
Polynomially Low Error PCPs with polyloglog n Queries via
Modular Composition∗

Irit Dinur† Prahladh Harsha‡ Guy Kindler§

May 23, 2015

Abstract

We show that every language in NP has a PCP verifier that tosses O(log n) random coins,
has perfect completeness, and a soundness error of at most 1/poly(n), while making at most
O(poly log logn) queries into a proof over an alphabet of size at most n1/poly log logn. Previous
constructions that obtain 1/poly(n) soundness error used either poly log n queries or an expo-
nential sized alphabet, i.e. of size 2n

c

for some c > 0. Our result is an exponential improvement
in both parameters simultaneously.

Our result can be phrased as a polynomial-gap hardness for approximate CSPs with arity
poly log log n and alphabet size n1/poly logn. The ultimate goal, in this direction, would be to
prove polynomial hardness for CSPs with constant arity and polynomial alphabet size (aka the
sliding scale conjecture for inverse polynomial soundness error).

Our construction is based on a modular generalization of previous PCP constructions in this
parameter regime,which involves a composition theorem that uses an extra ‘consistency’ query
but maintains the inverse polynomial relation between the soundness error and the alphabet
size.

Our main technical/conceptual contribution is a new notion of soundness, which we refer
to as distributional soundness, that replaces the previous notion of “list decoding soundness”,
and that allows us to prove a modular composition theorem with tighter parameters. This
new notion of soundness allows us to invoke composition a super-constant number of times
without incurring a blow-up in the soundness error.

∗A preliminary version of this paper appeared in the Proc. 47th ACM Symp. on Theory of Computing (STOC),
2015 [DHK15].
†Weizmann Institute of Science, ISRAEL. email: irit.dinur@weizmann.ac.il. Research supported in part by a

ISF-UGC grant 1399/4 and by an ERC grant 239985.
‡Tata Institute of Fundamental Research (TIFR), Mumbai, INDIA. email: prahladh@tifr.res.in. Research sup-

ported in part by ISF-UGC grant 1399/4. Part of this work was done while visiting the Simons Institute for the Theory
of Computing, UC Berkeley.
§The Hebrew University of Jerusalem, ISRAEL. email: gkindler@cs.huji.ac.il. Research supported in part by an

Israeli Science Foundation grant no. 1692/13 and by US-Israel Binational Science Foundation grant no. 2012220. Part
of this work was done while visiting the Simons Institute for the Theory of Computing, UC Berkeley.

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Report No. 85 (2015)

1 Introduction

Probabilistically checkable proofs (PCPs) provide a proof format that enables verification with
only a small number of queries into the proof such that the verification, though probabilistic, has
only a small probability of error. This is formally captured by the following notion of a probabilis-
tic verifier.

Definition 1.1 (PCP Verifier). A PCP verifier V for a language L is a polynomial time probabilistic
algorithm that behaves as follows: On input x, and oracle access to a (proof) string Π (over an alphabet
Σ), the verifier reads the input x, tosses some random coins R, and based on x and R computes a (local)
window I = (i1, . . . , iq) of q indices to read from Π, and a (local) predicate ϕ : Σq → {0, 1}. The verifier
then accepts iff ϕ(Π|I) = 1.

• The verifier has perfect completeness: if for every x ∈ L, there is a proof Π that is accepted with
probability 1. I.e., ∃Π, PrR[ϕ(Π|I) = 1] = 1.

• The verifier has soundness error δ < 1: if for any x 6∈ L, every proof Π is accepted with probability
at most δ. I.e., ∀Π, PrR[ϕ(Π|I) = 1] ≤ δ.

The celebrated PCP Theorem [AS98, ALM+98] states that every language in NP has a verifier
that has perfect completeness and soundness error bounded by a constant δ < 1, while using only
a logarithmic number of random coins, and reading only q = O(1) proof bits. Naturally (and
motivated by the fruitful connection to inapproximability due to Feige et al. [FGL+96]), much
attention has been given to obtaining PCPs with desirable parameters, such as a small number of
queries q, smallest possible soundness error δ, and smallest possible alphabet size |Σ|.

How small can we expect the soundness error δ to be? There are a couple of obvious limita-
tions. First observe that the soundness error δ cannot be smaller than 1/poly(n) just because there
are only poly(n) different random choices for the verifier and at least one of the corresponding
local predicates must be satisifiable1. Next, note that if the verifier reads a total of k bits from
the proof (namely, q log |Σ| ≤ k), the soundness error cannot be smaller than 2−k, just because a
random proof is expected to cause the verifier to accept with at least this probability.

The best case scenario is thus if one can have the verifier read k = O(log n) bits from the proof
and achieve a soundness error of 1/2k = 1/poly(n). Indeed, the following is well known (obtained
by applying a randomness efficient sequential repetition to the basic PCP Theorem):

Theorem 1.2 (PCP theorem + randomness efficient sequential repetition). For every integer k, every
language in NP has a PCP verifier that tosses at most O(k+ log n) random coins, makes q = O(k) queries
into a proof over the Boolean alphabet {0, 1}, has perfect completeness, and soundness error δ = 2−k.

In particular, setting k = log n we get q = O(log n) and δ = 1/poly(n).

This theorem gives a ballpark optimal tradeoff (up to constants) between soundness error and
the number of bits read from the proof. However it does not achieve a small number of queries, a
fundamental requirement that is important, among other things, for hardness of approximation.
The goal of constructing a PCP with both a small error and a small number of queries turns out to
be much more challenging and has attracted considerable attention. This was first formulated by
Bellare et al. [BGLR93] as the “sliding scale” conjecture.

1One may assume that every local predicate ϕ is satisfiable. Otherwise the question of “x
?
∈ L” reduces to the

question of whether ϕ is satisfiable for any of the predicates computed by the verifier. This cannot occur without a
collapse of NP into NTIME(q log |Σ|).

1

Conjecture 1.3 (Sliding Scale Conjecture [BGLR93]). For any 1
poly(n) ≤ δ < 1, every language in NP

has a PCP verifier that tossesO(log n) random coins, makes q = O(1) queries2 into a proof over an alphabet
Σ of size poly(1/δ), has perfect completeness, and soundness error δ.

As we describe shortly below, this conjecture is known to hold for 1 > δ ≥ 2−(logn)1−ε
, namely

where δ can be made ‘almost’ polynomially small. The interesting regime, that has remained open
for two decades, is that of (inverse) polynomially small δ. This is the focus of our work. Our main
goal is to find the smallest q and |Σ| parameters for which we can get δ to be polynomially small.
Our main result is the following.

Main Theorem 1.4. Every language in NP has a PCP verifier that tosses O(log n) random bits, makes
q = (log log n)O(1) queries into a proof over an alphabet Σ of size |Σ| = n1/(log logn)O(1)

, has perfect
completeness, and soundness error δ = 1/poly(n).

Previous PCP constructions require at least (log n)Ω(1) queries in order to achieve polynomially
small error (and this remains true even for constructions that are allowed quasi-polynomial size,
see further discussion at the end of this introduction).

The first works making progress towards this conjecture are due to Raz and Safra [RS97], and
Arora and Sudan [AS03], and rely on the classical (algebraic) constructions of PCPs. They prove
the conjecture for all δ such that δ ≥ 2−(logn)β for some constant β > 0. These ideas were then
extended by Dinur et al. [DFK+11] with an elaborate composition-recursion structure, proving the
conjecture for all δ ≥ 2−(logn)1−ε

for any ε > 0. The small catch here is that the number of queries
grows as ε approaches 0. The exact dependence of q on ε was not explicitly analyzed in [DFK+11],
but we show that it can be made O(1/ε) while re-deriving their result.

Theorem 1.5 ([DFK+11]). For every ε > 0 and δ = 2−(logn)1−ε , every language in NP has a PCP verifier
that tosses O(log n) random coins, makes q = O(1/ε) queries into a proof over an alphabet Σ of size
|Σ| = 1/poly(δ), has perfect completeness, and has soundness error δ.

The focus of [DFK+11] was on a constant number of queries but their result can also be applied
towards getting polynomially small error with a non-trivially small number of queries. This is
done by combining it with sequential repetition. We get,

Corollary 1.6 ([DFK+11] + randomness efficient sequential repetition). For every ε > 0, every lan-
guage in NP has a PCP verifier that tosses O(log n) random coins, makes q = O((log n)ε/ε) queries into
a proof over an alphabet Σ of size |Σ| = 2(logn)1−ε , has perfect completeness, and has soundness error
δ = 1/poly(n).

Corollary 1.6 describes the previously known best result in terms of minimizing the number of
queries subject to achieving a polynomially small error and using at most a logarithmic amount of
randomness. Whereas in Corollary 1.6 the number of queries is q = (log n)ε, our Main Theorem 1.7
requires only q = poly log logn queries.

PCP Composition and dPCPs

Like in recent improved constructions of PCPs [BGH+06, DR06, BS08, Din07, MR10, DH13], our
main theorem is obtained via a better understanding of composition. All known constructions

2It is even conjectured that this constant can be made as low as 2.

2

of PCPs rely on proof composition. This paradigm, introduced by Arora and Safra [AS98], is a
recursive procedure applied to PCP constructions to reduce the alphabet size. The idea is to start
with an easier task of constructing a PCP over a very large alphabet Σ. Then, proof composition
is applied (possibly several times over) to PCPs over the large alphabet to obtain PCPs over a
smaller (even binary) alphabet, while keeping the soundness error small.

In the regime of high soundness error (greater than 1/2), composition is by now well under-
stood using the notion of PCPs of proximity [BGH+06] (called assignment testers in [DR06]) (see also
[Sze99]). The idea is to bind the PCP proof of a statement to an NP witness for it, so that the veri-
fier not only checks that the statement is correct but also that the given witness is (close to) a valid
one. This extension allows one to prove a modular composition theorem, which is oblivious to
the inner makings of the PCPs being composed. This modular approach has facilitated alternate
proofs of the PCP theorem and constructions of shorter PCPs [BGH+06, BS08, Din07]. However,
the notion of a PCP of proximity, or assignment tester, is not useful for PCPs with low-soundness
error. The reason is that for small δ we are in a “list decoding regime”, in that the PCP proof can
be simultaneously correlated with more than one valid NP witness.

The works mentioned earlier [RS97, AS03, DFK+11] addressed this issue by using a notion of
local list-decoding. This was called a local-reader in [DFK+11] and formalized nicely as a locally-
decode-or-reject-code (LDRC) by Moshkovitz and Raz [MR10]. Such a code allows “local decod-
ing” in that for any given string w there is a list of valid codewords {c1, . . . , cL} such that when
the verifier is given a tuple of indices j1, . . . , jk, then but for an error probability of δ, the verifier
either rejects or outputs (ci)|j1,...,jk for some i ∈ [L].

Decodable PCPs (dPCPs) Dinur and Harsha [DH13] introduced the notion of a PCP decoder
(dPCP), which extends the earlier definitions of LDRCs and local-readers from codes to PCP veri-
fiers. A PCP decoder is like a PCP verifier except that it also gets as input an index j (or a tuple of
indices). The PCP decoder is supposed to check that the proof is correct, and to also return the j-th
symbol of the NP witness encoded by the PCP proof. As in previous work, the soundness guaran-
tee for dPCPs is that for any given proof Π there is a short list of valid NP witnesses {x1, . . . , xL}
such that except with probability δ the verifier either rejects or outputs (xi)|j for some xi in the
list.

The main advantage of dPCPs is that they allow a modular composition theorem in the regime
of small soundness error. The composition theorem proved by Dinur and Harsha [DH13] was a
two-query composition theorem, generalizing from the ingenious construction of Moshkovitz and
Raz [MR10]. The two-query requirement is a stringent one, and in this construction it inherently
causes an exponential increase in the alphabet, so that instead of |Σ| = poly(1/δ) one gets a PCP
with |Σ| = exp(poly(1/δ)).

In this work we give a different (modular) dPCP composition theorem. Essentially, our the-
orem is a modular generalization of the composition method, as done implicitly in previous
works [RS97, AS03, DFK+11], which uses an extra ‘consistency’ query but maintains the inverse
polynomial relation between δ and |Σ|.

We remark that unlike recent PCP constructions [BGH+06, DR06, MR10, DH13] which recurse
on the large (projection) query of the outer PCP, our composition recurses on the entire test as
was done originally by Arora and Safra [AS98]. This aspect of the composition is explained and
abstracted nicely in [Mos14].

3

Distributional Soundness Our main technical/conceptual contribution is a new notion of sound-
ness, which we refer to as distributional soundness, which replaces the previous notion of list decod-
ing soundness described above, and allows us to apply a non-constant number of compositions
without a blowup in the error.

We say that a verifier has distributional soundness δ if its output is “δ-indistinguishable” from
the output of an idealized verifier. The idealized verifier has access to a distribution Π̃ over valid
proofs or⊥. When it is run with random coinsR it samples a proof Π̃(R) from this distribution and
either rejects if Π̃(R) = ⊥ or outputs what the actual verifier would output when given access to
Π̃(R). By δ-indistinguishable, we mean that there is a coupling between the actual verifier and the
idealized verifier, such that the probability that the verifier does not reject and its output differs
from the output of the idealized verifier, is at most δ.

The advantage of moving from list decoding soundness to distributional soundness, is that it
removes the extra factor ofLin (the list size) incurred in previous composition analyses. Recall that,
e.g. in the composition theorem of Dinur-Harsha [DH13], one takes an outer PCP with soundness
δout and an inner PCP decoder with soundness δin and out comes a PCP with soundness δin +
Lin · δout. This is true in all (including implicit) prior composition analyses. When making only a
constant number of composition steps, this is not an issue, but when the number t of composition
steps grows, the soundness is at least (Lin)t · δout and this is too expensive for the parameters we
seek. Using distributional soundness, we prove that the composition of a PCP with soundness
error δout and a dPCP with soundness error δin yields a PCP with soundness error δout + δin + η
where η is an error term that is related to the distance of an underlying error correcting code,
and can be controlled easily. Thus, after t composition steps the soundness error will only be
O(t(δ + η)).

We remark that this notion of soundness, though new, is satisfied by most of the earlier PCP
constructions (at least the ones based on the low-degree test). In particular, it can be shown that
list-decoding soundness and very good error-correcting properties of the PCP imply distributional
soundness.

Proof Overview

At a high level, our main theorem is derived by adopting the recursive structure of the construc-
tion in [DFK+11]. The two main differences are the use of our modular composition theorem, and
the soundness analysis that relies on the notion of distributional soundness3.

We fix a field F at the outset and use the same field throughout the construction. This is
important for the interface between the outer and the inner dPCPs, as it provides a convenient
representation of the output of the outer dPCP as an arithmetic circuit over F, which is then the
input for the inner dPCP.

