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Abstract
We show that it is quasi-NP-hard to color 2-colorable 8-uniform hypergraphs with

2(log N)1/10−o(1) colors, where N is the number of vertices. There has been much focus
on hardness of hypergraph coloring recently. In [17], Guruswami, H̊astad, Harsha,
Srinivasan and Varma showed that it is quasi-NP-hard to color 2-colorable 8-uniform
hypergraphs with 22

Ω(
√

log log N) colors. Their result is obtained by composing stan-
dard Label-Cover with an inner-verifier based on Low-Degree-Long-Code, us-
ing Reed-Muller code testing results by Dinur and Guruswami [12]. Using a different
approach in [29], Khot and Saket constructed a new variant of Label-Cover, and
composed it with Quadratic-Code to show quasi-NP-hardness of coloring 2-colorable
12-uniform hypergraphs with 2(log N)c colors, for some c around 1/20. Their construc-
tion of Label-Cover is based on a new notion of superposition complexity for CSP
instances. The composition with inner-verifier was subsequently improved by Varma,
giving the same hardness result for 8-uniform hypergraphs [37].

Our construction uses both Quadratic-Code and Low-Degree-Long-Code,
and builds upon the work by Khot and Saket. We present a different approach to
construct CSP instances with superposition hardness by observing that when the
number of assignments is odd, satisfying a constraint in superposition is the same as
odd-covering a constraint. We employ Low-Degree-Long-Code in order to keep
the construction efficient. In the analysis, we also adapt and generalize one of the key
theorems by Dinur and Guruswami [12] in the context of analyzing probabilistically
checkable proof systems.

1 Introduction
For an integer k ≥ 2, a k-uniform hypergraph H = (V, F ) consists of vertex set V and edge
set F ⊆

(V
k

)
. A set of vertices S ⊆ V is an independent set if for all f ∈ F , f ̸⊆ S, i.e., no

edge is completely inside S. A hypergraph is q-colorable if its vertices can be partitioned
into q disjoint independent sets.

We use α(H) to denote the fractional size of the maximum cardinality independent set
of H, also known as the fractional independence number, and we use χ(H) to denote the
minimum q such that H is q-colorable. It is easy to verify that we have χ(H)α(H) ≥ 1 for
any H.

In the ordinary graph case, corresponding to k = 2, deciding whether a graph G has a
2-coloring is the same as deciding whether it is a bipartite graph, and can be easily solved
in polynomial time. In general, however, determining the chromatic number of a graph
exactly is NP-hard [16]. In fact, even coloring 3-colorable graphs with 4 colors is NP-hard.
For general q-colorable graphs, it is NP-hard to color with q + 2⌊ q

3⌋ − 1 colors [26, 19].
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For sufficiently large q, it was shown that it is NP-hard to color a q-colorable graph with
2Ω(q1/3) colors [22], improving on an earlier lower-bound of q

1
25

log q by Khot [27]. Assuming
a variant of Khot’s 2-to-1 Conjecture, Dinur, Mossel and Regev [13] proved that it is NP-
hard to q′-color a q-colorable graph for any 3 ≤ q < q′. The dependency between the
hardness of graph coloring and the parameters of 2-to-1 Label-Cover was made explicit
and improved by Dinur and Shinkar [15], who showed that it is NP-hard to (log n)c-color
a 4-colorable graph for some constant c > 0 assuming the 2-to-1 Conjecture. As for
algorithms, there have been many results as well [38, 8, 23, 9]. For 3-colorable graphs, the
best algorithm is by Kawarabayashi and Thorup [25] which uses O(n0.19996) colors, based
on results by Arora and Chlamtac [3], Chlamtac [11] and the earlier work of Kawarabayashi
and Thorup [24]. As we can see, there is still a huge gap between the best approximation
guarantee and the best hardness result.

For k ≥ 3, even determining whether a k-uniform hypergraph has a 2-coloring is NP-
hard. In terms of approximation algorithms, the best algorithm for 2-colorable 3-uniform
hypergraphs still requires nΩ(1) colors [32, 1, 10].

From the hardness side, the first super-constant hardness result was proved in [18]. The
main result there is that for 2-colorable 4-uniform hypergraphs, finding a coloring with any
constant number of colors is NP-hard, and finding a coloring with O(log log n/ log log log n)
colors is quasi-NP-hard. For 2-colorable 3-uniform hypergraphs, a similar hardness result
was proved in [14]. Khot [28] proved that coloring 3-colorable 3-uniform hypergraphs
with any constant number of colors is hard, and for q-colorable 4-uniform hypergraphs,
coloring with (log n)Ω(q) colors is quasi-NP-hard for q ≥ 7. The analysis in [18] was
improved by Holmerin, who proved that even finding an independent set of fractional size
Ω(log log log n/ log log n) is quasi-NP-hard [21]. The construction was further improved
recently by Saket [36], who proved that it is quasi-NP-hard to find independent set of size
n/(log n)Ω(1) in 2-colorable 4-uniform hypergraphs [36]. There has also been work on the
hardness of finding independent sets in almost 2-colorable hypergraphs — hypergraphs
that becomes 2-colorable after removing a small fraction of vertices. Much stronger result
is known, albeit at the cost of imperfect completeness. We refer to [31] for more details.

Recently, in [17], Guruswami, Harsha, H̊astad, Srinivasan and Varma proved the first
super-polylogarithmic hardness result for hypergraph coloring, showing hardness for col-
oring 2-colorable 8-uniform hypergraphs with 22

Ω(
√

log log n) colors. Their reduction uses the
Low-Degree-Long-Code proposed in [7], based on techniques for testing Reed-Muller
codes developed in [12].

Using a very different approach, Khot and Saket gave another exponential improvement
in [29], showing a quasi-NP-hardness for coloring 2-colorable 12-uniform hypergraphs with
exp((log n)Ω(1)) colors, where the constant in Ω(1) is around 1/20, although it might
be improved with a more careful analysis of their reduction. Part of their analysis was
subsequently simplified by Varma in [37] using ideas from [17].

In this work, we give another improvement for hardness of hypergraph coloring. Our
main result is as follows.

Theorem 1.1. It is quasi-NP-hard to color a 2-colorable 8-uniform hypergraph of size N
with 2(log N)1/10−o(1) colors.

1.1 Proof Overview
We start by describing the PCP reduction of proving hypergraph coloring hardness used
in many previous works. Most of these results show hardness of finding an independent set
of large fractional size. We can view the output of these reductions as NotAllEqualk
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CSP instances. The variables correspond to the vertices of a hypergraph, and the No-
tAllEqualk constraints correspond to the hyperedges. Note that for hypergraph coloring
results, all variables appear positively in such instances and no negations are allowed. An
assignment that satisfies all the NotAllEqualk constraints thus gives a perfect 2-coloring
for the hypergraph. In the other direction, a set of vertices in the hypergraph naturally
corresponds to a {0, 1} assignment to the variables in the NotAllEqualk instance, and
the vertices form an independent set if for all constraints in the NotAllEqualk instances,
there is at least 1 variable that is assigned 0.

The starting point of the reduction is usually some Label-Cover hardness. We then
encode the supposed labeling for the Label-Cover instance with some coding scheme,
and design a PCP to test the consistency of the labeling.

One classical choice of encoding is the Long-Code, which encodes m bits of informa-
tion with 22

m bits. This huge blowup makes it impossible to prove hardness results better
than polylog n via the Label-Cover plus Long-Code approach.

A much more efficient encoding is the Hadamard code, which only uses 2m bits to
encode m bits of information. However, the disadvantage of the Hadamard code is that
one can only enforce linear constraints on the codewords, which means that we can only
start from hard problems involving only linear constraints, and as a result, we lose perfect
completeness and can only prove results about almost coloring.

The Low-Degree-Long-Code proposed in [7] lies somewhere between Long-Code
and Hadamard code. We can view Hadamard code as encoding m bits by writing down the
evaluation of all m-variable functions of degree at most 1 on these m bits, and Long-Code
as writing down the evaluation of all possible m-variable functions — that is, degree up
to m — on these m bits. Low-Degree-Long-Code has a parameter d, the degree, and
the encoding writes down the evaluation of all polynomials of degree at most d. Dinur
and Guruswami [12] obtained hardness result for a variant of hypergraph coloring based
on Low-Degree-Long-Code, and the techniques were soon adapted in [17] to get a
hardness result of 22Ω(

√
log log n) .

The aforementioned result by Khot and Saket [29] uses Quadratic-Code, which is
the same as Low-Degree-Long-Code with d = 2. Their construction, however, is
completely different from that in [17].

One can view the Quadratic-Code used in [29] as the Hadamard encoding of matrix
M that is symmetric and has rank 1, that is, there exists some u ∈ Fm

2 such that M =
u ⊗ u. Khot and Saket described a 6-query test such that if some encoding function
f : Fm×m

2 → F2 passes the test with non-trivial probability, then we can decode it into a
low rank matrix.

In order to use this encoding, it seems natural that one would like to construct some
variant of Label-Cover where the labels are now matrices, with some linear constraints
on the entries of the matrices (since as discussed above we are using Hadamard code
to encode the matrices). In the completeness case, we would like to have some matrix
labelings of rank 1 that satisfies all linear constraints on the vertices as well as projection
constraints on the edges, and in the soundness case, not even labelings with low rank
matrices can satisfy more than a small fraction of them.

Such Label-Cover hardness result is not readily available. Khot and Saket proposed
the notion of superposition complexity for quadratic equations. Briefly speaking, let q(x) =
c +

∑m
i=1 cixi +

∑
1≤i<j≤m cijxixj = 0 be a quadratic equation on m F2-variables. We say
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that t assignments a(1), · · · , a(t) ∈ Fm
2 satisfy the equation q(x) = 0 in superposition if

c +
m∑

i=1

ci

(
t∑

l=1

a
(l)
i

)
+

∑
1≤i<j≤m

cij

(
t∑

l=1

a
(l)
i a

(l)
j

)
= 0 .

