
A Compression Algorithm for AC0[⊕] circuits using Certifying

Polynomials

Srikanth Srinivasan∗

Abstract

A recent work of Chen, Kabanets, Kolokolova, Shaltiel and Zuckerman (CCC 2014, Com-
putational Complexity 2015) introduced the Compression problem for a class C of circuits,
defined as follows. Given as input the truth table of a Boolean function f : {0, 1}n → {0, 1}
that has a small (say size s) circuit from C, find in time 2O(n) any Boolean circuit for f of
size less than trivial, i.e. much smaller than 2n/n.

The work of Chen et al. gave compression algorithms for many classes of circuits in-
cluding AC0 (the class of constant-depth unbounded fan-in circuits made up of AND, OR,
and NOT gates) and Boolean formulas of size nearly n2. They asked if similar results can
be obtained for the circuit class AC0[⊕], the class of circuits obtained by augmenting AC0

with unbounded fan-in parity gates.
We answer the question positively here, using techniques from work of Kopparty and the

author (FSTTCS 2012).

1 Introduction

We recall the notion of the Compression problem for a circuit class C from the work of Chen et
al. [3]. The input to the problem is the truth table of a Boolean function f : {0, 1}n → {0, 1}
which is promised to have a ‘small’ circuit from the class C. The desired output is a general
Boolean circuit C (not necessarily from the class C) of small size that computes the function f ;
the size of C should be smaller than the trivial 2n/n that is achievable for any Boolean function.
Moreover, we require the algorithm that constructs C to run in time polynomial in the size of
its input, which is in time poly(2n).

The aforementioned paper of Chen et al. [3] that introduced this problem showed that there
is a polynomial time compression algorithm for AC0 in the following sense: given as input the
truth table of f : {0, 1}n → {0, 1} which has an AC0 circuit of size s and depth d = O(1), the

algorithm outputs a circuit computing f of size at most 2n−n/(O(log s))d−1
. Similar compression

algorithms were also obtained for functions that have de Morgan formulas of size at most
n2.5−Ω(1), Boolean formulas (over the complete basis) of size n2−Ω(1) and read-once branching

programs of size 2n(1
2
−Ω(1)): we refer the reader to [3] for the compression obtained in these

cases.
Chen et al. asked if similar compression algorithms could be obtained for AC0[⊕]. We

resolve this question here, though with slightly weaker parameters.

Theorem 1. There is a polynomial time algorithm which, when given as input the truth table
of a function f : {0, 1}n → {0, 1} and parameters s and d = O(1) such that f has an AC0[⊕]

circuit of size s and depth d, outputs a circuit C of size 2n−n/(O(log s))2(d−1)
computing f .

∗Department of Mathematics, IIT Bombay, Mumbai, India. srikanth@math.iitb.ac.in

1

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Report No. 142 (2015)

We begin by formally defining our key technical tool, the notion of certifying polynomials
from [5]. Throughout the paper, we identify {0, 1} with F2. Given any function g : {0, 1}n → F2,
we use Supp(g) to denote the set of x such that g(x) is non-zero.

Definition 2 (Certifying polynomial). A non-zero polynomial P (X1, . . . , Xn) ∈ F2[X1, . . . , Xn]
is a certifying polynomial for a function f : {0, 1}n → {0, 1} if f is constant on Supp(P). We
say that P is b-certifying, for b ∈ {0, 1}, if f |Supp(P) = b.

This definition is very similar to the notions of weak-2 degree and algebraic immunity, that
already appear in the literature [4, 1, 2].

We will also need the notion of a probabilistic polynomial.

Definition 3 (Probabilistic polynomials). An ε-error probabilistic polynomial of degree D for
a function f : {0, 1}n → {0, 1} is a random polynomial P of degree at most D (chosen according
to some distribution over polynomials of degree at most D) such that for any x ∈ {0, 1}n, we
have PrP[f(x) = P(x)] ≥ 1− ε.

The following lemma was proved in [5] by building on classical circuit approximation tech-
niques of Razborov [8].