As in the construction of [DFK+11], we take |F| ≈ 2(logn)1−ε
and begin by constructing PCPs

over a fairly large alphabet size which we gradually reduce via composition. The initial alphabet

size is 22(logn)1−ε
, and then it drops to 22(logn)1−2ε

and then to 22(logn)1−3ε

and so on. After 1/ε

3Looking at the construction as it is presented here, one may ask, why wasn’t this done back in 1999, when the
conference version of [DFK+11] was published. This construction is notoriously far from modular. Thus, tweaking pa-
rameters, following them throughout the construction, and making the necessary changes, would have been a daunting
task. Without the modular approach it was not at all clear what the bottlenecks were, let alone address them.

4

steps we make a couple of final composition steps and end up with the desired alphabet size of
2(logn)1−ε

, logarithmic in the initial alphabet size.
Unlike the construction in [DFK+11], we can afford to plug in a sub-constant value for ε,

and we take ε = c log log log n/ log logn for some constant c so that 2(logn)1−ε
= 2logn/(log logn)c =

n1/(log logn)c .
The number of composition steps is O(1/ε), resulting in a PCP with O(log log n) queries and

soundness error n1/(log logn)c for some constant c < 3 (see Theorem 5.1). Finally, (log log n)c steps
of (randomness-efficient) sequential repetition yield a PCP with polynomially small error and
poly log log n queries as stated in Main Theorem 1.7. It can be shown that the parameters obtained
in Theorem 5.1 (namely, soundness error n1/(log logn)O(1)

) is tight given the basic Reed-Muller and
Hadamard based building blocks (see § 5.3 for details).

Further Background and Motivation

Every PCP theorem can be viewed as a statement about the local-vs.-global behaviour of proofs,
in that the correctness of a proof, which is clearly a global property, can be checked by local checks,
on average. The parameters of the PCP (number of queries, soundness error, alphabet size) give a
quantitative measure to this local to global behavior. The sliding scale conjecture essentially says
that even with a constant number of queries, this local to global phenomenon continues to hold,
for all ranges of the soundness error.

Another motivation for minimizing the number of queries becomes apparent when consider-
ing interaction with provers instead of direct access to proofs (i.e. MIP instead of PCP). A PCP
protocol can not in general be simulated by a protocol between a verifier and a prover because
the prover might cheat by adaptively changing her answers. This can be sidestepped by sending
each query to a different prover, such that the provers are not allowed to communicate with each
other. This is the MIP model of Ben-Or et al. [BGKW88]. It is only natural to seek protocols using
the smallest number of (non-communicating) provers.

The importance of the sliding scale conjecture stems, in addition to the fundamental nature of
the question, from its applications to hardness of approximation. First, it is known that every PCP
theorem can be phrased as a hardness-of-approximation for MAX-CSP: the problem of finding
an assignment that satisfies a maximal number of constraints in a given constraint system. The
soundness error translates to the approximation factor, the alphabet of the proof is the alphabet of
the variables, and the number of queries becomes the arity of the constraints in the CSP.

The main goal of this paper can be phrased as proving polynomial hardness of approximation
factors for CSPs with smallest possible arity (and over an appropriately small alphabet). Our main
theorem translates to the following result

Theorem 1.7. It is NP-hard to decide if a given CSP with n variables and poly(n) constraints, is perfectly
satisfiable or whether every assignment satisfies at most 1/poly(n) fraction of the constraints. The CSP is
such that each constraint has arity at most poly log log n and the variables take values over an alphabet of
size at most n1/ log lognO(1) .

In addition to the syntactic connection to MAX-CSP, it is also known that a proof of the sliding
scale conjecture would immediately imply polynomial factors inapproximability for DIRECTED-
SPARSEST-CUT and DIRECTED-MULTI-CUT [CK09].

5

The results of [DFK+11] were used in [DS04] for proving hardness of approximation for a
certain `p variant of label cover. However, that work mis-quoted the main result from [DFK+11]
as holding true even for a super-constant number of queries, up to

√
log log n. In this work, we fill

the gap proving the required PCP statement. We thank Michael Elkin for pointing this out.

Further Discussion

A possible alternate route to small soundness PCPs is via the combination of the basic PCP theo-
rem [AS98, ALM+98] with the parallel repetition theorem [Raz98]. Applying k-fold parallel repeti-
tion yields a two-query PCP verifier over alphabet of size |Σ| = 2O(k), that uses O(k log n) random
bits, and has soundness error δ = 2−Ω(k).

If we restrict to polynomial-size constructions, then parallel repetition is of no help compared
to Theorem 1.2. If we allow k to be super constant, then more can be obtained. First, it is important
to realize that the soundness error should be measured in terms of the output size, namely N =
2k logn. For k = (log n)c a simple calculation shows log n = (logN)1/(c+1), and hence the soundness
error is δ(N) = 2−(logn)c = 2−(logN)1−1/(c+1)

. This is no better than the result of [DFK+11] in terms
of the soundness error, and in fact, worse in terms of the instance size blow up (N = 2(logn)c+1

as
opposed to N = nO(1)). Even parameters similar to our main theorem can be obtained, albeit with
an almost exponential blowup. Consider k =

√
n for example. In this case log n = 2 log logN −

Θ(log log logN), and so δ(N) = 2−
√
n = N−1/Θ(log logN). From here, to get a polynomially small

error one can take O(log logN) rounds of (randomness efficient) sequential repetition, coming up
with a result that is similar to our Main Theorem 1.7 but with a huge blow up (N = n

√
n as

opposed to N = nO(1)).
We remark that a natural approach towards the sliding scale conjecture is to try and find a

randomness-efficient version of parallel repetition to match the parameters of Theorem 1.2 but with
q = O(1). Unfortunately, this approach has serious limitations [FK95] and has so-far been less
successful than the algebra-and-composition route, see also [DM11, Mos14].

Organization

We begin with some preliminaries in § 2. We introduce and define dPCPs and distributional
soundness in § 3. Our dPCPs have k provers which are analogous to (and stronger than) PCPs
that make k queries. In § 4, we state and prove a modular composition theorem for two (algebraic)
dPCPs. In § 5, we prove the main theorem, relying on specific “classical” constructions of PCPs
that are given in § 6, one based on the Reed-Muller code and low degree test, and one based on the
quadratic version of the Hadamard code. These PCPs are the same as in earlier constructs [RS97,
AS03, DFK+11, MR10, DH13] except that here we prove that they have the stronger notion of
small distributional soundness.

2 Preliminaries

2.1 Notation

All circuits in this paper have fan-in 2 and fan-out 2, and we allow only unary NOT and binary
AND Boolean operations as internal gates. The size of a Boolean circuit/predicate Φ is the number

6

of gates in Φ. Given a circuit/predicate Φ : {0, 1}n → {0, 1}, we denote by SAT(Φ) the set of
satisfying assignments for Φ, i.e.,

SAT(Φ) = {x ∈ {0, 1}n | Φ(x) = 1} .

We will refer to the following NP-complete language associated with circuits:

CKTSAT = {Φ | Φ is specified as a Boolean circuit and SAT(Φ) 6= ∅} .

We will follow the following convention regarding input lengths: n will refer to the length of the
input to the circuit Φ (i.e., Φ : {0, 1}n → {0, 1}) whileN will refer to the size of the circuit/predicate
(i.e., size(Φ) = N). Thus, N is the input size to the problem CKTSAT.

We will also refer to a similar language associated with arithmetic circuits. First, for some
notation. Given a finite field F, we consider arithmetic circuits over F with addition (+) and
multiplication (×) gates and constants from the field F. For a function Φ : Fn → F, the size of Φ
is the number of gates in the arithmetic circuit specifying Φ. We denote by SAT(Φ) the set of all x
such that Φ(x) = 0.

Definition 2.1 (Algebraic Circuit SAT). Given a field F, the Algebraic-Circuit-Satisfiability problem,
denoted by ALG-CKTSATF, is defined as follows:

ALG-CKTSATF = {Φ | Φ is specified by an arithmetic circuit over F and SAT(Φ) 6= ∅} .

As in the case of CKTSAT, n refers to the length of the input to the function Φ (i.e., Φ : Fn → F), while N
refers to the size of the arithmetic circuit Φ.

2.2 Error Correcting Codes

Let E : Fn → FN be an error correcting code with relative distance 1 − µ, i.e., for every x 6= x′,
Prj∈[N][E(x)j = E(x′)j] ≤ µ. For a word w ∈ FN that is not necessarily a correct codeword,
we can consider the list of all “admissible” codewords, i.e. codewords that have a non-negligible
correlation with w. We are interested in more than just a list: we want to associate with each index
j ∈ [N] an element in that list in a unique way. This will allow us to treat w as a random variable
W : for a random index j, the random variable W (j) will output the list-element associated with
the jth index.

Definition 2.2. Let τ > 0 be a parameter an let w : [N] → F. We define the τ -local decoding function
of w with respect to the code E, W : [N]→ Fn ∪ {⊥}, as follows:

• The τ -admissible words for w are

agrτ (w) =

{
x ∈ Fn

∣∣∣∣ Pr
j∈[N]

[E(x)j = wj] ≥ τ
}
.

• For any j ∈ [N], if there is a unique word x ∈ agrτ (w) such that E(x)j = wj we set W (j) = x.
Otherwise, we set W (j) = ⊥.

7

Claim 2.3. Let E : Fn → FN be an error correcting code with relative distance 1 − µ, let w : [N] → F ,
and let W : [N] → Fn be its τ -local decoding function with respect to E. Also, suppose that v : [N] → F
is a legal codeword, i.e., v = E(y) for some y ∈ Fn. Then

Pr
j∈[N]

[vj = wj and W (j) 6= y] ≤ τ + 4µ/τ2.

Proof. Without loss of generality, we may assume that τ ≥ 2
√
µ. Let us write agrτ (w) = {x1, x2, . . .}

and let Si = {j ∈ [N] | wj = (E(xi))j}. We say that j ∈ [N] is an ambiguous point for w if
j ∈ Si ∩ Si′ for some distinct i, i′. We first bound the fraction of ambiguous points for w.

By inclusion-exclusion, for any ` ≤ |agrτ (w)|

N ≥
∣∣∣∪`i=1Si

∣∣∣ ≥ ∑̀
i=1

|Si| −
∑
i 6=i′≤`

|Si ∩ Si′ |) ≥ `τN −
(
`

2

)
µN,

where we have used that by definition |Si| ≥ τN and by the distance of the code |Si ∩ Si′ | ≤ µN .
This implies that for every ` ≤ |agrτ (w)|,

1 ≥ `τ −
(
`

2

)
µ ≥ `τ − `2τ2/8

which clearly fails if ` = 2/τ , so |agrτ (w)| ≤ 2/τ and so

Pr
j∈[N]

[j is ambiguous] ≤ 1

N

∑
i 6=i′
|Si ∩ Si′ | ≤ 4µ/τ2 (2.1)

Now the event [vj = wj and W (j) 6= y] can occur either if j is an ambiguous point for w, or if
v is not τ -admissible with respect to w. But the former happens with probability at most 4µ/τ2

by (2.1), and the latter happens with probability at most τ , as otherwise v would have been τ -
admissible.

Remark 2.4. We minimize the quantity τ+4µ/τ2, by setting τ = (4µ)1/3. We refer to this minimum
as the agreement parameter η of the code E. Thus, η = 2τ = 2(4µ)1/3.

3 PCPs with distributional soundness

3.1 Standard PCPs

We begin by recalling the definition of a standard k-prover projection PCP verifier.

Definition 3.1 (PCP verifier).

• A k-prover projection PCP verifier over alphabet F is a probabilistic-time algorithm V that on input
Φ, a circuit of size N and a random input R of r(N) random bits generates a tuple (q, ϕ, g) where
q = (u, v1 . . . , vk−1) is a vector of k queries, ϕ : Fm → {0, 1} is a predicate, and g = (g1, . . . , gk−1)
is a list of k − 1 functions gi : Fm → F such that the size of the tuple (ϕ, g) is at most s(N).

• We write (q, ϕ, g) = V (Φ;R) to denote the query-predicate-function tuple output by the verifier V
on input Φ and random input R.

8

• It is good to keep in mind the k = 2 case as it captures all of the difficulty. In this case the output of V
is a label cover instance, when enumerating over all of V ’s random inputs. (The query pairs specify
edges (u, v) and (ϕ, g) specify which pairs of labels are acceptable).

• We think of V as a probabilistic oracle machine that on input (Φ;R) queries k provers Π = (A,B1, . . . , Bk−1)
at positions q = (u, v1, . . . , vk−1) respectively to receive the answers Π|q := (A(u), B1(v1), . . . , Bk−1(vk−1))
∈ Fm × Fk−1, and accepts iff the following checks pass: ϕ(A(u)) = 1 and gi(A(u)) = Bi(vi) for all
i ∈ {1, . . . , k − 1}.

• Given k provers Π = (A,B1, . . . , Bk−1), we will sometimes collectively refer to them as the “proof
Π” . Furthermore, we refer to A as the large prover and the Bi’s as the projection provers. We call
Π|q the local view of the proof Π on queries q and denote by V Π(Φ;R) the output of the verifier V on
input (Φ;R) when interacting with the k provers Π. Thus, V Π(Φ;R) = ACC if the checks pass and
is REJ otherwise.

• We call N the input size, k the number of provers, r(N) the randomness complexity, and s(N)
the answer size of the verifier V .

Definition 3.2 (standard PCPs). For a function δ : Z+ → [0, 1], a k-prover projection PCP verifier V is a
k-prover probabilistically checkable proof system for CKTSAT with soundness error δ if the following
completeness and soundness properties hold for every circuit Φ:

Completeness: If x ∈ SAT(Φ), then there exist k provers Π = (A,B1, . . . , Bk−1) that cause the verifier
V to accept with probability 1. Formally,

∃Π = (A,B1, . . . , Bk−1), Pr
R

[
V Π(Φ;R) = ACC

]
= 1.

In this case, we say that Π is a valid proof for the statement x ∈ SAT(Φ).

Soundness: If Φ /∈ CKTSAT (i.e, SAT(Φ) = ∅), then for every k provers Π = (A,B1, . . . , Bk−1), the
verifier V accepts Φ with probability at most δ(N). Formally,

∀Π = (A,B1, . . . , Bk−1), Pr
R

[
V Π(Φ;R) = ACC

]
≤ δ(N).

We then say that CKTSAT has a k-prover projective PCP with soundness error δ.

3.2 Distributional Soundness

We now present distributional soundness, a strengthening of the standard PCP soundness condition
that we find to be very natural. Informally, distributional soundness means that the event of the
verifier accepting is roughly the same as the event of the local view of the verifier being consistent
with a globally consistent proof, up to ”the soundness error”. I.e.,

Pr[accept] = Pr[accept and the local view agrees with a correct proof]± δ.

