice of r, the output distri-
bution f̂(x, r) forms a “randomized encoding” of f(x), from which f(x) can be decoded;

2. (Privacy) The distribution of this randomized encoding depends only on the encoded value
f(x) and does not further depend on x.

In [3] it is shown that randomized encoding preserves the security of many cryptographic primitives.
Concretely, if f̂(x, r) is an encoding of a one-way function f(x), then the function f̂(x, r) is also
one-way. This gives rise to the following general template for constructing cryptography with low
complexity: First, show how to encode functions f in a relatively complicated complexity class
Strong by functions f̂ in some low complexity class Weak, and then conclude that the existence
of OWFs in Strong implies the existence of OWFs in Weak.

This framework was instantiated in [3] by letting Strong be the class of log-space computable
functions, and taking Weak to be the class of 4-local functions. The underlying encoding was
based on: (1) a result of [14, 15] which shows that log-space computable functions can be encoded
by functions that each of their outputs is computed by a degree 3 polynomial over GF(2); and (2)
a locality reduction lemma [3] that transforms degree-d encodings into encodings of locality d+ 1.

2

Based on this template, it is natural to try and reduce the locality to 3 by constructing a degree
2 encoding for some OWF. Unfortunately, we do not know whether such an encoding exists. In
fact, the results of [14] provide some evidence against the prospects of this general approach, ruling
out the existence of degree-2 perfectly private encodings for most nontrivial functions. Instead,
we will rely on a new weaker variant of semi-private randomized encoding that admits degree-2
instantiation. To compensate the weaker privacy property of the encoding, we will have to rely on
a stronger form of one-wayness. Details follow.

2.1 Semi-private Randomized Encoding and Robust OWF

Let f̂ be a randomized encoding of a Boolean function f : {0, 1}n → {0, 1}. Recall that, according
to the privacy property, the output distribution of f̂(x, r) (induced by a uniform choice of r) should
hide all the information about x except for the value f(x). Semi-privacy relaxes this requirement
by insisting that the input x remain hidden by f̂(x, r) only in the case that f(x) takes some specific
value, say 0. (If f(x) is different from this value, f̂(x, r) fully reveals x.) As it turns out, this
relaxed privacy requirement is sufficiently liberal to allow a degree-2 encoding of general boolean
functions.

Given any OWF f : {0, 1}n → {0, 1}m, one could attempt to apply a semi-private encoding as
described above to every output bit of f , obtaining a degree-2 function f̂ . However, f̂ will typically
not be one-way: every output bit of f that evaluates to 1 might reveal the entire input. This
motivates the following notion of a robust OWF. Loosely speaking, a OWF f is said to be robust
if it remains (slightly) hard to invert even if a random subset of its output bits are “exposed”, in
the sense that all input bits leading to these outputs are revealed.

Formally, consider the following inversion game. First, we choose a random input x ∈ {0, 1}n,
compute y = f(x) and send it to the adversary. Then, for each output bit of f we toss a coin bi.
If bi = 1, we allow the adversary to see the bits of x that influence the i-th output bit. That is,
we send (xK(i), i, bi) to the adversary, where xK(i) is the restriction of x to the set K(i) ⊆ [n] of
inputs that affects the i-th output bit. If bi = 0, we reveal nothing regarding x and send (i, bi) to
the adversary. The adversary wins the game if she finds a preimage x′ which is consistent with the
information given to her, i.e., f(x′) = f(x), and x′K(i) = xK(i) whenever bi = 1. The function is

robust one-way if, for some polynomial p(·), any efficient adversary fails to find a consistent preimage
with probability 1/p(n). (See Section 3 for a formal definition and Section 6 for a discussion on a
leakage-resilience interpretation of this notion.)

Intuitively, the purpose of the robustness requirement is to guarantee that the information leaked
by the semi-private encoding leaves enough uncertainty about the input to make inversion difficult.
Indeed, we show that when semi-private randomized encoding (SPRE) is applied to a (slightly
modified) robust OWF the resulting function is distributionally one-way. Hence, a construction of
degree-2 SPRE can be used to convert a robust OWF to a distributionally OWF with degree 2.
Furthermore, it turns out that it is possible to convert the latter to a standard OWF with similar
degree.

2.2 Constructing Robust OWF

We construct a robust OWF under the assumption that the collection Fn,m,d/n of random function
f : {0, 1}n → {0, 1}m of expected locality d is weakly one-way. Recall that the circuit that computes

3

f is sampled by connecting each output gate yi to each input variable xj independently at random
with probability d/n, and by placing at each output-gate a random predicate Pi chosen uniformly
from all the predicates of appropriate arity. (Other alternative choices for predicate distributions
are suggested in Section 5.)

We show that, if Fn,n,d/n is one-way for some constant d, then, for some related parameters

n′ = edn,m′ = 2n, d′ = edd, a randomly chosen function h
R← Fn′,m′,d′/n′ is robust one-way. Roughly

speaking, the circuit of h embeds many small copies of f , and so inverting h in the presence of
random exposure, is as hard as inverting f . To get some intuition, assume that exactly half of the

outputs of h
R← Fn′,m′,d′/n′ are exposed. Then there are exactly n exposed outputs and n unexposed

outputs. In this case, an input node is not exposed (i.e., is not connected to an exposed output)
with probability exactly (1−d′/n′)n = (1−d/n)n ≈ e−d. Hence, the expected number of unexposed
inputs is n, and so the circuit of h contains a “non-exposed sub-circuit” f with n inputs and n

outputs. It turns out that the function f
R← Fn,n,d/n can be embedded in this sub-circuit. (See

Section 5 for further details.)

Organization

Section 3 provides some preliminaries including a generalization of statistical randomized encoding.
Semi-private randomized encodings are defined, constructed and analyzed in Section 4. In Section 5
we define the notion of robust one-way functions, and present a construction based on the hardness
of inverting a random local function. We conclude in Section 6 with a discussion and some open
questions.

3 Preliminaries

Probability notation. Let Un denote a random variable that is uniformly distributed over
{0, 1}n. Different occurrences of Un in the same statement refer to the same random variable

(rather than independent ones). If X is a probability distribution, we write x
R← X to indicate that

x is a sample taken from X. If S is a set, we write x
R← S to indicate that x is uniformly selected

from S. The statistical distance between discrete probability distributions X and Y is defined as
‖X − Y ‖ = 1

2

∑
z |Pr[X = z] − Pr[Y = z]|. Equivalently, the statistical distance between X and

Y may be defined as the maximum, over all boolean functions T , of the distinguishing advantage
|Pr[T (X) = 1] − Pr[T (Y) = 1]|. A function ε(·) is said to be negligible if ε(n) < n−c for any
c > 0 and sufficiently large n. For two distribution ensembles X = {Xn} and Y = {Yn}, we write

X ≡ Y if Xn and Yn are identically distributed, and X
s≡ Y if the two ensembles are statistically

indistinguishable; namely, ‖Xn − Yn‖ is negligible in n.