Lemma 4 ([5]). For any ε ∈ (0, 1/2), any AC0[⊕] circuit C of size s and depth d has an ε-
error probabilistic polynomial of degree at most (c log s)d−1 ·(log(1/ε)) for some absolute constant
c > 0. In particular, there is a polynomial P ∈ F2[X1, . . . , Xn] of degree at most (c log s)d−1 ·
(log(1/ε)) such that

Pr
x∼{0,1}n

[f(x) = P (x)] ≥ 1− ε.

2 Compression algorithms for AC0[⊕] circuits
Proof Idea. Our starting point is the proof of a theorem from [5] which shows that the input
function f has a certifying polynomial of degree at most D = n/2 − n/(O(log s))2(d−1). We
sketch the idea here. Let ε = exp(−n/(c log s)2(d−1)) for a constant c > 0 yet to be chosen. To
construct such a certifying polynomial, we start with a polynomial P (given by Lemma 4) of
degree at most d = (c1 log s)d−1 · log(1/ε) that computes f on all but an ε fraction of inputs. Let
EP be the set of inputs where P does not compute f correctly. We then construct a non-zero
polynomial Q of degree D0 = n

2 − c2

√
n log(1/ε) that vanishes on EP : to be able to do this, c2

is chosen so that the number of monomials of degree at most D0 is greater than ε · 2n ≥ |EP |,
which implies that there is a non-zero Q as above; the polynomial Q · P is then a 1-certifying
polynomial for f of degree at most D0 + d.1 By now choosing c large enough, we obtain a
certifying polynomial of the required degree, which finishes the proof.

Note that the above idea also gives us an efficient algorithm for constructing such a certifying
polynomial: formally, given the truth table of f , we can efficiently find a certifying polynomial
for f of degree at most D0 +d, since the problem of finding a 1-certifying polynomial polynomial
for f is equivalent to finding a non-zero solution to a system of homogeneous linear equations
over F2 where the variables correspond to coefficients of monomials of degree at most D0 + d.

This gives us a hint of how to go about compressing the function f . We can try to find a
1-certifying polynomial for f of degree at most D0 + d. Note that (for a suitable choice of c)

1There is actually a slight subtlety here since Q ·P might be the zero polynomial. In this case, the polynomial
Q · (1−P) is a 0-certifying polynomial for f . For simplicity, we assume for now that this issue does not arise. In
the actual algorithm, this will not happen unless f has very few 1s and can thus be easily computed by a brute
force circuit.

2

the number of monomials in such a polynomial is 2n−n/(log s)O(d)
, and hence this polynomial can

be represented as a depth-2 AC0[⊕] circuit of this size (alternately, since the parity function
on m bits has a an circuit over the de Morgan basis of size O(m), we can also represent this

polynomial as a circuit over the de Morgan basis of size 2n−n/(log s)O(d)
). Hence, the certifying

polynomial gives us a ‘small’ circuit that computes f correctly on a certain subset of inputs
(and in particular is never wrong on inputs of f−1(0)).

However, we are looking for a small circuit that computes f everywhere. To obtain such a
circuit, we try to look for many 1-certifying polynomials R1, . . . , Rm and try to “cover” all the
1-inputs of f . If we are able to do this with a small m, then

∨m
i=1Ri computes the function f .

But there are two things that could go wrong with such an approach:

• By definition, any 1-certifying polynomial R is forced to vanish at all inputs x ∈ f−1(0).
However, this could also force R to vanish at some inputs y ∈ f−1(1). Such “forced”
inputs y cannot be covered by any 1-certifying polynomial R.

• Each 1-certifying polynomial R that we find might cover very few y ∈ f−1(1) and hence
we might require many 1-certifying polynomials to cover all of f−1(1).

Handling the second of these issues is not too difficult: we can use a simple linear algebraic
argument to show that for each y that is not forced in the above sense, a significant fraction of
1-certifying polynomials cover y. Coupled with a covering argument from [3], we can show that
there are a few certifying polynomials that cover all such y.

To get around the first issue, we use a beautiful recent result of Nie and Wang [6], which
implies that the number of forced y is vanishingly small if the parameters are chosen carefully.
We are therefore able to hardcode these y into our circuit without a significant blowup in size.
This finishes the proof.