Thus, the local acceptance of the verifier is ”fully explained” in terms of global consistency.
A little more formally, every purported proof Π (valid or not) can be coupled with an “ideal-

ized” distribution Π̃(R) over valid proofs and ⊥ such that the behavior of the verifier on random
string R when interacting with the proof Π is identical to the corresponding behavior when in-
teracting with the “idealized” proof Π̃(R) upto an error of δ, which we call the distributional
soundness error. Formally,

9

Definition 3.3 (Distributional Soundness for k-prover PCPs). For a function δ : Z+ → [0, 1], a k-
prover projection PCP verifier V for CKTSAT is said to have distributional soundness error δ if for every
circuit Φ and any set of provers Π = (A,B1, . . . , Bk−1) there is an ‘idealized pair’ of functions x̃(R) and
Π̃(R) defined for every random string R such that the following holds.

• For every random string R, Π̃(R) is either a valid proof for the statement x̃(R) ∈ SAT (Φ), or
Π̃(R) = ⊥.

• With probability at least 1− δ over the choice of the random string R, the local view of the provers Π

completely agrees with the local view of the provers Π̃(R) or is a rejecting local view. In other words,

Pr
R

[
V Π(Φ;R) = ⊥ or Π|q = Π̃(R)|q

]
≥ 1− δ,

where q is the query vector generated by the PCP verifier V on input (Φ;R).

When the local views agree, i.e. Π|q = Π̃(R)|q, we say that Π̃ is successful (in explaining the success
of Π).

The advantage of distributional soundness is that it explains the acceptance probability of
every proof Π, valid or otherwise, in the following sense. Suppose a proof Π is accepted with
probability p. I.e., p fraction of the local views Π|q are “accepting”. Then, it must be the case
that but for an error probability of δ, each of these accepting views are projections of (possibly
different) valid proofs. It is an easy consequence of this, that distributional soundness implies
(standard) soundness.

Proposition 3.4. If CSAT has a k-prover PCP with distributional soundness error δ, then CKTSAT has a
k-prover PCP with (standard) soundness error δ. Furthermore, all other parameters (randomness, answer
size, alphabet, perfect completeness) are identical.

Proof. Suppose there exists a circuit Φ and a proof Π such that PrR
[
V Π(Φ;R) = ACC

]
> δ. Then,

by the distributional soundness property it follows that there exists at least one local accepting
view which is a projection of a valid proof. In particular, there exists a valid proof which implies
Φ ∈ CKTSAT.

3.3 PCP decoders

We now present a variant of PCP verifiers, called PCP decoders, introduced by Dinur and Har-
sha [DH13]. PCP decoders, as the name suggests, have the additional property that they not only
locally check the PCP proof Π, but can also locally decode symbols of an encoding of the original NP
witness from the PCP proof Π. PCP decoders are implicit in many previous constructions of PCPs
with small soundness error and were first explicitly defined under the name of local-readers by
Dinur et al. [DFK+11], as locally-decode-or-reject-codes (LDRC) by Moshkovitz and Raz [MR10]
and as decodable PCPs by Dinur and Harsha [DH13]. As in the case of PCP verifiers, our PCP
decoders will be projection PCP decoders.

10

Definition 3.5 (PCP decoder).

• A k-prover l-answer projection PCP decoder over alphabet F and encoding length t is a probabilistic-
time algorithm D that on input (Φ, F) of size N , a random input string R of r(N) random bits and
an additional input index j ∈ [t], where Φ : Fn → {0, 1} is a predicate, and F = (F1, . . . , Fl−1)
a list of l − 1 functions Fi : Fn → F, generates a tuple (q, ϕ, g, f) where q = (u, v1 . . . , vk−1) is a
vector of k queries, ϕ : Fm → {0, 1} is a predicate, g = (g1, . . . , gk−1) is a list of k − 1 functions
gi : Fm → F and f = (f0, . . . , fl−1) is a list of l functions fi : Fm → F such that the size of the
tuple (ϕ, g, f) is at most s(N).

• We write (q, ϕ, g, f) = D(Φ, F ;R, j) to denote the query-predicate-functions tuple output by the
decoder D on input pair (Φ, F), random input R and input index j.

• We think of D as a probabilistic oracle machine that on input (Φ, F ;R, j) queries k provers Π =
(A,B1, . . . , Bk−1) at positions q = (u, v1, . . . , vk−1) respectively to receive the answers Π|q :=
(A(u), B1(v1), . . . , Bk−1(vk−1)) ∈ Fm × Fk−1, then checks if ϕ(A(u)) = 1 and gi(A(u)) = Bi(vi)
for all i ∈ {1, . . . , k−1} and if these tests pass outputs the l-tuple (f0(A(u)), f1(A(u)), . . . , fl−1(A(u))) ∈
Fl+1 and otherwise outputs ⊥.

• Given k provers Π = (A,B1, . . . , Bk−1), we will sometimes collectively refer to them as the “proof
Π” . Furthermore, we refer toA as the large prover and theBi’s as the projection provers. We call Π|q
the local view of the provers Π on queries q and denote by DΠ(Φ, F ;R, j) the output of the decoder
D on input (Φ, F ;R, j) when interacting with the k provers Π. Note that the output is an element of
Fl+1 ∪ {⊥}.

• We call N the input size, k the number of provers, l the number of answers, r(N) the random-
ness complexity, and s(N) the answer size of the decoder D.

We now equip the above defined PCP decoders with the new notion of soundness, distribu-
tional soundness. We find it convenient (and sufficient) to define decodable PCPs only for predi-
cates and function tuples which have an algebraic structure over the underlying alphabet, which
is the field F. In other words, both the input tuple (Φ, F) and output tuple (ϕ, g, f) have the prop-
erty that the predicates Φ, ϕ and the functions F, f, g are specified as arithmetic circuits over F. For
the above reasons, we define dPCPs for ALG-CKTSAT (see Definition 2.1).

Definition 3.6 (decodable PCPs with distributional soundness). For δ ∈ (0, 1) and a code E : Fn →
Ft, a k-prover l-answer projection PCP decoder D is a k-prover l-answer decodable probabilistically
checkable proof system for ALG-CKTSATF with respect to encoding E with distributional soundness
error δ if the following properties hold for every input pair (Φ, F):

Perfect Completeness: For every x ∈ SAT(Φ), there exist k provers Π = (A,B1, . . . , Bk−1) such that
the PCP decoder D when interacting with provers Π outputs (E(x)j , F1(x), . . . , Fl−1(x)) for every
random input R and index j. I.e.,

Pr
R,j

[
DΠ(Φ, F ;R, j) = (E(x)j , F1(x), . . . , Fl−1(x))

]
= 1.

In other words, the decoderD on input (Φ, F ;R, j) outputs the j-th symbol of the encodingE(x) and
the tuple F evaluated at x. In this case, we say that Π is a valid proof for the statement x ∈ SAT(Φ).

11

Distributional Soundness: For any set of provers Π = (A,B1, . . . , Bk−1) there exists an idealized pair
of functions x̃(R) and Π̃(R) defined for every random string R such that the following holds.

• For every random string R, Π̃(R) is either a valid proof for the statement x̃(R) ∈ SAT (Φ), or
Π̃(R) = ⊥.

• For every j ∈ {1, . . . , t}, with probability at least 1− δ over the choice of the random string R,
the local view of the provers Π completely agrees with the local view of the provers Π̃(R) or is a
rejecting local view. In other words,

∀j ∈ [t], Pr
R

[
DΠ(Φ, F ;R, j) = ⊥ or Π|q = Π̃(R)|q

]
≥ 1− δ,

where q is the query vector generated by the PCP decoder D on input (Φ, F ;R, j).
When the local views agree, i.e. Π|q = Π̃(R)|q, we say that Π̃ is successful (in explaining the
success of Π). In this case we have that DΠ(Φ, F ;R, j) = (E(x̃(R))j , F (x̃(R))).

We then say thatD is a k-prover l-answer PCP decoder for ALG-CKTSAT with respect to encodingE with
perfect completeness and distributional soundness error δ.

Remark 3.7. The above definition is a non-uniform one in the sense that it is defined for a particular
choice of input lengths n, N , size of field F and encoding E : Fn → Ft. A uniform version of the
above definition can be obtained as follows: there exists a polynomial time uniform procedure
that on input n,N (both in unary), the field F (specified by a prime number and an irreducible
polynomial) and the encoding E (specified by the generator matrix) outputs the PCP decoder
algorithm. We note that our construction satisfies this stronger uniform property.

As in previous works [MR10, DH13], dPCPs imply PCPs with similar parameters

Proposition 3.8. If ALG-CKTSAT has a k-prover dPCP with distributional soundness error δ, then
ALG-CKTSAT has a k-prover PCP with distributional soundness error δ. Furthermore, all other pa-
rameters (randomness, answer size, alphabet, perfect completeness) are identical.

We conclude this section highlighting the differences/similarities between the above notion of
PCP decoders/dPCPs with that of Dinur and Harsha [DH13] besides the obvious difference in the
soundness criterion.

Remark 3.9.

• The above definition of PCP decoders is a generalization of the corresponding definition of
Dinur and Harsha [DH13] to the multi-prover (k > 2) setting. Since our PCP verifiers are
multi-prover verifiers and not just 2-prover verifiers, so are our PCP decoders. Thus, in our
notation, the PCP decoders of [DH13] are 2-prover 1-answer projection PCP decoders.

• The above defined PCP decoders locally decode symbols of some pre-specified encoding
E of the NP-witness. The PCP decoders of Dinur and Harsha [DH13] is a special case of
this when the encoding E is the identity encoding. However as we will see in the next sec-
tion, it will be convenient to work with encodings which have good distance. In particular,
the dPCP composition (considered in this paper) requires the encoding of the “inner” PCP
decoder to have good distance.

12

𝐶

𝐷

𝑢

𝑢′

𝑣

𝑣′

𝐴(𝑅′, 𝑗′)

𝐵(𝑅′, 𝑗′)

𝐴(𝑅, 𝑗)

𝐵(𝑅, 𝑗)

……

𝐴

𝐶∗

𝐷

𝐵

𝑣

𝑢, 𝑗𝑖𝑛

OuterInner Composed

…

𝐴
(𝑅

,𝑗
)

𝐵
(𝑅

,𝑗
)

𝐴
(𝑅

′,
𝑗′
)

𝐵
(𝑅

′,
𝑗′
)

𝑤
𝑧

𝑤 𝑧

Figure 1: Composition of two 2-prover dPCPs Dout and Din to yield composed dPCP Dcomp. Note
that Din,Dout make two queries each, and Dcomp makes four queries: w, z, (u, jin), v to A,B,C∗, D
respectively.

4 Composition

In this section, we describe how to compose two PCP decoders. Informally speaking, an “outer”
PCP decoder Dout can be composed with an “inner” PCP decoder Din if the answer size of the
outer PCP decoder matches the input size of the inner PCP decoder and the number of answers
of the inner PCP decoder is the sum of the number of answers of the outer PCP decoder and the
number of provers of the outer PCP decoder.

We begin with an informal description of the composition procedure. It might be useful to read
this description while looking at Figure 4, in which there are three dPCPs: the inner, the outer, and
the composed. We depict each dPCP as a bi-partite (or 4-partite) label-cover-like graph whose
vertices correspond to proof locations, and whose (hyper-)edges correspond to local views of the
PCP decoder. The main goal of composition is to reduce the answer size of the outer PCP decoder.
By this we are referring to the answer size of the large prover; as it is always possible to reduce the
answer size of projection provers at negligible cost. For simplicity, let us assume that each of the
inner and the outer PCP decoders use only two provers. The inner PCP decoderDin interacts with
provers A and B, and the outer PCP decoder Dout interacts with provers C and D. The composed
PCP decoder Dcomp works as follows: On input (Φ, F), Dcomp simulates Dout to obtain the tuple
(qout, ϕout, gout, fout). Letting qout = (u, v) we picture this as an edge in the bipartite graph of the
outer dPCP, and we label this edge with (ϕout, gout, fout). In its normal running Dout generates
queries qout = (u, v) and queries C on u and D on v. It then checks that ϕout(C(u)) = 0 and
gout(C(u)) = D(v) and if so it outputs fout(C(u)).

13

However, the answer C(u) is too large for Dcomp, and we would like to use the inner PCP
decoder Din to replace querying C directly, reducing the answer size at the cost of a few extra
queries. For this purpose, the composed PCP decoderDcomp now simulates the inner PCP decoder
Din on input (ϕout, (gout, fout)) to generate the tuple (qin, ϕin, gin, fin). The composed PCP decoder
Dcomp then queries the inner provers A,B on queries qin = (w, z) to obtain the answers α = A(w)
and β = B(z). It then performs the projection tests gin of the inner PCP decoder Din and produces
its output fin (α). These answers are then used to both perform the projection test of the outer PCP
decoder as well as produce the required output of the outer PCP decoder.

As usual in composition, we need to enforce consistency between the different invocations of
Din. The input for Din, namely (qin, ϕin, gin, fin), is generated using Dout’s randomness, namely R
and j. The provers A and B must be told this input because they need to know what they are
supposed to prove. Thus A and B are actually aggregates of prover-pairs A(R, j), B(R, j) ranging
over all possible R, j. There is a possibility that they could “cheat” by outputting a different
answer for the same outer question, depending on R and j. In particular, think of two outer query
pairs (u, v1) and (u, v2) generated by two different random strings R1, j1 and R2, j2. We need to
ensure that both invocations of Din are consistent with the same answer C(u).

We address this issue using the decoding feature of the inner PCP decoder Din. We replace
the outer prover C by a prover C∗, which we call the consistency prover. This prover is sup-
posed to hold an encoding, via Ein, of the outer prover C. The composed PCP decoder Dcomp ex-
pects the inner PCP decoder Din to decode a random symbol in this encoding (i.e., in Ein (C(u))).
This decoded value is then checked against the consistency prover C∗, which unlike the inner
provers is not informed of the outer randomness R. In all, the queries of Dcomp are w, z, (u, jin), v
to A,B,C∗, D respectively.

This additional consistency query helps us get around the above mentioned issue at a small
additional cost of ηin in the soundness error, where ηin is the agreement parameter of the encoding
Ein (see Remark 2.4).

It can be shown that this consistency query ensures that the distributional soundness error
of the composed decoder is at most the sum of the distributional soundness errors of the outer
and inner PCP decoders and the agreement parameter of the encoding Ein. Previous soundness
analyses using list-decoding soundness typically involved a Lin-fold multiplicative blowup in the
soundness error δout of the outer PCP decoder (i.e., δcomp ≥ Lin · δout) where Lin is the list-size of
the inner PCP decoder. Distributional soundness has the advantage of getting rid of this Lin-fold
blowup at the cost an additional ηin additive error.

The above description easily generalizes to k > 2 by replacing B by B1, . . . , Bkin−1 and D by
D1, . . . , Dkout−1.

As in the case of the definition of decodable PCPs, we find it sufficient to describe composition
of algebraic dPCPs and not general dPCPs.

