A Super-Grover Separation Between Randomized and Quantum Query Complexities

Shalev Ben-David*

June 26, 2015

Abstract

We construct a total Boolean function f satisfying $R(f)=\tilde{\Omega}\left(Q(f)^{5 / 2}\right)$, refuting the long-standing conjecture that $R(f)=O\left(Q(f)^{2}\right)$ for all total Boolean functions. Assuming a conjecture of Aaronson and Ambainis about optimal quantum speedups for partial functions, we improve this to $R(f)=\tilde{\Omega}\left(Q(f)^{3}\right)$. Our construction is motivated by the Göös-Pitassi-Watson function but does not use it.

1 Introduction

The deterministic query complexity of a function $f:\{0,1\}^{N} \rightarrow\{0,1\}$ is the minimum, over all deterministic algorithms, of the worst-case number of queries to the bits of an input $x \in\{0,1\}^{N}$ the algorithm requires to determine $f(x)$. This value is denoted by $D(f)$. The randomized query complexity, denoted by $R(f)$, is defined similarly, except the algorithm is allowed to use randomness and is only required to correctly determine $f(x)$ with probability at least $2 / 3$ for all x. The quantum query complexity $Q(f)$ is analogous to $R(f)$, except the algorithm is allowed quantum queries.

It is clear that $Q(f) \leq R(f) \leq D(f)$. Beals, Buhrman, Cleve, Mosca, and de Wolf [3] showed that for all total functions $f, D(f)=O\left(Q(f)^{6}\right)$. In particular, this implies that $R(f)=O\left(Q(f)^{6}\right)$. For a summary of query complexity relations, see [4].

Until recently the only known gap between $D(f)$ and $Q(f)$ was quadratic. It was conjectured that this is tight. In a recent breakthrough, Ambainis, Balodis, Belovs, Lee, Santha, and Smotrovs [2] provided a total function exhibiting a degree 4 separation between $D(f)$ and $Q(f)$, refuting this conjecture. This function was a variant of the Göös-Pitassi-Watson (GPW) function, introduced in [5]. However, this function had only a quadratic gap between $R(f)$ and $Q(f)$, as its quantum speedup was based only on Grover search, which fundamentally provide at most a quadratic speedup. This has led to the suggestion that the $R(f)=O\left(Q(f)^{2}\right)$ conjecture might still hold for total Boolean functions.

In this work, we provide a total function exhibiting super-Grover (degree 2.5) quantum speedup over randomized algorithms. By assuming a conjecture of Aaronson and Ambainis [1], we improve this separation to degree 3. Our construction is not directly based on the GPW function, and is substantially different from those the GPW variants in [2]. However, it is similar to GPW in several ways, including the use of pointers and depth-2 and-or trees.

2 Preliminaries

The following two functions will be used in our construction.
Forrelation: The Forrelation function was introduced by Aaronson and Ambainis [1]. It provides the largest known gap between randomized and quantum query complexities in the promise setting, with

[^0]$Q(f)=O(1)$ and $R(f)=\tilde{\Omega}(\sqrt{m})$ (where m is the size of the input). A variant of Forrelation is conjectured to satisfy $Q(f)=O(\log m)$ and $R(f)=\tilde{\Omega}(m)$.

Or-And: This function is an OR on m bits composed with m copies of And on m bits. In other words, its input is an m-by- m matrix, and the value of the function is 1 if and only if there is an all- 1 column in the matrix. The randomized query complexity of OR-AND is $\Theta\left(m^{2}\right)$, and the quantum query complexity is $\Theta(m)$. In addition, note that an OR-AND instance always has a certificate of size m : either an all- 1 column, or else a 0 in each column. The final property we will use is that if a quantum algorithm is given pointers to the m bits in a certificate for OR-AND, it can verify the certificate using $O(\sqrt{m})$ queries.

