
Depth-4 Identity Testing and Noether’s
Normalization Lemma

Partha Mukhopadhyay ∗

Chennai Mathematical Institute, India

April 6, 2015

Abstract

We consider the black-box polynomial identity testing (PIT) problem for a
sub-class of depth-4 ΣΠΣΠ(k, r) circuits. Such circuits compute polynomials of
the following type:

C(X) =
k∑
i=1

di∏
j=1

Qi,j ,

where k is the fan-in of the top Σ gate and r is the maximum degree of the poly-
nomials {Qi,j}i∈[k],j∈[di], and k, r = O(1). We consider a sub-class of such circuits
satisfying a generic algebraic-geometric restriction, and we give a deterministic
polynomial-time black-box PIT algorithm for such circuits.

Our study is motivated by two recent results of Mulmuley (FOCS 2012,
[Mul12]), and Gupta (ECCC 2014, [Gup14]). In particular, we obtain the de-
randomization by solving a particular instance of derandomization problem of
Noether’s Normalization Lemma (NNL). Our result can also be considered as
a unified way of viewing the depth-4 PIT problems closely related to the work
of Gupta [Gup14], and the approach suggested by Mulmuley [Mul12]. The im-
portance of unifying PIT results is already exhibited by Agrawal et al. via the
Jacobian approach (STOC 2012, [ASSS12]). To the best of our knowledge, the
only known result that shows a derandomization of restricted NNL in the con-
text of PIT problem, is the work of Frobes and Shpilka (RANDOM 2013, [FS13a],
and FOCS 2013, [FS13b]). Frobes and Shpilka considered the black-box identity
testing of noncommutative algebraic branching programs (ABPs).
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1 Introduction

Polynomial Identity Testing (PIT) is the following problem : Given an arithmetic circuit
C computing a polynomial in F[x1, . . . , xn], decide whether C(X) ≡ 0 or not. The
problem can be presented either in white-box model or in black-box model. In the white-
box model, the arithmetic circuit is given explicitly as the input. In the black-box
model, the arithmetic circuit is given as a black-box, and the circuit can be evaluated
over any point in the field (or in a suitable extension field). Over the years, the problem
has played pivotal role in many important results in complexity theory and algorithms:
Primality Testing [AKS04], the PCP Theorem [ALM+98], IP = PSPACE [Sha90], graph
matching algorithms [Lov79, MVV87]. The problem PIT admits a co-RP algorithm via
the Schwartz-Zippel Lemma [Sch80, Zip79], but an efficient derandomized algorithm is
not known.

An important result of Impagliazzo and Kabanets [KI04] (also, see [HS80]) showed
a connection between the derandomization of PIT and arithmetic circuit lower bound.
In particular, it is now known that if PIT can be derandomized using a certain type of
pseudo-random generator, then the Permanent polynomial can not be computed by a
polynomial-size arithmetic circuit [Agr05,KI04]. As a result, it will prove the algebraic
analogue of P vs NP problem: VP 6= VNP. We refer the reader to the survey of Shpilka
and Yehudayoff [SY10] for the exposition to many important results in arithmetic circuit
complexity, and polynomial identity testing problem.

Depth Reduction and Lower Bounds

In a surprising result, Agrawal and Vinay [AV08] showed that the derandomization of
PIT only for depth-4 ΣΠΣΠ circuits is sufficient to derandomize the PIT for the general
arithmetic circuits. The main technical ingredient in their proof is an ingenious depth-
reduction technique. As a result, it is now known that a sufficiently strong lower bound
for only ΣΠΣΠ circuits (even for depth-3 ΣΠΣ circuits over large fields [GKKS13b])
will separate VP from VNP. Currently, there are many impressive partial results in this
direction showing depth four lower bounds for explicit polynomials in VP and in VNP.
All these papers use the shifted partial derivative technique first used in [GKKS13a].

Identity Testing for ΣΠΣ and ΣΠΣΠ Circuits

Motivated by the results of [KI04, Agr05, AV08], a large body of works consider the
polynomial identity testing problem for restricted classes of depth-3 and depth-4 cir-
cuits. A particularly popular model in depth three arithmetic circuits is ΣΠΣ(k) circuit,
where the fan-in of the top Σ gate is bounded. Dvir-Shpilka showed a white-box quasi-
polynomial time deterministic PIT algorithm for ΣΠΣ(k) circuits [DS07]. Kayal-Saxena
gave a polynomial-time white-box algorithm for the same problem [KS07]. Following
the result of [KS07], Arvind-Mukhopadhyay gave a somewhat simpler algorithm of same
running time [AM10]. Karnin and Shpilka gave the first black-box quasi-polynomial time
algorithm for ΣΠΣ(k) circuits [KS11]. Later, Kayal and Saraf [KS09] gave polynomial-
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time deterministic black-box PIT algorithm for the same class of circuits over Q or R.
Finally, Saxena and Sheshadhri settled the situation completely by giving a deterministic
polynomial-time black-box algorithm for ΣΠΣ(k) circuits [SS12] over any field.