We now state the result of Nie and Wang that we will use. Given a subset E ⊆ {0, 1}n and
a parameter D ≤ n, we define the degree D closure of E , denoted clD(E), which is the set of all
points y ∈ {0, 1}n such that any polynomial Q of degree at most D1 that vanishes on E vanishes
on y.

Theorem 5 (Theorem 5.6 in [6]). Let ND denote the number of multilinear monomials of degree
at most D. Then, we have

|clD(E)|
2n

≤ |E|
ND

.

We now prove Theorem 1.

Proof of Theorem 1. We assume that d and ε are as above. The constant c > 0 in the defi-
nition of ε > 0 will be chosen below. We will assume that for the c we choose, the quantity
(c log s)2(d−1) < n/100: otherwise, the compression algorithm can just output a trivial circuit
of size 2n/n for f .

Let D1 = n
2 − c3

√
n log(1/ε) for a constant c3 > 0 that is chosen to so that the number

of monomials of degree at most D1 is ND1 ≥
√
ε2n. We choose c so that D′ = D1 + d =

n/2− n/(O(log s))(d−1).
We call y ∈ f−1(1) forced if any polynomial R that vanishes on f−1(0) also vanishes on y.

Let F ⊆ f−1(1) be the set of all forced y. We will prove the following two claims:

Claim 6. |F | ≤ 2n−n/(O(log s))2(d−1)
.

Claim 7. There is a polynomial-time algorithm A1 which when given f , outputs the descriptions
of at most m = O(n) 1-certifying polynomials R1, . . . , Rm such that for each y ∈ f−1(1) \ F ,
there is an i ∈ [m] such that y ∈ Supp(Ri).

3

Given the above two claims, the description of the compression algorithm A is simple: first
run A1 and obtain a collection of 1-certifying polynomials R1, . . . , Rm such that

⋃
i Supp(Ri) =

f−1(y) \ F . In particular, if Ci is a circuit of size 2n−n/(O(log s))2(d−1)
that accepts exactly the

inputs in Supp(Ri), then C ′ =
∨
iCi is a circuit of the required size that accepts exactly the

set f−1(y) \F . The algorithm now constructs a DNF CF of size O(n · |F |) that accepts exactly
the inputs in F (the set F is easily inferred from the circuit C ′). The circuit C output by the
algorithm is C ′ ∨ CF , which computes f by definition and also has the required size.

It remains to prove Claims 6 and 7, which we do below.

Proof of Claim 6. Let P and EP be as above. Note that if y 6∈ clD1(EP), then there is a
polynomial Q of degree at most D1 that vanishes at all points in EP but not at y. Hence, the
polynomial Q · P is a 1-certifying polynomial for f of degree at most D′ that is non-zero at y
and thus, y is not forced. Stated in the contrapositive, this argument tells us that F ⊆ clD1(EP)
and therefore, |F | ≤ |clD1(EP)|.

By Theorem 5, we have
|clD1(EP)|

2n
≤ |EP |
ND1

Since |EP | ≤ ε2n and ND1 ≥
√
ε2n, we see that the right hand size of the above inequality

is bounded by
√
ε, which implies the claim.

Proof of Claim 7. Let V denote the vector space of polynomials Q of degree at most D′ such
that Q vanishes on f−1(0). Note that F ′ := f−1(1) \ F satisfies F ′ =

⋃
Q∈V Supp(Q). Let

Q1, . . . , QN be a generating set of V . Note that N ≤ 2n. A generic element of V is given by∑N
i=1 αiQi for some choice of α1, . . . , αN ∈ F2; we denote this element by Qα, where α denotes

the vector (α1, . . . , αN).
For any y ∈ F ′, we have Qα(y) =

∑
i αiQi(y), which is a linear function of α. Since

y ∈ F ′, it is not forced to 0 and hence not all the Qi(y) are 0. Thus, for a random choice of
the αi, the probability that Qα(y) 6= 0 is 1

2 . We can derandomize this argument using binary
error-correcting codes.