Locality and Degree. Let f : {0, 1}n → {0, 1}l be a function. We say that the i-th output
variable yi depends on the j-th input variable xj (or equivalently, xj affects the output yi) if there
exists a pair of input strings which differ only on the j-th location whose images differ on the i-th
location. The locality of an output variable is the number of inputs on which it depends. We say
that an output variable has degree d if it can be expressed as a multivariate polynomial of degree
d in the input variables over the binary field F2. The locality of an output variable trivially upper
bounds its degree.

4

Collection of Functions. We model cryptographic primitives as collections of functions F ={
fk : {0, 1}n → {0, 1}m(n)

}
k∈{0,1}s(n) equipped with a pair of efficient algorithms: (1) an evaluation

algorithm which given (k ∈ {0, 1}s, x ∈ {0, 1}n) outputs fk(x); and (2) a key-sampling algorithm
K which given 1n samples a index k ∈ {0, 1}s(n). We will sometimes keep the key-sampler implicit

and write f
R← F to denote the experiment where k

R← K(1n) and f = fk. A collection of functions
has constant locality if there exists a constant d which does not grow with n such that for every
fixed k each output of the function fk has locality of at most d. Similarly, the collection has
constant algebraic degree of d if for every fixed k each output of the function fk has degree of at
most d. (Intuitively, we distinguish between the complexity of sampling a key – which is a one-
time operation that can be preprocessed – and the complexity of computing the function given a
preprocessed key.) When F is used as a cryptographic primitive we will always assume that the
adversary that tries to break it gets the collection index as a public parameter. Moreover, our
constructions are all in the “public-coin” setting, and so they remain secure even if the adversary
gets the coins used to sample the index of the collection.

3.1 One-Way Functions and Collections

We review several variants of collections of one-way functions (OWFs).

Definition 3.1 (One-way function). Let F =
{
fk : {0, 1}n → {0, 1}m(n)

}
k∈{0,1}s(n) be a collection

of functions equipped with key-sampling algorithm K. Then,

• Hard to invert. The collection F is hard to invert if for every (non-uniform) polynomial-
time algorithm, A, the probability Pr

k
R←K(1n)

[A(1n, k, fk(Un)) ∈ f−1
k (fk(Un))] is negligible in

n.

• Slightly hard to invert. The collection F is slightly hard to invert if there exists a polyno-
mial p(·), such that for every (non-uniform) polynomial-time algorithm, A, and all sufficiently
large n’s Pr

k
R←K(1n)

[A(1n, k, fk(Un)) /∈ f−1
k (fk(Un))] > 1

p(n) .

• Distributionally hard to invert. The collection F is distributionally hard to invert if there
exists a positive polynomial p(·) such that for every (non-uniform) polynomial-time algorithm,
A, and all sufficiently large n’s, ‖(A(1n, k, fk(Un)), k, fk(Un))− (Un, k, fk(Un))‖ > 1

p(n) , where

k
R← K(1n).

If F can be computed and sampled in polynomial-time and it is also hard to invert (resp. slightly
hard to invert, distributionally hard to invert) then it is called one-way (resp. weakly one-way,
distributionally one-way).

Note that the first variant defined above is the standard notion of OWF (adopted to the case
of collections).

Remark 3.2 (Collection vs. Single Functions). The (more standard) setting of a single function
f : {0, 1}∗ → {0, 1}∗ is derived from the above definitions by considering the special case in which the
ensemble F contains, for each input length, a single function fn which corresponds to f restricted
to n-bit inputs. It is also useful to observe that the notion of one-way collections (for all the above
variants of one-wayness) can be derived from the (standard) single-function setting, by collapsing

5

the collection F and the key-sampling algorithm K to a single mapping F which, given an input
x and key-sampling randomness ρ, outputs value fK(1n;ρ)(x) together with the randomness ρ. It
is not hard to see that G is one-way (resp., weak one-way, distributional one-way) if and only if
the collection F is one-way (resp., weak one-way, distributional one-way). This view of collections
allows us to easily translate results from the single function setting to the collection setting. To
simplify the presentation, we will mostly state our claims for the single function setting with the
understanding that they generalize to collections.

The following lemma from [3, Lemma 8.2] (building on [13, 18]) shows how to transform a
degree-2 distributionally one-way collection into a (standard) OWF collection with degree 2 and
locality 3.

Lemma 3.3. A degree-2 distributional OWF collection implies a degree-2 OWF collection with
locality 3.

3.2 Randomized Encoding

We will need the following form of randomized encoding [14, 3].

Definition 3.4 (Randomized encoding (RE)). Let h : {0, 1}n → {0, 1}l(n) be an efficiently com-
putable function. We say that the function f : {0, 1}n × {0, 1}m(n) → {0, 1}s(n) is a δ-correct,
ε-private randomized encoding of h, if it satisfies the following:

• δ-correctness. There exists a deterministic1 algorithm B, called a decoder, such that for
every input x ∈ {0, 1}n, Pr[B(1n, f(x,Um(n))) 6= h(x)] ≤ δ(n).

• ε-privacy. There exists an efficient randomized algorithm S, called a simulator, such that
for every x ∈ {0, 1}n, ‖S(h(x))− f(x,Um(n))‖ ≤ ε(n).

By default, we think of ε(n) and δ(n) as negligible functions, and, in this case, refer to f as a
statistical encoding of h.

We will further use a generalized form of randomized encoding defined as follows.

Definition 3.5 (Generalized randomized encoding). Let h : {0, 1}n → {0, 1}l(n) be an efficiently
computable function. We say that g : {0, 1}n × {0, 1}m(n) → {0, 1}s(n) is a generalized statistical
randomized encoding (GRE) of h if there exists a function f : {0, 1}n×{0, 1}m(n) → {0, 1}s(n) such
that:

• f is a statistical randomized encoding of h.

• f is isomorphic to g in the sense that there exists permutation π : {0, 1}n+m → {0, 1}n+m such
that for every x ∈ {0, 1}n+m, f(x) = g(π(x)); and π is efficiently computable and efficiently
invertible (in time poly(n)).

1We restrict the decoder to be deterministic for simplicity. This restriction does not compromise generality, in the
sense that one can transform a randomized decoder to a deterministic one by incorporating the coins of the former
in the encoding itself.

6

It was proven in [3] that RE preserves cryptographic hardness. Specifically, it was shown that
if a function h is weakly one-way then its statistical encoding g is distributionally one-way [3,
Lemma 5.5]. Below we show that a similar result holds for the case of generalized encoding.

