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Abstract

In a recent breakthrough [CZ15], Chattopadhyay and Zuckerman gave an explicit two-source
extractor for min-entropy k ≥ logC n for some large enough constant C. However, their extractor
only outputs one bit. In this paper, we improve the output of the two-source extractor to kΩ(1),
while the error remains n−Ω(1).

Our improvement is obtained by giving a better extractor for (q, t, γ) non-oblivious bit-fixing
sources, which can output tΩ(1) bits instead of one bit as in [CZ15].



1 Introduction

In theoretical computer science and in particular the area of pseudorandomness, one deals with
the problem of either reducing the number of random bits used in applications (ideally, completely
removing the use of random bits) or replacing the uniform random bits needed by random sources
with very weak quality. The former is done by constructing pseudorandom generators and the latter
is done by constructing randomness extractors. Both objects have been the focus of extensive study
over the past several decades.

In this paper, we focus on randomness extractors and in particular we study the problem of
constructing randomness extractors for independent general weak random sources, where a weak
random source is modeled by a distribution with a certain amount of entropy.

Definition 1.1. The min-entropy of a random variable X is

H∞(X) = min
x∈supp(X)

log2(1/Pr[X = x]).

For X ∈ {0, 1}n, we call X an (n,H∞(X))-source, and we say X has entropy rate H∞(X)/n.

A well known result is that with just one weak source as input, no deterministic extractor
can work for all (n, k) sources even when k = n − 1. Due to this, there have been two different
directions and relaxations for randomness extractors. The first one is to give the extractor an
additional independent uniform random seed, which is generally much shorter than the source
(e.g., O(log n)). These extractors are called seeded extractors and were introduced by Nisan and
Zuckerman [NZ96].

Definition 1.2. (Seeded Extractor) A function Ext : {0, 1}n×{0, 1}d → {0, 1}m is a (k, ε)-extractor
if for every source X with min-entropy k and independent Y which is uniform on {0, 1}d,

|Ext(X,Y )− Um| ≤ ε.

If in addition we have |(Ext(X,Y ), Y )− (Um, Y )| ≤ ε then we say it is a strong (k, ε)-extractor.

With the help of the extra seed, it is now indeed possible to construct extractors for all weak
random sources. Seeded extractors have found numerous applications in theoretical computer
science, and today we have nearly optimal constructions of such extractors (e.g., [LRVW03, GUV09,
DW08, DKSS09]).

In the other direction, one considers building deterministic extractors for sources which have
special structures. In this case, one important class of sources is the so called independent sources.
Here, the extractor is given as input more than one general weak random sources, and the sources
are independent each other. Using the probabilistic method, one can show that there exists a
deterministic extractor for just two independent sources with logarithmic min-entropy, which is
optimal since extractors for one weak source do not exist. In fact, the probabilistic method shows
that with high probability a random function is such a two-source extractor. However, the most
interesting and important part is to give explicit constructions of such functions, which turns out
to be highly challenging.

The first explicit construction of a two-source extractor appeared in [CG88], where Chor and
Goldreich showed that the well known Lindsey’s lemma gives an extractor for two independent
(n, k) sources with k > n/2. Since then there has been essentially no progress on two-source
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extractors until in 2005 Bourgain [Bou05] gave a construction that breaks the entropy rate 1/2
barrier, and works for two independent (n, 0.49n) sources. In a different work, Raz [Raz05] gave an
incomparable result of two source extractors which requires one source to have min-entropy larger
than n/2, while the other source can have min-entropy O(log n).

Given the difficulty of constructing explicit two-source extractors, much research has been
focusing on a slightly more general model, where the extractor is allowed to have more then two
independent sources as the input. Starting from [BIW04], there has been a long line of fruitful
results [BIW04, Raz05, Bou05, Rao06, BRSW06, Li11, Li13b, Li13a, Li15, Coh15], which introduced
many new techniques and culminated in the three source extractor of exponentially small error by
the author [Li15]. However, in the two source case the situation has not been improved.

Recently, Chattopadhyay and Zuckerman [CZ15] made an exciting breakthrough to the problem
of constructing explicit two-source extractors. They gave an explicit two-source extractors for (n, k)
sources with k ≥ logC n for some large enough constant C. This dramatically improves the situation
of two-source extractors and is actually near optimal. However, their construction only outputs
one bit.

In this paper, we improve the output length of the two-source extractor in [CZ15] to kΩ(1).
Specifically, we have the following theorem.