If we have a system of quadratic equations, then we say that t assignments satisfy the
system of quadratic equations in superposition if each quadratic equation is satisfied in
superposition. Having a small number of assignments satisfying quadratic constraints in
superposition is exactly the same as having a symmetric low-rank matrix satisfying the
linearized version of the constraints, as we discuss in more detail in Section 2.

Through a remarkable chain of reductions, Khot and Saket established the inapprox-
imability of quadratic equations with superposition complexity, as well as the actual con-
struction of the Label-Cover with matrix labels. They started with superposition hard-
ness for E3-Sat with gap of 1/n, and use low-degree testing and sum-check protocol like
in the original proof of the PCP theorem [4, 5] to achieve a superposition hardness result
for systems of quadratic equations with good soundness and moderate blowup in size.
This is then followed by a Point versus Ruled Surface test which produces the actual
Label-Cover instance.

The main contribution of this work is a much simpler and more efficient construction
of systems of quadratic equations with superposition and approximation hardness. This
is then coupled with a slight variant of the Point versus Ruled Surface test used by Khot
and Saket to obtain hardness for Label-Cover with matrix labels.

Let t be some odd natural number. A set of t assignments odd-covers an equation
(or more generally, a constraint) if the number of assignments that satisfy the equation is
odd. We show in Section 2 that the notion of odd-covering is equivalent to satisfaction
in superposition when the number of assignments is odd. This viewpoint enables us to
construct the kind of Label-Cover instance used in [29] very easily. In fact, the reduction
in Section 3 looks very much like a classical CSP inapproximability proof.

Although simpler, the above observation alone is not sufficient to give us a hardness
result better than [29]. The issue here is that for the reduction in Section 3 to work for
our choice of parameters, the soundness of the Label-Cover that we start with needs
to be sub-constant, and a typical Long-Code reduction will again blow up the size of
the instance by too much. Hence, for this step, we employ Low-Degree-Long-Code.
Our technical contribution here is Theorem 2.27, a generalization of the Reed-Muller code
testing result of [12].

2 Preliminaries
Before we discuss the relation between superposition, odd-covering and low rank matrices,
we define an operation on vectors and matrices that we will use frequently.

Definition 2.1. Define D1 : Fm+1
2 → Fm

2 as the operator that removes the first coordinate
of a vector. Define D1 similarly for matrices as the operator that removes the first row
and column of a given matrix.

2.1 Superposition and Odd-Covering
Khot and Saket [29] defined the notion of satisfying in superposition as follows.
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Definition 2.2 (Superposition). Let a(1), · · · , a(t) ∈ Fm
2 be t assignments and q(x) = 0 be

a quadratic equation in m F2-variables with

q(x) = c +
m∑

i=1

cixi +
∑

1≤i<j≤m

cijxixj .

We say that the t assignments satisfy the equation q(x) = 0 in superposition if

c +
m∑

i=1

ci

(
t∑

l=1

a
(l)
i

)
+

∑
1≤i<j≤m

cij

(
t∑

l=1

a
(l)
i a

(l)
j

)
= 0 .

Definition 2.3. Given a system of quadratic equations {qi(x) = 0}L
i=1 on variables

x1, · · · , xm, its superposition complexity is the minimum number t, if it exists, such
that there are t assignments a(1), · · · , a(t) ∈ Fm

2 that satisfy each equation qi(x) = 0 in
superposition.

We define the odd superposition complexity (or even superposition complexity) to be
the minimum odd integer t (or even integer t, respectively) such that there are t assignments
that satisfy all equations in superposition.

Note that by simply adding all 0 assignments, we can argue that the above three notions
of superposition complexity differ by at most 1.

We now explain the relation between superposition complexity of quadratic equations
and low rank matrices. Assume for simplicity of exposition that the quadratic equation
q(x) = 0 as defined above is homogeneous, that is, the constant term c and the linear
coefficients ci are all 0.

We can express a homogeneous quadratic equation q(x) = 0 with a matrix by defining
C ∈ Fm×m

2 , where Cij = cij for 1 ≤ i < j ≤ m, and Cij = 0 otherwise. Let x =
(x1 x2 · · · xm). Then q(x) = 0 is the same as ⟨C, x ⊗ x⟩ = xT Cx = 0, where ⟨·, ·⟩ denotes
the entry-wise dot product of two matrices. Note that x ⊗ x is a symmetric rank-1 matrix.

Suppose now that we have a symmetric matrix A such that ⟨C, A⟩ = 0. For a fixed
C, this is a linear constraint on the entries of A. If in addition A has rank 1, then there
exists xa, such that A = xa ⊗ xa, and by the above, we have that xa satisfies q(xa) = 0.
Therefore, if A is a symmetric rank 1 matrix and ⟨C, A⟩ = 0, then A encodes an assignment
that satisfies the quadratic equation q(x) = 0.

The following decomposition lemma from [29] illustrates the situation when A has low
rank.
Lemma 2.4. Let A ∈ Fm×m

2 be a symmetric matrix of rank k over F2. Then there exists
l ≤ 3k/2 and vectors v1, · · · , vl in the column space of A, such that A =

∑l
i=1 vi ⊗ vi.

Let A be a low rank matrix such that ⟨C, A⟩ = 0 and v1, · · · , vl be l ≤ 3k/2 assignments
given by Lemma 2.4. Then

0 = ⟨C, A⟩ =
l∑

t=1

⟨C, vt ⊗ vt⟩

=
l∑

t=1

∑
1≤i<j≤m

cijvtivtj

=
∑

1≤i<j≤m

cij

l∑
t=1

vtivtj .

Therefore we have that v1, · · · , vl satisfy q(x) = 0 in superposition.
The notion we will now consider is the following, which we call odd-covering.
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Definition 2.5 (Odd-covering). Let a(1), · · · , a(t) ∈ Fm
2 be t assignments and q(x) = 0 be

a quadratic equation in m F2-variables as defined above. We say that the t assignments
odd-cover the equation q(x) = 0 if the number of assignments a(l) that satisfies q(a(l)) = 0
is odd.

The key observation is that odd-covering and satisfying in superposition are equivalent
when the number of assignments involved is odd.

Lemma 2.6. Let t be an odd integer and a(1), · · · , a(t) ∈ Fm
2 be t assignments, and q(x) = 0

be a quadratic equation in m F2-variables as defined above. Then the t assignments satisfy
q(x) = 0 in superposition if and only if the t assignments odd-cover q(x) = 0.

Proof. Using the fact that t is odd, we have the following

t∑
l=1

q(a(l)) =
t∑

l=1

c +
m∑

i=1

cia
(l)
i +

∑
1≤i<j≤m

cija
(l)
i a

(l)
j


= t · c +

t∑
l=1

m∑
i=1

cia
(l)
i +

t∑
l=1

∑
1≤i<j≤m

cija
(l)
i a

(l)
j

= c +
m∑

i=1

ci

(
t∑

l=1

a
(l)
i

)
+

∑
1≤i<j≤m

cij

(
t∑

l=1

a
(l)
i a

(l)
j

)
.

Now observe that the t assignments odd-cover q(x) = 0 if and only if the number of
assignments that does not satisfy q(x) = 0 is even, which is equivalent to saying that
the left hand side of the above equation is 0, and that by definition means that the t
assignments satisfy q(x) = 0 in superposition.

In the description above, we assumed that the quadratic equation q(x) = 0 is ho-
mogeneous, which allows us to encode it with a matrix C ∈ Fm×m

2 and express the
whole equation as ⟨C, A⟩ = 0, where A = x ⊗ x. For quadratic equations that are
not homogeneous, we encode them with a (m + 1) × (m + 1) matrix. In particular, for
q(x) = c +

∑
cixi +

∑
cijxixj = 0, we have matrix C, where C11 = c, C1i = ci−1 for

i = 2, · · · , m + 1, and Cij = ci−1,j−1 for 2 ≤ i < j ≤ m + 1. As for the variable vector, we
add to x an entry that is always 1.

Definition 2.7. Given a matrix A ∈ F(m+1)×(m+1)
2 . We say that A is pseudo-quadratic if

the following holds:

• A is symmetric.

• A1,1 = 1.

• For all i = 2, · · · , m + 1, A1,i = Ai,1 = Ai,i.

Note that for vector v ∈ Fm+1
2 such that v1 = 1, v ⊗ v is a pseudo-quadratic rank-1

matrix.
We prove a stronger form of Lemma 2.4 for pseudo-quadratic matrices where we decode

a low rank pseudo-quadratic matrix into an odd number of assignments.

Lemma 2.8. Let A ∈ F(m+1)×(m+1)
2 be a pseudo-quadratic matrix of rank k over F2. Then

there exists an odd integer k0 < 3k/2+1, and vectors v1, · · · , vk0 ∈ Fm+1
2 , such that for all

i ∈ [k0], vi,1 = 1, and A =
∑k0

i=1 vi ⊗ vi. Moreover, for all i ∈ [k0], D1(vi) is in the column
space of D1(A).
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Proof. Let A′ = D1(A). Note that A′ is symmetric and has rank at most k. Therefore by
Lemma 2.4, there exists l < 3k/2 vectors u1, · · · , ul ∈ Fm

2 , such that A′ =
∑l

i=1 ui ⊗ ui.
Now consider vectors v1, · · · , vl ∈ Fm+1

2 , where for each i, vi,1 = 1 and vi,j = ui,j−1 for
j = 2, · · · , m + 1. Let A′′ =

∑l
i=1 vi ⊗ vi, and B = A − A′′. For j, j′ ∈ {2, · · · , m + 1}, we

have

A′′
j,j′ =

l∑
i=1

vi,jvi,j′ =
l∑

i=1

ui,j−1ui,j′−1 = A′
j−1,j′−1 = Aj,j′ .