Lemma 3.6. If h is a weak-OWF and g is a GRE of h, then g is a distributional OWF.

Proof. Let f be a (standard) statistical encoding of h which is isomorphic to g via the isomorphism
π. By [3, Lemma 5.5], f is a distributional one-way function. We will show that g is a distributional
one-way function as well. To simplify notation, we view f and g as deterministic functions that
take a single input x ∈ {0, 1}n and map it into an l(n)-bit string.

Let A be an efficient adversary which distributionally inverts g with success ε(n), i.e.,

ε(n) = ‖(A(1n, g(y)), g(y))− (y, g(y))‖,

where y is uniformly chosen from {0, 1}n. Consider the adversary Â which given (1n, z) invokes A
on the same input, and translates the result y′ to x′ = π−1(y′). It is not hard to see that Â breaks
f with the same advantage as A. Formally, we should show that

‖(Â(1n, f(x)), f(x))− (x, f(x))‖ ≤ ε(n), (1)

where x is uniformly chosen from {0, 1}n. Let z = f(x) and y = π(x). Consider the mapping T
which given a pair of strings a ∈ {0, 1}n, b ∈ {0, 1}l(n) outputs (π−1(a), b). By our assumption on
A (and by noting that applying a deterministic function cannot increase the statistical distance
between distributions), we have that

‖T (A(1n, g(y)), g(y))− T (y, g(y))‖ ≤ ε(n).

However, by definition, T (A(1n, g(y)), g(y)) = (Â(1n, f(x)), f(x)) and, similarly, T (y, g(y)) =
(x, f(x)), and so Eq. 1 follows.

4 Semi-private Randomized Encoding

In this section we define the notion of semi-private randomized encoding (SPRE), describe a con-
struction of degree-2 SPRE for functions with low (logarithmic) locality, and analyze the effect of
encoding a function with SPRE.

4.1 Definition and Construction

The following definition relaxes the notion of randomized encoding.

Definition 4.1 (Semi-private randomized encoding (SPRE)). Let g : {0, 1}n → {0, 1} be a boolean
function. We say that a function ĝ : {0, 1}n ×{0, 1}m(n) → {0, 1}s(n) is a semi-private randomized
encoding (SPRE) of g with error ε if the following conditions hold:

• Statistical-correctness. There exists a polynomial-time decoder B, such that for every
x ∈ {0, 1}n it holds that Pr[B(1n, ĝ(x,Um(n))) 6= g(x)] < ε(n).

• One-sided privacy. There exists a probabilistic polynomial-time simulator S0, such that for
every x ∈ g−1(0) ∩ {0, 1}n, it holds that S0(1n) ≡ ĝ(x,Um(n)).

7

• One-sided exposure. There exists a polynomial-time exposure algorithm E1, such that for
every x ∈ g−1(1) ∩ {0, 1}n it holds that Pr[E1(1n, ĝ(x,Um(n))) 6= x] < ε(n).

By default, ε is a negligible function in n.

We turn to the question of constructing degree-2 SPRE. Since we will only need to encode
functions that depend on a small number of inputs, it will be convenient to construct such an
encoding based on the DNF representation of the function.

Construction 4.2 (SPRE for canonic DNF). Let g : {0, 1}d → {0, 1} be a boolean function. Let∨k
i=1 Ti be its unique canonic DNF representation. That is, for each α ∈ {0, 1}d such that g(α) = 1

there exists a corresponding term Ti(x) which evaluates to 1 if and only if x = α. We encode such
Ti by the degree-2 function T̂i(x, r) = 〈x−α, r〉, where 〈·, ·〉 denotes inner product over GF(2). Let
t be some integer (later used as a security parameter). Then, the degree-2 function ĝ is defined
by concatenating t copies of T̂i (each copy with independent random inputs ri,j) for each of the k
terms. Namely,

ĝ(x, (ri,j)i∈[k],j∈[t])
def
=
(

(T̂1(x, r1,j))
t
j=1, . . . , (T̂k(x, rk,j))

t
j=1

)
,

where ri,j ∈ {0, 1}d.

Lemma 4.3. The encoding ĝ (defined in Construction 4.2) is an SPRE of g with error k · 2−t.
The time complexity of the simulator, decoder, and exposing algorithms is poly(tkd).

Proof. Let
∨k
i=1 Ti be the canonic DNF representation of g. We view the variables ri,j of T̂ as the

random input of the encoding. Observe that if Ti(x) = 1 then T̂i(x, r) = 0 for every r. On the other
hand, if Ti(x) = 0 then T̂i(x,Ud) is distributed uniformly over GF(2) (since T̂i is an inner product of
a random vector with a non-zero vector). Therefore, when g(x) = 0, the output of all the copies of
each T̂i are distributed uniformly and independently over GF(2). Hence, we can perfectly simulate
ĝ(x; r) in time O(tk).

If g(x) = 1 then there exists a single term Ti that equals to one and the other terms equal to
zero (since this is a canonic DNF); thus all the copies of T̂i equal to zero while the other T̂j ’s are
distributed uniformly and independently over GF(2). The extraction algorithm will locate the first
i for which all the copies of T̂i equal to zero, and output the unique x which satisfies the term Ti.
This algorithm errs only if there exists another i for which Ti(x) is not satisfied but all the copies
of T̂i equal to zero. This event happens with probability at most k2−t.

Similarly, the decoder outputs 1 if and only if there exists an i for which all the copies of T̂i
equal to zero. Therefore the decoder never errs when g(x) = 1 and errs with probability at most
k2−t when g(x) = 0.

Construction 4.2 yields an efficient degree-2 SPRE for functions whose canonic-DNF represen-
tation is efficiently computable. Specifically, we will be interested in functions f : {0, 1}n → {0, 1}l
with logarithmic locality. In this case, we can efficiently encode each output with a degree-2 SPRE
via the above construction.

8

4.2 Encoding a Function via SPRE

We move on to study the effect of applying an SPRE to a function. To this aim, we define a new
operation on functions called random exposure.

Definition 4.4 (Random exposure of boolean function). Let f : {0, 1}n → {0, 1} be a boolean
function. The random exposure of f is the function fexp(x, b) which maps x ∈ {0, 1}n and b ∈ {0, 1}
to the triple (f(x), b, z) where

z =

{
x if b = 1,

0n if b = 0.

Observe that SPRE exposes the input when the output evaluates to one, while fexp tosses a
random coin b that determines whether to reveal the input or not. Still, it is not hard to move
from 1-exposure to random exposure by padding the output with a random bit and revealing this
bit.