Theorem 1.3. (Main theorem). There exists a constant C > 0 such that for all n ∈ N, there exists
a polynomial time computable function 2Ext : {0, 1}n × {0, 1}n → {0, 1}m satisfying the following:
if X,Y are two independent (n, k) sources with k ≥ logC n, then

|(2Ext(X,Y ), Y )− (Um, Y )| ≤ ε,

where m = kΩ(1) and ε = n−Ω(1).

Since the extractor is strong in Y , if we don’t need a strong extractor, then we can use the
output of 2Ext to extract from Y and output almost all the min-entropy. For example, we have the
following theorem.

Theorem 1.4. There exists a constant C > 0 such that for all n ∈ N, there exists a polynomial
time computable function 2Ext : {0, 1}n × {0, 1}n → {0, 1}m satisfying the following: if X,Y are
two independent (n, k) sources with k ≥ logC n, then

|2Ext(X,Y )− Um| ≤ ε,

where m = 0.9k and ε = n−Ω(1).

1.1 Non-Oblivious Bit-Fixing Sources

As in [CZ15], our construction is also based on reducing two independent sources to a special kind
of non-oblivious bit-fixing source. Following [CZ15], we formally define such sources.

Definition 1.5. A distribution D on n bits is t-wise independent if the restriction of D to any t
bits is uniform. Further D is a (t, ε)-wise independent distribution if the distribution obtained by
restricting D to any t coordinates is ε-close to uniform.
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Definition 1.6. A source X on {0, 1}n is called a (q, t)-non-oblivious bit-fixing source if there
exists a subset of coordinates Q ⊆ [n] of size at most q such that the joint distribution of the bits
indexed by Q = [n]\Q is t-wise independent. The bits in the coordinates indexed by Q are allowed
to arbitrarily depend on the bits in the coordinates indexed by Q.

If the joint distribution of the bits indexed by Q is (t, γ)-wise independent then X is said to be
a (q, t, γ)-non-oblivious bit-fixing source.

Our main theorem of the improved two-source extractor actually follows directly from our
improvement of the extractor for a (q, t, γ)-non-oblivious bit-fixing source in [CZ15]. Specifically,
we have the following theorem.

Theorem 1.7. There exists a constant c such that for any constant δ > 0 and all n ∈ N, there exists
an explicit extractor BFExt : {0, 1}n → {0, 1}m such that for any (q, t, γ) non-oblivious bit-fixing
source X on n bits with q ≤ n1−δ, t ≥ c log21 n and γ ≤ 1/nt+1, we have that

|BFExt(X)− Um| ≤ ε,

where m = tΩ(1) and ε = n−Ω(1).

Table 1 summarizes our results compared to previous constructions of independent source ex-
tractors. Note that in the table the output length are all under the conditions of being strong
extractors.

1.2 Overview of The Constructions and Techniques

Here we give a brief overview of our constructions and the techniques. We first describe our new
extractor for the (q, t, γ) non-oblivious bit-fixing source on n bits with q ≤ n1−δ for some constant
δ > 0, and γ ≤ 1/nt+1. Our starting point is the one-bit deterministic extractor for such sources
in [CZ15], which we’ll call BitExt. We note that from the construction of [CZ15], (by setting the
parameters appropriately) this function has the following properties. First, it is a depth-4 AC0

circuit with size nO(1). Second, since it’s an extractor, for any (q, t, γ) non-oblivious bit-fixing
source X, we have BitExt(X) is n−Ω(1)-close to uniform. Third, it’s a resilient function, in the sense

that any coalition of any q bits has influence at most q/n1− δ
2 .

We now describe how to extract more than one bit. One natural idea is to divide the source X
into many blocks and then apply BitExt to each block. Indeed this is our first step. In the source
X, we denote the “bad bits” by Q, and the “good bits” by Q. To ensure that no block consists of
only bad bits, we will divide X into nα blocks for some constant α < δ (it suffices to take α = δ/4).
Thus we get ` = nα blocks {Xi, i ∈ [`]} with each block containing n′ = n1−α bits. We now apply
BitExt to each block to obtain a bit Yi. Of course, we will set up the parameters such that BitExt
is an extractor for (q, t, γ) non-oblivious bit-fixing source on n1−α bits.