For ΣΠΣΠ circuits, relatively a fewer deterministic algorithms are known. Just
like in depth three, in depth four also the model ΣΠΣΠ(k) is of considerable interest
(where the top Σ gate is of bounded fan-in). Karnin et al. showed a quasi-polynomial
time black-box identity testing algorithm for multilinear ΣΠΣΠ(k) circuits [KMSV13].
Later, Saraf and Volkovich improved it to a deterministic polynomial time algorithm
[SV11]. In 2013, Beecken et al. [BMS13] considered an algebraic restriction on ΣΠΣΠ(k)
circuits: bounded transcendence degree, and they showed an efficient deterministic black-
box algorithm for such a class of circuits. Finally, Agrawal et al. showed that all these
results can be proved under a unified framework using Jacobian Criterion [ASSS12].

Recent results of Mulmuley [Mul12] and Gupta [Gup14]

Noether’s Normalization Lemma (NNL) is a fundamental result in algebraic geometry.
Recently, Mulmuley observed a close connection between a certain formulation of de-
randomization of NNL, and the problem of showing explicit circuit lower bounds in
arithmetic complexity [Mul12]. His main result is that these seemingly different looking
problems are computationally equivalent. We explain the setting briefly.

Let V ⊆ P(Cn) be any projective variety and dimV = m. Then any homogeneous
and random (generic) linear map Ψ : Pn → Pm restricts to a finite-to-one surjective closed
map: Ψ : V → Pm. By derandomization of NNL, we mean an explicit construction of the
map Ψ for any explicit variety. Mulmuley showed that this problem is equivalent to the
problem of black-box derandomization of polynomial identity testing (PIT) [Mul12]. Here
we note that efficient explicit derandomization of NNL is known for particular explicit
varieties [FS13a]. This result is closely related to the breakthrough result of the same
authors where they first showed a quasi-polynomial time black-box derandomization of
noncommutative ABPs [FS13b].

In a recent work, Gupta [Gup14] takes a fresh approach to the black-box identity test-
ing of depth-4 circuits. He considers a class of depth-4 circuits denoted by ΣΠΣΠ(k, r).
Such a circuit C computes a polynomial (over a field F) of the following form:

C(X) =
k∑
i=1

Qi =
k∑
i=1

di∏
j=1

Qi,j(x1, . . . , xn),

where Qi,js are polynomials over F and {x1, x2, . . . , xn} are the variables appearing in
the polynomial, and k, r = O(1). It is an open problem to find an efficient deterministic
black-box algorithm to identity test the circuit class ΣΠΣΠ(k, r). Gupta considers an
interesting sub-class of ΣΠΣΠ(k, r) circuits by applying an algebraic-geometric restric-
tion which he defines as Sylvester-Gallai property. Since he works in a projective space
Pn over C, it can be assumed that Qijs are homogeneous polynomials over the variables
x0, . . . , xn. The circuit C is not Sylvester-Gallai (SG) if the following property is true:
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∃ik ∈ [k] : V (Qi1 , . . . , Qik−1
) 6⊆ V (Qik)1. (1)

The indices i1, . . . , ik−1 are the indices in [k]\{ik}. Gupta gives an efficient determin-
istic polynomial-time algorithm for polynomial identity testing for such a class of depth-4
circuits. He further conjectures that if C is SG, then the transcendence degree of the
polynomials Qijs is O(1). Then one can use the result of [BMS13], to solve the problem
completely. His algorithm is interesting for several reasons. Firstly, his approach gives a
clean and systematic algebraic-geometric approach to an interesting sub-class of depth-4
identity testing. Secondly, the algorithm connects the classical algebraic-geometric re-
sults such as Bertini’s Theorem, and Ideal Membership Testing to the PIT problem for
depth four circuits. We note that for ΣΠΣ(k) circuits, Arvind-Mukhopadhyay [AM10]
used ideal membership testing to give a simplified and alternative proof of Kayal-Saxena’s
algorithm [KS07].

Our Results

The main motivation of our study comes from the work of Mulmuley [Mul12], and from
the work of Gupta [Gup14]. In this paper, we try to connect their approaches from
a conceptual perspective. More precisely, we try to answer the following question: is
there an interesting sub-class of ΣΠΣΠ(k, r) circuits for which we can find a black-box
polynomial-time deterministic PIT algorithm by derandomizing a special instance of NNL

? We give an affirmative answer. In the context of noncommutative ABPs, the work of
Frobes and Shpilka gives such a result [FS13a,FS13b].

One of our key ideas is to start from a slightly different assumption (than Gupta’s
assumption), on the algebraic structure of the circuit. Let max{di} ≤ D. The family of
circuits that we consider has the following property. There exists i1, i2, . . . , ik−1 ∈ [k],
and j1, j2, . . . , jk−1 ∈ [D] such that ∀S ⊆ [D] of size at most rk, the following is true: In
Pn 2,

dim(V (Qi1,j1 , . . . , Qik−1,jk−1
,
∏
jk∈S

Qik,jk)) < dim(V (Qi1,j1 , . . . , Qik−1,jk−1
)). (2)

The fact that it is a generic assumption follows easily from the proof technique in
Section 4. Again, by generic we mean that when the polynomials Qi,j are selected
uniformly and independently at random, the circuit will have the property described in
2 with high probability. Our algorithm has three main stages.

1It is easy to observe that such a circuit class is generic in the sense that, when the polynomials
Qi,js are selected uniformly and independently at random, the circuit is not SG with high probability.