Theorem 4.1 (Composition Theorem). Let F be a finite field. Suppose that Nout, Nin, rout, rin, sout,
sin, nout, nin, tout, tin, kout, kin, lout, lin ∈ Z+, and δout, δin, ηin ∈ [0, 1] are such that

• ALG-CKTSAT has a kout-prover lout-answer decodable PCP Dout with respect to encoding Eout :
Fnout → Ftout with randomness complexity rout, answer size sout, and distributional soundness error
δout on inputs Φ of size Nout,

• ALG-CKTSATF has a kin-prover lin-answer decodable PCP Din with respect to encoding Ein :

14

Fnin → Ftin with randomness complexity rin, answer size sin, and distributional soundness sound-
ness error δin on inputs ϕ of size Nin

• sout ≤ nin ≤ Nin,

• lin = kout + lout,

• the inner encoding Ein has agreement parameter ηin

Then, ALG-CKTSAT has a kout +kin-prover lout-answer dPCP, denotedDcomp = Dout~Din, with respect
to encoding Eout on inputs Φ of size N with

• randomness complexity rout + rin + log2(tin),

• answer size sin, and

• distributional soundness error δout + δin + ηin.

Furthermore, there exists a universal algorithm with black-box access to Dout and Din that can perform the
actions of Dcomp (i.e. evaluating Dcomp (Φ, F ;R, j)). On inputs of size N , this algorithm runs in time N c

for a universal constant c, with one call toDout on an input of size N and one call toDin on an input of size
sout.

Proof. We will follow the following notation to describe the composed decoder.

Provers of Dcomp Suppose the inner PCP decoder Din interacts with provers A,B1, . . . , Bkin−1

(hereA is the large prover andBi’s are the projection provers), and the outer PCP decoder interacts
with provers C,D1, . . . , Dkout−1 (here C is the large prover and Di’s are the projection provers).

As mentioned in the informal description, the composed PCP decoder Dcomp simulates Dout

except that instead of querying C, uses the inner PCP decoder Din and an additional consis-
tency prover C∗. Thus, the provers for the composed PCP decoder Dcomp will be the following:
A,B1, . . . , Bkin−1, C

∗, D1, . . . , Dkout−1; the main prover being A and the projection provers being
the rest. As mentioned in the outline, for each choice of the outer randomness Rout and index
jout the inner PCP decoder Din is simulated on a different input. Hence the corresponding inner
provers for the composed dPCPDcomp (i.e., A,B1, . . . , Bkin−1) are explicitly given the specification
of the outer randomness Rout and index jout as part of their queries. (Alternatively, one can think
of A and Bi as an aggregate of separate provers A(Rout, jout) and Bi(Rout, jout) per Rout, jout).

Randomness of Dcomp The randomness of Dcomp comes in three parts: the randomness Rout of
Dout, the randomness Rin of Din and a random index jin to perform the consistency test. Thus,
Rcomp = (Rout, Rin, jin).

Decoded Index of Dcomp The index jcomp being decoded by Dcomp is passed as the index jout

being decoded by Dout.

15

Indexing the answers of Dcomp Note that the number of answers lin of the inner PCP decoder
Din is the sum of the number of answers lout of the outer Dout and the number of provers kout

of outer Dout. Thus, fin is a list of lout + kout functions. We will find it convenient to index the
functions in fin with {0} ∪ ({out} × {0, 1, . . . , lout − 1}) ∪ ({proj} × {1, . . . , kout − 1}), such that
fin,(proj,i), i = 1, . . . , kout − 1, are the answers to be compared with the outer projection provers,
fin,0 is intended for the consistency test, and fin,(out,i), i = 0, . . . , `out − 1, give the answers for the
outer decoder.

With these conventions in place, here is the description of the composed PCP decoder, Dcomp:

Dcomp(Φ, F ;Rout, Rin, jin):

• Input: (Φ, F)

• Random input string: (Rout, Rin, jin)

• Index to be decoded: jout

• Provers: Π = (A,B1, . . . , Bkin−1, C
∗, D1, . . . , Dkout−1)

1. Initial Computation:

(a) [Simulating Dout] Run Dout (Φ, F ;Rout, jout) to obtain (qout, ϕout, gout, fout).
(b) [Simulating Din] Run Din (ϕout, (gout, fout) ;Rin, jin) to obtain (qin, ϕin, gin, fin).

2. Queries: Let qout = (u, v1, . . . , vkout−1) and let qin = (w, z1, . . . , zkin−1).

(a) Send query (Rout, jout, w) to prover A to obtain answer α = A(Rout, jout, w).
(b) For i = 1, . . . , kin−1, send query (Rout, jout, zi) to prover Bi to obtain answer βi =

Bi(Rout, jout, zi).
(c) Send query (u, jin) to prover C∗ to obtain answer γ = C∗(u, jin).
(d) For i = 1 . . . , kout − 1, send query vi to prover Di to obtain answer ζi = Di(vi).

3. Checks:

(a) [Inner local predicate] Check that ϕin (α) = 1.
(b) [Inner projection tests] For i = 1, . . . , kin−1, check that gin,i (α) = βi.
(c) [Consistency test] Check that fin,0 (α) = γ.
(d) [Outer projection tests] For i = 1, . . . , kout−1, check that fin,(proj,i) (α) = ζi.

4. Output: If all the checks in the above step pass, then return fin,(out,·) (α) else return ⊥.
The claims aboutDcomp’s parameters (randomness complexity, answer size, number of provers,

number of answers) except completeness and soundness error can be verified by inspection. Thus,
we only need to check completeness and soundness.

Completeness Let x ∈ SAT (Φ). By the completeness of outer Dout, there exist provers Πout =
(C,D1, . . . , Dkout−1), such that for all (Rout, jout) we have

DΠout

out (Φ, F ;Rout, jout) =
(
Eout (x)jout

, F1 (x) , . . . , Flout (x)
)
.

Fix any particular outer random stringRout and index jout. LetDout (Φ, F ;Rout, jout) = (qout, ϕout, gout, fout).
Since the outer decoderDout does not reject, we must have that y(Rout,jout) := C(u) satisfies ϕout. In

16

other words, y(Rout,jout) ∈ SAT (ϕout). Now, by the completeness of the inner Din, we have that for
these (Rout, jout) there exist provers Πin

(Rout,jout)
=
(
A(Rout,jout), B(Rout,jout),1, . . . , B(Rout,jout),kin−1

)
such that for all (Rin, jin) we have

D
Πin

(Rout,jout)

in (ϕout, (gout, fout) ;Rin, jin) =
(
Ein

(
y(Rout,jout)

)
jin
, gout

(
y(Rout,jout)

)
, fout

(
y(Rout,jout)

))
.

We are now ready to define the provers

Π = (A,B1, . . . , Bkin−1, C
∗, D1, . . . , Dkout−1)

for the composed decoderDcomp. As the name suggests, the projection proversDi, i = 1, . . . , kout−
1 are exactly the same as the outer projection provers in Πout. The consistency proverC∗ is defined
by encoding C(u) separately for each u as

C∗ (u, jin) := Ein (C(u))jin .

The projection provers Bi, i = 1, . . . , kin − 1 are defined as Bi (Rout, jout, zi) := B(Rout,jout),i (zi).
Finally, the large prover A is defined as A (Rout, jout, w) := A(Rout,jout)(w). It is easy to check that
according to this definition of Π, for each ((Rout, Rin, jin) , jout) it holds that

DΠ
comp (Φ, F ; (Rout, Rin, jin) , jout) =

(
Eout (x)jout

, F1 (x) , . . . , Flout (x)
)
.

This proves the completeness of Dcomp.

Distributional Soundness of Dcomp We prove the following statement about the distributional
soundness of Dcomp.

Lemma 4.2. Suppose the outer PCP decoder Dout has distributional soundness error δout with respect
to encoding Eout, and the inner PCP decoder Din has distributional soundness error δin with respect to
encoding Ein, and suppose Ein has agreement parameter ηin (see Remark 2.4). Then, the composed PCP
decoder Dcomp = Dout ~ Din has distributional soundness error δcomp ≤ δout + δin + ηin with respect to
encoding Eout.

Proof. Suppose Dcomp on input (Φ, F) interacts with provers

Π = (A,B1, . . . , Bkin−1, C
∗, D1, . . . , Dkout−1) .

To prove soundness of Dcomp, we need to construct for each composed random string Rcomp :=

(Rout, Rin, jin), functions x̃ (Rcomp) and Π̃ (Rcomp) such that Π̃ (Rcomp) is either ⊥ or a valid proof
for the statement x̃ (Rcomp) ∈ SAT (Φ), and for every jout we have

Pr
Rcomp

[
DΠ

comp (Φ, F ;Rcomp, jout) = ⊥ or Π|qcomp = Π̃ (Rcomp) |qcomp

]
≥ 1− (δout + δin + ηin),

where qcomp is the query vector generated by Dcomp.

The construction of x̃ (Rcomp) and Π̃ (Rcomp) relies on the soundness properties ofDout andDin. We
first locally-decodeC∗ to obtain a distribution over outer proversC. We then use the distributional
soundness of Dout to obtain an idealized outer proof (C̃, D̃i). We then use the soundness of Din to
obtain idealized inner proofs (Ã, B̃i).

17

Outer main prover Cjin : For each jin, we define an outer main prover Cjin using the consistency
prover C∗ as follows. Let τ = ηin/2 be the agreement parameter of Ein, as in Remark 2.4. For
each query u := qout,0 to the outer main prover, Cjin (u) is defined to be the jin-th entry of the
τ -local decoding of C∗ (u, ·) as in Definition 2.2 if well-defined and ⊥ otherwise.

Idealized outer pairs x̃out
jin

(Rout) and Π̃out
jin

(Rout): For each jin we have an outer proof

Πout
jin

= (Cjin , D1, . . . , Dkout−1) .

Note that only the C provers are different in the various outer provers Πout
jin

as we range
over jin. From the soundness of Dout for every Πout

jin
there is an idealized pair x̃out

jin
(Rout) and

Π̃out
jin

(Rout) =
(
C̃, D̃1, . . . , D̃kout−1

)
4 that “explain” its success.

Idealized inner pairs ỹin
(R,j) (Rin) and Π̃in

(R,j) (Rin): For every outer randomness R and index j let

Πin
(R,j) := (A (R, j, ·) , B1 (R, j, ·) , . . . , Bkin−1 (R, j, ·))

be the relevant part of the proof for Din.

Let (q, ϕ, g, f) = Dout (Φ, F ;R, j). WhenRout = R and jout = j, the composed decoderDcomp

simulates running Din with input (ϕ, (g, f) ;Rin, jin) and with the proof Πin
(R,j).

For each Πin
(R,j), the soundness of Din guarantees idealized prover pairs ỹin

(R,j) and Π̃in
(R,j)

(functions of Rin) that ”explain” its success.

We are ready to define the idealized (x̃, Π̃) pairs for the composed decoder Dcomp.

Idealized composed pairs x̃ (Rcomp) and Π̃ (Rcomp): Recall that Rcomp is short for (Rout, Rin, jin).
Define x̃ (Rcomp) := x̃out

jin
(Rout). We then set Π̃ (Rcomp) as follows: If Π̃out

jin
(Rout) is successful,

in particular Cjin(u) = C̃(u), set Π̃ (Rcomp) to be the set of provers(
Ã, B̃1, . . . , B̃kin−1, C̃

∗, D̃1, . . . , D̃kout−1

)
defined next.

• The outer projection provers D̃i are defined to be the same as in Π̃out
jin

(Rout).

• Let C̃ be the main prover in Π̃out
jin

(Rout). We define C̃∗ as follows:

C̃∗ (u, j) := Ein

(
C̃(u)

)
j
.

• For any pair (R, j) whereR ∈ {0, 1}rout and j ∈ [tout], we define Ã (R, j, ·) and B̃i (R, j, ·)
(for i = 1, . . . , kin − 1) as follows. Denote (q, ϕ, g, f) = Dout (Φ, F ;R, j) and suppose
q = (u, v1, . . . , vkout−1). If ỹin

(R,j)(Rin) = C̃(u) and also Π̃in
(R,j) (Rin) is successful, we set

Ã (R, j, ·) and the provers B̃i (R, j, ·) to be the main prover and projection provers in
Π̃in

(R,j) (Rin) respectively.

4The proofs
(
C̃, D̃1, . . . , D̃kout−1

)
depend on jin and Rout so more formally could be written as(

C̃jin(Rout), D̃jin,1(Rout), . . . , D̃jin,kout−1(Rout)
)

, but we will drop the indices for ease of readability.

18

Otherwise, if ỹin
(R,j)(Rin) 6= C̃(u) or Π̃in

(R,j) (Rin) is not successful, we define Ã (R, j, ·)
and B̃i (R, j, ·) by letting them be some valid proofs for the statement C̃(u) ∈ SAT (ϕ)

(Note that C̃(u) satisfies ϕ since Π̃out
jin

(Rout) is successful).

If either Π̃out
jin

(Rout) is not successful or any of the intermediate objects in the above definition
are ⊥, then we set Π̃ (Rcomp) to ⊥.

It remains to show that the pair x̃ (Rcomp) and Π̃ (Rcomp) has the desired properties. It follows
by inspection of the definition of Π̃ (Rcomp) that whenever it is not ⊥, it is a valid proof of the
statement x̃ (Rcomp) ∈ SAT (Φ) and agrees with the local view of Π on input (Φ, F ;Rcomp, jout).

So it remains to show that for every jout,

Pr
Rcomp

[
Π̃ (Rcomp) = ⊥ and DΠ

comp (Φ, F ;Rcomp, jout) 6= ⊥
]
≤ δout + δin + ηin.

We partition the above event intro three parts according to the highest indexed condition among
the following three conditions that does not hold — one of them must not hold for Π̃ (Rcomp) to be
equal to ⊥.

1. Π̃out
jin

(Rout) is successful, in particular Cjin(u) = C̃(u).

2. ỹin
(Rout,jout)

(Rin) = C̃jin(u).

3. Π̃in
(Rout,jout)

(Rin) is successful.

We separately bound the probability of each event in this partition.

• We bound the probability that Condition 3 does not hold, namely that Π̃in
(Rout,jout)

(Rin) is not
successful, and yet Dcomp does not reject. If Dcomp doesn’t reject then in particular checks

Check 3a and Check 3b pass, which means that D
Πin

(Rout,jout)

in (ϕout, (gout, fout) ;Rin, jin) 6= ⊥.
But the soundness of Din implies that the probability over the choice of Rin that this occurs
and yet Π̃in

(Rout,jout)
(Rin) is not successful is bounded by δin.

• Now we bound the probability that Condition 3 holds, Condition 2 does not hold, and
yet Dcomp does not reject. When Condition 3 holds, the output of the Din simulation for

the encoding is Ein

(
yin

(Rout,jout)
(Rin)

)
jin

. It is thus enough to bound the probability that

ỹin
(Rout,jout)

(Rin) 6= C̃(u) and yet Ein

(
ỹin

(Rout,jout)
(Rin)

)
jin

= C∗ (u, jin), i.e. Check 3c passes.