Now consider any block. Our observation is that since each block can contain at most q ≤ n1−δ

bits from Q, the coalition of the bad bits in this block still has small influence. In particular, by

a simple calculation shows that q < n′1−
3δ
4 and thus for each block the influence of the bad bits is

bounded by q/n′1−
3δ
8 < n−

3δ
8 . This means that with probability at least 1 − n−

3δ
8 over the fixing

of Xi ∩ Q, we have that Yi is fixed. Thus, by a simple union bound, with probability at least

1− nαn−
3δ
8 = 1− n−

δ
8 over the fixing of Q, we have that all {Yi, i ∈ [`]} are fixed.

Now consider another distribution X ′, which has the same distribution as X for the bits in Q,
while the bits in Q are fixed to 0 independent of the bits in Q. We let Y ′i , i ∈ [`] be the corresponding
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Construction Number of Sources Min-Entropy Output Error

[CG88] 2 k ≥ (1/2 + δ)n, any constant δ Θ(n) 2−Ω(n)

[BIW04] poly(1/δ) δn, any constant δ Θ(n) 2−Ω(n)

[BKS+05] 3 δn, any constant δ Θ(1) O(1)

[Raz05] 3
One source: δn, any constant δ. Other
sources may have k ≥ polylog(n).

Θ(1) O(1)

[Raz05] 2
One source: (1/2 + δ)n, any constant δ.
Other source may have k ≥ polylog(n)

Θ(k) 2−Ω(k)

[Bou05] 2
(1/2− α0)n for some small universal
constant α0 > 0

Θ(n) 2−Ω(n)

[Rao06] 3
One source: δn, any constant δ. Other
sources may have k ≥ polylog(n).

Θ(k) 2−k
Ω(1)

[Rao06] O(log n/ log k) k ≥ polylog(n) Θ(k) k−Ω(1)

[BRSW06] O(log n/ log k) k ≥ polylog(n) Θ(k) 2−k
Ω(1)

[Li11] 3 k = n1/2+δ, any constant δ Θ(k) k−Ω(1)

[Li13b] O(log( logn
log k )) +O(1) k ≥ polylog(n) Θ(k) k−Ω(1)

[Li13a]
O( 1

η ) +O(1),

O(1) can be large
k ≥ log2+η n Θ(k)

n−Ω(1)+

2−k
Ω(1)

[Li15] 3 k ≥ log12 n Θ(k) 2−k
Ω(1)

[Li15] d14
η e+ 2 k ≥ log2+η n Θ(k) 2−k

Ω(1)

[Coh15] 3 δn,O(log n), O(log log n) Θ(log n) (log n)−Ω(1)

[CZ15] 2 k ≥ logC n for some large constant C. 1 n−Ω(1)

This work 2 k ≥ logC n for some large constant C. kΩ(1) n−Ω(1)

Table 1: Summary of Results on Extractors for Independent Sources.

Yi’s obtained from X ′ instead of X. By the above argument, with probability at least 1 − n−
δ
8

over the fixing of Q, {Yi} and {Y ′i } are the same. Thus the joint distribution of {Yi} and {Y ′i } are

within statistical distance n−
δ
8 . Moreover, the bits in Q are (t, γ)-wise independent and thus they

are ntγ ≤ 1/n-close to a truly t-wise independent distribution. From now on we will treat Q as
being truly t-wise independent, since this only adds 1/n to the final error.

We will now choose a parameter m = tΩ(1) for the output length. In addition, we take the
generating matrix G of an asymptotically good linear binary code with message length m, codeword
length r = O(m) and distance d = Ω(m). It is well known how to construct such codes (and thus the
generating matrix) explicitly. Note that G is an m× r matrix and any codeword can be generated
by w = vG for some vector v ∈ {0, 1}m, where all operations are in F2. We choose m so that
r = O(m) ≤ ` and now we let Y = (Y1, · · · , Yr) be the random vector in Fr2. Similarly, we have
Y ′ = (Y ′1 , · · · , Y ′r ). The output of our extractor will now be Z = (Z1, · · · , Zm) = GY , where all
operations are in F2.