Moreover, we have

A′′
1,j =

l∑
i=1

vi,1vi,j =
l∑

i=1

vi,jvi,j = A′′
j,j = Aj,j = A1,j .

We conclude that for all (i, j) ̸= (1, 1), Ai,j = A′′
i,j . Note that A′′

1,1 = (l mod 2). Therefore
if A′′

1,1 = 1 = A1,1, then we have l is odd and A =
∑l

i=1 vi ⊗ vi as promised. Otherwise
l is even. Let e = (1 0 · · · 0) ∈ Fm+1

2 . Then A =
∑l

i=1 vi ⊗ vi + e ⊗ e gives the desired
decomposition.

The following lemma summarizes the discussion at the beginning of this section and
relates odd superposition complexity with low-rank pseudo-quadratic matrices.

Lemma 2.9. Let q1(x) = 0, · · · , qs(x) = 0 be a set of s quadratic equations on vari-
able x1, · · · , xm, and let Q1, · · · , Qs ∈ F(m+1)×(m+1)

2 be their corresponding matrix forms.
Suppose there is a pseudo-quadratic matrix A ∈ F(m+1)×(m+1)

2 such that rank(A) ≤ k
and for all i ∈ [s], ⟨Qi, A⟩ = 0, then there exists integer l < 3k/2 + 1 and l vectors
a(1), · · · , a(l) ∈ Fm+1

2 , such that A =
∑l

i=1 a(i) ⊗ a(i), where for all j ∈ [l], we have a
(j)
1 = 1

and that D1(a
(j)) is in the column space of D1(A). This implies that the assignments

D1(a
(1)), · · · , D1(a

(l)) satisfy all equations q1(x) = 0, · · · , qs(x) = 0 in superposition.

Proof. Apply Lemma 2.8 to A, and let v1, · · · , vl be the vectors we get, with vi1 = 1 for
i ∈ [l], and A =

∑
i∈[l] vi ⊗ vi. We now verify that D1(v1), · · · , D1(vl) satisfy all equations

in superposition.
Consider equation i for i ∈ [s]. We have

0 = ⟨Qi, A⟩ =
l∑

i=1

⟨Qi, vi ⊗ vi⟩

=
l∑

i=1

qi(vi) .

By definition, we have that v1, · · · , vl satisfy qi in superposition.

2.2 Label-Cover
The starting point of our reduction is the Label-Cover hardness obtained from E3-Sat
instances. We use Label-Cover instances obtained by applying the PCP Theorem [4, 5]
and the Parallel Repetition Theorem [34]. The exact formulation below is from [17].

Definition 2.10. Let ϕ be a E3-Sat instance with X as the set of variables and C the set
of clauses. The r-repeated Label-Cover instance L(r, ϕ) is specified by:

• A bipartite graph G = (U, V, E), where V := Cr and U := Xr.
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• Label set for U , denote by L := {0, 1}r, and label set for V , denote by R := {0, 1}3r.

• There is an edge {u, v} ∈ E if for each i ∈ [r], ui is a variable appearing in clause
vi.

• For edge {u, v}, the constraint πuv : {0, 1}3r → {0, 1}r is the projection of the
assignment of the 3r clause variables in v to the assignment of the r variables in u.

• For each v ∈ V , there is a set of r functions {fv
i : {0, 1}3r → {0, 1}r}i∈[r], such that

fv
i (a) = 0 if and only if the assignment a satisfies the clause vi. Note that each fv

i

depends only on 3 entries of a.

A labeling σ : U → L, V → R satisfies an edge {u, v} iff πuv(σ(V )) = σ(U), and σ(V )
satisfies all clauses in v. The value of L(r, ϕ) is the maximum fraction of edges that can
be simultaneously satisfied by any labeling.

We have the following hardness result for Label-Cover.

Theorem 2.11. Given a E3-Sat instance ϕ on n variables and r ∈ N, there is an algorithm
that constructs L(r, ϕ) in time nO(r), and that the output Label-Cover instance has the
following properties:

• If ϕ is satisfiable, then the value of L(r, ϕ) is 1.

• If ϕ is unsatisfiable, then the value of L(r, ϕ) is at most 2−ε0r, for some universal
constant ε0 ∈ (0, 1).

In our construction of Label-Cover instance with matrix labels, we need to use the
following Parallel Repetition theorem from Rao [33], which applies to projection games
(Label-Cover), with the advantage that the rate at which the soundness decreases is
independent of the label size of the original instance.

Theorem 2.12 (Parallel Repetition [33]). There is a universal constant α > 0, such that
for a Label-Cover instance Ψ, if Opt(Ψ) ≤ 1 − ε, then Opt(Ψn) ≤ (1 − ε/2)αεn.

2.3 Low-Degree-Long-Code
In this section, we review the basics of Low-Degree-Long-Code. The formulation here
is from [12] and [17]. Towards the end of this section, we prove a key lemma that we will
use for proving our superposition hardness results.

For a positive integer m, denote by Pm the vector space of m-variable functions Fm
2 →

F2. For f, g ∈ Pm, let ∆(f, g) be the Hamming distance between f and g. For a subset of
functions F ⊆ Pm, the distance between g and F is defined as ∆(g, F) = minf∈F ∆(f, g).

We define the following dot product on Pm.

Definition 2.13 (Dot Product). For f, g ∈ Pm, the dot product is defined as ⟨f, g⟩ =∑
x∈Fm

2
f(x)g(x).

Denote by Pm,d the space of functions with degree at most d. For a subspace A ⊆ Pm,d,
denote its dual by A⊥ = {g ∈ Pm | ∀f ∈ A, ⟨f, g⟩ = 0}. It is well known that P⊥

m,d =
Pm,m−d−1.

For β ∈ Pm, denote by supp(β) the support of β, that is supp(β) = {x | β(x) = 1}.
Define wt(β) = |supp(β)|.
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Definition 2.14 (Low-Degree-Long-Code). The Low-Degree-Long-Code encod-
ing for an m-bit string a ∈ Fm

2 is a function Aa : Pm,d → F2, defined as Aa(g) = g(a), for
all g ∈ Pm,d.

Definition 2.15 (Character Set). For β ∈ Pm, define the corresponding character function
χβ : Pm,d → R as χβ(f) = (−1)⟨β,f⟩.

Define the character set Λm,d to be the set of functions β ∈ Pm which are minimum
weight functions in the cosets of Pm/P⊥

m,d, where ties are broken arbitrarily.

We have the following result about the character set and the “Fourier decomposition”
for functions Pm,d → R from [12].

Lemma 2.16. The following statements hold:

• For any β, β′ ∈ Pm, χβ = χβ′ if and only if β − β′ ∈ P⊥
m,d.

• For β ∈ P⊥
m,d, χβ is the constant 1 function.

• For any β, there exists β′, such that β − β′ ∈ P⊥
m,d, and |supp(β′)| = ∆(β, P⊥

m,d). We
call such β′ the minimum support function for the coset β + P⊥

m,d.

• The characters in the character set Λm,d form an orthonormal basis under the inner
product ⟨A, B⟩ = Ef∈Pm,d

[A(f)B(f)].

• Any function A : Pm,d → R can be uniquely decomposed as

A(g) =
∑

β∈Λm,d

Âβχβ(g) .

• Parseval’s identity: For any A : Pm,d → R, ∑β∈Λm,d
Â2

β = Ef∼Pm,d
[A(f)2].

The following lemma relates characters from different domains related by coordinate
projections and is from [12].

Lemma 2.17. Let n ≤ m, and S ⊆ [m] with |S| = n, and let π : Fm
2 → Fn

2 be a projection,
mapping x ∈ Fm

2 to x|S ∈ Fn
2 . Then for f ∈ Pn,d and β ∈ Pm, we have

χβ(f ◦ π) = χπ2(β)(f) ,

where π2(β)(y) =
∑

x∈π−1(y) β(x).

Like in the classical Long-Code reductions, we enforce special structures on the tables.
This is a technique known as folding. The following properties of the Fourier coefficients
of folded functions were also studied in [12].

Definition 2.18. A table A : Pm,d → R is folded if for any f ∈ Pm,d, we have A(f +1) =
−A(f).

Lemma 2.19. If A : Pm,d → R is folded, then for any α such that Âα ̸= 0, we have∑
x∈Fm

2
α(x) = 1. In particular, we have supp(α) ̸= ∅.

Definition 2.20. Let q1, · · · , qk ∈ Pm,3, and let

J(q1, · · · , qk) :=

{∑
i

riqi | ri ∈ Pm,d−3

}
.

We say that a function A : Pm,d → R is folded over J if A is constant over cosets of J in
Pm,d.
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The following lemma shows that a function folded over J does not have weight on small
support characters that are non-zero on J .

Lemma 2.21. Let β ∈ Pm be such that wt(β) < 2d−3, and there exists some i ∈ [k] and
x ∈ supp(β) with qi(x) ̸= 0. Then if A : Pm,d → R is folded over J , then Âβ = 0.

In the actual reduction, q1, · · · , qk will be the set of functions associated with vertices
in the Label-Cover instance, as described in Definition 2.10.

In [12], Dinur and Guruswami proved the following theorem about Reed-Muller codes
over F2.

Theorem 2.22. Let d be a multiple of 4. If β ∈ Pm is such that ∆(β, Pm,d) ≥ 2d/2, then

E
g∼Pm,d/4

[∣∣∣∣∣ E
h∼Pm,3d/4

[χβ(gh)]

∣∣∣∣∣
]

≤ 2−4·2d/4
.