Since by definition Cjin(u) is the τ -local decoding of C∗ (u, ·) at position jin, Claim 2.3 and
Remark 2.4 imply that the probability of this event over the choice of jin is bounded by the
agreement parameter ηin.

• It remains to bound the probability that Conditions 3 and 2 hold but Condition 1 does
not, and yet Dcomp does not reject. When Condition 2 and 3 hold it means that C̃ (u) =
ỹin

(Rout,jout)
(Rin) ∈ SAT (ϕout) and the output of the simulated Din computed by Dcomp is

fin (A (Rout, jout, w)) =

((
Ein

(
C̃ (u)

)
jin
, gout

(
C̃ (u)

)
, fout

(
C̃ (u)

)))
.

19

IfDcomp does not reject it means that the values of gout

(
C̃(u)

)
match the ones obtained from

the outer projection provers, to which it is compared in Check 3d. But these are also the
values used by Dout when it is run on input (Φ, F ;Rout, jout) with the proof Π̃out

jin
, which

means that D
Π̃out
jin

out (Φ, F ;Rout, jout) 6= ⊥. But the probability over the choice of Rout that this
happens while Condition 1 fails is bounded by δout, the distributional soundness error of
Dout.

This proves the distributional soundness of Dcomp.

This completes the proof of the Composition Theorem 4.1.

5 Proof of Main Theorem

Theorem 5.1 (Main Construct). Every language L in NP has a O(lg lgN/ lg lg lgN)-prover projective
PCP with the following parameters. On input a Boolean predicate/circuit Φ of size N , the PCP has

• randomness complexity O(lgN),

• query complexity O(lg lgN/ lg lg lgN),

• answer size O(lgN/poly lg lgN),

• perfect completeness, and

• soundness error N1/(lg lgN)Ω(1) .

The PCP with inverse polynomial soundness error stated in Main Theorem 1.7 is obtained by
sequentially repeating the above PCP poly(lg lgN) times in a randomness efficient manner.

5.1 Building Blocks

The two building blocks, we need for our construction, are two decodable PCP based on the
Reed-Muller code and the Hadamard code respectively. The constructions of both these objects is
standard given the requirements of the dPCP. These PCPs are based on two encodings the low-
degree encoding LDE and the quadratic Hadamard encoding QH respectively. The definition of
these codes is given in the next section (§ 6). For the purpose of this section, it suffices that these
are error correcting codes with very good distance.

Theorem 5.2 (Reed-Muller based dPCP). For any finite field F, and parameter h such that 1 < h <
|F|0.1 and any ` > 0, there is a 2-prover `+1-answer decodable PCPD with respect to the encoding LDEF,h
for the language ALG-CKTSATF with the following parameters: On inputs (i) a predicate Φ : Fn → {0, 1}
and (ii) functions F1, . . . , F` : Fn → F given by arithmetic circuits over F whose total size is N , the dPCP
D has (let m = logN/ log h),

• randomness complexity O(logN +m log |F|) = O(m log |F|),

• answer size s, s′ = O(m(m+ `)),

20

• and distributional soundness error 1/|F|0.1.

Theorem 5.3 (Hadamard based dPCP). For any finite field F, and any ` > 0, there is a 2-prover `+ 1-
answer decodable PCP DQH,F with respect to the encoding QHF for the language ALG-CKTSATF with the
following parameters: On inputs (i) a predicate Φ : Fn → {0, 1} and (ii) functions F1, . . . , F` : Fn → F
given by arithmetic circuits over F whose total size is N , the dPCP DQH,F has

• randomness complexity O(N2 log |F|),

• answer size s, s′ = O(`),

• perfect completeness, and

• distributional soundness error ≤ 1/|F|0.1.

These theorems are proved in Section 6.

5.2 Putting it together (Proof of Theorem 5.1)

By NP-completeness of CKTSAT it suffices to prove Theorem 5.1 for CKTSAT. Let Ψ be an instance
of CKTSAT and let N denote its size. Let ε = 20 lg lg lgN/9 lg lgN be a parameter5. Note that
(lgN)ε = (lg lgN)20/9. Let M = 2(lgN)1−ε

= N1/(lg lgN)20/9
. Choose a prime number p ∈ (M, 2M)6

and let F = GF (p) be the finite field of size p, which we fix for the rest of the proof. We may
assume wlog. that the predicate Ψ has only AND and NOT gates. Given this, we can arithmetize
Φ to obtain an arithmetic circuit Φ over F by replacing AND gates by multiplication gates and
NOT gates by 1 − x gates. Thus, we can view the N -sized predicate Φ as an N -sized arithmetic
circuit over the field F.

We construct a PCP for Ψ with the required parameters by constructing a dPCP for Φ with
respect to the encoding LDEF,h0 for some suitable choice of h0. This dPCP is in turn constructed
by composing a sequence of dPCPs each with smaller and smaller answer size. Each dPCP in the
sequence will be obtained by composing the prior dPCP (used as an outer dPCP) with an adequate
inner dPCP. The outermost dPCP as well as the inner dPCP in all but the last step of composition
will be obtained from Theorem 5.2 by various instantiations of the parameter h. The innermost
dPCP used in the final stage of the composition will be the dPCP obtained from Theorem 5.3.

Stage I: Let n0 = N and h0 = |F|0.1 = 20.1(lgN)1−ε
= N0.1/(lg lgN)20/9

. For this choice of n0, h0

and F and l0 = 0, let D(0) := D0 be the dPCP obtained from Theorem 5.2. This will serve as
our outermost dPCP. Let us recall the parameters of this dPCP. Observe that for this setting m0 =
logh0

n0 = lgN/ lg h0 = 10(lg lgN)20/9. D(0) is a 2-prover decodable PCP with respect to the
encoding LDEF,h0 for the language ALG-CKTSATF with the following parameters: On inputs
Φ of size N over F, D(0) has randomness complexity R0 = c · m0 lg |F| = 10c lgN , answer size
s0 = 2(m0h0)2 < 20.3(lgN)1−ε

= N0.3/(lg lgN)20/9
and distributional soundness error 1/|F|0.1.

5In the construction, setting ε = 20 lg lg lgN/9 lg lgN will prove the poly lg lgN -query PCP with inverse polynomi-
ally soundness error (as stated in the main theorem). It is to be noted that setting ε to a constant in (0, 1) will recover
the DFKRS PCP.

6Since the procedure is allowed to run in polynomial time in N , it has enough time to examine every number in the
range (M, 2M) and check if it is prime or not.

21

Let ε′ = ε/10 = 2 lg lg lgN/9 lg lgN . Let i∗ be the smallest integer such that 1− ε− iε′ < 9ε/80.
Note that i∗ = O(1/ε) = O(lg lgN/ lg lg lgN). For i = 1, . . . , i∗, let Di be the dPCP obtained by in-
stantiating the dPCP in Theorem 5.2 with parameters hi = 2(lgN)1−ε−iε′

= N1/(lg lgN)20/9·(1+i/10)
and

li = 2i. We will run dPCPDi on inputs of instance size ni = 23(lgN)1−ε−(i−1)ε′
= N3/(lg lgN)20/9·(1+(i−1)/10)

.
Thus, mi = lg ni/ lg hi = 3(lgN)ε

′
= 3(lg lgN)2/9. Hence, Di is a (2i + 1)-answer 2-prover dPCP

that on inputs of instance size ni has randomness complexity Ri = cmi lg |F| = 3c(lgN)1−ε+ε′ =

3c lgN/(lg lgN)2, answer size si = 2(mihi)
2 < 23(lgN)1−ε−iε′

= N3/(lg lgN)20/9·(1+i/10)
and distribu-

tional soundness error δi = 1/|F|0.1.
Observe that our setting of parameters satisfy si−1 ≤ ni and li+1 +1 = 2(i+1)+1 = (li+1)+2.

So the answer size of the predicates produced by dPCP Di are valid input instances for dPCP
Di+1, for i = 0, . . . , i∗− 1. Hence, we can compose them with each other. Consider the dPCPs D(i)

defined as follows:

D(i) := D(i−1) ~Di, i = 1, . . . , i∗.

Also note that the code LDEF,hi has block length |F|mi and distance (1 − O(mihi)/|F|) ≥ 1 −
1/
√
|F|. Thus, the agreement parameter ηi is at least 1/|F|1/6.

Let D(I) := D(i∗) be the final dPCP obtained as above. Observe that it is a 2i∗ = O(1/ε) =
O(lg lgN/ lg lg lgN)-prover dPCP with respect to the encoding LDEF,h0 for the language ALG-CKTSATF
with the following parameters: On inputs Φ of sizeN over F, the dPCPD(I) has randomness com-
plexity R(I), distributional soundness error δ(I) and answer size s(I) (which are calculated below).

R(I) = R0 +

i∗∑
i=1

(Ri + log(blocklength(LDEF,hi)))

= 10c lgN +
i∗∑
i=1

(cmi lg |F|+mi lg |F|)

= 10c lgN +

i∗∑
i=1

3(c+ 1)
lgN

(lg lgN)2

= 11c lgN [since i∗ ≤ lg lgN].

s(I) = si∗

= 23(lgN)1−ε−i∗ε′

≤ 23(lgN)9ε/80

= 23(lg lgN)1/4
.

δ(I) = δ0 +

i∗∑
i=1

(δi + ηi)

= (i∗ + 1) ·
(

1

|F|0.1
+

1

|F|1/6

)
≤ 1

|F|0.05
.

22

Stage II: We now compose the dPCP D(I) constructed in Stage I with another dPCP obtained
from Theorem 5.2 as follows. Let DII be the dPCP obtained from Theorem 5.2 by setting h = 2

and l = 2i∗. This dPCP will run on inputs of instance size nII ≥ s(I) = 23(lgN)9ε/80
= 23(lg lgN)1/4

.
Thus, mII = lg nII/ lg h = 3(lgN)9ε/80 = 3(lg lgN)1/4. Thus, DII is a 2-query (2i∗ + 1)-answer
dPCP on inputs of instance size nII , randomness RII = c · mII log |F| = 3c(lgN)1−71ε/80 =
3c lgN/(lg lgN)71/36, answer size sII = 2(mIIhII)

2 < O((lgN)9ε/40) = O((lg lgN)1/2) and dis-
tributional soundness error δII = 1/|F|0.1. Let D(II) be the dPCP obtained by composing dPCP
D(I) obtained in the previous stage with dPCP DII , i.e., D(II) = D(I) ~DII . The encoding LDEF,h
has blocklength |F|mII and distance 1−O(mIIh)/|F| ≥ 1−2/|F|. Hence, its agreement parameter is
at least 1/|F|1/6. Thus, dPCPD(II) is a 2(i∗+1)-prover dPCP with respect to the encoding LDEF,h0

for the language ALG-CKTSATF with the following parameters: On inputs Φ of size N over F, the
dPCP D(II) has randomness complexity R(II) = R(I) + RII + mII lg |F| = O(lgN), distributional
soundness error δ(II) = δ(I) + δII + ηII ≤ 1

|F|0.05 and answer size s(II) = sII = O(
√

lg lgN).

Stage III: We now compose dPCP D(II) with the Hadamard based dPCP constructed in Theo-
rem 5.3 to obtain our final dPCP. Let DIII be the Hadamard based dPCP constructed in The-
orem 5.3 with l = 2(i∗ + 1), i.e., DIII = DQH,F,2(i∗+1). DIII will be run on instances of size
nIII = O(

√
lg lgN). Thus, DIII is a 2-prover (2i∗ + 3)-answer dPCP with respect to the encoding

QHF for the language ALG-CKTSAT with the following parameters: on inputs of instance size
nIII , it has randomness complexity RIII = O(n2

III lg |F|) = O(lgN), answer size sIII = O(i∗)
and distributional soundness error δIII = 1/|F|0.1. Furthermore, the blocklength of the encoding
is |F|O(n2

III) and has agreement parameter 1/
√
|F|. The final dPCP D(III) is given by composing

D(II) with DIII , i.e., D(III) = D(II) ~ DIII . Note that s(II) ≤ nIII . Thus, the final dPCP D(III) is
a 2(i∗ + 2)-prover dPCP with respect to the encoding LDEF,h0 for the language ALG-CKTSATF
with the following parameters: On inputs Φ of size N over F, the dPCP D(III) has random-
ness complexity R(III) = R(II) + RIII + O(n2

III lg |F|) = O(lgN), distributional soundness error
δ(III) = δ(II) + δIII + ηIII ≤ 1

|F|0.05 and answer size s(III) = sIII = O(i∗) = O(1/ε).

Summarizing, we have constructed aO(lg lg n/ lg lg lg n)-prover dPCPD(III)forALG-CKTSATF
with respect to the encoding LDEF,h0 with the following parameters: on inputs Φ of size N ,
D(III) has randomness complexity O(lgN), answer size O(lg lgN/ lg lg lgN) and and distribu-
tional soundness error N1/poly lg lgN . This dPCP implies a PCP for CKTSAT with parameters as
stated in Theorem 5.1. Note that the answer size is larger by a factor of log |F| = lgN/poly lg lgN
since the size of the output predicate is measured in terms of its Boolean circuit complexity as
opposed to arithmetic complexity.

5.3 Optimality of our parameter choices

In this section, we show the optimality of the parameters (upto constants) obtained in our Theo-
rem 5.1 using the Reed-Muller based dPCP (Theorem 5.2) and the Hadamard based (Theorem 5.3)
dPCP as building blocks in our composition paradigm. Of course, if one had an improved build-
ing block, then one can potentially improve on the construction.

Let N be the size of the instance and let δ be the soundness error of the construction. Define
parameter ε as follows: log(1/δ) = (logN)1−ε. Consider any sequence of compositions of the
Reed-Muller based dPCP and Hadamard based dPCP. Observe that the size of the Hadamard
based dPCP is exponential in its input instance size. Hence, the first sequence of composition steps

23

must involve only the Reed-Muller based dPCP wherein the size of the instance is sufficiently
reduced to allow for composition with the Hadamard based dPCP.

We first argue that one needs to perform at least Ω(1/ε) steps of composition of the Reed-
Muller based dPCP so that the instance size is sufficiently small to apply the Hadamard based
dPCP. Suppose we perform t steps of composition of the Reed-Muller based dPCP wherein at the
i-th step the instance size drops from Ni−1 to Ni (here, N0 = N). Since the error at each step
is at most δ, the field size used in each stage of the Reed-Muller based dPCP must be at least
1/δ = 2logN1−ε

. To maintain polynomial size of the overall construction, each of the Reed-Muller
based dPCPs used in the t steps of composition must satisfy |Fi|mi = NO(1) where Fi and mi are
the field and dimension used in the construction of the Reed-Muller based dPCP used in the i-th
stage of the composition. Hence, mi ≤ O((logN)ε). Thus, the reduction in size in the i-th step
is at most Ni ≥ N

1/mi
i−1 = N

1/(logN)ε

i−1 , which implies inductively that the instance size after t steps
of composition of the Reed-Muller based dPCP is at least 2logN1−tε

. Hence, to obtain a size that
allows for composition with the Hadamard-based dPCP we must have at least t = Ω(1/ε) steps of
composition.

