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Abstract

A recent work of Chen, Kabanets, Kolokolova, Shaltiel and Zuckerman (CCC 2014, Com-
putational Complexity 2015) introduced the Compression problem for a class C of circuits,
defined as follows. Given as input the truth table of a Boolean function f : {0, 1}n → {0, 1}
that has a small (say size s) circuit from C, find in time 2O(n) any Boolean circuit for f of
size less than trivial, i.e. much smaller than 2n/n.

The work of Chen et al. gave compression algorithms for many classes of circuits in-
cluding AC0 (the class of constant-depth unbounded fan-in circuits made up of AND, OR,
and NOT gates) and Boolean formulas of size nearly n2. They asked if similar results can
be obtained for the circuit class AC0[⊕], the class of circuits obtained by augmenting AC0

with unbounded fan-in parity gates.
We answer the question positively here, using techniques from work of Kopparty and the

author (FSTTCS 2012).

1 Introduction

We recall the notion of the Compression problem for a circuit class C from the work of Chen et
al. [3]. The input to the problem is the truth table of a Boolean function f : {0, 1}n → {0, 1}
which is promised to have a ‘small’ circuit from the class C. The desired output is a general
Boolean circuit C (not necessarily from the class C) of small size that computes the function f ;
the size of C should be smaller than the trivial 2n/n that is achievable for any Boolean function.
Moreover, we require the algorithm that constructs C to run in time polynomial in the size of
its input, which is in time poly(2n).

The aforementioned paper of Chen et al. [3] that introduced this problem showed that there
is a polynomial time compression algorithm for AC0 in the following sense: given as input the
truth table of f : {0, 1}n → {0, 1} which has an AC0 circuit of size s and depth d = O(1), the

algorithm outputs a circuit computing f of size at most 2n−n/(O(log s))d−1
. Similar compression

algorithms were also obtained for functions that have de Morgan formulas of size at most
n2.5−Ω(1), Boolean formulas (over the complete basis) of size n2−Ω(1) and read-once branching

programs of size 2n( 1
2
−Ω(1)): we refer the reader to [3] for the compression obtained in these

cases.
Chen et al. asked if similar compression algorithms could be obtained for AC0[⊕]. We

resolve this question here, though with slightly weaker parameters.

Theorem 1. There is a polynomial time algorithm which, when given as input the truth table
of a function f : {0, 1}n → {0, 1} and parameters s and d = O(1) such that f has an AC0[⊕]

circuit of size s and depth d, outputs a circuit C of size 2n−n/(O(log s))2(d−1)
computing f .
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We begin by formally defining our key technical tool, the notion of certifying polynomials
from [5]. Throughout the paper, we identify {0, 1} with F2. Given any function g : {0, 1}n → F2,
we use Supp(g) to denote the set of x such that g(x) is non-zero.

Definition 2 (Certifying polynomial). A non-zero polynomial P (X1, . . . , Xn) ∈ F2[X1, . . . , Xn]
is a certifying polynomial for a function f : {0, 1}n → {0, 1} if f is constant on Supp(P ). We
say that P is b-certifying, for b ∈ {0, 1}, if f |Supp(P ) = b.

This definition is very similar to the notions of weak-2 degree and algebraic immunity, that
already appear in the literature [4, 1, 2].

We will also need the notion of a probabilistic polynomial.

Definition 3 (Probabilistic polynomials). An ε-error probabilistic polynomial of degree D for
a function f : {0, 1}n → {0, 1} is a random polynomial P of degree at most D (chosen according
to some distribution over polynomials of degree at most D) such that for any x ∈ {0, 1}n, we
have PrP[f(x) = P(x)] ≥ 1− ε.

The following lemma was proved in [5] by building on classical circuit approximation tech-
niques of Razborov [8].

Lemma 4 ([5]). For any ε ∈ (0, 1/2), any AC0[⊕] circuit C of size s and depth d has an ε-
error probabilistic polynomial of degree at most (c log s)d−1 ·(log(1/ε)) for some absolute constant
c > 0. In particular, there is a polynomial P ∈ F2[X1, . . . , Xn] of degree at most (c log s)d−1 ·
(log(1/ε)) such that

Pr
x∼{0,1}n

[f(x) = P (x)] ≥ 1− ε.

2 Compression algorithms for AC0[⊕] circuits
Proof Idea. Our starting point is the proof of a theorem from [5] which shows that the input
function f has a certifying polynomial of degree at most D = n/2 − n/(O(log s))2(d−1). We
sketch the idea here. Let ε = exp(−n/(c log s)2(d−1)) for a constant c > 0 yet to be chosen. To
construct such a certifying polynomial, we start with a polynomial P (given by Lemma 4) of
degree at most d = (c1 log s)d−1 · log(1/ε) that computes f on all but an ε fraction of inputs. Let
EP be the set of inputs where P does not compute f correctly. We then construct a non-zero
polynomial Q of degree D0 = n

2 − c2

√
n log(1/ε) that vanishes on EP : to be able to do this, c2

is chosen so that the number of monomials of degree at most D0 is greater than ε · 2n ≥ |EP |,
which implies that there is a non-zero Q as above; the polynomial Q · P is then a 1-certifying
polynomial for f of degree at most D0 + d.1 By now choosing c large enough, we obtain a
certifying polynomial of the required degree, which finishes the proof.