Note that χβ(gh) = (−1)⟨βg,βh⟩. The key lemma we will now prove is a general-
ization of the above theorem. The setting is that we have an additional t functions
A1, · · · , At : Pm,d → F2. We show that as long as t is small compared to 2d/2, the
expectation Eg,h[(−1)⟨βg,βh⟩+

∑t

i=1
Ai(g)Ai(h)] is still close to 0 for arbitrary A1, · · · , At.

We use some of the key steps in [12].

Definition 2.23. For β and k ≤ d, define

B
(m)
d,k := {g ∈ Pm,k | βg ∈ Pm,m−d−1+k} .

Note that B
(m)
d,k is a subspace of Pm,k.

For positive integers d, k, define Φd,k : N → N as follows: if d < k, then Φd,k is
identically 0, otherwise

Φd,k(D) = min
m>d

β∈Pm:∆(β,P (m,m−d−1))≥D

{
dim(P (m, k)) − dim(B

(m)
d,k (β))

}
.

The following two claims are from [12], which serve as the basis step and induction
step for their lower-bound for Φd,k(D).

Claim 2.24. For d ≥ k and D ≥ 1, Φd,k(D) ≥ 1.

Claim 2.25. For all d ≥ k and 40 < D < 2d, Φd,k(D) ≥ Φd−1,k(D/4) + ϕd−1,k−1(D/4).

For D = 2d−4 = 4d/2−2 and k = d/2, applying the above for a depth of d/2−4, reducing
D from 4d/2−2 to 16, we have Φd,d/2(2

d−4) ≥ 2d/2−4. This gives the following theorem.

Theorem 2.26. For all integers m, d such that m > d > 0 and 4|d, if β : Fm
2 → F2 has

distance more than 2d−4 from Pm,m−d−1, then the subspace B
(m)
d,d/2(β) (as a subspace of

Pm,d/2) has codimension at least 2d/2−4.

We remark that Dinur and Guruswami used different degree parameters in [12] for
their application. Otherwise, the above theorem is the same as in [12].

We are now ready to prove the main theorem of this section.
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Theorem 2.27. Let β : Fm
2 → F2 be a polynomial with distance more than 2d−4 from

Pm,m−d−1. Let t ∈ N and A1, · · · , At : Pm,d/2 → F2 be some arbitrary t functions. Let µ
be the uniform distribution on Pm,d/2. Then

E
g,h∼µ

[
χβ(gh) · (−1)

∑t

i=1
Ai(g)Ai(h)

]
= E

g,h∼µ

[
(−1)⟨βg,βh⟩+

∑t

i=1
Ai(g)Ai(h)

]
≤ 2−(2d/2−4−t)/2 .

Proof. Denote by W the quotient space Pm,d/2/B
(m)
d,d/2(β). By Theorem 2.26, we have

w := dim(W) = codim(B
(m)
d,d/2(β)) ≥ 2d/2−4.

The expectation we are considering can be written as

E
g0,h0∼W

E
g:g−g0∈B

(m)

d,d/2
(β)

h:h−h0∈B
(m)

d,d/2
(β)

[
(−1)⟨βg,βh⟩+

∑t

i=1
Ai(g)Ai(h)

]
. (1)

Consider f ∈ Pm,d/2 and g ∈ B
(m)
d,d/2(β). We have ⟨βf, βg⟩ = ⟨βg, f⟩ = 0, because

f ∈ Pm,d/2 and βg ∈ Pm,m−d/2−1 = P⊥
m,d/2. This allows us to define “dot product” between

elements in W. In particular, for any f, f ′, g, g′ ∈ Pm,d/2 such that f −f ′, g−g′ ∈ B
(m)
d,d/2(β),

we have

⟨βf ′, βg′⟩
= ⟨βf ′, βg′⟩ + ⟨β(f − f ′), βg′⟩ + ⟨βf ′, β(g − g′)⟩ + ⟨β(f − f ′), β(g − g′)⟩
= ⟨βf, βg⟩ .

This means that taking any representative from W will give the same result for this “dot
product”.

We can thus further rewrite the expectation as

(1) = E
g0,h0∼W

(−1)⟨βg0,βh0⟩ E
g:g−g0∈B

(m)

d,d/2
(β)

h:h−h0∈B
(m)

d,d/2
(β)

[
(−1)

∑t

i=1
Ai(g)Ai(h)

]
 . (2)

Consider the matrix M ∈ R2w+t×2w+t , where the rows and columns are indexed by a
pair (f0, a) where f0 ∈ W and a ∈ Ft

2, and the entries are

M(f0,a),(g0,b) = (−1)⟨βf0,βg0⟩+
∑t

i=1
aibi .

Define vector u ∈ R2w+t as

uf0,a = Pr
g∼Pm,d/2

[
g − f0 ∈ B

(m)
d,d/2(β) ∧ ∀i ∈ [t], Ai((g)) = ai

]
.

Since in (2), g and h are sampled independently, we can verify that the expectation in (2) is
exactly uT Mu. Moreover, since g is chosen uniformly random from Pm,d/2, the probability
that g − f0 ∈ B

(m)
d,d/2(β) is exactly 2−w, thus all entries in u have value at most 2−w, and

therefore ∥u∥2 ≤ 2−w/2.
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We finish the proof by studying the spectrum of M . Observe that M can be written as
the tensor product of a 2w ×2w matrix and a 2t ×2t matrix as follows. Define W ∈ R2w×2w

as
Wf0,g0 = (−1)⟨βf0,βg0⟩ ,

for f0, g0 ∈ W. Define H ∈ R2t×2t as

Ha,b = (−1)
∑t

i=1
aibi .

We can easily verify that M = W ⊗ H.
The matrix H satisfies HHT = 2t · I, where I is the identity matrix, therefore we have

that the eigenvalues of H all have absolute value exactly 2t/2. For the spectrum of W , let
f0, g0 ∈ W be two rows of W . Consider the dot product of row f0 and g0 of matrix W

W T
f0Wg0 =

∑
h0∈W

(−1)⟨β(f0+g0),βh0⟩ =
∑

h0∈W
(−1)⟨β(f0+g0),h0⟩ .

The above sum is 2w if β(f0 + g0) ∈ Pm,m−d/2−1, or in other words f0 and g0 belong to
the same coset in W, and otherwise the sum is 0. Hence we have WW T = 2w · I, and thus
the eigenvalues of W all have absolute value 2w/2. We conclude that the tensor product
matrix M = W ⊗ H has eigenvalues with absolute value 2(w+t)/2.

We can now upper-bound the absolute value of the expectation by |uT Mu| ≤ 2(w+t)/2 ·
∥u∥22 = 2−(w−t)/2.

3 Superposition Hardness for Gap TSA
Let b be some large integer parameter. The Tri-Sum-And (TSA) predicate is a predicate
on 5 F2-variables defined as follows

TSA(x1, · · · , x5) = 1 + x1 + x2 + x3 + x4x5 .

From the definition, we can see that TSA instances are systems of quadratic equations,
each involving exactly 5 F2-variables.

The predicate was studied in [20] as a starting point of an efficient PCP construction.
For the predicate itself, H̊astad and Khot proved that it is approximation resistant on
satisfiable instances.

In this section, we prove a superposition hardness result for TSA.

Theorem 3.1. There is a reduction that takes as input a E3-Sat instance of size n, and
outputs a TSA instance of size nO(b log log n) with the following properties:

• If the E3-Sat instance is satisfiable, then there is an assignment that satisfies all
TSA constraints.

• If the E3-Sat instance is unsatisfiable, then for any odd integer t < (log n)b, and
any t assignments, at most a 15/16 fraction of the TSA constraints are satisfied in
superposition.

The reduction runs in time nO(b log log n).

Proof. The reduction follows a similar approach as a typical inapproximability hardness
reduction.
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Given a E3-Sat instance, we apply Theorem 2.11 with soundness 1/(1000(log n)2b) to
get a Label-Cover instance. This gives the parameter r = (2b log log n+O(1))/ε0, where
ε0 is some universal constant. The vertex set of the bipartite graph has size nO(b log log n),
and the label sets are L = {0, 1}r and R = {0, 1}3r. Let d = Θ(b log log n) be such that
2d/2−4 ≈ (log n)b + 3. This implies also that 2d ≈ 256(log n)2b.

For each u ∈ U and v ∈ V , we expect functions fu : Pr,d → {−1, 1} and gv : P3r,d →
{−1, 1}. We assume that all functions are folded over constant. The entries of the functions
correspond to variables of some TSA instance. Therefore the number of variables in the
output instance is nO(b log log n) · (3r)(1+o(1))d = nO(b log log n), and the number of constraints
is polynomial in the number of variables.

Consider the following test:

1. Sample random edge e = {u1, u2} ∼ E. Let π be the projection on the edge, and let
f and g be the functions associated with u1 and u2.

2. Sample uniformly random query x ∼ Pr,d, y ∼ P3r,d, and v, w ∼ P3r,d/2.

3. Construct query z := x ◦ π + y + vw ∈ P3r,d.

4. Accept iff f(x)g(y)g(z)(g(v) ∧ g(w)) = 1, where ∧ here denotes the binary operator
that evaluates to −1 when both operands are −1, and 1 otherwise.

The completeness is straightforward. In this case, the Label-Cover instance has a perfect
labeling. Setting the functions to be the Low-Degree-Long-Code encoding of the labels
gives an assignment that satisfies all TSA constraints.

In the soundness case, there exists some t < (log n)b assignments that satisfy in su-
perposition a 15/16 fraction of the constraints. That is, for each u1 ∈ U and u2 ∈ V ,
there are t functions that are folded over constant, f (1), · · · , f (t) : Pr,d → {−1, 1} and
g(1), · · · , g(t) : P3r,d → {−1, 1} such that over random sample of edges {u1, u2} and
queries x, y, z, v, w, with probability at least 15/16, the number of i ∈ [t] such that
f (i)(x)g(i)(y)g(i)(z)(g(i)(v) ∧ g(i)(w)) = 1 is odd. By an averaging argument, we have
that for at least 3/4 of the edges, over random sample of queries, the above holds with
probability at least 3/4. Call such an edge good.