Formally, fix some efficiently computable boolean function f : {0, 1}n → {0, 1}. Let g(x, y) =
f(x)⊕y and let ĝ(x, y, r) be an SPRE of g. We will show that the function h(x, y, r) = (ĝ(x, y, r), y)
statistically encodes fexp under the generalized notion of randomized encoding.

Lemma 4.5. Assume that ĝ is an SPRE of g. Then, the function h(x, y, r) is a (generalized)
randomized encoding of the function fexp(x, b).

Proof. Let h′(x, b, r) = h(x, f(x) ⊕ b, r). It is not hard to see that h is isomorphic to h′ via
the mapping (x, b, r) 7→ (x, f(x) ⊕ b, r). Furthermore, this mapping is efficiently computable and
efficiently invertible since f is efficiently computable. It is left to show that h′ is a (standard)
randomized encoding of the function fexp(x, b) with statistical correctness and perfect privacy.

We begin with correctness. Given h′(x, b, r) = (ĝ(x, y, r), y) for y = f(x) ⊕ b and a uniformly
chosen r, we apply the decoder of ĝ to the first entry and recover, with all but negligible probability,
the value g(x, y) = f(x)⊕y = b. By XOR-ing this with y we recover f(x). Knowing both f(x) and
b, it is left to recover x in case b = 1. Indeed, when b = 1 the function g(x, y) = b also evaluates to
1, and so we can apply the extraction algorithm to ĝ(x, y, r) and recover x with all but negligible
probability, as required. In both cases the efficiency of the decoder follows from the efficiency of
the original decoder and extraction algorithm.

We move on to privacy. Given an output (f(x), b, z) of fexp, we compute y = f(x) ⊕ b and
sample ĝ(x, y, r) as follows: (1) if g(x, y) = f(x) ⊕ y = 1 (i.e., b = 1) the input x is available (via
z) and so we simply compute ĝ(x, y, r) for a uniformly chosen r; (2) if g(x, y) = f(x)⊕ y = 0 (i.e.,
b = 0), we sample ĝ(x, y, r) via the perfect one-sided simulator S0 of ĝ. In any case, the simulation
is perfect and efficient.

We move on to the case of multi-output functions. In the following let f : {0, 1}n → {0, 1}l be
a function where fi denotes the boolean function computing the i-th bit of f and K(i) is the set of
inputs that influence the i-th output. For a string x we let xK(i) denote the restriction of x to the
indices in K(i). The random exposure fexp of a non-boolean function f is defined by concatenating
the random exposures of each of the outputs. Formally,

Definition 4.6 (Random exposure of general function). The random exposure fexp of a function
f : {0, 1}n → {0, 1}l maps x ∈ {0, 1}n and b1, . . . , bl ∈ {0, 1} to (fi,exp(xK(i), bi))i∈[l], where fi,exp is
the random exposure of the boolean function fi.

9

By simple concatenation we extend Lemma 4.5 to the multi-output case.

Construction 4.7 (From SPRE to RE of fexp). For a function f : {0, 1}n → {0, 1}l define the
following functions for every i ∈ [l]:

gi(xK(i), yi)
def
= fi(xK(i))⊕ yi, where fi computes the i-th output of f

hi(xK(i), yi, ri)
def
= (ĝi(xK(i), yi, ri), yi), where ĝi is an SPRE of gi,

h(x, (yi, ri)i∈[l])
def
= (hi(xK(i), yi, ri))i∈[l].

Lemma 4.8. The function h(x, y, r) is a GRE of the function fexp(x, b).

Proof. For every i ∈ [l], let h′i(xK(i), bi, ri) = hi(xK(i), fi(xK(i)) ⊕ bi, ri). The proof of Lemma 4.5,
shows that h′i is a standard encoding of fi,exp(xK(i), bi) with perfect privacy and statistical cor-
rectness. The concatenation lemma from [3, Lemma 4.9] shows that an encoding of a nonboolean
function can be obtained by concatenating encodings of its output bits, using an independent
random input for each bit. Hence, the function

h′(x, (bi, ri)i∈[l]) = (h′i(xK(i), bi, ri))i∈[l],

is a standard encoding of fexp(x, b). Finally, the isomorphism between h and h′ is identical to the
one described in the proof of Lemma 4.5.

We can now derive the main result of this section.

Theorem 4.9. Let f : {0, 1}n → {0, 1}l(n) be an efficiently computable function with output locality
O(log n). Then its random exposure fexp can be encoded via degree-2 generalized encoding h.

Proof. Apply Construction 4.7 to f where each SPRE ĝi is defined according to Construction 4.2.
The theorem now follows from Lemmas 4.3 and 4.8.

5 Robust One-Way Function

In this section we define the notion of robust one-way functions (ROWF), we use the results of the
previous section to argue that a local ROWF gives rise to a degree-2 one-way function, and, finally
we present a construction of local ROWFs based on the one-wayness of random local functions.

Definition 5.1 (Robust one-way function). Let F =
{
fk : {0, 1}n → {0, 1}m(n)

}
k∈{0,1}s(n) be a

collection of functions and let G = {gk : gk is the random exposure of fk ∈ F} be the collection of
random exposures of F . We say that F is a collection of robust OWF if G is a collection of weak
one-way functions.

Theorem 5.2. If there exists a robust OWF f with locality O(log n) then there exists a degree-2
one-way function h with (optimal) output locality 3. Furthermore, if F is a collection of robust
OWFs with locality O(log n), then there exists a collection H of degree-2 one-way functions with
(optimal) output locality 3.

10

Proof. Let f be the ROWF and let fexp be its random exposure which is, by definition, a weak
one-way function. Since f has logarithmic locality we can apply Theorem 4.9 and get a degree-2
generalized encoding h of fexp. By Lemma 3.6, h is a distributional one-way function. Finally, by
Lemma 3.3, a degree-2 distributional OWF can be transformed into a degree-2 OWF with output
locality 3.

We extend the proof for the case of collections along the argument of Remark 3.2. Let F = {fk}
be a collection of robust OWFs of locality O(log n) with key sampling algorithm K. For every
fk ∈ F , let gk be the random exposure of fk, and let hk denote the degree-2 generalized encoding of
gk whose existence is promised by Theorem 4.9. We define the collections G = {gk} and H = {hk}
which are both equipped with the same key-sampling algorithm K. We will show that H = {hk} is
a collection of distributional one-way functions.

Consider the single-function representation of F , denoted by F , which, given an input x and
key-sampling randomness ρ, outputs value fK(1n;ρ)(x) together with the randomness ρ. Similarly,
let G (resp., H) be the single-function representation of G and H. By the definition of robustness,
the collection G is weakly one-way and so, by Remark 3.2, the function G is weakly one-way. It is
not hard to see that H is a GRE of G since every hk is a GRE of gk. It follows, by Lemma 3.6,
that the function H is distributional one-way, which means, by definition, that H is a collection of
distributional one-way functions. We complete the proof, by using Lemma 3.3 to transform H into
a collection of degree-2 OWF with output locality 3.