Note that the above idea also gives us an efficient algorithm for constructing such a certifying
polynomial: formally, given the truth table of f , we can efficiently find a certifying polynomial
for f of degree at most D0 +d, since the problem of finding a 1-certifying polynomial polynomial
for f is equivalent to finding a non-zero solution to a system of homogeneous linear equations
over F2 where the variables correspond to coefficients of monomials of degree at most D0 + d.

This gives us a hint of how to go about compressing the function f . We can try to find a
1-certifying polynomial for f of degree at most D0 + d. Note that (for a suitable choice of c)

1There is actually a slight subtlety here since Q ·P might be the zero polynomial. In this case, the polynomial
Q · (1−P ) is a 0-certifying polynomial for f . For simplicity, we assume for now that this issue does not arise. In
the actual algorithm, this will not happen unless f has very few 1s and can thus be easily computed by a brute
force circuit.
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the number of monomials in such a polynomial is 2n−n/(log s)O(d)
, and hence this polynomial can

be represented as a depth-2 AC0[⊕] circuit of this size (alternately, since the parity function
on m bits has a an circuit over the de Morgan basis of size O(m), we can also represent this

polynomial as a circuit over the de Morgan basis of size 2n−n/(log s)O(d)
). Hence, the certifying

polynomial gives us a ‘small’ circuit that computes f correctly on a certain subset of inputs
(and in particular is never wrong on inputs of f−1(0)).

However, we are looking for a small circuit that computes f everywhere. To obtain such a
circuit, we try to look for many 1-certifying polynomials R1, . . . , Rm and try to “cover” all the
1-inputs of f . If we are able to do this with a small m, then

∨m
i=1Ri computes the function f .

But there are two things that could go wrong with such an approach:

• By definition, any 1-certifying polynomial R is forced to vanish at all inputs x ∈ f−1(0).
However, this could also force R to vanish at some inputs y ∈ f−1(1). Such “forced”
inputs y cannot be covered by any 1-certifying polynomial R.

• Each 1-certifying polynomial R that we find might cover very few y ∈ f−1(1) and hence
we might require many 1-certifying polynomials to cover all of f−1(1).

Handling the second of these issues is not too difficult: we can use a simple linear algebraic
argument to show that for each y that is not forced in the above sense, a significant fraction of
1-certifying polynomials cover y. Coupled with a covering argument from [3], we can show that
there are a few certifying polynomials that cover all such y.

To get around the first issue, we use a beautiful recent result of Nie and Wang [6], which
implies that the number of forced y is vanishingly small if the parameters are chosen carefully.
We are therefore able to hardcode these y into our circuit without a significant blowup in size.
This finishes the proof.

We now state the result of Nie and Wang that we will use. Given a subset E ⊆ {0, 1}n and
a parameter D ≤ n, we define the degree D closure of E , denoted clD(E), which is the set of all
points y ∈ {0, 1}n such that any polynomial Q of degree at most D1 that vanishes on E vanishes
on y.

Theorem 5 (Theorem 5.6 in [6]). Let ND denote the number of multilinear monomials of degree
at most D. Then, we have

|clD(E)|
2n

≤ |E|
ND

.

We now prove Theorem 1.

Proof of Theorem 1. We assume that d and ε are as above. The constant c > 0 in the defi-
nition of ε > 0 will be chosen below. We will assume that for the c we choose, the quantity
(c log s)2(d−1) < n/100: otherwise, the compression algorithm can just output a trivial circuit
of size 2n/n for f .

Let D1 = n
2 − c3

√
n log(1/ε) for a constant c3 > 0 that is chosen to so that the number

of monomials of degree at most D1 is ND1 ≥
√
ε2n. We choose c so that D′ = D1 + d =

n/2− n/(O(log s))(d−1).
We call y ∈ f−1(1) forced if any polynomial R that vanishes on f−1(0) also vanishes on y.

Let F ⊆ f−1(1) be the set of all forced y. We will prove the following two claims:

Claim 6. |F | ≤ 2n−n/(O(log s))2(d−1)
.