We assume that the functions are folded in the same way. Recall that when apply-
ing folding, we partition the domain of the functions into equivalence classes, define the
function value in one of the equivalence classes, and then extend to the full domain by
adding appropriate constants. For our reduction, we identify one equivalence class for each
vertex, and the t functions associated with it supply value only for that equivalence class.
This is to make sure f (1), · · · , f (t) and g(1), · · · , g(t) corresponds exactly to t assignments
in superposition.

Fix a good edge for now, and we drop the subscripts u1 and u2. Then we have the
following

1

2
+

1

2
E

x,y,z,v,w

[
t∏

i=1

(
f (i)(x)g(i)(y)g(i)(z)(g(i)(v) ∧ g(i)(w))

)]
≥ 3

4
,

or

E
x,y,z,v,w

[
t∏

i=1

(
f (i)(x)g(i)(y)g(i)(z)(g(i)(v) ∧ g(i)(w))

)]
≥ 1

2
.
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Let f ′ =
∏t

i=1 f (i), and g′ =
∏t

i=1 g(i). Since t is odd, we have that f ′ and g′ are both
folded over constant. Taking the Fourier expansion of f ′ and g′, we have the following

1

2
≤ E

x,y,z,v,w

[
t∏

i=1

(
f (i)(x)g(i)(y)g(i)(z)(g(i)(v) ∧ g(i)(w))

)]

= E
[
f ′(x)g′(y)g′(z)

t∏
i=1

(g(i)(v) ∧ g(i)(w))

]
=

∑
α∈Λr,d

β1,β2∈Λ3r,d

f̂ ′
αĝ′

β1
ĝ′

β2

E
x,y,z,v,w

[
χα(x)χβ1(y)χβ2(x ◦ π + y + vw)

t∏
i=1

(g(i)(v) ∧ g(i)(w))

]

=
∑

β∈Λ3r,d

f̂ ′
π2(β)ĝ

′2
β E

vw

[
χβ(vw)

t∏
i=1

(g(i)(v) ∧ g(i)(w))

]
.

Applying Cauchy-Schwarz and using Parseval, we have

1

4
≤

 ∑
β∈Λ3r,d

ĝ′2
β

 ∑
β∈Λ3r,d

f̂ ′2
π2(β)ĝ

′2
β E

vw

[
χβ(vw)

t∏
i=1

(g(i)(v) ∧ g(i)(w))

]2
=

∑
β∈Λ3r,d:wt(β)≤2d−4

f̂ ′2
π2(β)ĝ

′2
β E

vw

[
χβ(vw)

t∏
i=1

(g(i)(v) ∧ g(i)(w))

]2
+

∑
β∈Λ3r,d:wt(β)>2d−4

f̂ ′2
π2(β)ĝ

′2
β E

vw

[
χβ(vw)

t∏
i=1

(g(i)(v) ∧ g(i)(w))

]2
.

For the terms where wt(β) > 2d−4, we apply Theorem 2.27 to get∣∣∣∣∣Evw

[
χβ(vw)

t∏
i=1

(g(i)(v) ∧ g(i)(w))

]∣∣∣∣∣ ≤ 2−(2d/2−4−t)/2 ,

and therefore ∑
β∈Λ3r,d:wt(β)>2d−4

f̂ ′2
π2(β)ĝ

′2
β

E
vw

[
χβ(vw)

t∏
i=1

(g(i)(v) ∧ g(i)(w))

]2
≤ 2−(2d/2−4−t) <

1

8
.

This gives us ∑
β∈Λ3r,d:wt(β)≤2d−4

f̂ ′2
π2(β)ĝ

′2
β

≥
∑

β∈Λ3r,d:wt(β)≤2d−4

f̂ ′2
π2(β)ĝ

′2
β E

vw

[
χβ(vw)

t∏
i=1

(g(i)(v) ∧ g(i)(w))

]2
≥ 1

8
.

Let {u1, u2} be a good edge. Consider the following labeling strategy: for u1, pick α

with probability f̂ ′2
α and pick a random label from supp(α), and for u2, pick β with prob-

ability ĝ′2
β and pick a random label from supp(β). The procedure is well defined because
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f ′ and g′ are all folded, and thus by Lemma 2.19, supp(α) and supp(β) are nonempty.
Also, for β such that wt(β) ≤ 2d−4 < 2d−3, by Lemma 2.21, the assignments in supp(β)
all satisfy the clauses in u2. Then the probability that the labeling of u1 and u2 satisfies
the projection constraint on a good edge {u1, u2} is at least 1

2d−4

∑
β:wt(β)≤2d−4 f̂ ′2

π2(β)ĝ
′2
β ≥

1/(8 ·2d−4) > 1/(100(log n)2b). Since there are at least a 3/4 fraction of good edges, overall
the labeling satisfies more than (3/4) ·(1/(100(log n)2b)) > 1/(1000(log n)2b), contradicting
the fact that in the soundness case the Label-Cover instance does not have labeling with
value larger than 1/(1000(log n)2b). This completes the proof.

4 Label Cover with Matrix Labels
We now use Theorem 3.1 to construct a Label-Cover instance with properties similar
to that in [29]. The proof follows closely the approach in [30], Section 5 – 7.

We first give an analogue of Theorem 3.1 over a large field Fq of characteristic 2.

Theorem 4.1. Let q = 2(log n)b+4. There is a reduction that takes as input a E3-Sat
instance of size n, and outputs a system I of quadratic equations over Fq of size nO(b log log n)

with the following properties:

• Each quadratic equation in I involves exactly 5 variables.

• If the E3-Sat instance is satisfiable, then there is an assignment that satisfies all
equations in I.

• If the E3-Sat instance is unsatisfiable, then for any integer t < (log n)b, and any t
assignments, at most a 15/16 fraction of the equations in I are satisfied in superpo-
sition.

The reduction runs in time nO(b log log n).

The proof is almost identical to Theorem 3.4 and Theorem 5.3 of [30], where they proved
that a (t · log q)-superposition hardness with gap δ for systems of quadratic equations over
F2 implies t-superposition hardness with the same gap for systems of quadratic equations
over Fq, where q = 2r and Fq is an extension field of F2.

We now construct Label-Cover with matrix labels from the above theorem. The
construction is via a Point vs. Ruled-surface test. The test is very similar to the one in
[30]. The main difference is here we use the low error version of the Low Degree Test,
instead of the one used by Khot and Saket in [30]. The following theorem appears as
Theorem 5.1 in [2], which follows from the works of Arora and Sudan [6] and Rubinfeld
and Sudan [35].

Theorem 4.2. Let α ≤ 10−4, and d and m be positive integers, and Fq be a field with
q > 100d3m. Let f : Fm

q → Fq be a function, and for every line in Fm
q , let fl be a univariate

degree d polynomial. For a point x on the line l, we denote by fl(x) the value given by fl

at the point x.
Suppose that over the choice of a random line l and a random point x ∈ l, we have

Prl,x[f(x) = fl(x)] ≥ (1 − α), then there is a multivariate polynomial of total degree at
most d which agrees with f on at least (1 − 2α) fraction of the points.

Let I be the instance produced by Theorem 4.1, and let N = nO(b log log n) be the
number of variables in I. Let m = ⌈log N/ log log N⌉ = O(log n), and h = ⌈log N⌉ =
O(log n log log n), so that hm ≥ N , and let d := m(h − 1) = O(log2 n log log n). The
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number of vertices and edges in the Label-Cover instance produced by the reduction
would be poly(qm) = 2O((log n)b+5).

We identify the variables of I with Sm where S ⊆ Fq is of size h. Any Fq assignment
σ to the variables of I can be interpreted as an assignment σ : Sm → Fq and can be
extended to a corresponding polynomial g : Fm

q → Fq of degree at most (h − 1) in each
of the m coordinates. Let C denote the set of constraints of I, each over l := 5 variables.
Denote every constraint C ∈ C as C

[
{xi}l

i=1

]
where {xi}l

i=1 is the set of points in Sm

corresponding to the l variables of I on which the constraint is defined.

Definition 4.3. A curve ω : Fq → Fm
q of degree r is a mapping ω(t) := (ω1(t), · · · , ωm(t))

where each ωj is a degree r univariate polynomial in t.

For the rest of this section, fix distinct values t∗
0, · · · , t∗

l ∈ Fq. A degree l curve ω is
said to correspond to a constraint C

[
{xi}l

i=1

]
and an additional point x if ω(t∗

0) = x, and
for i = 1, . . . , l, ω(t∗

i ) = xi. We now define the notion of a ruled surface.

Definition 4.4. A ruled surface R = R[ω, y] where ω(t) is a curve and y ∈ Fm
q is a

direction, is a surface parametrized by two parameters t, s ∈ Fq, where

R[ω, y](t, s) = ω(t) + sy .

For a constraint C, a point x and a direction y, let R[ω, y] be a ruled surface where ω
is the curve of degree l corresponding to C and x. Let RC be the class of all such ruled
surface corresponding to constraint C ∈ C, and let R := ∪C∈CRC . Suppose the assignment
g : Fm

q → Fq is a global polynomial of degree d. The restriction of g to a ruled surface
R ∈ R is a bivariate polynomial — in t and s — of degree at most d∗ := ld = 5d in
variable t and at most d in variable s. The total number of coefficients of such a bivariate
polynomial is at most d∗d = O(d2). The Label-Cover instance L is constructed as
follows:

Left vertex set U This consists of all points in Fm
q . The label set is the set of values Fq

that can be assigned to the points.