2We also work in the projective spaces. The reason is explained later that w.l.o.g the polynomials
Qi,js are homogeneous polynomials over n + 1 variables.
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Variable Reduction

In this stage, our idea is to construct an explicit linear transformation T such that
C(X) ≡ 0 if and only if C(T (X)) ≡ 0, and that T transforms the polynomial computed
by C over a fewer number of variables. In particular, ∀i, T : xi → Li(y0, . . . , y2k−1)
where Li’s are linear forms. We use Proposition 3 to argue that such a transformation
always exists. The idea of this section is inspired by the work of Gupta in [Gup14] (in
particular, Theorem 13, and Lemma 14), but with a key difference. Since our starting
assumption on the circuit is different than Gupta’s assumption, we do not need to use
the classical result of Bertini directly (Theorem 13, [Gup14]).

Explicit Subspace Construction

In this stage, we find the sufficient algebraic conditions that the coefficients of the linear
forms Li : 0 ≤ i ≤ n should satisfy. This section contains the main technical idea of our
work, where we connect the problem to the derandomization of a particular instance of
NNL. The idea is inspired by the work of [Mul12]. The main derandomization tool is
the multivariate resultant. Using multivariate resultant, we reduce our problem to the
problem of finding a hitting point of a product of a small number of sparse polynomials.

Hitting Set Construction

In this stage, we complete the algorithm by constructing a hitting set by applying the
result of Klivans and Spielman [KS01]. More precisely, using the theory of multivariate
resultant, and the hitting set construction of Klivans-Spielman, we argue that there is
a small collection of points for the coefficients of Lis, such that at least for one such
point C(T (X)) 6≡ 0 if C(X) 6≡ 0. Moreover, C(T (X)) is a polynomial over O(1) variables
and the individual degree of each variable is small. Then we can use the combinatorial
nullstellensatz [Alo99] to find a small size hitting set for such a circuit.

Organization

The paper is organized as follows. In Section 1.1, we state the necessary results from
algebraic geometry. In Section 1.2, we collect the necessary background from arithmetic
complexity. We define our problem precisely in Section 2. The main algorithm and the
correctness are given in Sections 3, 4, 4.1, 5. For the sake of completeness, we include
a construction of hitting set for the product of sparse polynomials in Section A. We
conclude in Section 6.

1.1 Algebraic Geometry

We recall the necessary background briefly.
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Projective Varieties

In this work, we focus in the setting of projective spaces. We recall the standard definition
from Chapter 2 of [Mum76]. Complex projective n-space Pn is the set of (n + 1)-
tuples a0, . . . , an of complex numbers, not all zero, modulo the equivalence relation:
(a0, . . . , an) ∼ (λa0, . . . , λan), where λ ∈ C \ {0}. A projective variety is the set of
common zeros of a system of homogeneous polynomial equations in Pn.

Dimension of a variety

We use the following definition of dimension of a projective variety [Har92].

Definition 1. Dimension of V ⊆ Pn is the largest k such that for every linear subspace
Λ of dimension ≥ n− k, we have V ∩ Λ 6= φ.

Co-dimension of a variety V ⊆ Pn is denoted by codim(V ) and it is defined as
n − dim(V ). The following basic facts are useful for us. Those can be found in the
standard text [CLO07].

Proposition 1. The following facts extend our intuition from standard linear algebra:

1. Let f ∈ C[x0, . . . , xn] be a non-zero homogenous polynomial. Then dim(V (f)) =
n− 1 in Pn.

2. Let V,W ⊆ Pn. If V ⊆ W then dim(V ) ≤ dim(W ).

3. V ∩W has co-dimension ≤ codim(V ) + codim(W ) in Pn.

Hilbert’s Nullstellnesatz

We state the following version from Theorem 2 of Chapter 4 [CLO07]. Let f, f1, . . . , fs
are polynomials in C[x1 . . . , xn]. Then, V (f1, f2, . . . , fs) ⊆ V (f) if and only if f ∈√
〈f1, f2, . . . , fs〉, where

√
〈f1, f2, . . . , fs〉 is the radical generated by f1, . . . , fs.

Noether’s Normalization

We recall the following version of Noether’s Normalization Lemma from the book by
Mumford [Mum76]. Consider the following class of maps: Yi =

∑n
j=0 ai,jXj, 0 ≤ i ≤ r′,

be r′ + 1 independent linear forms. Let L ⊂ Pn be the (n − r′ − 1)-dimensional linear
space V (Y0, . . . , Yr′). Define the projection pL : Pn − L −→ Pr′ by (b0, . . . , bn) −→
(
∑
a0,jbj, . . . ,

∑
ar′,jbj).

Theorem 1. (Corollary 2.29, [Mum76]) Let V be an r′-dimensional variety in Pn. Then
there is a linear subspace L of dimension n − r′ − 1 such that L ∩ V is empty. For all
such L, the projection pL restricts to a finite-to-one surjective closed map:

pL : V −→ Pr′ ,
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and the homogeneous coordinate ring C[X0, . . . , Xn]/I(V ) of V is a finitely generated
module over C[Y0, . . . , Yr′ ].

One can derive the following algorithmically useful consequence of the above theorem
(See Lemma 2.14, [Mul12]).

Lemma 1. Let V ⊆ Pn be the variety defined by a set of homogeneous polynomials
f1, . . . , fk ∈ C[x0, . . . , xn], and dim(V ) be the dimension of V . Consider the random
linear forms,

Lj(x) =
n∑
`=0

b`,jx`; 0 ≤ j ≤ s.