For the analysis let us consider Z ′ = (Z ′1, · · · , Z ′m) = GY ′. We will show that Z ′ is close to
uniform and then it follows that Z is also close to uniform since they are within statistical distance
n−Ω(1) (since they are deterministic functions of Y and Y ′ respectively). To show this, we will use
the XOR lemma. Consider any non-empty subset S ⊆ [m] and V ′S =

⊕
i∈S Z

′
i. Note that this is
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just (
∑

i∈S Gi)Y
′ where Gi stands for the i’th row of G. Note that

∑
i∈S Gi is a codeword and thus

has at least d = Ω(m) 1’s. On the other hand, it can have at most r = O(m) 1’s.
Note that the parity of up to r bits can be computer by a depth-2 AC0 circuit of size 2O(r) =

2O(m). Recall that each input bit Yi can be computed by a depth-4 AC0 circuit of size nO(1). Thus
we see that each V ′S can be computed by a depth-6 AC0 circuit of size at most 2O(m)nO(1) = 2O(m)

if we choose m > log n. 1 Note that all bits in Q are fixed to 0. Thus the inputs of the circuits are
only from Q.

Now our goal is to ensure that V ′S can be fooled by t-wise independent distributions with
error ε = 2−m. By the theorem of Braverman [Bra10] and Tal [Tal14], it suffices to take t =

O(log(2O(m)/ε)21) = O(m21). Thus we can take m = Ω(t
1
21 ). On the other hand, if Q are the

uniform distribution, then V ′S is the XOR of at least d = Ω(m) independent random variables,
with each being n−Ω(1)-close to uniform. Thus in this case V ′S is (n−Ω(1))d = 2−Ω(m logn)-close to
uniform. Together this means that V ′S is 2−Ω(m logn) + 2−m < 21−m close to uniform. Since this is
true for any non-empty subset S, by a standard XOR lemma it now follows that Z ′ is 2−Ω(m)-close
to uniform. Adding back the errors we see that Z is n−Ω(1)-close to uniform.

Applying the reduction from two independent sources to a non-oblivious bit-fixing source, we
immediately obtain our improved two-source extractor.

Organization. The rest of the paper is organized as follows. We give some preliminaries in
Section 2. We present our main construction of extractors in Section 3, and we conclude with some
discussions and open problems in Section 4.

2 Preliminaries

We often use capital letters for random variables and corresponding small letters for their instanti-
ations. Let |S| denote the cardinality of the set S. For ` a positive integer, U` denotes the uniform
distribution on {0, 1}`. When used as a component in a vector, each U` is assumed independent of
the other components. All logarithms are to the base 2.

2.1 Probability distributions

Definition 2.1 (statistical distance). Let W and Z be two distributions on a set S. Their statistical
distance (variation distance) is

∆(W,Z)
def
= max

T⊆S
(|W (T )− Z(T )|) =

1

2

∑
s∈S
|W (s)− Z(s)|.

We say W is ε-close to Z, denoted W ≈ε Z, if ∆(W,Z) ≤ ε. For a distribution D on a set S
and a function h : S → T , let h(D) denote the distribution on T induced by choosing x according
to D and outputting h(x).

2.2 Influence of variables

Following [CZ15], we define the influence of variables.

1We can get rid of the intermediate negation gates with only a constant factor of blow-up in the circuit size, by
standard tricks.
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Definition 2.2. Let f : {0, 1}n → {0, 1} be any boolean function on variables x1, · · · , xn. The
influence of a set Q ⊆ {x1, · · · , xn} on f , denoted by IQ(f), is defined to be the probability that f
is undetermined after fixing the variables outside Q uniformly at random. Further, for any integer
q define Iq(f) = maxQ⊆{x1,··· ,xn},|Q|=qIQ(f).

More generally, let IQ,D(f) denote the probability that f is undermined when the variables
outside Q are fixed by sampling from the distribution D. We define IQ,t(f) = maxD∈DkIQ,D(f),
where Dt is the rest of all t-wise independent distributions. Similarly, IQ,t,γ(f) = maxD∈Dt,γIQ,D(f)
where Dt,γ is the set of all (t, γ)-wise independent distributions. Finally, for any integer q define
Iq,t(f) = maxQ⊆{x1,··· ,xn},|Q|=qIQ,t(f) and Iq,t,γ(f) = maxQ⊆{x1,··· ,xn},|Q|=qIQ,t,γ(f)

2.3 Prerequisites from previous work

Lemma 2.3 ([BIW04]). Assume that Y1, Y2, · · · , Yt are independent random variables over {0, 1}n
such that for any i, 1 ≤ i ≤ t, we have |Yi − Un| ≤ ε. Let Z = ⊕ti=1Yi. Then |Z − Un| ≤ εt.

To prove our construction is an extractor, we need the following definition and lemma.