5.1 Random Local Functions

Notation. Let m and n be integers corresponding to input length and output length. Let M ∈
{0, 1}m×n be a binary matrix with di ones in the i-th row Mi. Through this section we abuse
notation and view Mi both as a row vector and as the set {j|Mi,j = 1}. Correspondingly, we let
|Mi| denote the size di of the set Mi. For a real number p ∈ (0, 1), denote byMm,n,p the probability
distribution over matrices M ∈ {0, 1}m×n where each entry is chosen to be one with probability p
independently of the other entries.

The RLF collection. For a matrix M and a list of m predicates P = (Pi)
m
i=1 where Pi :

{0, 1}|Mi| → {0, 1}, we define the function fM,P : {0, 1}n → {0, 1}m via the mapping

x 7→ (P1(xM1), . . . , Pm(xMm)).

Namely, the i-th output is computed by applying Pi to the string x restricted to the set Mi. For
integer-valued function m(n) : N → N, real-valued function q(n) : N → (0, 1), and a sequence
P = (P(i))i∈N of probability distributions P(i) over i-ary predicates, we define the Random Local
Function (RLF) collection, denoted by Fn,m,q,P , to be the collection of functions fM,P where M is
chosen from Mm,n,q and the i-th predicate Pi : {0, 1}|Mi| → {0, 1} is a random predicate chosen
from P(|Mi|).

Predicate distributions. We will consider two concrete choices for predicate distributions. We
letR denote the uniform distribution over predicates, i.e., R(i) uniformly samples a truth table from

{0, 1}2i . We also consider the distributionR⊕ =
{
R(i)
⊕

}
whereR(i)

⊕ chooses a predicate P (z1, . . . , zi)

as follows. Randomly partition the input variables into two sets, S and its complement S̄, where

11

each input variable is inserted to S with probability 1
2 ; Choose a uniform predicate P ′ over the S

variables and XOR it with the parity of all variables outside S, i.e., P (z) = P ′(zS)⊕
⊕

i/∈S(zi). We
refer to R⊕ as the XOR-uniform distribution.

More generally, our results apply to any predicate distribution P = (P(i))i∈N which satisfies the
following conditions.

Definition 5.3. A predicate distribution P = (P(i))i∈N is admissible if the following hold:

• For every i, the distribution P(i) is invariant under permutation of the order of the input
variables. Namely, for any permutation π : [i] → [i], the predicate Q : {0, 1}i → {0, 1}
obtained by sampling P

R← P(i) and letting Q(z1, . . . , zi) = P (zπ(1), . . . , zπ(i)), is distributed

identically to P(i).

• P is closed under partial fixing. Namely, the following holds for every i. For every s < i, every
s-size subset S ⊂ [i] and partial assignment ρ ∈ {0, 1}S, the predicate Q : {0, 1}i−s → {0, 1}
obtained by sampling P

R← P(i) and fixing the variables in S to the assignment ρ, is distributed
identically to P(i−s).

• Efficiency: One can sample the truth table of a predicate P
R← P(i)) in time poly(2i).

It is not hard to verify that the aforementioned predicate distributions, R and R⊕ (uniform
and XOR-uniform) are admissible.

Intractability assumption. We assume that the collection Fn,m,d/n,P is slightly hard to invert
for some constant d, output length m = n and some admissible predicate distribution P. Observe
that in this case the expected output locality is d, and, by a Chernoff bound, with all but negligible
probability, all outputs have locality at most log n and so Pi can be described by a polynomial-size
string and the function can be evaluated in polynomial time.

Assumption 5.4 (Random local function). There exists a constant d, an admissible predicate
distribution P =

{
P(i)

}
and a polynomial p(·), such that for every (non-uniform) polynomial-time

algorithm, A, and all sufficiently large n’s

Pr[A(1n,M, P, fM,P (x)) /∈ f−1
M,P (fM,P (x))] >

1

p(n)
,

where x
R← Un,M

R← Mn,n,d/n and P = (Pi)
n
i=1 and each Pi : {0, 1}|Mi| → {0, 1} is sampled

independently from P(|Mi|).

About the assumption. The collection Fn,n,d/n,P used in Assumption 5.4 is a variant of a
candidate OWF proposed by Goldreich [11] that and was extensively studied in the last decade.
The main between our variant and Goldreich’s variant is that we use a different random predicate
for each output and Goldreich suggests to use the same (possibly random) predicate everywhere.
Despite this difference, known evidence that support Goldreich’s variant also apply to our variant
as well.

In particular, Cook et al. [7] prove that a large class of algorithms (including ones that capture
DPLL-based heuristics) fail to invert a local functions fM,P : {0, 1}n → {0, 1}n in polynomial time

12

as long as the matrix M enjoys some expansion properties and most of the predicates P1, . . . , Pn
satisfy some notion of hardness (captured by a concrete combinatorial criteria).2 Furthermore,
it is shown that predicates chosen from either R or R⊕ fail to be “hard” with probability that

tends to 0 when the arity d grows. Similarly, a random matrix M
R←Mn,n,d/n fails to satisfy the

required expansion property with probability that tends to 0 when the arity d grows, and so the
lower-bounds of [7] apply to our setting as well.

We further mention that things change in the long-output regime. Specifically, the results of [6]
allow to invert fM,P , for most matrices M , as long as there are enough (poly(d)n) “easy” predicates
Pi(z1, . . . , zd) which are correlated with a single input variable zj (i.e., Prz[Pi(z) = zj] 6= 1

2) or with

a pair of input variables zj ⊕ zk (i.e., Prz[Pi(z) = zj ⊕ zk] 6= 1
2). Since a uniform predicate P

R← R
is likely to be easy, the collection Fn,m,d/n,R is efficiently invertible for m ≥ poly(d)n. In contrast,
a predicate P chosen from the XOR-uniform distribution R⊕ is easy with only small probability
of exp(−Ω(d)), and so this attack fails for Fn,cn,d/n,R⊕ as long as c� exp(d)n.

Overall, for m = n, it seems likely that Assumption 5.4 holds both for uniform predicates R
and the XOR-uniform predicates R⊕. In fact, it seems likely that both Fn,n,d/n,R and Fn,n,d/n,R⊕
are strongly one-way.

5.2 Robust One-Way Functions from Random Local Functions

Based on the one-wayness of Fn,n,d/n we show that the related collection Fn′,m′,d′/n′ is robust
one-way.