Right vertex set V The set of right vertices is R, the class of all ruled surfaces over all
constraints C ∈ C. The label set of a ruled surface R ∈ R is the set of all bivariate
polynomials in t and s of degree at most d∗ in t and at most d in s. Such a polynomial
is represented by a vector of its coefficients. As mentioned before, the dimension of
this vector is O(d2). For a ruled surface R corresponding to a constraint C, there is
a quadratic equation on these coefficients, and a label g is valid — g ∈ Γ(R) — iff
the values of g at points {(t∗

i , s = 0)}l
i=1 satisfy C.

Edges For every ruled surface R ∈ R and every point x ∈ R, there is an edge between x
and R. The edge is satisfied by a labeling g to the surface R and a label p to the
point x if g(x) = p. Note that the computation of g(x) is linear in the coefficients of
g.

To analyze the above construction, we need the following result from [30].

Observation 4.5. Given an equation C, pick a uniformly random point x ∈ Fm
q , and let

ω be the curve corresponding to C and x. Then, for any t ∈ Fq \ {t∗
1, · · · , t∗

l }, the point
ω(t) is uniformly distributed in Fm

q .
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Theorem 4.6. Let k = (log n)b, q = 2(log n)b+4 be as in Theorem 4.1, and δ = 2−(log n)b+3.
There is a reduction that takes as input a E3-Sat instance of size n, and outputs a Label-
Cover instance with parameters h, m, d, l, d∗ as described above. The instance L has the
following properties:

1. The label set for u ∈ U is Fq, and the label set for v ∈ V is the set of vectors of
length O(d2) = O((log n)5) over Fq. For each edge e = (u, v), the projection πe map
coefficient vectors of surface polynomials to their value at points on the surface, and
are homogeneous and Fq-linear. The coefficient vector is also supposed to satisfy an
equation C given by a quadratic equation over Fq.

The size of L is poly(qm) = 2O((log n)b+5).

2. If the E3-Sat instance is satisfiable, then there is a labeling to the vertices of L
that satisfies all the edges, and that the label for every ruled surface R satisfies the
associated quadratic equation.

3. If the E3-Sat instance is unsatisfiable, then the following cannot hold simultaneously:

• For every left vertex x ∈ Fm
q , there are k labels px

1 , · · · , px
k ∈ Fq.

• For every right vertex R ∈ R, there are k labels (polynomials given as coefficient
vectors) gR

1 , · · · , gR
k , such that the associated equation is satisfied in superposition

by those k labels.
• For

(
1 − 1

1000k

)
fraction of the edges of L, between a point x and a ruled surface

R, we have
gR

j (x) = px
j , ∀j ∈ {1, . . . , k} .

4. δ-Smoothness: For any surface R, let g be a non-zero label. Then

Pr
x∈R

[g(x) = 0] ≤ δ .

Proof. The reduction is described as above. Let I be a system of quadratic equations over
Fq given by Theorem 4.1 and let C be the set of equations.

The δ-smoothness property follows from Schwarz-Zippel lemma: any non-zero label
of surface R gives a non-zero polynomial g, and its evaluation at a random point on the
surface is zero with probability at most d/q ≤ δ.

In the completeness case, there is an assignment to each variable in I. Therefore, there
is a degree d polynomial g : Fm

q → Fq that gives this assignment to the corresponding
points in Sm. The left vertices are labeled using assignments given by g, and each ruled
surface R in the right vertex set are labeled by the polynomial given by the restriction
of f to R. This assignment satisfies the mapping on the edges, as well as the quadratic
equation associated with R.

For the soundness case, suppose for contradiction that no k assignments satisfy more
than a 15/16 fraction of equations in I, but there are k labelings for the vertices of L,
such that all associated equations of the right vertices are satisfied in superposition, and
the mappings on the edges are satisfied for a

(
1 − 1

1000k

)
fraction of the edges. By an

averaging argument, we have that for a
(
1 − 1

20

)
fraction of the equations C ∈ C, we have

Pr
R∈RC
x∈R

 k∧
j=1

(
gR

j (x) = px
j

) ≥ 1 − 1

50k
.

17



We say that the equations C that satisfy the condition above are good. Fix one good
equation C. We say that a line l(s) is contained in a ruled surface R(t, s) if it is obtained
by fixing a value of t in R(t, s) = ω(t) + sy. Since choosing a random point on a ruled
surface is equivalent to choosing a random line l contained in R then choosing a random
point on l, the above probability can be rewritten as

Pr
R∈RC

l∈R,x∈l

 k∧
j=1

(
gR

j (x) = px
j

) ≥ 1 − 1

50k
.

From Observation 4.5, we can see that the above probability is essentially equal to the
probability obtained by first picking a random line l and then a random R ∈ RC containing
the line. Let Rl

C be the set of ruled surfaces of R ∈ RC that contain line l. Thus we have

Pr
l,x∈l

R∈Rl
C

 k∧
j=1

(
gR

j (x) = px
j

) ≥ 1 − 2

50k
. (3)

We now argue that for each j = 1, . . . , k, there exists a unique polynomial Pj of total
degree at most d, such that

Pr
R∈RC
x∈R

 k∧
j=1

(
gR

j (x) = Pj(x)
) ≥ 9

10
. (4)

Define f1, · · · , fk : Fm
q → Fq as fj(x) = px

j for all x ∈ Fm
q and j ∈ {1, . . . , k}. For each

line l, construct H(l) = (h1(l), · · · , hk(l)) as follows: first choose a random R ∈ Rl
C , and

let hj(l) be the univariate restriction of the bivariate polynomial gR
j to the line l. Let E

be the following event (over the choice of l, x ∈ l, and H):

E ≡
k∧

j=1

(fj(x) = hj(l)(x)) .

Equation (3) can be re-stated as Prl,x∈l,H [E] ≥ 1 − 2
50k . The choice of H is independent

of l and x, therefore there is a deterministic setting of H for which Prl,x∈l[E] ≥ 1 − 2
50k .

Applying Theorem 4.2, we obtain polynomials P1, · · · , Pk : Fm
q → Fq, each of total degree

at most d, such that for each j ∈ {1, . . . , k}, we have

Pr
x
[fj(x) ̸= Pj(x)] = Pr

x
[px

j ̸= Pj(x)] ≤ 4

50k
.

Note that the choice of polynomials are globally unique — we get the same set of polyno-
mials regardless of which good equation we fix — due to Schwarz-Zippel lemma and that
d/q ≪ O(1/k).

Observe that a random point on a random ruled surface is essentially distributed uni-
formly randomly in Fm

q . Therefore, using Equation (3) and the above, along with a union
bound over the k polynomials, we get Equation (4).

From Equation (4), we have that there is one ruled surface R ∈ RC such that

Pr
x∈R

 k∧
j=1

(
gR

j (x) = Pj(x)
) ≥ 9

10
.
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Using Schwarz-Zippel again, we have that for each j ∈ {1, . . . , k}, the polynomial gR
j must

be the restriction of Pj to the surface R, and thus Pj is consistent with gR
j at the points

(t∗
1, 0), · · · , (t∗

l , 0). This means that the values given by P1, · · · , Pk satisfy the equation
C in superposition. This holds for each good equation C, and therefore the assignment
given by P1, · · · , Pk satisfy in superposition a 19/20 fraction of all quadratic equations in
I, contradicting the assumption about I that no k assignments satisfy in superposition
more than a 15/16 fraction of the equations.

As in [29], we abstract out the above Label-Cover and get the following statement
for Label-Cover with F2 vector labels. Moreover, we boost the soundness by taking
O(k4) rounds of parallel repetition and apply Theorem 2.12. It is important that we
apply the parallel repetition theorem from [33], because the label size here is large. Unlike
earlier versions of parallel repetition theorem, the statement from [33] is independent of
the label size and therefore is efficient for our purpose. Note that the smoothness property
is preserved by parallel repetition.

Theorem 4.7. Let k = (log n)b be as in Theorem 4.1, and let δ = 2−(log n)b+3. There is a
reduction that takes as input a E3-Sat instance of size n, and outputs a Label-Cover
instance L with the following properties:

1. The label set for U is Fml
2 , and the label set for V is Fmr

2 , where ml, mr = (log n)5b+O(1).
For each vertex in V , there is a set of quadratic equations over F2 associated with it,
and the coefficient vector is supposed to satisfy all the associated equations.
The size of the vertex set of L is 2O((log n)5b+O(1)).
For each edge e, the mapping πe is homogeneous and F2-linear in the entries of the
vectors, that is, there is a matrix Ae ∈ Fml×mr

2 , such that for x ∈ Fml
2 and y ∈ Fmr

2 ,
πe(y) = x iff x = Aey.

2. If the E3-Sat instance is satisfiable, then there is a labeling to the vertices of L that
satisfies all the edges, and that the label to the right vertices satisfy all associated
quadratic equations.

3. If the E3-Sat instance is unsatisfiable, then the following cannot hold simultaneously:

• For every left vertex u ∈ U , there are k labels xu
1 , · · · , xu

k.
• For every right vertex v ∈ V , there are k labels yv

1 , · · · , yv
k that satisfy in super-

position all the associated equations.
• For 2−(log n)2b+O(1) fraction of the edges e = (u, v) of L, we have that for all

j ∈ {1, · · · , k}, πe(yv
j ) = xu

j .

4. δ-Smoothness: For any v ∈ V and non-zero label yv, over the choice of a random
edge incident on v, we have

Pr
u∼v

[π(u,v)(yv) = 0] ≤ δ .