Let Hj ⊆ Pn be the hyperplane defined by Lj(x) = 0. If s < dim(V ), then V ∩
⋂
j Hj 6= φ.

If s = dim(V ), then with high probability, V ∩
⋂
j Hj is empty.

When s < dim(V ), the fact that V ∩
⋂
j Hj 6= φ follows from the definition 1. If

s = dim(V ), then Theorem 1 implies the existence of a linear subspace L =
⋂
j Hj of

dimension n− s− 1 such that V ∩L = φ. Lemma 1 implies that such a linear subspace
L exists with high probability.

Multivariate Resultant

We recall the concept of multivariate resultant from Chapter 3 of [CLO05]. Suppose
we have n + 1 homogeneous polynomials F0, F1, . . . , Fn in the variables x0, . . . , xn, and
assume that each Fi has positive total degree. We get n+1 equations in n+1 unknowns:

F0(x0, . . . , xn) = . . . = Fn(x0, . . . , xn) = 0. (3)

The multivariate resultant answers precisely the following question: what conditions
must the coefficients of F0, . . . , Fn satisfy in order that the system in Equation 3 has a
nontrivial solution. Suppose di be the total degree of Fi. Then Fi can be written as

Fi =
∑

α:|α|=di

ci,αx
α.

For each pair i, α, we introduce a variable ui,α. Now we are ready to state the
following important Theorem.

Theorem 2. (Theorem 2.3, [CLO05]) There is a unique irreducible polynomial
Res[ui,α] ∈ Z[ui,α] such that the system of polynomial equations 3 has a nontrivial solution
if and only if Res[ci,α] = 0 (i.e. we substitute ui,α by ci,α).

For our application, we need an upper bound on the degree of the polynomial Res[ui,α].
If di ≤ d for i ∈ [0;n], deg(Res) ≤ (n+ 1) · dn (Theorem 3.1, [CLO05]).
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1.2 Arithmetic Complexity

Arithmetic Circuits

An arithmetic circuit over a field F with the set of variables x1, x2, . . . , xn is a directed
acyclic graph such that the internal nodes are labelled by addition or multiplication
gates and the leaf nodes are labelled by the variables or the field elements. The node
with fan-out zero is the output gate. An arithmetic circuit computes a polynomial in the
polynomial ring F[x1, x2, . . . , xn]. Size of an arithmetic circuit is the number of nodes
and the depth is the length of a longest path from the root to a leaf node.

Depth-4 Circuits

Usually a depth-4 circuit over a field F is denoted by ΣΠΣΠ. The circuit has an addition
gate at the top, then a layer of multiplication gates, followed by a layer of addition gates,
and a bottom layer of multiplication gates. In this work we focus on a class of ΣΠΣΠ
circuits that we denote by ΣΠΣΠ(k, r), where k is the fan-in of the top Σ gate and r is
the upper bound on the fan-in of the bottom Π gate. A ΣΠΣΠ(k, r) circuit C computes
a polynomial of the following form.

C(X) =
k∑
i=1

Qi =
k∑
i=1

di∏
j=1

Qi,j(x1, . . . , xn)

where Qi,js are polynomials over F and {x1, x2, . . . , xn} are the variables appearing in
the polynomial. In this work, we will consider depth four circuits with k, r = O(1). We
will also assume that ∀i : di ≤ D. Also, we always assume that the circuit is given as a
black-box.

Homogenization

We can homogenize the circuit w.r.t a new variable x0 by obtaining the black-box for
C ′ = xd0C(x1

x0
, . . . , xn

x0
), where d is the degree of the polynomial computed by C. Clearly,

C ′ ≡ 0 ⇐⇒ C ≡ 0. We can also factorize the polynomials Qijs to their irreducible
factors 3. Since the degrees of the polynomials Qij are bounded by r, each Qij can be
factored in at most r irreducible factors, increasing the fan-in of the Π-gate in the second
layer by a factor r. We continue to use the notation C to represent the homogeneous
circuit, and use D for the fan-in upper bound of the Π gates in the second layer.

Combinatorial Nullstellensatz

We recall the following theorem from [Alo99].

3We do not explicitly use the fact that Qi,js are irreducible in the analysis. This fact is useful if
we would like to formulate a conjecture in the similar spirit of Conjecture 1 in [Gup14]. This issue is
discussed in Section 6.
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Theorem 3. Let f(x1, x2, . . . , xn) be a polynomial in n variables over an arbitrary field
F. Suppose that the degree of f as a polynomial in xi is at most ti, for 1 ≤ i ≤ n and let
Si ⊆ F such that |Si| ≥ ti+1. If f(a1, a2, . . . , an) = 0 for all n-tuples in S1×S2×· · ·×Sn,
then f ≡ 0.

Hitting Set and Sparse Polynomials

Let C be a family of arithmetic circuits computing n-variate polynomials over a field F. A
hitting set for C is a subset H of Fn, such that for any non-zero circuit C ∈ C, there exists
~b ∈ H such that C(~b) 6= 0. If H can be constructed in deterministic polynomial time (in
the input size), then we say that H is an efficiently computable explicit hitting set. The
problem of black-box derandomization and efficient explicit hitting set construction are
equivalent. A multivariate polynomial f ∈ F[x1, . . . , xn] is t-sparse if it has at most t
non-zero monomials.