We now account for the total randomness used in these t = Ω(1/ε) steps of composition. Since
the error in each step is at most δ, the randomness uses in each step must be at least log(1/δ) =
(logN)1−ε. Hence, the total randomness used in these t steps is at least t · log(1/δ) = Ω(1/ε) ·
(logN)1−ε. Since the size of the entire construction is at most polynomial we must have that
1/ε · (logN)1−ε = O(logN). Solving for ε7, we obtain that ε ≥ log log logN/ log logN . Hence,
the best soundness error obtained by a sequence of composition involving the Reed-Muller and
Hadamard based dPCPs is at least δ = 2−(logN)1−ε

= N1/poly log logN proving optimality of the
Theorem 5.1 construction.

6 Construction of specific dPCPs

In this section, we construct our two building blocks; the Hadamard-based dPCP (Theorem 5.3)
and the Reed-Muller-based dPCP (Theorem 5.2). Our construction proceeds by adapting previous
constructions of these objects which guaranteed only list-decoding soundness. We obtain distribu-
tional soundness by observing that if the dPCP satisfies list-decoding soundness and the encoding
has very good distance (nearly 1), then the dPCP satisifies distributional soundness.

6.1 Preliminaries

Let F be a finite field.

Definition 6.1 (Hadamard). The Hadamard encoding of a string a ∈ Fm is a function h : Fm → F
defined by

∀α ∈ Fm, h(α) =
∑
i

αiai.

Definition 6.2 (Quadratic Hadamard). The Quadratic Hadamard encoding (QH encoding for short) of
a string a ∈ Fm, denoted QHa, is defined to be the Hadamard encoding of the string w = a ◦ b ∈ Fm+m2

where b ∈ Fm2 is defined by bim+j = aiaj for all 1 ≤ i, j,≤ m (i.e. b = a⊗ a).
71/ε · (logN)1−ε = O(logN) implies that 1/ε ≤ O((logN)ε or equivalently 1/ε · log(1/ε) ≤ O(log logN). This

implies that ε ≥ log log logN/ log logN .

24

Let εi ∈ Fm+m2
be the unit vector with 1 on the ith coordinate and zeros elsewhere. Observe

that if h = QHa is the quadratic functions encoding of a, then for each 1 ≤ i, j ≤ m,

h(εi) = ai and h(εi·m+j) = aiaj .

Let H ⊂ F and denote h = |H|. Fix an arbitrary 1-1 mapping H ↔ [h] := {0, 1, . . . , h− 1}.
We refer to elements in H as integers in [h] relying on this mapping. For any m > 0 we map
x = (x1, . . . , xm) ∈ Hm to x̃ = x1 + x2h+ . . .+ xmh

m−1 + 1 ∈ [hm].

Definition 6.3 (Low Degree Extension). Given a string a ∈ Fn, we define its Low Degree Extension
with respect to H ⊆ F, denoted LDEa, as follows. Let m be the smallest integer such that hm ≥ n. Let
f : Fm → F be the unique function whose degree in each variable is at most h, defined on Hm by

∀x ∈ Hm, f(x) =

{
ax̃ x̃ ∈ [n];
0 n < x̃ ≤ hm.

and extend f to Fm by interpolation, and set LDEa = f .

Claim 6.4. Let a ∈ Fhm1 , and let b ∈ Fhm2−hm1 , so that a ◦ b ∈ Fhm2 . If g1 = LDEa and g2 = LDEa◦b
then

∀x1, . . . , xm ∈ Fm, g1(x1, . . . , xm1) = g2(x1, . . . , xm1 , 0̄).

Proof. For each (x1, . . . , xm) ∈ Hm we have

g1(x1, . . . , xm) = ax̃ = (a ◦ b)x̃ = g2(x1, . . . , xm, 0̄).

Thus, g1 and g2 coincide for all points in Hm. As a function of x1, . . . , xm, g1 and g2(x1, . . . , xm, 0̄)
have degree at most h in each variable, so they must coincide for all points in Fm too.

Definition 6.5 (Curve). Given k < |F| and a sequence of k + 1 points τ = (z0, . . . , zk) in Fm, define

curveτ : F→ Fm

to be the polynomial function of degree at most k which satisfies curveτ (i) = zi for i = 0, . . . , k.

Definition 6.6 (Manifold). Given τ = (z1, . . . , zk) ∈ Fm, and three points x1, x2, x3 ∈ Fm define
γz1,...,zk;x1,x2,x3 : F4 → Fm to be the following degree k + 1 function

γz1,...,zk;x1,x2,x3(t0, t1, t2, t3) = t0 · curvex1,z1,...,zk(t1) + t2x2 + t3x3.

Observe that γz1,...,zk;x1,x2,x3 contains the points z1, . . . , zk and x1, x2, x3.
We now state a low degree test, which has appeared in several places in the literature [RS97,

DFK+11, MR10]. First, a little notation. Supposed that Q : Fm → F is a function of degree ≤ d,
and γz1,...,zk,x1,x2,x3(t0, t1, t2, t3) = t0 · curvex1,z1,...,zk(t1) + t2x2 + t3x3 is a manifold in Fm of degree
at most k + 1. Then the function Q ◦ γ : F 4 → F has degree at most d(k + 1) and can be specified
by
(
d(k+1)

4

)
coefficients. Given a manifold γ and a function M(γ) : F4 → F, we denote for each

x ∈ Im(γ)

M(γ)[x] := M(γ)(t1, . . . , t4) for t1, . . . , t4 such that γ(t1, . . . , t4) = x.

The following lemma appears in [MR10, Lemma 4.4, Section 10.2 (in appendix)] and a similar
lemma can be found in [Har10, Lecture 9].

25

Lemma 6.7 (Low Degree Test - Manifold vs. Point). Let m, k, d > 0, let δ = (mkd/ |F|)1/8, and let
z1, . . . , zk ∈ Fm be fixed. Let Q : Fm → F be an arbitrary function, supposedly of degree ≤ d. There
exists a list of L ≤ 2/δ degree d functions Q1, . . . , QL : Fm → F such that the following holds. Let Γ be a
collection of manifolds,

Γ = {γz1,...,zk,x1,x2,x3(t0, t1, t2, t3) = t0 · curvex1,z1,...,zk(t1) + t2x2 + t3x3}x1,x2,x3

one per choice of x1, x2, x3 ∈ Fm. Let M : Γ → F(d(k+1)
4) specify for each γ the coefficients of a degree-

d(k + 1) function supposedly equal to Q ◦ γ : F4 → F. Then,

Pr
z,γ3z

[Q(z) = M(γ)[z] and Q(z) 6∈ {Q1(z), . . . , QL(z)}] ≤ δ.

Finally, we state the following lemma, which gives a probabilistic verifier that inputs a predi-
cate Φ : Fn → {0, 1} and a list of functions F1, . . . , F` : Fn → F, and checks that (a, b) are such that
Φ(a) = 1 and bi = Fi(a) for each i = 1, . . . , ` (b = F (a) for short).

Lemma 6.8 (Initial Verifier). Given a predicate Φ : Fn → {0, 1} and functions F1, . . . , F` : Fn → F
whose total circuit complexity is N , there is a randomized verifier V0 that uses O(log |F|+ logN) random
bits and generates a quadratic polynomial p : Fm → F on m = O(N) variables such that, given access to a
proof π = a ◦ b ◦ s ∈ Fm,

• If Φ(a) = 1 and Fi(a) = bi for each i = 1, . . . , `, then there is a unique string s = s(a, b) such that

Pr
p∼V0

[p(a, b, s) = 0] = 1.

• If either Φ(a) = 0 or bi 6= Fi(a) for some 1 ≤ i ≤ `, or s 6= s(a, b), then

Pr
p∼V0

[p(a, b, s) = 0] ≤ 2

|F|
.

This verifier would be ideal except for one drawback: in order to evaluate p(π) it makes an
unbounded number of queries to the proof π.

Proof. (sketch) The proof of this lemma is standard: s will specify the values of all of the inter-
mediate gates of the circuit computing Φ as well as the circuits computing F1, . . . , F`. The validity
of each intermediate computation step can be checked by a quadratic or linear equation over
the entries in s. The verifier V0 will use its randomness to generate a (pseudo)random sum of
these equations (using an error correcting code, details are omitted). This can be expressed as a
quadratic polynomial over the set of new variables.

6.2 Hadamard based dPCP

In this section we construct a dPCP based on the Hadamard encoding, given formally in the fol-
lowing lemma.

Theorem 5.3 (Restated) (Hadamard based dPCP) For any finite field F, and any ` > 0, there is a 2-
prover `+1-answer decodable PCPDQH,F with respect to the encoding QHF for the language ALG-CKTSATF
with the following parameters: On inputs (i) a predicate Φ : Fn → {0, 1} and (ii) functions F1, . . . , F` :
Fn → F given by arithmetic circuits over F whose total size is N , the dPCP DQH,F has

26

• randomness complexity O(N2 log |F|),

• answer size s, s′ = O(`),

• perfect completeness, and

• distributional soundness error ≤ 1/|F|0.1.

We define the verifier for Theorem 5.3.

Decoder Protocol On input Φ, F1, . . . , F`; j, r, let V0 be the verifier from Lemma 6.8, and let π ∈
Fm be the proof that V0 expects. Our decoder V expects the B prover to hold the QH encoding
of π and the A prover is expected to give restrictions of B to specified subspaces. It is known
that with O(1) queries into B the decoder could check that B is indeed a QH encoding of a valid
proof π, as well as decode any quadratic function of π. The A prover is used to simulate this while
making only one query to A and one to B. This is done by computing several query points for the
former test, and then taking a random subspace S containing these points as well as a couple of
uniformly random ones.

The low degree test (see Lemma 6.11 below) guarantees that if A’s answer on the subspace
S is consistent with B’s answer on a random point in S, then B is linear (in other words, it is a
Hadamard encoding of some string). The decoder will also perform some other tests on values in
S which ensure that moreover B is a valid QH encoding of a valid π.

1. Computing the query points.

(a) Choose β, γ ∈ Fm uniformly at random, and define u1, u2, u3 ∈ Fm+m2
as follows:

u1 =
m∑
i=1

βiεi, u2 =
m∑
i=1

γiεi, u3 =
m∑
i=1

m∑
i′=1

βiγi′εim+i′ .

(These are points for the multiplication test: if we already know that B is a Hadamard
encoding of some string, then this test will ensure it is moreover a QH encoding.)

(b) Draw a random quadratic polynomial p(t1, . . . , tm) = α0 +
∑

i αiti +
∑

i,i′ αii′titi′ from
the distribution of V0 (from Lemma 6.8). To check that p(π) = 0 we define z ∈ Fm2 (for
m2 = m+m2) by

z =
m∑
i=1

αiεi +
m∑
i=1

m∑
i′=1

αii′εim+i′

(If B were equal to QHπ for some string π then B(z) + α0 = p(π) so the value of B(z)
could be used to check that p(π) = 0).

(c) For each i = 1, . . . , ` let oi = εi+n. Let o`+1 be the point in Fm2 corresponding to
j = (δ1, . . . , δn+n2) ∈ Fn+n2

. (We are using here the fact that π = a ◦ b ◦ s so the QF
encoding of π contains in it the QF encoding of a. Explicitly, set

o`+1 =
n∑
i=1

δiεi +
n∑
i=1

n∑
i′=1

δin+i′εim+i′ .

27

(These are the points to be output by the decoder.)

2. Choose x1, x2, x3 ∈ Fm2 uniformly at random, consider the (l + 8)-dimensional linear sub-
space

S = span(x1, x2, x3, u1, u2, u3, z, o1, . . . , o`+1) ⊂ Fm2 .

We assume there is a canonical mapping that maps each subspace S to a particular basis
~vS = {v1, . . . , v`+8} ⊂ Fm2 for S and send it to the A prover and let A(~vS) ∈ F`+8 be the
prover’s answer. The answer specifies a linear function AS : S → F defined by

∀t1, . . . , t`+8 ∈ F, AS
(∑

i

tivi
)

:=

`+8∑
i=1

ti ·A(~vS)i

3. Send x1 to the B prover and let B(x1) be its answer.

4. Reject unless

(a) AS(x1) = B(x1), and

(b) AS(z) + α0 = 0.

(c) AS(u1)AS(u2) = AS(u3), and

5. Output AS(o1), . . . , AS(o`).

The decoding PCP will follow the protocol above, using its randomnessR for selecting p, β, γ, x1, x2, x3,
and generate an output (q, ϕ, f, g) as follows:

• The queries q are q0 = ~vS to the first prover and q1 = x1 to the second prover.

• The predicate ϕ - rejects iff at least one of the tests in Items 4b and 4c reject.

• The function g computes AS(x1) (for the consistency test in Item 4a).

• The functions f1, . . . , f`+1 - compute AS(oi) for i = 1, . . . , `+ 1.

Lemma 6.9 (Perfect Completeness). The verifier has perfect completeness. Namely, for every a ∈
Φ−1(1), there is a proof Π such that for every j ∈ Fn+(n)2 and every random string R ∈ {0, 1}O(N2 log|F|),
the verifier on input (Φ, F ; j, R) accepts and outputs F1(a), . . . , F`(a), QHa(j).

Proof. Let b = F (a) and let s be the string promised in Lemma 6.8. Let B : Fm2 → F be the
quadratic functions encodings of π = a◦b◦s. For each ~vS = (vi)i, letA(~vS) = (B(v1), B(v2), . . . , B(v`+8)).
We claim that Π = (A,B) is a valid proof for a ∈ Φ−1(1):

By definition B is a linear function on Fm2 , so AS(x) = B(x) for all x ∈ S and in particular the
test in Item 4a passes. Also, by definitionB is the Hadamard encoding of the string σ = π◦(π⊗π),
so B(εi) = σi for all 1 ≤ i ≤ m+m2. Thus

B(εi1m+i2) = σi1m+i2 = πi1 · πi2 = σi1 · σi2 = B(εi1) ·B(εi2)

28

which, by linearity, implies that the test in Item 4c passes. Next, for Item 4b, we know that for
every p generated by V0,

0 = p(π) = α0 +

n∑
i=1

αiπi +

n∑
i,i′=1

αii′πiπi′ = α0 +
∑
i

αiB(εi) +
∑
ii′

αii′B(εim+i′) = α0 +B(z),

so AS(z) + α0 = B(z) + α0 = 0 as required. It is finally easy to check that

AS(εi+n) = B(εi+n) = πi+n = bi, i = 1, . . . , `.

Finally, for the `+ 1st output,

AS(o`+1) = B(o`+1) =
n∑
i=1

δiB(εi) +
n∑
i=1

n∑
i′=1

δin+i′B(εim+i′) = QHa(j)

where the last equality is due to the fact that the QH encoding of π = a ◦ b ◦ s contains the QH
encoding of a. More precisely, QHa(εin+i′) = B(εim+i′) for all 0 ≤ i ≤ n and 1 ≤ i′ ≤ n.