Theorem 5.5. Let P be some admissible predicate distribution, let d ∈ N be a constant, and let
D = ed where e is the basis of the natural logarithm. If the collection Fn,n,d/n,P is weakly one-way
then Fn′,m′,d′/n′,P is robust one-way for n′ = Dn, m′ = 2n and d′ = Dd.

Proof idea. Roughly speaking, we show that a random function fM,P
R← Fn,n,d/n can be embed-

ded, with noticeable probability, in the function hexp, which is the random exposure of hM ′,P ′
R←

Fn′,m′,d′/n′ . Thus, hexp is slightly hard to invert and Fn′,m′,d′/n′ is robust one-way. To get some in-

tuition, assume that exactly half of the outputs of hM ′,P ′
R← Fn′,m′,d′/n′ are exposed. Then there are

exactly n exposed outputs and n unexposed outputs. In this case, an input node is not exposed (i.e.,
is not connected to an exposed output) with probability exactly (1− d′/n′)n = (1− d/n)n ≈ e−d.
Hence, the expected number of unexposed inputs is n, and so the matrix M ′ contains a non-exposed
submatrix M with n inputs and n outputs. It turns out that the function fM,P can be embedded
in this submatrix. The full proof of Theorem 5.5 is deferred to Section 5.3.

We conclude with the following corollary.

Corollary 5.6. Under Assumption 5.4, there exists a collection of degree-2 OWF with locality 3.

Proof. Under Assumption 5.4, Theorem 5.2 implies that the collection F := Fn′,m′,d′/n′,P is robust
one-way. Let us modify this collection by rejecting all functions whose locality is larger than log n.
As already observed, by a Chernoff bound, this affects only a negligible fraction of the functions,

2The results are originally stated for a fixed good predicate but it can be easily generalized to a mixture of
predicates and to the case that all but a small fraction of the predicates are “hard”.

13

and so the resulting collection is still robust one-way. Our new collection F ′ now has logarithmic
locality, and the description of each function hM,P in this collection includes an explicit description
of the truth tables (P1, . . . , Pm′). Thus, we can apply Theorem 5.2 and construct a collection of
degree-2 OWFs with locality 3 based on Assumption 5.4.

5.3 Proof of Theorem 5.5

Let d ∈ N be a constant. Let P be an admissible predicate distribution, which will be omitted,
from now on, from the notation F , i.e., Fn,m,d/n := Fn,m,d/n,P . We will show that if Fn,m,d/n is

weakly one-way, for m = n, then Fn′,m′,d′/n′ , for n′ = edn, m′ = 2m and d′ = ded is robust one-way.

The overall strategy is to embed an output of a function fM,P
R← Fn,m,d/n in an output of a random

exposure hexp of hM ′,P ′
R← Fn′,m′,d′/n′ and then show that an inverter Â for hexp can be used to

invert fM,P .
Formally, let p(n) be the polynomial guaranteed by the assumption that Fn,m,d/n is weakly

one-way, and assume, towards a contradiction, that the random exposure of h
R← Fn′,m′,d′/n′ is not

weakly one-way. Specifically, let ε(n′) be a function which is smaller than 1
n2p(n)

for infinitely many

n’s. Assume that there exists an efficient algorithm Â that with probability 1 − ε(n′) inverts a
random output

φ = (Mi, Pi, yi, bi, zi)
m′
i=1

chosen from the uniform distribution Φn′ defined by letting:

M
R←Mn′,m′,d′/n′ , Pi

R← P(|Mi|), x
R← {0, 1}n′ , b = (b1, . . . , bm′)

R← {0, 1}m′ , yi = Pi(xMi)

and

zi =

{
xMi if bi = 1

0|Mi| otherwise.

We would like to analyze the success probability of Â on a restricted class of “typical” instances.
Given a tuple φ, we say that an output i is exposed if bi = 1 and say that an input j is exposed
if it participates in an exposed output, i.e., if Mi,j = 1 for some exposed output i. We say that
φ is typical if the number of exposed outputs is exactly m′/2 = m, the number of exposed inputs
is exactly e−dn′ = n (out of n′), and all the outputs are connected to at most log n inputs. We
say that a typical tuple φ is in canonical form if the first m outputs and the first n inputs are
exactly the ones which get exposed. Let Tn′ (respectively, Cn′) denote the uniform distribution Φn′

conditioned on selecting a typical (respectively, canonical) instance.

It turns out that the algorithm Â, which is guaranteed to invert random instances φ
R← Φn′

with probability 1 − ε, inverts typical instances with probability 1 − Ω(n′ε). Furthermore, Â can
be easily modified into an inverter for canonical instances with similar success probability.

Lemma 5.7. The inverter Â inverts a typical instance φ
R← Tn′ with probability at least 1−Ω(n′ε).

Furthermore, there exists an efficient algorithm B that inverts a random canonical instance φ
R← Cn′

with probability at least 1− Ω(n′ε).

14

The first part is proven by showing that a random instance is typical with probability Ω(1/n′),
and the second part is proven by noting that a canonical instance can be randomized into a typical
instance by randomly permuting the inputs and the outputs. See Section 5.3.1 for a full proof.

The next lemma, whose proof is deferred to Section 5.3.2, shows that a random output ψ of
Fn,m,d/n can be embedded in a random canonical output of Fn′,m′,d′/n′ .

Lemma 5.8. There is an efficient transformation α which takes a random output ψ of Fn,m,d/n,
aborts with failure with negligible probability, and otherwise (conditioned on not aborting) outputs

a random canonical output φ
R← Cn′ such that if x = (x1, . . . , xn′) is a preimage of φ then the prefix

(x1, . . . , xn) is a preimage of ψ.

We can now complete the proof of Theorem 5.5. By Lemma 5.7, the existence of the inverter Â
which inverts Φn′ with advantage 1−ε implies the existence of an efficient algorithm B that inverts

random canonical instances φ
R← Cn′ with probability 1−Ω(1/(n2p(n))). Hence, by Lemma 5.8, B

can be used to invert Fn,m,d/n with similar probability as follows. Map an output of Fn,m,d/n to an

output φ
R← Cn′ via α, use B to find a preimage x′ and output the first n bits of x′. The success

probability is 1− Ω(1/(n2p(n))), in contradiction to Assumption 5.4.

5.3.1 Proof of Lemma 5.7

We will need the following claim:

Claim 5.9. For some constant a > 0, Pr
φ

R←Φn′
[φ is typical] > a

n′ .

Proof. Since each of the m′ = 2n output vertices is exposed with probability 1
2 , the probability

that exactly n outputs are exposed is
(

2n
n

)
· 2−2n = Ω(1/

√
n). Conditioned on this event, we

claim that the probability that there are exactly n exposed inputs out of all n′ = edn inputs, is
Ω(1/

√
n) = Ω(1/

√
n′).