Notations : For integers a, b ≥ 0, the notation [a; b] = {x ∈ Z : a ≤ x ≤ b}.
We use the notation C(X) to denote the multivariate polynomial output of a circuit C.
Otherwise, we use the notation Q(x) to denote a multivariate polynomial Q(x1, . . . , xn).

2 The Problem

The circuit C (computing a polynomial in C[x0, . . . , xn]) is given by a black-box and we
need to test whether C ≡ 0 or not. Here we consider an assumption that either C ≡ 0
or C satisfies a generic property that we call the property P . It is defined as follows.

We say that the circuit C satisfies the property P , if there exist i1, i2, . . . , ik−1 ∈ [k],
and j1, j2, . . . , jk−1 ∈ [D] such that ∀S ⊆ [D] of size at most rk, the following is true.

In the projective space Pn,

dim(V (Qi1,j1 , . . . , Qik−1,jk−1
,
∏
jk∈S

Qik,jk)) < dim(V (Qi1,j1 , . . . , Qik−1,jk−1
)). (4)

The following claim is obvious from the above assumption.

Claim 1. For all S ⊆ [D] of size at most rk, V (Qi1,j1 , . . . , Qik−1,jk−1
) 6⊆ V (

∏
jk∈S Qik,jk).

For the simplicity, we will assume that (w.l.o.g) i1 = 1, . . . , ik−1 = k − 1, ik = k, and
j1 = j2 = . . . = jk−1 = 1. Using Bézout’s theorem Gupta made the following simple but
very useful observation.

Lemma 2 ( [Gup14], Claim 11). Let P1, . . . , Pd, Q1, . . . , Qk ∈ C[x0, . . . , xn] be homoge-
neous polynomials and degree of each Qi is at most r. Then,

P1 . . . Pd ∈
√
〈Q1, . . . , Qk〉 ⇐⇒ ∃{i1, . . . , irk} ⊆ [d] : Pi1 . . . Pirk ∈

√
〈Q1, . . . , Qk〉.

We use the above lemma to observe that if C satisfies property P , then C 6≡ 0.

9



Lemma 3. if C is a circuit computing a polynomial that satisfies the property P, then
C can not compute an identically zero polynomial.

Proof. By Hilbert Nullstellensatz and from Claim 1,
∏

j∈S Qk,j 6∈√
〈Q1,1, Q2,1, . . . , Qk−1,1〉 for any S of size at most rk. Now using Lemma 2, we

get that Qk 6∈
√
〈Q1,1, Q2,1, . . . , Qk−1,1〉, which is not possible if C ≡ 0.

3 Variable Reduction Phase

The goal of this section is to find an efficiently computable explicit linear transformation
T such that C(X) ≡ 0 if and only if C(T (X)) ≡ 0, and C(T (X)) is a polynomial over a
fewer number of variables.

Let QS =
∏

j∈S Qk,j. Recall that the subset S is of size at most rk, and for
each such S, V (Q1,1, Q2,1, . . . , Qk−1,1) 6⊆ V (QS). The total number of such sets are

only ≤ Drk which is polynomially bounded for r, k = O(1). Notice that ∀S :
codim(V (Q1,1, Q2,1, . . . , Qk−1,1, QS)) ≤ k (Proposition 1). Now, we mention the following
simple fact (Exercise 11.6) from [Har92].

Proposition 2. Let V ⊆ Pn be any projective variety and Z ⊆ Pn be any hypersurface
not containing an irreducible component of V . Then codim(V ∩ Z) = codim(V ) + 1.

In other words, a generic (random) hypersurface satisfies the above property. Using
the above proposition repeatedly, one can easily observe the following result. It was first
observed and used by Gupta [Gup14].

Proposition 3. For a variety V ⊆ Pn of co-dimension c and a generic(random) linear
subspace Λ of co-dimension ≤ n− c− 1, codim(V ∩ Λ) = codim(V ) + codim(Λ).

From Proposition 3, we know that for each S, ∃ a subspace ΛS such that

codim(V (Q1,1, . . . , Qk−1,1, QS,ΛS) = codim(V (Q1,1, . . . , Qk−1,1, QS)) + codim(ΛS),

and the dimension of ΛS = 2k − 1 4.
Since the number of possible sets S is small (polynomially bounded), by an union

bound, one can observe that ∃Λ of dimension 2k − 1 that satisfies the above property
for all S simultaneously 5. The following fact is also immediately clear.

Lemma 4. ∀S ⊆ [D] of size at most rk, in Pn, dim(V (Q1,1, . . . , Qk−1,1, QS,Λ)) =
dim(V (Q1,1, . . . , Qk−1,1, QS) − (n − 2k + 1), and dim(V (Q1,1, . . . , Qk−1,1, QS,Λ)) <
dim(V (Q1,1, . . . , Qk−1,1,Λ)).

The following is an easy observation.

4Notice that codim(ΛS) = n− (2k − 1) ≤ n− k − 1 for k ≥ 2.
5In the next section, we show how to construct such a subspace deterministically.
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Observation 1. From Proposition 1, we get that in Pn, dim(V (Q1,1, . . . , Qk−1,1)) ≥
n − (k − 1) and dim(V (Q1,1, . . . , Qk−1,1, QS)) = dim(V (Q1,1, . . . , Qk−1,1)) − 1 for all
subsets S ⊆ [D] of size at most rk.