3 Constructing the Function

3.1 Sketch of Construction

The idea of the construction is as follows. The Forrelation function provides a large quantum speedup in the promise setting, requiring $\tilde{\Omega}(\sqrt{m})$ randomized queries but only $O(1)$ quantum queries. We wish to turn it into a total function. To do this, we compose Forrelation with Or-And; that is, we replace each bit of the Forrelation function with an m by m copy of Or-And. This slows down both the randomized and quantum algorithms. Any randomized algorithm now uses $\tilde{\Omega}\left(\mathrm{m}^{5 / 2}\right)$ queries, while a quantum algorithm can use $\tilde{O}(m)$. For lack of a better name, we will refer to this composed function as Forandlation.

We then use the solution of the Forandlation instance to find a "cheat sheet" that links to the certificates of all the Or-And instances; using this cheat sheet, a quantum algorithm can verify that the input satisfied the Forrelation promise without solving the Or-And instances. In fact, it can do the verification using $\tilde{O}(m)$ queries. We can then make the value of the function equal to 0 if the verification fails, which turns the function total.

How do we use the Forandlation instance to find such a cheat sheet, while ensuring that a randomized algorithm cannot find it? We do this by assuming that the input contains not just the Forandlation instance, but also an array of size (say) m^{10} full of candidate sheets. In addition, instead of one Forandlation instance we will need $10 \log m$ Forandlation instances. We will use the answers of these Forandlation instances as the index of a sheet in the array, and assert that this is the cheat sheet. A randomized algorithm cannot find this cheat sheet, but a quantum algorithm can.

Once again, if anything goes wrong - if the cheat sheet does not link to proper certificates, or if the certified Or-And answers don't make up instances in the promise of Forrelation - we set the value of the function to 0 . In all other cases, the value of the function will be a special bit on the cheat sheet.

3.2 Formal Construction

Let x be the input. We define the value of our function g on x as follows.
Let m be (say) the 20 -th root of the input size. We will interpret the first $10 m^{3} \log m$ bits of x as $10 \log m$ instances of FORANDLATION (each containing m^{3} bits). The next $O\left(m^{12} \log ^{2} m\right)$ bits of x will be interpreted as an array of size m^{10} whose entries have $O\left(m^{2} \log ^{2} m\right)$ bits each. The rest of the input will be ignored.

If the Forandlation instances don't all satisfy their promise, we set $g(x):=0$. Otherwise, the solution to the Forandlation instances will be used as an index of the array. The entry of the array corresponding to that index will be called the cheat sheet.

The first $10 \mathrm{~m} \log m$ bits of the cheat sheet will be interpreted as the solutions to all the Or-And instances inside the $10 \log m$ Forandlations, in order. If these bits are not equal to the Or-And values, we set $g(x):=0$.

The next $O\left(m^{2} \log ^{2} m\right)$ bits of the cheat sheet will be interpreted as $10 m^{2} \log m$ pointers to bits in the Forandlation part of the input. These pointers should correspond to certificates for each of the $10 \mathrm{~m} \log m$ Or-And instances (all the certificates have size m). If they do not, we set $g(x):=0$.

Finally, if the value of x has not yet been set to 0 , we set it to the bit of the cheat sheet which immediately follows the aforementioned pointers.

4 Quantum Upper Bound

We provide an algorithm for evaluating g using $\tilde{O}(m)$ queries. For simplicity, we will ignore log factors in our analysis, which allows us to ignore amplification concerns.

First, note that Forandlation can be solved by a quantum algorithm using $O(m)$ queries. This is because Forandlation is a composition of Forrelation, which requires $O(1)$ queries, and Or-And, which requires $O(m)$ queries.

Our quantum algorithm will begin by evaluating the $10 \log m$ Forandlation instances in the input, using $\tilde{O}(m)$ queries. It will then go to the designated entry of the array, and read the first $10 \mathrm{~m} \log m$ bits (the ones representing the answers to the Or-And instances). This takes an additional $\tilde{O}(m)$ queries. The algorithm will then verify that the $10 \mathrm{~m} \log m$ bits it read satisfy the promises of $10 \log m$ Forrelation instances. If a promise isn't satisfied, the algorithm will return 0 .