Definition 2.4. (ε-biased space) A random variable Z over {0, 1} is ε-biased if |Pr[Z = 0]−Pr[Z =
1]| ≤ ε. A sequence of 0-1 random variables Z1, · · · , Zm is ε-biased for linear tests if for any
nonempty set S ⊂ {1, · · · ,m}, the random variable ZS =

⊕
i∈S Zi is ε-biased.

The following lemma is due to Vazirani. For a proof see for example [Gol95]

Lemma 2.5. Let Z1, · · · , Zm be 0-1 random variables that are ε-biased for linear tests. Then, the
distribution of (Z1, · · · , Zm) is ε · 2m/2-close to uniform.

3 The Constructions of Extractors

In this section we describe our deterministic extractor for an (q, t, γ)-non-oblivious bit-fixing source
on n bits. We rely on the following result from [CZ15].

Theorem 3.1 ([CZ15]). There exists a constant c > 0 such that for any δ > 0 and every large
enough n ∈ N the following is true. Let X be a (q, t, γ) non-oblivious bit-fixing source on n bits
with q ≤ n1−δ, t ≥ c log18 n and γ ≤ 1/nt+1. There exists a polynomial time computable monotone
boolean function BitExt : {0, 1}n → {0, 1} satisfying:

• BitExt is a depth 4 circuit in AC0 of size nO(1).

• |Ex←X [BitExt(x)]− 1
2 | ≤

1
nΩ(1) .

• For any q > 0, Iq,t,γ(BitExt) ≤ q/n1− δ
2 .

We need the following result by Braverman [Bra10] and Tal [Tal14] about fooling AC0 circuits
with t-wise independent distributions.

Theorem 3.2 ([Bra10, Tal14]). Let D be any t = t(m, d, ε)-wise independent distribution on
{0, 1}n. Then for any circuit C ∈ AC0 of depth d and size m,

|Ex∼Un [C(x)]− Ex∼D[C(x)]| ≤ ε,
where t(m, d, ε) = O(log(m/ε))3d+3.
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Theorem 3.3 ([AGM03]). Let D be a (t, γ)-wise independent distribution on {0, 1}n. Then there
exists a t-wise independent distribution on {0, 1}n that is ntγ-close to D.

We also need an explicit asymptotically good binary linear codes:

Definition 3.4. A linear binary code of length n and rank k is a linear subspace C with dimension
k of the vector space Fn2 . If the distance of the code C is d we say that C is an [n, k, d]2 code. C is
asymptotically good if there exist constants 0 < δ1, δ2 < 1 s.t. k ≥ δ1n and d ≥ δ2n.

Note that every linear binary code has an associated generating matrix G ∈ Fk×n2 , and every
codeword can be expressed as vG, for some vector v ∈ Fk2.

It is well known that we have explicit constructions of asymptotically good binary linear code.
For example, the Justensen codes constructed in [Jus72].

Now we have the following construction and theorem:
We now present our extractor for a (q, t, γ) non-oblivious bit-fixing source.

Algorithm 3.5 (BFExt(X) ).

Input: X— a (q, t, γ) non-oblivious bit-fixing source on n bits with q ≤ n1−δ, t ≥ c log21 n and
γ ≤ 1/nt+1.
Output: Z — a string on m bits that is n−Ω(1) close to uniform, with m = tΩ(1).

Sub-Routines and Parameters:
Let α = δ/4. Let BitExt be the one-bit extractor for non-oblivious bit-fixing source in The-
orem 3.1. Let G be the generating matrix of an asymptotically good [r,m, d]2 code with
r = O(m) ≤ nα and d = Ω(m). Thus G is an m× r binary matrix.

1. Divide X into ` = nα disjoint blocks, each with length n1−α.

2. For each block Xi, i ∈ [`], compute Yi = BitExt(Xi).

3. Let Y = (Y1, · · · , Yr) be the binary vector in Fr2. Compute Z = GY where all operations
are in F2.

We have the following theorem.

Theorem 3.6. There exists a constant c such that for any constant δ > 0 and all n ∈ N, there exists
an explicit extractor BFExt : {0, 1}n → {0, 1}m such that for any (q, t, γ) non-oblivious bit-fixing
source X on n bits with q ≤ n1−δ, t ≥ c log21 n and γ ≤ 1/nt+1, we have that

|BFExt(X)− Um| ≤ ε,

where m = tΩ(1) and ε = n−Ω(1).