Now our goal is to explicitly construct the subspace Λ (of dimension 2k −
1) such that ∀S ⊆ [D] of size at most rk, dim(V (Q1,1, . . . , Qk−1,1, QS,Λ)) =
dim(V (Q1,1, . . . , Qk−1,1, QS))− (n− (2k − 1)) in Pn.

The subspace Λ

We fix a subspace Λ of co-dimension n − (2k − 1) in Pn as follows. For each i ∈
{0, 1, . . . , n}, set

xi =
2k−1∑
j=0

aijyj

where aij ∈ C are the constants to be specialized later in the analysis. We define the
matrix A = (ai,j)0≤i≤2k−1,0≤j≤2k−1. To ensure that the dimension of the subspace Λ is
2k−1, we will choose the constants in such a way that the symbolic determinant det(A)
is non-zero.

After the above substitution, we identify the polynomials Q1,1, . . . , Qk−1,1, QS over
the variables y0, y1, . . . , y2k−1 with coefficients as polynomials in C[{ai,j}0≤i≤n,0≤j≤2k−1].
Notice that the degree of coefficient polynomials ≤ rk+1 6, and also the coefficient
polynomials are (2k(n + 1))r

k+1
-sparse. In the next section, we fix the coefficients

{ai,j}0≤i≤n,0≤j≤2k−1 explicitly, using an application of Noether’s Normalization Lemma.
To summarize, the transformation T does the following:

0 ≤ i ≤ n : T : xi →
2k−1∑
j=0

aijyj.

After the substitution by the map T , we identify the variety V (Q1,1, . . . , Qk−1,1,Λ)
by V (Q1,1(y), . . . , Qk−1,1(y)). Also, for any subset S, we identify the variety
V (Q1,1, . . . , Qk−1,1, QS,Λ) by V (Q1,1(y), . . . , Qk−1,1(y), QS(y)).

4 An Explicit Subspace Construction

In Pn, for each subset S, n − k ≤ dim(V (Q1,1, . . . , Qk−1,1, QS)) ≤ n − 1. Let s0 =
dim(V (Q1,1, . . . , Qk−1,1, QS))− (n−2k+ 1). Clearly k−1 ≤ s0 ≤ 2k−2, but notice that
we do not know the exact value of s0. For each s ∈ [k− 1; 2k− 2], we apply Lemma 1 to
construct linear subspaces

⋂
0≤j≤sHj given by: Hj(y) : Lj(y) =

∑2k−1
`=0 w`,jy`; 0 ≤ j ≤ s,

where w`,j ∈ C are constants to be fixed. To ensure that the dimension of the varieties

6Recall that deg(QS) ≤ rk+1 for any S.
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V (Q1,1(y), . . . , Qk−1,1(y), QS(y)) are exactly s, we consider the multivariate resultant of
the system of polynomial equations (for each fixed S),

Q1,1(y) = . . . = Qk−1,1(y) = QS(y) = 0,

Hj(y) : Lj(y) =
2k−1∑
`=0

w`,jy` = 0; 0 ≤ j ≤ s.

Multivariate Resultant Criterian

We use the following ideas from (Lemma 2.14, [Mul12]). It can be derived by applying
the formulation of NNL in Lemma 1. For each S, we construct the following system of
polynomials.

F S
j (y) =

k−1∑
i=1

zi,jQi,1(y) + zjQS(y), 0 ≤ j ≤ (2k − 1)− (s+ 1)

and,

Lj(y) =
2k−1∑
`=0

w`,jy`, 0 ≤ j ≤ s.

Notice that for each j and S, the polynomial F S
j is a generic linear combination of

the polynomials Q1,1, . . . , Qk−1,1, QS.

Remark 1. From Lemma 2.11, and Lemma 2.14 of [Mul12], one observes that
to implement the above idea, the polynomials Q1,1(y), . . . , Qk−1,1(y), QS(y) should
be of same degree . This can be ensured by raising each Qi,1 to the power(∏k−1

j=1 deg(Qj,1) · deg(QS)
)
/ deg(Qi,1). For the polynomial QS, we raise it to the power(∏k−1

j=1 deg(Qj,1)
)

. So the final degree of each polynomial is at most rO(k).

For any subset S, the coefficients of the above system of polynomials (in the variables
y0, . . . , y2k−1) are polynomials in the ring

C[{ai,j}0≤i≤n,0≤j≤2k−1, {zij, zj}1≤i≤k−1,0≤j≤(2k−1)−(s+1), {w`,j}0≤`≤2k−1,0≤j≤s].

So, the coefficients of the polynomials Q1,1(y), . . . , Qk−1,1(y), QS(y) can be viewed as
polynomials with at most N = ((2k(n + 1) + 2k(s + 1) + k(2k − 1 − s)) variables and
degree bounded by rO(k).

Now we use the estimate on the degree of the multivariate resultant polynomial given
in Section 1.1.

Observation 2. For each fixed S, the multivariate resultant polynomial corresponding
to the above system of polynomials {F S

j (y)}0≤j≤(2k−1)−(s+1), and {Lj(y)}0≤j≤s is a ≤
(2k) · (rO(k))2k · (rO(k))-degree polynomial in at most N variables.