Next, the quantum algorithm will use the $10 m^{2} \log m$ pointers to Grover-search for an invalid certificate. There are $10 m \log m$ certificates to check, and each one takes $O(\sqrt{m})$ quantum queries to verify, so this Grover search takes $\tilde{O}(m)$ queries. If a bad certificate is found, the algorithm returns 0 .

Finally, the algorithm will query the remaining bit of the array entry and return its value.
This algorithm uses a total of $\tilde{O}(m)$ queries. Its correctness is easy to see: the algorithm only returns 1 if all the Forandlation promises hold and the cheat sheet successfully certifies this fact.

5 Randomized Lower Bound

5.1 Forandlation Lower Bound

We show that a randomized algorithm will take at least $\tilde{\Omega}\left(m^{5 / 2}\right)$ queries to solve a Forandlation instance consisting of m^{3} bits.

Let A be any randomized algorithm for this problem. We turn A into an algorithm B for solving Forrelation on m bits. Consider any input x for Forrelation on m bits. Choose m random m-by- m matrices with the property that each column of the matrix has exactly one 0 . Then, for $i=1,2, \ldots, m$, pick a random 0 in the i-th matrix and replace it with x_{i}. This construction turns the input x for Forrelation into an input x^{\prime} for Forandlation which has the same value.

Now, we get the algorithm B to simulate A on x^{\prime}. Whenever A queries a bit of x, B queries the corresponding input of x and gives A the answer Once A terminates, B returns the answer it gives.

We'll show that a randomized algorithm must use $\tilde{\Omega}\left(m^{2}\right)$ queries to find the special x_{i} bit in a matrix. This will imply that if A succeeds with probability at least $2 / 3$ after at most k queries, then B succeeds after $\tilde{O}\left(k / m^{2}\right)$ queries to x. Since Forrelation requires $\tilde{\Omega}(\sqrt{m})$ queries, it follows that A requires $\tilde{\Omega}\left(m^{5 / 2}\right)$ queries. If Forrelation were replaced by a function with randomized query complexity at least $\tilde{\Omega}(m)$, this would become $\tilde{\Omega}\left(m^{3}\right)$ instead.

It remains to show that a randomized algorithm must use $\tilde{\Omega}\left(m^{2}\right)$ queries to find x_{i}. We can think of x_{i} as a random marked zero in a matrix that has exactly one zero randomly placed in each column (the rest of the matrix is filled with ones). To find the marked zero with probability at least $1 / 2$, a randomized algorithm must find at least half the zeros. Now, if a randomized algorithm made only $O(\mathrm{~m} / \log m)$ queries in a given column, then its chance of finding a zero in that column is at most $O(1 / m)$. By the union bound, the randomized algorithm will only discover a zero in columns in which it queried at least $\Omega(\mathrm{m} / \log m)$ bits. Since we require the randomized algorithm to find $m / 2$ zeros, the total number of queries it must make is at least $\tilde{\Omega}\left(m^{2}\right)$. This completes the argument.

5.2 Lower Bound for g

We now show a lower bound for the randomized query complexity of our function g. Let A be a randomized algorithm for g that uses at most k queries. Consider giving A an input which satisfies the promises of all the Forandlation instances, but which has an empty array (that is, the array contains only zeros). Then
the value of g on this instance is 0 , so A outputs 0 after k queries with probability at least $2 / 3$. We can amplify this to $99 / 100$ and increase k by only a constant factor.

Now, if we instead give A an instance which is identical except that the appropriate cell of the array contains a valid cheat sheet, then A must output 1 with probability at least $99 / 100$. This means a bit of the appropriate cell was queried with high probability.