Proof. Let the set of “bad” bits in X be Q, and the rest of the “good” bits be Q. Thus |Q| = q ≤
n1−δ. Therefore, any block Xi forms a (q, t, γ) non-oblivious bit-fixing source on n′ = n1−α = n1− δ

4

bits.
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Note that q ≤ n1−δ < n(1− δ
4

)(1− 3δ
4

) = n′1−
3δ
4 . Thus by Theorem 3.1 we have that each Yi is

nΩ(1)-close to uniform. Moreover since q ≤ n1−δ we have that Iq,t,γ(BitExt) ≤ q/n′1−
3δ
8 < n−

3δ
8 .

For any i ∈ [`], the above means that with probability at least 1−n−
3δ
8 over the fixing of Xi∩Q,

we have that Yi is fixed regardless of what Xi ∩ Q is. Thus, it is also true that with probability

at least 1 − n−
3δ
8 over the fixing of Q, we have that Yi is fixed regardless of what Q is. By a

union bound, with probability at least 1 − n−
3δ
8 n

δ
4 = 1 − n−

δ
8 over the fixing of Q, we have that

(Y1, · · · , Y`) is fixed and thus Y = (Y1, · · · , Yr) is also fixed.
Now consider a different distribution X ′ where the bits in Q have the same distribution as X,

while the bits in Q are fixed to 0 independent of Q. Let Y ′ = (Y ′1 , · · · , Y ′r ) and Z ′ be computed
from X ′ using the same algorithm. Then, by the above argument, we have that

|Y − Y ′| ≤ n−
δ
8 and thus also |Z − Z ′| ≤ n−

δ
8 .

Now consider X ′, Y ′, Z ′. Note that by Theorem 3.3 X ′ is ntγ ≤ 1/n-close to a distribution
where the bits in Q are truly t-wise independent, and the bits in Q are fixed to 0. Thus from now
on we will think of X ′ as this distribution, since this only adds at most 1/n to the error.

Let X ′′ be another distribution where the bits in Q are completely uniform and independent,
and the bits in Q are fixed to 0. Let Y ′′, Z ′′ be the corresponding random variables obtained from
X ′′ instead of X ′.

Take any non-empty subset S ⊆ [m], and consider the random variable V ′S =
⊕

i∈S Z
′
i.

Note that

V ′S =
⊕
i∈S

Z ′i =
⊕
i∈S

GiY
′ = (

∑
i∈S

Gi)Y
′,

where Gi stands for the i’th row of the matrix G. Since G is the generating matrix of a [r,m, d]2
code, for any non-empty subset S ⊆ [m], we have that

∑
i∈S Gi is a codeword. Thus it has at least

d 1’s.
Now let V ′′S be the corresponding random variable obtained from X ′′. Note that by Theorem 3.1

each Y ′′i is n−Ω(1)-close to uniform, and now the {Y ′′i }’s are independent of each other (since they
are functions applied to independent blocks of X ′′). Therefore by Lemma 2.3 we have that

|E[V ′′S ]− 1/2| ≤ (n−Ω(1))d = 2−Ω(m logn).

Moreover, observe that V ′S is the parity of at most r = O(m) Y ′i ’s. Since parity on r bits can
be computed by a depth-2 AC0 circuit (i.e., a DNF or CNF) of size 2O(r) = 2O(m), and every Y ′i is
computed by a depth-4 AC0 circuit with size nO(1), we have that V ′S can be computed by a depth-6
AC0 circuit with size at most 2O(m)poly(n).

We choose m = min{n0.9α, βt
1
21 } for some small constant 0 < β < 1, so that m = tΩ(1) (since

t ≤ n) and r = O(m) ≤ nα. Note that now the AC0 circuit size is at most 2O(m)poly(n) = 2O(m)

since t
1
21 = Ω(log n). Note that the bits in Q are fixed to 0, thus V ′S is computed by a depth-6 AC0

circuit with inputs from Q.
Setting ε = 2−m in Theorem 3.2, we see that to ε-fool a depth-6 AC0 circuit with size at most

2O(m), it suffices to take O(log(2O(m)))21 = O(m21)-wise independent distributions. By setting β
to be small enough, we can make this number less than t. Since in X ′, the bits in Q are t-wise
independent, we have that
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|E[V ′S ]− E[V ′′S ]| ≤ 2−m.

Thus

|E[V ′S ]− 1/2| ≤ 2−Ω(m logn) + 2−m < 21−m.