So the polynomials areN rO(k2)
-sparse. Also, the number of such resultant polynomials

are bounded by Drk .
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Non zero-ness of the resultant polynomials

Suppose we choose the subspace Λ (by fixing the indeterminates {ai,j}0≤i≤n,0≤j≤2k−1

over C) in such a way that s0 = dim(V (Q1,1(y), . . . , Qk−1,1(y), QS(y)) =
dim(V (Q1,1, . . . , Qk−1,1, QS) − (n − 2k + 1). Then if s = s0, for each S, the resul-
tant polynomial RS is a non-identically zero polynomial. It follows as a consequence of
NNL that the above system of polynomial equations has only trivial solution for some
rational values of zi,j’s, zj’s and w`,j’s, when s = s0. This point is discussed explicitly in
Lemma 2.14 of [Mul12]. This also implies that the resultant polynomials RS(zi,j, zj, w`,j)
are non identically zero. So, in particular, when s = s0 and the subspace Λ is not fixed,
the resultant polynomials RS(ai,j, zi,j, zj, w`,j) are non identically zero polynomials.

Next, our idea is to specialize the values of the N indeterminates using the hitting set

construction of Kilvans-Spielman [KS01] for the product of N rO(k2)
-sparse polynomials,

so that all the resultant polynomials and the polynomial det(A), evaluate to nonzero
at some point in the hitting set. In the next section, we explain that such an idea is
sufficient for our problem.

4.1 The Correctness Proof

In Section 4, we repeat the construction for all possible values for the parameter s ∈
[k − 1; 2k − 2]. From the discussion in the last section, we know that if s = s0, the
resultant polynomials RS are non identically zero polynomials.

Using the hitting set construction of [KS01], we can specialize the indeterminates
so that for each S, the polynomial RS and det(A) evaluate to non-zero. Once we fix
the values for {ai,j}0≤i≤n,0≤j≤2k−1 to {a∗i,j}0≤i≤n,0≤j≤2k−1, we also define the subspace Λ.
Moreover, since det(A) 6= 0, we ensure that codim(Λ) = n− (2k − 1).

Lemma 5. Let {a∗i,j}0≤i≤n,0≤j≤2k−1, {z∗ij, z∗j }1≤i≤k−1,0≤j≤(2k−1)−(s+1), {w∗`,j}0≤`≤2k−1,0≤j≤s
be a hitting point for

∏
S∈([D]

rk )RS · det(A). Then on such a point

dim(V (Q1,1(y), . . . , Qk−1,1(y), QS(y))) = s0.

Proof. If dim(V (Q1,1(y), . . . , Qk−1,1(y), QS(y))) is more than s0, then
dim(V ({F S

j }0≤≤(2k−1)−(s0+1))) is also more than s0. The dimension of the linear space
defined by {Lj(y)}0≤j≤s0 is ≥ (2k−1)−(s0+1). Then using the definition 1, we can easily
see that the system of polynomials {F S

j }0≤≤(2k−1)−(s0+1)), {Lj(y)}0≤j≤s0 has a nontrivial
solution and RS = 0. Since the codim(Λ) = n−(2k−1) on the point {a∗i,j}0≤i≤n,0≤j≤2k−1,
it is not possible that dim(V (Q1,1(y), . . . , Qk−1,1(y), QS(y))) < s0.

From Lemma 5, it is obvious that for s = s0 and on a hitting point, the following is
true.

∀S ⊆ [D]; |S| ≤ rk : dim(Q1,1(y), . . . , Qk−1,1(y), QS(y)) < dim(Q1,1(y), . . . , Qk−1,1(y))

⇒ ∀S ⊆ [D]; |S| ≤ rk : V (Q1,1(y), . . . , Qk−1,1(y)) 6⊆ V (QS) (Claim 1)

⇒ ∀S ⊆ [D]; |S| ≤ rk : QS(y) 6∈
√
〈Q1,1(y), . . . , Qk−1,1(y)〉.
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The last relation follows from the Hilbert Nullstellensatz. Now we apply Lemma 2,
to deduce that

Qk(y) 6∈
√
〈Q1,1(y), . . . , Qk−1,1(y)〉 ⇒ C(Y) 6≡ 0.

Recall that in the remark 1, the degrees of Q1,1, . . . , Qk−1,1, QS are pretended to be
increased by appropriate powering, is only for the analysis purpose.

The degree of each variable in C(Y) is bounded by D ·r, and also C(Y) is a 2k-variate
polynomial. We use Combinatorial Nullstellensatz (Theorem 3) to construct a hitting
set for C(Y). In the next section, we formally explain the construction of the final hitting
set.

5 The Hitting Set Construction

Let Ht,m,N,d ⊂ CN be a hitting set for the product of ≤ m polynomials in N variables
such that each polynomial is t-sparse, and of degree ≤ d. One can construct Ht,m,N,d ⊂
CN efficiently following the result of Klivans and Spielman [KS01]. For the sake of
completeness, we include a proof in the Appendix (Section A).

For each s ∈ [k − 1; 2k − 2], we do the following. We use the hitting set Hs =
H
N(s)r

O(k2)
,Drk+1,N(s),rO(k2)

to substitute values to the indeterminates,

{ai,j}0≤i≤n,0≤j≤2k−1, {zij, zj}1≤i≤k−1,0≤j≤(2k−1)−(s+1), {w`,j}0≤`≤2k−1,0≤j≤s.