Indeed, since each edge exists with probability d′

n′ = d
n , an input is exposed with probability

(1− d′/n′)n = (1− d/n)n. Therefore, the number of exposed inputs is distributed according to the
binomial distribution, and it suffices to show that b(n; edn, (1− d/n)n) > Ω(1/

√
n), where b(k; `, p)

is the probability to have exactly k successes out of a sequence of ` independent Bernoulli trials
each with a probability p of success. Indeed, letting p = (1− d/n)n and recalling that n′ = edn, we
can write:

b(n; edn, p) = b(dpn′e+O(1);n′, p) > Ω(b(dpn′e;n′, p)) > Ω(1/
√
n′),

where the first equality follows from the estimate (1 − d/n)n = e−1 − O(1/n) (derived from the
Taylor expansion), the second inequality follows from the smoothness of b(k; `, p) with respect to k,
namely, the ratio b(k; `, p)/b(k+1; `, p) = (1−p)k/(`−k)p is constant when k = Θ(`) and p ∈ (0, 1)
is a constant, and the third inequality follows from the standard estimation b(d`pe; `, p) = Ω(1/

√
`)

where p ∈ (0, 1) is bounded away from 0 and 1. Finally, by a Chernoff bound, the probability

that some output is connected to more than log n inputs is negligible (m′e−Ω(log2 n′)), and the claim
follows.

We can now prove Lemma 5.7. The first item follows from Bayes’ law as Pr[Â inverts Tn′] equals
to

Pr[Â inverts Φn′]− Pr[Φn′ is not typical] · Pr[Â inverts Φn′ |Φn′ is not typical]

Pr[Φn′ is typical]
.

15

By applying Claim 5.9 and bounding Pr[Â inverts Φn′ |Φn′ is not typical] by 1, we get:

Pr[Â inverts Tn′] >
1− ε− (1− a/n′)

a/n′
> 1− n′ε/a,

where a is a positive constant.
To prove the second item we note that one can easily map Tn′ to Cn′ by randomly permuting

the order of the inputs and the order of the outputs. Formally, given a canonical instance φ =
(Mi, Pi, yi, bi, zi)

m′
i=1 we define the inverter B as follows:

• Choose a random output permutation σ : [m′]→ [m′] and let φ′ = (M ′i , P
′
i , y
′
i, b
′
i, z
′
i)
m′
i=1 where

(M ′σ(i), P
′
σ(i), y

′
σ(i), b

′
σ(i), z

′
σ(i)) = (Mi, Pi, yi, bi, zi).

• Choose a random input permutation π : [n′]→ [n′] and define

φ
′′

= (M
′′
i , P

′′
i , y

′
i, b
′
i, z
′′
i)m

′
i=1

as follows. (1) M ′′i = {π(j)|j ∈Mi}. (2) Let πi : [|Mi|] → [|Mi|] be the permutation that
maps j to k if the j-th largest element in M ′i is mapped by π to be the k-th largest element
in M ′′i . Then, the predicate P

′′
i is defined by permuting the input variables of P ′i under πi.

(3) The string z
′′
i is defined by permuting the entries of z′i under πi.

• Finally, invoke Â on φ
′′
, copy the output to x

′′
, permute the entries of x

′′
under π−1, and

output the resulting string x.

It is not hard to see that a random canonical tuple φ is mapped by B into a random typical tuple
φ′′. (Here we make use of the fact that the predicate distribution P is invariant under permutations
of the input variables.) Furthermore, if x′′ is a preimage of φ′′, then x is a preimage of φ. Hence,
B succeeds with probability 1− Ω(n′ε).

5.3.2 Proof of Lemma 5.8

In the following we let La,b,p denote the distribution Ma,b,p conditioned on the event that none of
the columns is an all-zero column, and none of the rows have Hamming weight larger than log n.
For our setting of parameters (i.e., a = Θ(n), b = Θ(n) and p = Θ(1/n)), such a distribution can
be sampled efficiently with negligible failure probability.3

Given a tuple ψ = (Mi, Pi, yi)
m
i=1 (which corresponds to an image of Fn,m,d/n) we compute

φ = (M ′i , P
′
i , y
′
i, bi, zi)

m′
i=1 (from Cn′) as follows:

1. Padding the matrix. Sample a m′ × n′ matrix

M ′
R←
(

M Mm,n′−n,d/n
0(m′−m)×n Lm′−m,n′−n,d/n,

)
.

Halt with failure if one of the rows of M ′ has Hamming weight larger than log n.

3Sample a matrix from Ma,b,p conditioned on the event that none of the columns is an all-zero column (a task
which can be achieved efficiently by rejecting and resampling zero columns), and fail it if the resulting matrix has a
row of weight larger than logn. To see that rejection happens with negligible probability, observe that for a fixed row,
each column contributes 1 with probability p/(1− p)a = Θ(1/n), independently of the other columns, and therefore,
by a Chernoff bound, the weight exceeds logn with negligible probability.

16

2. Exposed inputs. Choose n′ − n random bits xn+1 . . . xn′ .

3. Unexposed outputs. For i ∈ {1, . . . ,m} let

y′i = yi, bi = 0, zi = 0|M
′
i |.

Choose P ′i : {0, 1}|M ′i | → {0, 1} at random from P(M ′i) subject to the constraint

P ′i (β, xM ′i\Mi
) = Pi(β) for every β ∈ {0, 1}|Mi|.

Namely, the restricted predicate P ′i (·, xM ′i\Mi
) is equal to Pi.

4. Exposed outputs. For each i ∈ {m+ 1, . . . ,m′} let

P ′i
R← P(|M ′i |), y′i = P ′i (xM ′i), bi = 1, zi = xM ′i

Since M ′i contains only “exposed inputs” n+ 1 ≤ j ≤ n′ we can compute y′i and zi.)

Analysis. Assume that ψ is uniformly distributed, namely M
R←Mn,n,d/n, x

R← {0, 1}n, and for

i ∈ [n], Pi
R← P(|M ′i |) and yi = Pi(x). Then, by the definition of L and by a multiplicative Chernoff

bound, the failure probability in the first step is negligible. We further claim that, conditioned on
not failing, φ is distributed according to Cn′ . Indeed, the following hold:

• The string b = 1m0m
′−m, the first m rows of M ′ are distributed according toMm,n′,d′/n′ , and

the last rows according to 0m′−m×nLm′−m,n′−n,d′/n′ . (Recall that d′/n′ = d/n.)

• Since the original predicates (P1, . . . , Pm) are chosen from P, so are the new predicates
(P ′1, . . . , Pm′). (Here we use the fact that P is invariant under partial fixing.)