Note that this holds for every non-empty subset S ⊆ [m]. Thus Z is ε′-biased for linear tests
with ε′ < 2 · 21−m = 22−m. By the Lemma 2.5 we have that

|Z ′ − Um| ≤ 2m/222−m = 2−Ω(m).

Adding back the errors, we have

|Z − Um| ≤ 2−Ω(m) + 1/n+ n−
δ
8 = n−Ω(1).

The following theorem is implicit in [Li15] and explicit in [CZ15]

Theorem 3.7 ([Li15, CZ15]). There exist constants δ, c′ > 0 such that for every n, t ∈ N there
exists a polynomial time computable function reduce : {0, 1}n × {0, 1}n → {0, 1}N with N = nO(1)

satisfying the following property: if X,Y are two independent (n, k) sources with k ≥ c′t4 log2 n,
then

Pr
y∼Y

[reduce(X, y) is a (q, t, γ) non-oblivious bit-fixing source ] ≥ 1− n−ω(1),

where q = N1−δ and γ = 1/N t+1.

Together with Theorem 3.6 this immediately implies the following theorem.

Theorem 3.8. There exists a constant C > 0 such that for all n ∈ N, there exists a polynomial
time computable function 2Ext : {0, 1}n × {0, 1}n → {0, 1}m satisfying the following: if X,Y are
two independent (n, k) sources with k ≥ logC n, then

|(2Ext(X,Y ), Y )− (Um, Y )| ≤ ε,

where m = kΩ(1) and ε = n−Ω(1).

Proof. We first use Theorem 3.7 to obtain a (q, t, γ) non-oblivious bit-fixing source Z on N = nO(1)

bits, with q = N1−δ and γ = 1/N t+1. We then apply the extractor for such sources in Theorem 3.6.
By choosing C large enough we can ensure that k ≥ c′t4 log2 n and t ≥ c log21 n (e.g., take C = 87).
Thus we see that t = kΩ(1).

Therefore, by Theorem 3.6 the extractor can output tΩ(1) = kΩ(1) bits with error n−Ω(1). Since
the reduction succeeds with probability 1−n−ω(1) over the fixing of Y , the extractor is also strong
in Y and the final error is ε = n−Ω(1) + n−ω(1) = n−Ω(1).
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4 Conclusions and Open Problems

Constructing explicit two-source extractors is a challenging problem. Through a long line of re-
search, the recent breakthrough result of Chattopadhyay and Zuckerman [CZ15] has finally brought
us close to the optimal. In this paper we managed to improve the output length of the (strong)
two-source extractors in [CZ15] from 1 to kΩ(1), but the error remains n−Ω(1). The most obvious
open problems are to improve the output length (say to Ω(k)) and the error (say to exponentially
small).

Both of these two problems seem challenging and requiring new ideas. Specifically, the current
approach is to first reduce two independent sources to a (q, t, γ) non-oblivious bit-fixing source, and
then apply a deterministic extractor to such sources. This reduction step (implicit in [Li15] and
explicit in [CZ15]) inherently depend on the alternating extraction method developed in previous
work on independent source extractors). As a result, this technique, together with the requirement
that γ ≤ 1/nt+1, seems to imply that t can be at most kα for some constant α < 1. As t can be
viewed as the entropy of the (q, t, γ) non-oblivious bit-fixing source, it seems that we can extract
at most t = kOmega(1) bits.

Second, the extractor for non-oblivious bit-fixing source crucially depends on resilient functions,
where the analysis is done by bounding the influence of a coalition of variables. If the non-oblivious
bit-fixing source has length nO(1) (to ensure polynomial time computability), then even one bit can
have influence Ω(log n/nO(1)) by the result of Kahn, Kalai and Linial [KKL88]. Therefore we cannot
hope to get error n−ω(1) through this approach. However, there is indeed one way to get smaller
error. That is to increase the length of the non-oblivious bit-fixing source. Indeed, by increasing
the length to nω(1) we can get error n−ω(1), but then the time for computing the extractor will be
nω(1) as well.

Finally, an interesting observation of our work is that actually the bias of the one bit extractor
in [CZ15] is not very important (in [CZ15] it has bias n−Ω(1)). Indeed, even if it only has constant
bias, after the step of using the generating matrix G, we can see that the XOR of Ω(m) copies
will have bias 2−Ω(m). However, at this moment this observation doesn’t seem to help improve the
parameters.
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