For each such substitution, we construct the subspace Λ by setting ∀i ∈ [0;n] : xi =∑2k−1
j=0 ai,jyj. Next we fix a set S ⊂ Q such that S = D · r + 1, and test whether

C(Y)
∣∣
y∈S2k = 0. From the correctness proof (Section 4.1), we know that if C(X) 6≡ 0,

then for one of the subspaces Λ that we have constructed, ∃~b ∈ S2k such that C(~b) 6= 0.

The Final Algorithm

We state our final algorithm formally.

1. For each s ∈ [k − 1; 2k − 2], we do the following.

(a) For each point in the hitting set Hs, specialize the values for
{aij}0≤i≤n,0≤j≤2k−1.

(b) For each such specialization for {aij}0≤i≤n,0≤j≤2k−1, construct the subspace Λ

by substituting 0 ≤ i ≤ n : xi =
∑2k−1

j=0 aijyj.

(c) Check whether C(Y)
∣∣
y∈S2k = 0, where S = {1, . . . , D · r + 1}. If anytime

C evaluates to a non-zero value, we stop the procedure and announce that
C 6≡ 0.

2. Otherwise, output that C ≡ 0.
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The Cost

The cost of our algorithm is bounded by (2k − 2) ·maxs
∣∣Hs| · (D · r + 1)2k. Using the

estimate of Section A for maxs
∣∣Hs|, one can easily upper bound the cost by (D ·n)r

O(k2)
.

6 Conclusion

In [Gup14], Gupta considers the minimal and simple ΣΠΣΠ(k, r) circuits. A circuit C
is called simple if g.c.d(C) = g.c.d(Q1, . . . , Qk) = 1. It is said to be minimal if for every
non-empty subset A ⊆ [k] :

∑
i∈AQi 6≡ 0. In the black-box case, we can assume that the

circuit is minimal (we can always eliminate a few gates if required to make it minimal).
Given a circuit C, we can always assume that C = gcd(C) · sim(C), where sim(C) is the
simple part of C which is also minimal. One of his main motivations is to formulate a
structural conjecture (Conjecture 1, [Gup14]). If the conjecture is true, then using the
result of [BMS13], one can derandomize the problem completely even in the case when
the circuit is SG. In our case too, it is possible to formulate a conjecture in the similar
spirit. We omit the straightforward generalization.

We believe that the main interesting feature of our work is the fact that PIT for a
generic sub-class of ΣΠΣΠ(k, r) circuits can be tackled by derandomizing a restricted
instance of a classical result in algebraic geometry : Noether Normalization Lemma. As
a minor point, we note that the running time of our algorithm is similar to the running
time in [Gup14].
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A Hitting Set for the Product of Sparse Polynomials

Let P1, . . . , Pm ∈ C[x1, . . . , xn] are t-sparse polynomials, and the maximum degree is
bounded by d. Our goal is to construct a polynomial-size hitting set for the product
polynomial P = P1 · P2 · · ·Pm.

Theorem 4. Let P1, . . . , Pm ∈ C[x1, . . . , xn] are t-sparse polynomials, and the maximum
degree is bounded by d. Then we can construct a hitting set of size (d · n ·m · t)O(1) for
the product polynomial P (x) = P1(x) . . . Pm(x) in polynomial time.

Proof. We make the following substitution:

∀i : xi = yz
i mod p,

where z is an indeterminate and the value for z will be fixed in the analysis. We will also
vary p in a suitably chosen set of primes. Consider any polynomial Pi. Two different
monomials xē, xf̄ will be mapped to ymē(z) and ymf̄ (z), where mē(z) =

∑n
i=1 eiz

i and
mf̄ (z) =

∑n
i=1 fiz

i. To ensure Pi(y) 6≡ 0, it is enough to substitute values for z and p
such that:

Pi(z) =
∏
ē,f̄∈Si

(mē(z)−mf̄ (z)) mod p 6= 0,

where Si is the set of all monomials in Pi. The degree of the polynomial Pi (hence
the number of roots) is at most n · t2. Considering all the polynomials P1, . . . , Pm,
we would like to avoid at most m · n · t2 values for z which are the possible roots of
P(z) =

∏m
i=1Pi(z).
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So we fix a set F = {1, 2, . . . ,m · n · t2 + 1}, and we substitute for z from the set F .
We know that P(z) will evaluate to a non-zero value for some z0 ∈ F . We also need to
avoid all prime divisors of P(z0). It is easy to observe that P(z0) ≤ (d ·m · n · t)O(m·n·t2).
The number of prime divisors of P(z0) is bounded by O(m ·n · t2 log(d ·m ·n · t)). Using
prime number theorem, we get that it is enough to choose the prime p within a bound
of O(m2 · n2 · t4 · log2(d ·m · n · t)).

For each such substitution of z and p, the polynomial P (y) is a polynomial of degree
at most d′ = O(d ·m3 · n2 · t4 · log2(d ·m · n · t)). We can test whether the polynomial
P (y) ≡ 0 by evaluating it on a most d′ + 1 points. So the size of the overall hitting set
is bounded by (d ·m · n · t)O(1) (for a small constant in the exponent as O(1)).
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