Lemma 6.10 (Distributional Soundness). The verifier above has soundness error at most δ = |F|−0.1.
Namely, given (Φ, F) for every proof Π = (A,B), there are functions Π̃(·), x̃(·) such that

• For each R, either Φ(x̃(R)) = 1 and Π̃(R) is a valid proof for “x ∈ SAT (Φ)” or Π̃(R) = ⊥.

• For every j, there is probability at least 1 − ε that when R is chosen randomly and V is run on
(Φ, F ; j, R) it either rejects, or Π̃(R) is a proof that completely agrees with the answers of the provers
A,B on the queries of V (in which case V ’s output is consistent with x̃(R)).

Proof. Fix Π = (A,B). Given B, let g1, . . . , gL be as in the low degree test below, Lemma 6.11. Let

L∗ = {i ∈ [L] | gi = QHπ for π = a ◦ b ◦ s s.t. Pr[V π
0 accepts] = 1} .

Set Π̃(R) = ⊥ if events E1 or E2 occurred, where

E1: B(x1) 6∈ {gi(x1) | i ∈ L∗}.

E2: there is more than one index i ∈ L∗ for which B(x1) = gi(x1).

Otherwise, there is a unique i ∈ L∗ such thatB(x1) = gi(x1). By assumption gi is the QH encoding
of some π = a ◦ b ◦ s for which Φ(a) = 1 and F (a) = b and s = s(a, b). So we set x̃(R) = a and set
Π̃(R) = (AR, BR) to be a valid proof for a ∈ Φ−1(1) so that BR = gi.

Now fix an arbitrary j ∈ Fn+n2
, and let R be chosen uniformly at random. We claim that the

probability that the verifier accepts and yet the view of Π and of Π̃(R) differ is very small. We
analyze two cases.

• Accept and Π̃(R) = ⊥: This event can be bounded by

Pr[Accept and E1] + Pr[E2] ≤ max

(
2/ |F|1/6 , 4L

|F|

)
+

(
L

2

)
/ |F|

where the second item is bounded due to the large distance of the Hadamard code, and the
first item is bounded as follows. If B(x1) 6∈ {gi(x1) | i ∈ [L]} then Lemma 6.11 implies that
the probability of acceptance is small. If however B(x1) = gi(x1) for some i ∈ [L] \ L∗ then
for each i ∈ [L] \L∗ Lemma 6.12 shows that the acceptance probability is small, and we take
a union bound over all such i.

29

• Accept and Π̃(R)|q 6= Π|q: We defined Π̃(R) so that BR(x1) = B(x1) = gi(x1) for some
i ∈ L∗. So this event occurs if AS 6= gi|S . We observe that this event is contained in ∪i∈L∗Ei
whereEi is the event thatAS 6= gi|S yetAS(x1) = gi(x1). For each i this event has probability
at most 2/ |F|, and we take a union bound over i ∈ L∗.

The proof of soundness is based on the following lemma, which has appeared in several places
in the literature. The following lemma appears in [MR10, Proposition 11.0.3].

Lemma 6.11 (Subspace vs. Point - linearity testing list decoding soundness). Let δ = 2/ |F|1/6.
Given a pair of provers A,B, there is a list of L ≤ 2/δ3 linear functions g1, . . . , gL : Fm2 → F such that
the probability that the decoder does not reject yet B(x1) 6∈ {g1(x1), . . . , gL(x1)} is at most O(δ).

The following claim shows that if B’s answers are a linear function, then the verifier rejects
unless B is a QH encoding of a valid proof.

Lemma 6.12. Suppose that B : Fm2 → F is a linear function. Let π = a ◦ b ◦ s be defined by

a = B(ε1) . . . B(εn) and b = B(εn+1), . . . , B(εn+`) and s = B(εn+`+1), . . . , B(εm).

Assume that either Φ(a) = 0 or F (a) 6= b or s 6= s(a, b) or B 6= QHπ. Then, for all provers A, for all j,
PrR[V A,B(Φ, F ; j;R) accepts] ≤ 4/ |F|.

Proof. Assume first that B = QHπ, but either Φ(a) = 0 or F (a) 6= b or s 6= s(a, b). By Lemma 6.8,
when choosing a random quadratic p, there is at most probability 2/ |F| that p(π) = 0. So let p be
such that p(π) 6= 0. Since B is the QH encoding of π, by the definition of z

B(z) + α0 = p(π) 6= 0.

However, V accepts so Item 4b passing implies that AS(z) + α0 = 0. This means that as linear
functions on S, AS 6≡ B|S . It remains to observe that conditioned on S, x1 is drawn almost
uniformly from S, so the probability that Item 4a does not reject is at most 1/ |F| + neg ≤ 2/ |F|.
Altogether the total probability of accepting in this case is at most 4/ |F|.

We move to analyze the case where Φ(a) = 1 and F (a) = b and s = s(a, b) but B 6= QHπ.
There must be some indices i1, i2 such that B(εi1)B(εi2) 6= B(εi1m+i2). We need to upper bound
the probability over random β, γ that the following expression is zero:

B(u1)B(u2)−B(u3) =
m∑
i=1

m∑
i′=1

βiγi′(B(εi)B(εi′)−B(εim+i′)).

Let us fix the value of βi (for i 6= i1) and γi′ (for i′ 6= i2) arbitrarily. The remaining expression
becomes a non-zero quadratic polynomial in βi1 , γi2 , so it can be zero with probability at most
2/ |F| over the choice of βi1 , γi2 .

Consider the event where it is not zero. Since Item 4c accepts, AS(u1)AS(u2) = AS(u3) so
AS(ui) 6= B(ui) for some i ∈ {1, 2, 3}. So as linear functions AS 6= B|S and the probability
of Item 4a passing is at most 1/ |F| + neg ≤ 2/ |F| (where neg is a small probability introduced
because x1 is only almost uniform in S conditioned on S). Altogether we get a bound of 4/ |F| in
this case as well.

30

6.3 Reed-Muller based dPCP

Theorem 5.2 (Restated) (Reed-Muller based dPCP) For any finite field F, and parameter h such that
1 < h < |F|0.01 and any ` > 0, there is a 2-prover ` + 1-answer decodable PCP D with respect to
the encoding LDEF,h for the language ALG-CKTSATF with the following parameters: On inputs (i) a
predicate Φ : Fn → {0, 1} and (ii) functions F1, . . . , F` : Fn → F given by arithmetic circuits over F
whose total size is N , the dPCP D has (let m = logN/ log h)

• randomness complexity O(logN +m log |F|) = O(logN + log |F|),

• answer size s, s′ = O(m(m+ `)),

• and distributional soundness error 1/|F|0.1.

Fix H ⊆ F throughout this section and denote h = |H|.
We construct a PCP decoder that receives as proof a sequence of low degree polynomials that

allow it to simulate the actions of the initial verifier V0 (from Lemma 6.8) using fewer queries. We
first construct this sequence of polynomials g1, g2, g3, g4, then describe a “verification protocol”
checking that a given sequence of polynomials have the intended form, and finally describe the
PCP decoder.

Constructing the low degree functions Let Φ, F1, . . . , F` be the input.

1. Suppose a ∈ Φ−1(1) and let bi = Fi(a) for all i = 1, . . . , `, and let s = s(a, b) so that the initial
verifier V0 accepts π = a ◦ b ◦ s with probability 1. Wlog we assume that n = |a| is a power of
h, and also n1 = |π| + 1 is a power of h. This can be arranged by padding a with zeros and
then padding π with zeros and changing V0 accordingly.

2. Let m1 = m = logh n and define g1 = LDEa : Fm1 → F (see Definition 6.3),

3. Let m2 = logh n1 and let g2 = LDEπ ◦ 1 : Fm2 → F be the low degree extension of the
string obtained by appending a 1 to π. By Claim 6.4 g2(x1, . . . , xm1 , 0̄) = g1(x1, . . . , xm1). Let
z0 ∈ Hm2 be the point associated with the last element in π ◦ 1, i.e. such that g2(z0) = 1.

4. Let m3 = 2m2 and let g3 : Fm3 → F be defined by g3(x, y) = g2(x) · g2(y). Note that the
degree of g3 is at most m3h.

5. Let P0 be the set of all quadratic polynomials generated by V0 on input (Φ, F). Fix some
p ∈ P0, p(t1, . . . , tn1) = p0 +

∑
i piti +

∑
ii′ pii′titi′ . Define the function p̂ : Fm3 → F as

follows. For 1 ≤ i ≤ hm2 let~i be the corresponding element in Hm2 (see discussion before
Definition 6.3). For each i < i′ ∈ Hm2 \ {z0}, set

p̂(z0, z0) = p0, p̂(z0,~i) = pi, p̂(~i,~i′) = pii′ , p̂(z) = 0 for all other z ∈ Hm3 .

Extend p̂ from Hm3 to Fm3 by interpolation. The degree of p̂ is at most m3h.

This definition ensures that for σ := (π ◦ 1) ∈ Fn1 ,

p(σ) = p0 +
∑
i

piσi +
∑
ii′

pii′σiσi′ =
∑

x∈Hm3

p̂(x) · g3(x) = 0. (6.1)

31

6. Define low degree functions sp1, . . . , s
p
m3 : Fm3 → F as nested partial sums of g3 as follows.

spm3
(x) = p̂(x) · g3(x) and spi−1(x) =

∑
h∈H

spi (x1, . . . , xi−1, h, 0, . . . , 0) 1 < i ≤ m3

The degree of each spi is at most 2m3h.

7. Bundling: From the polynomials g3 and spi for each i and p ∈ P0, we will now create one
single polynomial g4 that ‘bundles’ them together. Let us number them as q1, . . . , qT for
T = m3 |P0|+ 1 and let t = dlogh(T + 1)e = O(m3).

Let m4 = m3 + t and define g4 : Fm4 → F by

g4(y1, . . . , yt, x) =
T∑
i=1

qi(x) · wi(y1, . . . , yt) (6.2)

where wi : Ft → F is the degree th polynomial for which wi(y1, . . . , yt) = 1 iff y1, . . . , yt is the
H-ary representation of i, and zero for all other y1, . . . , yt ∈ Ht. The degree of g4 is at most

d = ht+ 2hm3 = O(hm).

By construction the function g4 contains inside of it (as restrictions) the functions g1, g2, g3:

Claim 6.13. There is a sequence of 1-1 (linear) mappings

Fm1 σ1→ Fm2 σ2→ Fm3 σ3→ Fm4

such that for each x ∈ Fm3 we have g4(σ3(x)) = g3(x); and for each x ∈ Fm2 we have g3(σ2(x)) = g2(x);
and for each x ∈ Fm1 we have g2(σ1(x)) = g1(x).

Proof. We map a point x1 ∈ Fm1 to (x1, 0̄) ∈ Fm2 . We map a point x2 ∈ Fm2 to (z0, x2) ∈ Fm3 . We
map a point x3 ∈ Fm3 to (y, x3) ∈ Fm4 in the domain of g4, where y ∈ Ft is the index of g3 in the
bundling.

Answers of the B prover will correspond to point-evaluations of g4, and answers of the A
prover will correspond to restrictions of g4 to certain low-degree curves. A low degree curve, see
Definition 6.5, is specified by a tuple of points in Fm4 through which it passes. This tuple contains

• Points for the verification check protocol, see below

• Output points: The are ` + 1 points whose values will give ` + 1 answers for the decoder.
These answers are the values of b1, . . . , b` and the j-th element in the encoding LDEa.

Let v1, . . . , v` ∈ Fm2 be the points in the domain of g2 that correspond to b1, . . . , b`. For each
i, let oi = σ3(σ2(vi)) be the corresponding point in the domain of g4 (as in the claim above).

Let v`+1 ∈ Fm1 be the jth point in the domain of g1 = LDEa (we assume some canonical
numbering of the indices of the LDE encoding). Let o`+1 = σ3(σ2(σ1(v`+1))) be the corre-
sponding point in the domain of g4.

• Random points

32

Verification Protocol The verification protocol accesses functions g̃3 and {s̃pi }i,p and checks (lo-
cally) that they have the correct form, as intended in the construction, i.e. that there is some valid
proof π such that they are equal to g3 and spi as in the construction above.

1. Check that g̃3(z0, z0) = 1.

2. Choose two random points x, y ∈ Fm2 , so that (x, y) ∈ Fm3 . Check that g̃3(z0, x) · g̃3(z0, y) =
g̃3(x, y).

3. Choose a random quadratic p by simulating V0, and compute p̂ : Fm3 → F as in Item 5 in the
expected proof.

4. Do the sumcheck: Choose a random point x = (x1, . . . , xm3) ∈ Fm3 , and do

(a) Check that s̃pm3(x) = p̂(x) · g̃3(x)

(b) For each 1 < i ≤ m3 check that s̃pi−1(x1, . . . , xi−1, 0̄) =
∑

h∈H s̃
p
i (x1, . . . , xi−1, h, 0̄)

(c) Check that
∑

h∈H s̃
p
1(h, 0̄) = 0.

The verification protocol accesses k = (h + 1)m3 + 5 points in the domains of g̃3 and s̃pi . Let
u1, . . . , uk ∈ Fm4 be the corresponding points in the domain of g4 (as in Claim 6.13).

The PCP Decoder protocol

1. Compute the output points o1, . . . , o`+1 as above.

2. Use the randomness R to compute u1, . . . , uM using the verification protocol.

3. Use the randomnessR to choose x1, x2, x3 ∈ Fm4 uniformly. Let γ = γo1,...,o`+1,u1,...,uM ;x1,x2,x3

be the manifold as in Definition 6.6, such that γ contains the points o1, . . . , o`+1, u1, . . . , uM
as well as x1, x2, x3 and has degree at most ` + 1 + k + 1 = ` + O(hm). Send γ to A and
let A’s answer A(γ) be the coefficients of a function F4 → F whose degree is at most d′ ≤
d(M + `+ 2). This function is supposed to equal B ◦ γ.

Let Aγ : Im(γ) → F be defined for each x ∈ Im(γ) as Aγ(x) := A(γ)(t) where x = γ(t).
Clearly Aγ can be computed from A(γ).

4. Send x1 to the B prover and let B(x1) be its answer. Reject unless Aγ(x1) = B(x1).

5. Simulate the checks of Item 4 using the values Aγ(u1), . . . , Aγ(uM). Reject unless all of the
checks succeed.

6. Output Aγ(o1), . . . , Aγ(o`+1).

To summarize, the PCP decoder computes (q, ϕ, f, g) as follows:

• The queries q: q0 = γ is the query to the A prover and q1 = x1 is the query to the B prover.

• The predicate ϕ rejects unless all of the checks in Item 4 pass.

• The function g computes Aγ(x1) (for the consistency test).

33

• The functions f1, . . . , f`+1 - compute Aγ(oi) for i = 1, . . . , `+ 1.

This completes the description of the PCP decoder, and we proceed to prove its correctness.