• Since yi = Pi(xMi) for x
R← {0, 1}n, we have, by construction, that y′i = P ′i (xM ′i) where

x
R← {0, 1}n′ .

• Finally, again, by construction, for m + 1 ≤ i ≤ m′ we have that zi = xM ′i and zi = 0|M
′
i |

otherwise.

Now suppose that x′ = (x′1, . . . , x
′
n′) is a preimage of ψ. We show that, in this case, the prefix

(x′1, . . . , x
′
n) is a preimage of φ. Since all the inputs n + 1 ≤ i ≤ n′ are exposed, we have that

x′n+1,...,n′ = xn+1,...,n′ . In addition, for 1 ≤ i ≤ m we have

yi = P ′i (x
′
Mi
, x′Ri

) = P ′i (x
′
Mi
, xRi) = Pi(x

′
Mi

),

where Ri denotes the restriction of M ′i to the last (n′ − n) columns, and the last equality follows
from the definition of P ′i . Therefore, fM,P (x′1, . . . , x

′
n) = y, as claimed. This completes the proof

of Lemma 5.8.

17

6 Discussion and Open Questions

Leakage Resiliency of Random Local Functions. Our results essentially show that, for
short output lengths m = 2n/ed, the RLF collection achieves some form of leakage resiliency under
random exposures. One may argue that this captures a realistic model of “probing attacks” where
an adversary gets a physical access to the circuit that computes f , and for each output gate i, with
probability 1

2 , gets to probe all the internal values of the sub-circuit that computes the output. We
prove that one-wayness can still be achieved under this strong notion of leakage. Related models
of physical leakage were considered in [17, 1, 10]. We also mention that Random Local Functions
were used by [16] to obtain a pseudorandom generator which achieves a closely-related notion of
leakage resiliency.

Interestingly, random local functions are known to be insecure (easy to invert) in a different
model of random leakage where the adversary is allowed to see a constant fraction of the inputs

which are selected independently of the function f
R← F . In fact, Bogdanov and Qiao [6] showed

that, for long output length m = n(1 + poly(d)), a random d-local function can be efficiently
inverted even in the (more challenging) setting where the adversary is only given a string x′ which
is correlated with x without knowing which indices are correlated. Furthermore, for some predicates,
Dinur et al. [9] extended this attack to a setting where the adversary only gets to see the image
y′ of x′. In all these cases, the leakage (the choice of x′) is crucially assumed to be statistically
independent of the choice of f . In contrast, in our random-exposure model, the leakage strongly
depends on the structure of the circuit that computes f . Hence, there seems to be a significant
difference between circuit-dependent leakage and random leakage. It will be interesting to further
study the relations between these different models of leakage.

Standard RE with Degree 2. In Section 4 it is shown that non-trivial functions can be en-
coded by degree-2 semi-private randomized encodings. This leaves open the possibility of achieving
standard degree-2 encoding with statistical privacy and statistical correctness. A positive result
would lead to round-optimal secure computation protocols in the statistical setting of [5].

Locality 2 over larger alphabet. It is not hard to see that the task of inverting a 2-local binary
function reduces to solving an instance of 2-SAT and can therefore be implemented in polynomial
time [11]. However, this attack does not generalize to 2-local functions over a larger non-binary
alphabet. Indeed, it is shown in [8] that, assuming the existence of one-way functions in log-space,
there are one-way functions with locality 2 over a (large) constant-size alphabet.

Acknowledgement. We thank Irit Dinur and Hilary Finucane for sharing with us a copy of [8].

References

[1] M. Ajtai. Secure computation with information leaking to an adversary. In Proc. of 43rd
STOC, pages 715–724, 2011.

[2] B. Applebaum. The cryptographic hardness of random local functions. Computational Com-
plexity, 2015. To appear. Also available as ECCC TR15-027.

18

[3] B. Applebaum, Y. Ishai, and E. Kushilevitz. Cryptography in NC0. SIAM J. Comput.,
36(4):845–888, 2006. Preliminary version in Proc. 45th FOCS, 2004.

[4] B. Applebaum, Y. Ishai, and E. Kushilevitz. Cryptography by cellular automata or how fast
can complexity emerge in nature? In Proc. of 1st ICS, pages 1–19, 2010.

[5] M. Ben-Or, S. Goldwasser, and A. Wigderson. Completeness theorems for non-cryptographic
fault-tolerant distributed computation. In Proc. of 20th STOC, pages 1–10, 1988.

[6] A. Bogdanov and Y. Qiao. On the security of goldreich’s one-way function. Computational
Complexity, 21(1):83–127, 2012. Preliminary version in Proc. of 13th RANDOM, 2009.

[7] J. Cook, O. Etesami, R. Miller, and L. Trevisan. On the one-way function candidate proposed
by goldreich. TOCT, 6(3):14, 2014. Preminary version in Proc. of 6th TCC.

[8] I. Dinur and H. Finucane. Cryptography with locality two. Unpublished Manuscript, 2011.

[9] I. Dinur, S. Goldwasser, and H. Lin. The computational benefit of correlated instances. In
Proc. of 6th ITCS, pages 219–228, 2015.

[10] S. Faust, T. Rabin, L. Reyzin, E. Tromer, and V. Vaikuntanathan. Protecting circuits from
computationally bounded and noisy leakage. SIAM J. Comput., 43(5):1564–1614, 2014.

[11] O. Goldreich. Candidate one-way functions based on expander graphs. Electronic Colloquium
on Computational Complexity (ECCC), 7(090), 2000.

[12] O. Goldreich. Foundations of Cryptography: Basic Tools. Cambridge University Press, 2001.

[13] R. Impagliazzo and M. Luby. One-way functions are essential for complexity based cryptog-
raphy. In Proc. of the 30th FOCS, pages 230–235, 1989.

[14] Y. Ishai and E. Kushilevitz. Randomizing polynomials: A new representation with applications
to round-efficient secure computation. In Proc. 41st FOCS, pages 294–304, 2000.

[15] Y. Ishai and E. Kushilevitz. Perfect constant-round secure computation via perfect random-
izing polynomials. In Proc. 29th ICALP, pages 244–256, 2002.

[16] Y. Ishai, E. Kushilevitz, X. Li, R. Ostrovsky, M. Prabhakaran, A. Sahai, and D. Zuckerman.
Robust pseudorandom generators. In Proc. of 40th ICALP, pages 576–588, 2013.

[17] Y. Ishai, A. Sahai, and D. Wagner. Private circuits: Securing hardware against probing attacks.
In Proc. of 23rd CRYPTO, pages 463–481, 2003.

[18] A. C. Yao. Theory and application of trapdoor functions. In Proc. 23rd FOCS, pages 80–91,
1982.

19

ECCC ISSN 1433-8092

http://eccc.hpi-web.de