Proof Sketch. The first step is to translate the Label-Cover from Theorem 4.6 with Fq

vector labels to one with F2 vector labels. This is done by choosing an arbitrary Flog q
2

vector representation for elements of Fq. This gives a F2-vector-labeled Label-Cover
instance with the same guarantees as in Theorem 4.6, but with label sets Fml

2 and Fmr
2 for

U and V , respectively, and ml, mr = (log n)b+O(1).
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The second part of the reduction is to apply Theorem 2.12, where we take the number of
rounds n in Theorem 2.12 to be such that the repeated game has soundness 2−(log n)2b+O(1) .
This requires n = O(k4). This gives the final Label-Cover instance, and the procedure
increases ml and mr by a multiplicative factor of n.

To see that smoothness is preserved by parallel repetition, suppose we have a vertex
v := (v1, · · · , vt) and non-zero label y := (y1, · · · , yt) for the t-round repeated game. Then
there exists s ∈ {1, . . . , t} such that ys ̸= 0. Also, for a uniformly random neighbor
u := (u1, · · · , ut) of v, the vertex us is also a uniformly random neighbor of vs. Note
that a necessary condition for π(u,v)(y) = 0 is that π(us,vs)(ys) = 0, and this probability is
upper-bounded by the smoothness property of Theorem 4.6.

We now construct the final Label-Cover with matrix labels as follows.

Theorem 4.8. Let k = (log n)b be as in Theorem 4.1. There is a reduction that takes
as input a E3-Sat instance of size n, and outputs a Label-Cover instance with the
following properties:

1. The label set for the left vertex set U is F(ml+1)×(ml+1)
2 , and the label set for the right

vertex set V is F(mr+1)×(mr+1)
2 , where ml, mr = (log n)5b+O(1).

For each right vertex, there is a set of homogeneous linear F2 equations involving
entries of the labeling of v. The set of valid labelings Γ(v) consists of matrices that
satisfy all the associated linear equations.
The size of the vertex set of L is 2O((log n)5b+O(1)).
For each edge e = (u, v), there is a matrix Ae, such that labeling Mu and Mv satisfies
πe iff Mu = AMvAT . Note that the constraint is linear in the entries of Mu and Mv.

2. If the E3-Sat instance is satisfiable, then there is a labeling to the vertices of L that
satisfies all the edges, and that for each right vertex v ∈ V , its label Mv is symmetric,
rank(Mv) = 1, the (1, 1) entry of Mv is 1, and Mv ∈ Γ(v).

3. If the E3-Sat instance is unsatisfiable, then for any labeling σ for the vertices in U
and V , the following cannot hold simultaneously:

• For each v ∈ V , the matrix σ(v) is pseudo-quadratic, has rank(σ(v)) ≤ (log n)b/2,
and is valid σ(v) ∈ Γ(v).

• For at least 2−(log n)b fraction of the edges e = (u, v) of L, we have that
πe(σ(v)) = σ(u).

4. Smoothness: For any v ∈ V and Mv such that D1(Mv) ̸= 0, then over the choice of
a random edge incident on v, we have

Pr
u∼v

[D1(π
(u,v)(Mv) = 0)] ≤ 2−(log n)b+1

.

Proof. We start with the Label-Cover instance from the previous theorem.
The underlying bipartite graph of the new instance is exactly the same. The parameters

mr and ml are the same as before. The labels for u ∈ U in the new instance are now
matrices from F(ml+1)×(ml+1)

2 , and the labels for v ∈ V are from F(mr+1)×(mr+1)
2 . The

constraints for labelings for vertices in v ∈ V are the following:

20



1. The matrix label M is symmetric, and for i = 2, · · · , mr + 1, we have Mi,i = M1,i =
Mi,1. These are all homogeneous linear constraints. Note that if in addition we have
M1,1 = 1, then we get that M is pseudo-quadratic. Here, however, we do not include
the latter constraint as it is not homogeneous. In fact, this will be handled by the
inner verifier.

2. For each quadratic constraint in the previous instance, we include the linearized
version of it in the new instance. That is, term xixj is replaced by entry (i+1, j+1)
of the matrix, term xi is replaced by entry (1, i + 1), and constant 1 is replaced by
entry (1, 1).

For an edge e, let A′
e be the matrix in the Label-Cover instance from Theorem 4.7, then

we define the matrix for the new instance to be Ae =

(
1 0
0 A′

e

)
. Let Mv =

(
a α
β D

)
be a label. Then it is mapped to

πe(Mv) = AeMvAT
e =

(
a αA′T

e

A′
eβ A′

eDA′T
e

)
.

In the completeness case, a vector label α in the previous theorem is transformed into
the matrix label (1 α)(1 α)T .

For the soundness case, suppose that there are pseudo-quadratic matrices Mu and Mv

for each u ∈ U and v ∈ V , such that Mv satisfies homogeneous linear constraints associated
with v, rank(Mv) ≤ k, and that for 2−(log n)b fraction of the edges e, πe(Mv) = Mu.

For vertex v ∈ V , by Lemma 2.9, there exists odd integer l < 3/2 · (log n)b/2 < (log n)b

vectors y′
1, · · · , y′

l ∈ Fmr+1
2 , where y′

i,1 = 1 for i ∈ [l], such that Mv =
∑l

i=1 y′
i ⊗ y′

i,
and the assignments y1 := D1(y1), · · · , yl := D1(yl) satisfy in superposition the quadratic
constraints of the Label-Cover instance from Theorem 4.7. By padding 0 assignments,
we can make sure that we have exactly (log n)b assignments y1, · · · , y(log n)b that satisfy in
superposition the quadratic constraints of the Label-Cover instance from Theorem 4.7,
and for all j ∈

[
(log n)b

]
, yj is in the column space of D1(Mv).

For the decoding of vertices in U , we use the following lemma from [30] (Lemma 7.3),
adapted to our choice of parameters. The proof is identical and we include it here for sake
of completeness.

Lemma 4.9. Fix any v ∈ V , a rank parameter l ≤ (log n)b, and a matrix M ∈
F(mr+1)×(mr+1)
2 such that rank(D1(M)) = l. Then over the choice of a random neigh-

bor u of v, we have rank(D1(π
(u,v)(M))) = l except with probability 2−(log n)b+1.

Proof. Using Lemma 2.1 of [30], D1(M) can be decomposed into the canonical form

D1(M) =
s∑

j=1

zj ⊗ zj +
t∑

j=1

(zs+2j−1 ⊗ zs+2j + zs+2j ⊗ zs+2j−1) ,

where l = s + 2t is the rank of D1(M), and z1, · · · , zl are linearly independent. For
j = 1, · · · , l, define z′

j := A′
(u,v)zj . Then D1(π

(u,v)(M)) can be written as

D1(π
(u,v)(M)) =

s∑
j=1

z′
j ⊗ z′

j +
t∑

j=1

(
z′

s+2j−1 ⊗ z′
s+2j + z′

s+2j ⊗ z′
s+2j−1

)
,
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Consider a non-zero linear combination z of the vectors {zj}l
j=1. The vector A′

(u,v)z is the

corresponding linear combination of the vectors
{

z′
j

}l

j=1
, and is non-zero with probability

2−(log n)b+3 by the smoothness guarantee from Theorem 4.7. Taking a union bound over
all 2l − 1 non-zero linear combination, we conclude that except with probability at most
2−(log n)b+1 , the vectors

{
z′

j

}l

j=1
are also linearly independent and spans the column space

of D1(π
(u,v)(M)).

The smoothness property of the new Label-Cover instance follows easily from the
above lemma.

For each u, we choose (log n)b uniformly random vectors x1, · · · , x(log n)b from the col-
umn space of D1(Mu). Now we analyze the expected value of this assignment.

Note that here the soundness parameter 2−(log n)b ≫ 2−(log n)b+1 . Therefore, by the
above lemma, for 2−(log n)b+o(1) fraction of the edges e = (u, v), we have rank(D1(Mv)) =
rank(D1(π

e(Mv))) = rank(D1(AeMvAT
e )) = rank(A′

eD1(Mv)A
′T
e ).

Fix such an edge. Since rank(D1(Mv)) = rank(A′
eD1(Mv)A

′T
e ) ≤ rank(A′

eD1(Mv)) ≤
rank(D1(Mv)), this means that rank(A′

eD1(Mv)A
′T
e ) = rank(A′

eD1(Mv)) = rank(D1(Mv)).
For any y that is in the column space of D1(Mv), A′

ey is in the column space of A′
eD1(Mv),

and since rank(A′
eD1(Mv)) = rank(A′

eD1(Mv)A
′T
e ), we conclude that A′

ey is also in the
column space of A′

eD1(Mv)A
′T
e = D1(Mu). Thus for edge e, with probability at least

2−(log n)2b , we get π(yj) = A′
eyj = xj for all j ∈ {1, · · · , l}.

Overall, this labeling satisfies 2−(log n)b+o(1)
2−(log n)2b

= 2−(log n)2b+O(1) fraction of the
edges in the old instance.

5 Hypergraph Coloring Hardness
We now compose the Label-Cover from Theorem 4.8 with a Quadratic-Code inner-
verifier to get inapproximability result for hypergraph coloring.

Theorem 5.1. There is a reduction that takes as input a E3-Sat instance of size n,
outputs a 8-uniform hypergraph H with the following properties:

• The size of the hypergraph H and the running time of the reduction are both upper-
bounded by exp((log n)(10+o(1))b).

• If the E3-Sat instance is satisfiable, then H is 2-colorable.

• If the E3-Sat instance is unsatisfiable, then H does not have independent set of
fractional size larger than 2−O((log n)b).

In other words, it is quasi-NP-hard to color a 2-colorable 8-uniform hypergraph of size N
with less than 2(log N)1/10−o(1) colors.