Claim 7. There is a polynomial-time algorithm A1 which when given f , outputs the descriptions
of at most m = O(n) 1-certifying polynomials R1, . . . , Rm such that for each y ∈ f−1(1) \ F ,
there is an i ∈ [m] such that y ∈ Supp(Ri).
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Given the above two claims, the description of the compression algorithm A is simple: first
run A1 and obtain a collection of 1-certifying polynomials R1, . . . , Rm such that

⋃
i Supp(Ri) =

f−1(y) \ F . In particular, if Ci is a circuit of size 2n−n/(O(log s))2(d−1)
that accepts exactly the

inputs in Supp(Ri), then C ′ =
∨
iCi is a circuit of the required size that accepts exactly the

set f−1(y) \F . The algorithm now constructs a DNF CF of size O(n · |F |) that accepts exactly
the inputs in F (the set F is easily inferred from the circuit C ′). The circuit C output by the
algorithm is C ′ ∨ CF , which computes f by definition and also has the required size.

It remains to prove Claims 6 and 7, which we do below.

Proof of Claim 6. Let P and EP be as above. Note that if y 6∈ clD1(EP ), then there is a
polynomial Q of degree at most D1 that vanishes at all points in EP but not at y. Hence, the
polynomial Q · P is a 1-certifying polynomial for f of degree at most D′ that is non-zero at y
and thus, y is not forced. Stated in the contrapositive, this argument tells us that F ⊆ clD1(EP )
and therefore, |F | ≤ |clD1(EP )|.

By Theorem 5, we have
|clD1(EP )|

2n
≤ |EP |
ND1

Since |EP | ≤ ε2n and ND1 ≥
√
ε2n, we see that the right hand size of the above inequality

is bounded by
√
ε, which implies the claim.

Proof of Claim 7. Let V denote the vector space of polynomials Q of degree at most D′ such
that Q vanishes on f−1(0). Note that F ′ := f−1(1) \ F satisfies F ′ =

⋃
Q∈V Supp(Q). Let

Q1, . . . , QN be a generating set of V . Note that N ≤ 2n. A generic element of V is given by∑N
i=1 αiQi for some choice of α1, . . . , αN ∈ F2; we denote this element by Qα, where α denotes

the vector (α1, . . . , αN ).
For any y ∈ F ′, we have Qα(y) =

∑
i αiQi(y), which is a linear function of α. Since

y ∈ F ′, it is not forced to 0 and hence not all the Qi(y) are 0. Thus, for a random choice of
the αi, the probability that Qα(y) 6= 0 is 1

2 . We can derandomize this argument using binary
error-correcting codes.

Say we have vectors U = {u1, . . . , uN} ⊆ FM2 (where M = 2O(n)) that generate an error-
correcting code of distance δM for some constant δ > 0. There are many standard constructions
of such sets U in time poly(2n) (see, e.g., ??). Let M be an M × N matrix with columns
u1, . . . , uN . Let α1, . . . , αM denote the rows of M. For any non-zero β1, . . . , βN we know that
u =

∑
i βiui has at least δM many non-zero entries. In other words, for any non-zero vector

β = (β1, . . . , βN ) ∈ FN2 and a random j ∈ [M ], the probability that the inner product of β and
αj is non-zero is at least δ.

We are now ready to describe the algorithm A1. The algorithm needs to finds m = O(n)
elements R1, . . . , Rm from V such that F ′ ⊆

⋃
i Supp(Ri). The algorithm goes through m

iterations, the ith iteration producing a polynomial Ri ∈ V . After each iteration, we ensure
that the number of elements in F ′ left uncovered thus far drops by the constant factor (1− δ);
thus, at the end of m = 2n log(1/δ) iterations, all the elements of F ′ will be covered.

Let F ′i = F ′ \
⋃
p<i Supp(Rp) be the set of elements of F ′ left uncovered after i−1 iterations.

In the ith iteration, the algorithm looks at each of the rows of M and picks the j such that
sj = |Supp(

∑
i∈[N ] α

j
iQi) ∩ F ′i | is maximized. We know that vy := (Q1(y), . . . , QN (y)) is a

non-zero vector for any choice of y ∈ F ′i . Hence, for a random j ∈ [M ], the probability that the
inner product of αj and v is non-zero is at least δ. By averaging, there must be a j ∈ [M ] such
that the inner product of αj and vy is non-zero for at least a δ-fraction of the y ∈ F ′i . Thus,
|F ′i+1| ≤ (1− δ)|F ′i |.

4



3 Extension to the MODp case

The compression algorithms extend fairly straightforwardly to the setting of AC0[p] circuits. The
right definition of certifying polynomials is obtained by simply replacing 2 by p in Definition 2
(where Supp(P ) is the set of points x s.t. P (x) 6= 0). The only missing links in the proof
is an extension of Lemma 4 to the setting of AC0[p] and the theorem of Nie and Wang [6] in
this setting. The former appears in the work of Oliveira and Santhanam [7]. For the latter,
it turns out that Theorem 5 holds over any field. For fields other than F2, this is a slightly
different statement than the one that appears in the work of Nie and Wang, who only consider
the closure over the larger domain Fn, where F is any finite field. However, a straightforward
modification of their argument also gives the result for closure over {0, 1}n ⊆ Fn, where F can
be any field (possibly even infinite).
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