In other words, when we run A with an empty array, we get a list of at most k spots in the array where the cheat sheet should be (this list is simply the cells of the array that are queried by this randomized algorithm). This list contains the correct location for the cheat sheet with high probability.

We can think about the indices of the array as binary strings. The algorithm A gives us a set S of at most k binary strings such that the string of answers to the Forandlation instances is in S (with high probability).

Let \mathcal{D} be a hard distribution over the inputs of Forandlation, so that any randomized algorithm must make $\tilde{\Omega}\left(m^{5 / 2}\right)$ queries to evaluate Forandlation on a random input sampled from \mathcal{D}. We can split \mathcal{D} into a distribution \mathcal{D}^{0} over 0-inputs to Forandlation and a distribution \mathcal{D}^{1} over 1-inputs such that distinguishing between these distributions takes $\tilde{\Omega}\left(m^{5 / 2}\right)$ queries for a randomized algorithm.

Now, consider giving $A 10 \log m$ inputs to Forandlation that are each sampled from \mathcal{D}^{0}. The algorithm A produces a set S of binary strings, and with high probability, the all-0 string is in S.

Assuming $k<m^{5}$, there is some binary string of length $10 \log m$ whose probability of being in S is less than $1 / m^{5}$. Let t be such a string. Consider a sequence of strings starting with the all-0 string and ending with t, such that any two consecutive strings x and y in the sequence differ in exactly one bit, with y having one more 1 than x. This sequence will have length $O(\log m)$.

For each string x in the sequence, we form an input to A by concatenating samples from $\mathcal{D}^{x_{i}}$ for $i=$ $1,2, \ldots, 10 \log m$, and adding a blank array. This gives us $O(\log m)$ distributions over inputs to A. By construction, A distinguishes the first distribution (based on the all-zero string) from the last distribution (based on t), since the former will have very small probability of including t in S while the latter will have high probability.

From this it follows that there is some consecutive pair of strings in this sequence that A distinguishes with probability at least $\Omega(1 / \log m)$. However, distinguishing a consecutive pair can be used to distinguish \mathcal{D}^{0} and \mathcal{D}^{1}, which is as hard as Forandlation. It follows that A uses at least $\tilde{\Omega}\left(m^{5 / 2}\right)$ queries, as desired. The same proof shows a lower bound of $\tilde{\Omega}\left(m^{3}\right)$ if there is a function f with $Q(f)=\tilde{O}(\log m)$ and $R(f)=\tilde{\Omega}(m)$.

6 Final Remarks

In this proof, we used several specific properties of the Or-And function, but no properties of Forrelation other than its randomized and quantum query complexities. This means the same proof technique will extend to functions other than Forrelation, and may be used to provide separations between other query complexity measures. It might also be interesting to try to combine this technique with the Göös-PitassiWatson variants of [2].

Acknowledgements

I would like to thank Scott Aaronson and Robin Kothari for checking an early draft of this result.

References

[1] S. Aaronson and A. Ambainis. Forrelation: A Problem that Optimally Separates Quantum from Classical Computing. arXiv:1411.5729
[2] A. Ambainis, K. Balodis, A. Belovs, T. Lee, M. Santha, and J. Smotrovs. Separations in Query Complexity Based on Pointer Functions. arXiv:1506.04719
[3] R. Beals, H. Buhrman, R. Cleve, M. Mosca, and R. de Wolf. Quantum lower bounds by polynomials. $A C M$, pages 778-797, 2001. arXiv:quant-ph/9802049.
[4] H. Buhrman and R. de Wolf. Complexity measures and decision tree complexity: A survey. Theoretical Computer Science, 228:21-43, 2002.
[5] M. Göös, T. Pitassi, and T. Watson. Deterministic communication vs. partition number. ECCC:2015/50, 2015.

[^0]: ${ }^{*}$ Computer Science and Artificial Intelligence Lab, Massachusetts Institute of Technology. shalev@mit.edu