The following proof is based on a note by Girish Varma [37].
Given the Label-Cover instance from Theorem 4.8, we expect for each vertex v ∈ V a

function fv : F(mr+1)×(mr+1)
2 → F2. The expected encoding for matrix label σ(v) = av ⊗av

is fv(A) = ⟨av ⊗ av, A⟩ = aT
v Aav. Let Hv ⊆ F(mr+1)×(mr+1)

2 be the dual of the subspace of
the set of pseudo-quadratic matrices that satisfies the linear constraints associated with v.
The function fv is folded over F(mr+1)×(mr+1)

2 /Hv.
Consider the following Boolean 8-uniform test:
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• Choose u ∈ U uniformly at random, and v, w ∈ V uniformly and independently at
random from the neighbors of u. Let π, σ : F(mr+1)×(mr+1)

2 → F(ml+1)×(ml+1)
2 be the

projections corresponding to the edges (u, v) and (u, w) respectively, and let Sπ and
Sσ be the index set associated with them.

• Uniformly and independently sample X1, X2, Y1, Y2 ∈ F(mr+1)×(mr+1)
2 , F ∈ F(ml+1)×(ml+1)

2 ,
and x, y, z, x′, y′, z′ ∈ Fmr+1

2 . Let e ∈ Fmr+1
2 be the vector with only the 1-st entry 1

and the rest 0.

• Accept if and only if the following 8 values are not all equal:
fv(X1) fv(X3) where X3 := X1 + x ⊗ y + F ◦ π
fv(X2) fv(X4) where X4 := X2 + (x + e) ⊗ z + F ◦ π
fw(Y1) fw(Y3) where Y3 := Y1 + x′ ⊗ y′ + F ◦ σ + e ⊗ e
fw(Y2) fw(Y4) where Y4 := Y2 + (x′ + e) ⊗ z′ + F ◦ σ + e ⊗ e

We denote by T the test distribution.
The vertex set of the hypergraph has size

exp((log n)(5+o(1))b)) · 2(log n)2(5+o(1))b
= exp((log n)(10+o(1))b)) =: N .

5.1 Completeness
Let yv ⊗ yv for v ∈ V and xu ⊗ xu for u ∈ U be a perfect labeling for the Label Cover
instance, with yv,1 = xu,1 = 1 and for each edge e = {u, v} ∈ E, we have (yv)|Se = xu.
Consider the 2-coloring where for each v ∈ V , fv(X) = yT

v Xyv = ⟨X, yv ⊗ yv⟩. Such
a function is constant over cosets of Hv. Let x1 := ⟨X1, yv ⊗ yv⟩, x2 := ⟨X2, yv ⊗ yv⟩,
y1 := ⟨Y1, yw ⊗ yw⟩, y2 := ⟨Y2, yw ⊗ yw⟩, and f := ⟨F, xu ⊗ xu⟩. Note that ⟨F, xu ⊗ xu⟩ =
⟨F, πu,v(yv ⊗ yv)⟩ = ⟨F ◦ πuv, yv ⊗ yv⟩. Also, ⟨e ⊗ e, yv ⊗ yv⟩ = ⟨e, yv⟩ = 1. Therefore, the
value of the 8 queries are

x1 x1 + ⟨yv, x⟩⟨yv, y⟩ + f
x2 x2 + (⟨yv, x⟩ + 1)⟨yv, z⟩ + f
y1 y1 + ⟨yw, x′⟩⟨yw, y′⟩ + f + 1
y2 y2 + (⟨yw, x′⟩ + 1)⟨yw, z′⟩ + f + 1

We finish the proof of the completeness case by a case analysis.
If ⟨yv, y⟩ = ⟨yw, y′⟩ = 0, then the sum of entries in the first and third row is 1, which

means that there are different values. Similarly, we conclude that if ⟨yv, z⟩ = ⟨yw, z′⟩ = 0,
then using similar argument as above, there are different values in the second and the
fourth row. The same applies to the case when ⟨yv, x⟩ = ⟨y2, x′⟩ = 1, and the case when
⟨yv, x⟩ = ⟨yw, x′⟩ = 0.

Suppose now that ⟨yv, x⟩ = 1 and all entries are equal. Then from the second row, we
have that f = 0, and from the first row, we get ⟨yv, y⟩ = 0. By the discussion above, we
have that ⟨yw, y′⟩ = 1, and the third row gives us ⟨yw, x′⟩ = 1, but then the two entries on
the last row are different.

Suppose otherwise that ⟨yv, x⟩ = 0 and all entries are equal. Then from the first row,
we have f = 0, and the second row implies ⟨yv, z⟩ = 0. By the discussion above, we must
have ⟨yw, z′⟩ = 1, and the last row gives ⟨yw, x′⟩ = 0, leaving two different entries in the
third row.

Hence fv gives a valid 2-coloring of G.
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5.2 Soundness
Let δ = 2−(log n)b be the soundness parameter from Theorem 4.8 and k = (log n)b/2 be the
rank upper-bound from Theorem 4.8.

Lemma 5.2. If there is an independent set in G of relative size s, then

s8 ≤ δ +
1

2k/2+1
.

Proof. Consider any set A ⊆ V(G) of fractional size s. For every v ∈ V , let fv :

F(mr+1)×(mr+1)
2 → [0, 1] be the indicator function of A, extended such that it is constant

over cosets of Hv. The fractional size of A is given by

E
v∼V

X∼F(mr+1)×(mr+1)
2

[fv(X)] = E
v∼V

[
f̂v,0

]
.

The set A is an independent set if and only if

Θ := E
u,v,w

E
Xi,Yi∼T

4∏
i=1

fv(Xi)fw(Yi) = 0 . (5)

Taking Fourier expansion and considering expectations over X1, X2, Y1, Y2, we get the
following:

Θ = E
u,v,w

∑
α1,α2,β1,β2∈F(mr+1)×(mr+1)

2

E
F,x,x′

[

f̂2
v,α1 E

y
[χα1(x ⊗ y)]χα1(F ◦ π)

f̂2
v,α2 E

z
[χα2((x + e) ⊗ z)]χα2(F ◦ π)

f̂2
w,β1 E

y′
[χβ1(x

′ ⊗ y′)]χβ1(F ◦ σ)χβ1(e ⊗ e)

f̂2
w,β2 E

z′
[χβ2((x

′ + e) ⊗ z′)]χβ2(F ◦ σ)χβ2(e ⊗ e)

]
.

Denote the term inside EF,x,x′ [·] as Termu,v,w(α1, α2, β1, β2).
For the characters involving F , we have

E
F
[χα1(F ◦ π)χα2(F ◦ π)χβ1(F ◦ σ)χβ2(F ◦ σ)]

= E
F

[
(−1)⟨π(α1+α2),F ⟩+⟨σ(β1+β2),F ⟩

]
,

and since F ∈ F(ml+1)×(ml+1)
2 is chosen uniformly at random, the above is 0 unless π(α1 +

α2) = σ(β1 + β2).
Let ν(α) := ⟨α, e ⊗ e⟩. Taking expectations over x, y, z, x′, y′, z′, we have that when

π(α1 + α2) ̸= σ(β1 + β2), Termu,v,w(α1, α2, β1, β2) = 0, and otherwise

Termu,v,w(α1, α2, β1, β2)

= (−1)ν(β1+β2)f̂2
v,α1

f̂2
v,α2

f̂2
w,β1

f̂2
w,β2

Pr
x
[α1x = 0 ∧ α2x = α2e]Pr

x′

[
β1x = 0 ∧ β2x

′ = β2e
]

.
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The terms that are potentially non-zero can now be partitioned into three parts:

Θ0 = E
u,v,w

∑
rank(α1+α2),rank(β1+β2)≤k

π(α1+α2)=σ(β1+β2)
ν(β1+β2)=0

Termu,v,w(α1, α2, β1, β2)

Θ1 = E
u,v,w

∑
rank(α1+α2),rank(β1+β2)≤k

π(α1+α2)=σ(β1+β2)
ν(β1+β2)=1

Termu,v,w(α1, α2, β1, β2)

Θ2 = E
u,v,w

∑
max{rank(α1+α2),rank(β1+β2)}>k

π(α1+α2)=σ(β1+β2)

Termu,v,w(α1, α2, β1, β2) .

We first lower-bound Θ0. Note that all terms in Θ0 are positive. Consider the term
corresponding to α1 = α2 = β1 = β2 = 0. We have

E
u,v,w

f̂4
v,0f̂

4
w,0 = E

u

(
E
v

f̂4
v,0

)2

≥
(

E
u,v

f̂v,0

)8

≥ s8 .

Therefore Θ0 ≥ s8.
For Θ1, we have the following upper-bound

|Θ1| ≤ E
u,v,w

∑
rank(α1+α2),rank(β1+β2)≤k

π(α1+α2)=σ(β1+β2)
ν(β1+β2)=1

f̂2
v,α1

f̂2
v,α2

f̂2
w,β1

f̂2
w,β2

. (6)

Consider the following randomized labeling strategy for vertices in u ∈ U and v ∈ V : for
v ∈ V , pick (β1, β2) with probability f̂2

v,β1
f̂2

v,β2
and set its label to β1 + β2; for u ∈ U , pick

a random neighbor v, and choose (α1, α2) with probability f̂2
v,α1

f̂2
v,α2

and set its label to
π(α1 + α2). Due to folding, we have that β1 and β2 both satisfies the homogeneous linear
constraints associated with v, and so does β1 + β2. Therefore the right hand side of (6)
gives the probability that a random edge of the Label Cover is satisfied by this labeling.
Thus |Θ1| ≤ δ.

For Θ2, note that if rank(α) > k, then for any fixed b, Prx[αx = b] ≤ 1/2k+1. Therefore,
for any fixed choice of u, v, w, all terms in Θ2 have absolute value at most 1/2k/2+1.
Combined with Parseval’s identity, we conclude that |Θ2| ≤ 1/2k/2+1.

We conclude that any independent set in G has fractional size at most 2− logb n/32, and
therefore the chromatic number of G is at least 2logb n/32 = exp((log N)1/(10−o(1))).
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