Lemma 6.14 (Perfect Completeness). The PCP decoder has perfect completeness. Namely, for every
a ∈ Φ−1(1), there is a proof Π such that for every j ∈ Fm and every random string R, the verifier on input
(Φ, F ; j, R) accepts and outputs F1(a), . . . , F`(a), LDEa(j).

Proof. If Φ(a) = 1 and F (a) = b then there is a proof π = abs ∈ Fn1 such that for every quadratic
p generated by the initial verifier V0, p(π) = 0. Compute from π the function g4 as described in
the “expected proof” section above, and let B answer according to g4. The checks in Item 4 will
always succeed. It remains to take A to be the restrictions of B to the manifolds and then the
consistency checks will pass and the verifier will always output as required.

Lemma 6.15 (Distributional Soundness). The verifier above has soundness error at most δ = |F|−0.1.
Namely, given (Φ, F) for every proof Π = (A,B), there are functions Π̃(·), x̃(·) such that

• For each R, either Φ(x̃(R)) = 1 and Π̃(R) is a valid proof for “x ∈ SAT (Φ)” or Π̃(R) = ⊥.

• For every j, there is probability at least 1 − ε that when R is chosen randomly and V is run on
(Φ, F ; j, R) it either rejects, or Π̃(R) is a proof that completely agrees with the answers of the provers
A,B on the queries of V (in which case V ’s output is consistent with x̃(R)).

Proof. Fix Π = (A,B). Given B, let Q1, . . . , QL be degree ≤ d functions as in Lemma 6.7. We say
that Qi is a valid proof for a ∈ Φ−1(1) when the B prover answers according to Qi, there is an A
prover causing the verifier to always output consistently with LDEa. Let I ⊂ [L] be the indices
for which Qi is a valid proof for some a, b.

For each R note that in the verifier protocol x1 is chosen (based on R but) independently of j.
Set Π̃(R) = ⊥ if events E1 or E2 occurred, where

E1: B(x1) 6∈ {Qi(x1) | i ∈ I}.

E2: there is more than one index i ∈ I for which B(x1) = Qi(x1).

Otherwise, there is a unique i ∈ I such that B(x1) = Qi(x1). By assumption Qi is a valid proof for
some a ∈ Φ−1(1) so we set x̃(R) = a and set Π̃(R) = (AR, BR) to be a valid proof for a.

Now fix an arbitrary j ∈ Fm, and let R be chosen uniformly at random. We claim that the
probability that the verifier accepts and yet the view of Π and of Π̃(R) differ is very small. We
analyze two cases.

• Accept and Π̃(R) = ⊥: This event can be bounded by

Pr[Accept and E1] + Pr[E2] ≤ max
(
O(|F|)−0.1), O(Lmd/|F|)

)
+

(
L

2

)
· d/ |F|

where the second item is bounded due to the large distance between degree d functions,
and the first item is bounded as follows. If B(x1) 6∈ {Qi(x1) | i ∈ [L]} then Lemma 6.7 with
parameters m = m4, k

′ = k + ` = O(hm), d implies that the probability of acceptance is at
most

(mk′d/ |F|)1/8 = O(h2m3 |F|)1/8 ≤ |F|−0.1

34

(the last inequality is true since h ≤ |F|0.01 and for large enough n since m = log n/ log h and
|F| � poly log n.)

If however B(x1) = Qi(x1) for some i ∈ [L] \ I then for each i ∈ [L] \ I Lemma 6.16 below
shows that the acceptance probability is at mostO(md/ |F|), and we take a union bound over
all such i.

• Accept and Π̃(R)|q 6= Π|q: We defined Π̃(R) so thatBR(x1) = B(x1) = Qi(x1) for some i ∈ I .
So this event occurs if Aγ 6= Qi|γ . We observe that this event is contained in ∪i∈IEi where Ei
is the event that Aγ 6= Qi|γ yet Aγ(x1) = Qi(x1). For each i this event has probability at most
dd′/ |F|, and we take a union bound over i ∈ I . The total probability of error in this event is
at most Ldd′/ |F|.

Lemma 6.16 (Soundness against a low degree prover). Suppose that B : Fm4 → F is a function of
degree at most d = ht+ 2hm3, and let g, {spi } be its unbundling. Suppose further that g is consistent with
a, b such that either Φ(a) = 0 or b 6= F (a). Then, for all provers A, the probability that the verifier accepts
is at most O(md/|F|).

Proof. (of Lemma 6.16) Assume that Φ(a) = 0 or F (a) 6= b and denote σ = abs. The probability
that a random quadratic p drawn according to V0 (from Lemma 6.8) will satisfy p(σ) = 0 is at most
O(1/ |F|). Suppose p(σ) 6= 0. This means that∑

x∈Hm3

p̂(x)g(x) 6= 0. (6.3)

Observe that if the check in Item 4c passes then either

spm3
6= p̂ · g, (6.4)

or, for some i, as functions of x1, . . . , xi−1,

spi−1(x1, . . . , xi−1, 0̄) 6=
∑
h∈H

spi (x1, . . . , xi−1, h, 0̄). (6.5)

Otherwise, ∑
x∈Hm3

p̂(x)g(x) =
∑

x1,...,xm3∈H
spm3

(x1, . . . , xm3) =

=
∑

x1,...,xm3−1∈H
spm3−1(x1, . . . , xm3−1, 0) = ... =

∑
x1∈H

spm3−1(x1, 0̄) = 0

contradicting (6.3). The verifier checks each of these m3 equalities in (6.4) and (6.5)) on a random
point (in Items 4a and 4b), so the probability of acceptance is at most m3 · d|F| .

35

References

[ALM+98] SANJEEV ARORA, CARSTEN LUND, RAJEEV MOTWANI, MADHU SUDAN, and MARIO
SZEGEDY. Proof verification and the hardness of approximation problems. J. ACM, 45(3):501–555, May
1998. (Preliminary version in 33rd FOCS, 1992). eccc:TR98-008, doi:10.1145/278298.278306.
1, 6

[AS98] SANJEEV ARORA and SHMUEL SAFRA. Probabilistic checking of proofs: A new characterization
of NP. J. ACM, 45(1):70–122, January 1998. (Preliminary version in 33rd FOCS, 1992). doi:

10.1145/273865.273901. 1, 3, 6

[AS03] SANJEEV ARORA and MADHU SUDAN. Improved low-degree testing and its applications. Com-
binatorica, 23(3):365–426, 2003. (Preliminary version in 29th STOC, 1997). eccc:TR97-003,
doi:10.1007/s00493-003-0025-0. 2, 3, 6

[BGH+06] ELI BEN-SASSON, ODED GOLDREICH, PRAHLADH HARSHA, MADHU SUDAN, and SALIL
VADHAN. Robust PCPs of proximity, shorter PCPs and applications to coding. SIAM J. Com-
put., 36(4):889–974, 2006. (Preliminary version in 36th STOC, 2004). eccc:TR04-021, doi:
10.1137/S0097539705446810. 2, 3

[BGKW88] MICHAEL BEN-OR, SHAFI GOLDWASSER, JOE KILIAN, and AVI WIGDERSON. Multi-prover in-
teractive proofs: How to remove intractability assumptions. In Proc. 20th ACM Symp. on Theory of
Computing (STOC), pages 113–131. 1988. doi:10.1145/62212.62223. 5

[BGLR93] MIHIR BELLARE, SHAFI GOLDWASSER, CARSTEN LUND, and ALEXANDER RUSSELL. Efficient
probabilistically checkable proofs and applications to approximation. In Proc. 25th ACM Symp. on
Theory of Computing (STOC), pages 294–304. 1993. doi:10.1145/167088.167174. 1, 2

[BS08] ELI BEN-SASSON and MADHU SUDAN. Short PCPs with polylog query complexity. SIAM J.
Comput., 38(2):551–607, 2008. (Preliminary version in 37th STOC, 2005). eccc:TR04-060,
doi:10.1137/050646445. 2, 3

[CK09] JULIA CHUZHOY and SANJEEV KHANNA. Polynomial flow-cut gaps and hardness of directed cut
problems. J. ACM, 56(2), 2009. (Preliminary version in 39th STOC, 2007). doi:10.1145/1502793.
1502795. 5

[DFK+11] IRIT DINUR, ELDAR FISCHER, GUY KINDLER, RAN RAZ, and SHMUEL SAFRA. PCP charac-
terizations of NP: Toward a polynomially-small error-probability. Comput. Complexity, 20(3):413–
504, 2011. (Preliminary version in 31st STOC, 1999). eccc:TR98-066, doi:10.1007/

s00037-011-0014-4. 2, 3, 4, 5, 6, 10, 25

[DH13] IRIT DINUR and PRAHLADH HARSHA. Composition of low-error 2-query PCPs using decodable
PCPs. SIAM J. Comput., 42(6):2452–2486, 2013. (Preliminary version in 51st FOCS, 2009). eccc:
TR09-042, doi:10.1137/100788161. 2, 3, 4, 6, 10, 12

[DHK15] IRIT DINUR, PRAHLADH HARSHA, and GUY KINDLER. Polynomially low error PCPs with poly-
loglog n queries via modular composition. In Proc. 47th ACM Symp. on Theory of Computing (STOC).
2015. (To appear). doi:10.1145/2746539.2746630. 0

[Din07] IRIT DINUR. The PCP theorem by gap amplification. J. ACM, 54(3):12, 2007. (Preliminary version
in 38th STOC, 2006). eccc:TR05-046, doi:10.1145/1236457.1236459. 2, 3

[DM11] IRIT DINUR and OR MEIR. Derandomized parallel repetition via structured PCPs. Comput. Com-
plexity, 20(2):207–327, 2011. (Preliminary version in 25th Conference on Computation Complexity,
2010). arXiv:1002.1606, doi:10.1007/s00037-011-0013-5. 6

[DR06] IRIT DINUR and OMER REINGOLD. Assignment testers: Towards a combinatorial proof of the PCP
Theorem. SIAM J. Comput., 36:975–1024, 2006. (Preliminary version in 45th FOCS, 2004). doi:
10.1137/S0097539705446962. 2, 3

36

http://eccc.hpi-web.de/report/1998/008
http://dx.doi.org/10.1145/278298.278306
http://dx.doi.org/10.1145/273865.273901
http://dx.doi.org/10.1145/273865.273901
http://eccc.hpi-web.de/report/1997/003
http://dx.doi.org/10.1007/s00493-003-0025-0
http://eccc.hpi-web.de/report/2004/021
http://dx.doi.org/10.1137/S0097539705446810
http://dx.doi.org/10.1137/S0097539705446810
http://dx.doi.org/10.1145/62212.62223
http://dx.doi.org/10.1145/167088.167174
http://eccc.hpi-web.de/report/2004/060
http://dx.doi.org/10.1137/050646445
http://dx.doi.org/10.1145/1502793.1502795
http://dx.doi.org/10.1145/1502793.1502795
http://eccc.hpi-web.de/report/1998/066
http://dx.doi.org/10.1007/s00037-011-0014-4
http://dx.doi.org/10.1007/s00037-011-0014-4
http://eccc.hpi-web.de/report/2009/042
http://eccc.hpi-web.de/report/2009/042
http://dx.doi.org/10.1137/100788161
http://dx.doi.org/10.1145/2746539.2746630
http://eccc.hpi-web.de/report/2005/046/
http://dx.doi.org/10.1145/1236457.1236459
http://arxiv.org/abs/1002.1606
http://dx.doi.org/10.1007/s00037-011-0013-5
http://dx.doi.org/10.1137/S0097539705446962
http://dx.doi.org/10.1137/S0097539705446962

[DS04] IRIT DINUR and SHMUEL SAFRA. On the hardness of approximating label-cover. Inform. Process.
Lett., 89(5):247–254, March 2004. eccc:TR99-015, doi:10.1016/j.ipl.2003.11.007. 6

[FGL+96] URIEL FEIGE, SHAFI GOLDWASSER, LÁSZLÓ LOVÁSZ, SHMUEL SAFRA, and MARIO SZEGEDY.
Interactive proofs and the hardness of approximating cliques. J. ACM, 43(2):268–292, March 1996.
(Preliminary version in 32nd FOCS, 1991). doi:10.1145/226643.226652. 1

[FK95] URIEL FEIGE and JOE KILIAN. Impossibility results for recycling random bits in two-prover proof
systems. In Proc. 27th ACM Symp. on Theory of Computing (STOC), pages 457–468. 1995. doi:

10.1145/225058.225183. 6

[Har10] PRAHLADH HARSHA. Limits of approximation algorithsm: PCPs and unique games., 2010. A course
on PCPs at TIFR and IMSc. 25

[Mos14] DANA MOSHKOVITZ. An approach to the Sliding Scale Conjecture via parallel repetition for low
degree testing. Technical Report TR14-030, Elect. Colloq. on Comput. Complexity (ECCC), 2014.
eccc:TR14-030. 3, 6

[MR10] DANA MOSHKOVITZ and RAN RAZ. Two-query PCP with subconstant error. J. ACM, 57(5), 2010.
(Preliminary version in 49th FOCS, 2008). eccc:TR08-071, doi:10.1145/1754399.1754402. 2,
3, 6, 10, 12, 25, 30

[Raz98] RAN RAZ. A parallel repetition theorem. SIAM J. Comput., 27(3):763–803, June 1998. (Preliminary
version in 27th STOC, 1995). doi:10.1137/S0097539795280895. 6

[RS97] RAN RAZ and SHMUEL SAFRA. A sub-constant error-probability low-degree test, and a sub-constant
error-probability PCP characterization of NP. In Proc. 29th ACM Symp. on Theory of Computing
(STOC), pages 475–484. 1997. doi:10.1145/258533.258641. 2, 3, 6, 25

[Sze99] MARIO SZEGEDY. Many-valued logics and holographic proofs. In JIRÍ WIEDERMANN, PETER VAN
EMDE BOAS, and MOGENS NIELSEN, eds., Proc. 26th International Colloq. of Automata, Languages
and Programming (ICALP), volume 1644 of LNCS, pages 676–686. Springer, 1999. doi:10.1007/
3-540-48523-6_64. 3

37

ECCC ISSN 1433-8092

http://eccc.hpi-web.de

http://eccc.hpi-web.de/report/1999/015
http://dx.doi.org/10.1016/j.ipl.2003.11.007
http://dx.doi.org/10.1145/226643.226652
http://dx.doi.org/10.1145/225058.225183
http://dx.doi.org/10.1145/225058.225183
http://www.tcs.tifr.res.in/~prahladh/teaching/2009-10/limits/
http://eccc.hpi-web.de/report/2014/030
http://eccc.hpi-web.de/report/2008/071
http://dx.doi.org/10.1145/1754399.1754402
http://dx.doi.org/10.1137/S0097539795280895
http://dx.doi.org/10.1145/258533.258641
http://dx.doi.org/10.1007/3-540-48523-6_64
http://dx.doi.org/10.1007/3-540-48523-6_64