Say we have vectors U = {u1, . . . , uN} ⊆ FM2 (where M = 2O(n)) that generate an error-
correcting code of distance δM for some constant δ > 0. There are many standard constructions
of such sets U in time poly(2n) (see, e.g., ??). Let M be an M × N matrix with columns
u1, . . . , uN . Let α1, . . . , αM denote the rows of M. For any non-zero β1, . . . , βN we know that
u =

∑
i βiui has at least δM many non-zero entries. In other words, for any non-zero vector

β = (β1, . . . , βN) ∈ FN2 and a random j ∈ [M], the probability that the inner product of β and
αj is non-zero is at least δ.

We are now ready to describe the algorithm A1. The algorithm needs to finds m = O(n)
elements R1, . . . , Rm from V such that F ′ ⊆

⋃
i Supp(Ri). The algorithm goes through m

iterations, the ith iteration producing a polynomial Ri ∈ V . After each iteration, we ensure
that the number of elements in F ′ left uncovered thus far drops by the constant factor (1− δ);
thus, at the end of m = 2n log(1/δ) iterations, all the elements of F ′ will be covered.

Let F ′i = F ′ \
⋃
p<i Supp(Rp) be the set of elements of F ′ left uncovered after i−1 iterations.

In the ith iteration, the algorithm looks at each of the rows of M and picks the j such that
sj = |Supp(

∑
i∈[N] α

j
iQi) ∩ F ′i | is maximized. We know that vy := (Q1(y), . . . , QN (y)) is a

non-zero vector for any choice of y ∈ F ′i . Hence, for a random j ∈ [M], the probability that the
inner product of αj and v is non-zero is at least δ. By averaging, there must be a j ∈ [M] such
that the inner product of αj and vy is non-zero for at least a δ-fraction of the y ∈ F ′i . Thus,
|F ′i+1| ≤ (1− δ)|F ′i |.

4

3 Extension to the MODp case

The compression algorithms extend fairly straightforwardly to the setting of AC0[p] circuits. The
right definition of certifying polynomials is obtained by simply replacing 2 by p in Definition 2
(where Supp(P) is the set of points x s.t. P (x) 6= 0). The only missing links in the proof
is an extension of Lemma 4 to the setting of AC0[p] and the theorem of Nie and Wang [6] in
this setting. The former appears in the work of Oliveira and Santhanam [7]. For the latter,
it turns out that Theorem 5 holds over any field. For fields other than F2, this is a slightly
different statement than the one that appears in the work of Nie and Wang, who only consider
the closure over the larger domain Fn, where F is any finite field. However, a straightforward
modification of their argument also gives the result for closure over {0, 1}n ⊆ Fn, where F can
be any field (possibly even infinite).

Acknowledgements

The author would like to thank Abhishek Bhrushundi, Prahladh Harsha, Valentine Kabanets,
Antonina Kolokolova and Swastik Kopparty for useful discussions, feedback, and encourage-
ment.

References

[1] Michael Alekhnovich and Alexander A. Razborov. Lower bounds for polynomial calculus:
Non-binomial case. In 42nd Annual Symposium on Foundations of Computer Science, FOCS
2001, 14-17 October 2001, Las Vegas, Nevada, USA, pages 190–199, 2001.

[2] Claude Carlet, Deepak Kumar Dalai, K. C. Gupta, and Subhamoy Maitra. Algebraic
immunity for cryptographically significant boolean functions: Analysis and construction.
IEEETIT: IEEE Transactions on Information Theory, 52, 2006.

[3] Ruiwen Chen, Valentine Kabanets, Antonina Kolokolova, Ronen Shaltiel, and David Zuck-
erman. Mining circuit lower bound proofs for meta-algorithms. Computational Complexity,
24(2):333–392, 2015.

[4] Frederic Green. A complex-number fourier technique for lower bounds on the mod-m degree.
Computational Complexity, 9(1):16–38, 2000.

[5] Swastik Kopparty and Srikanth Srinivasan. Certifying polynomials for acˆ0(parity) circuits,
with applications. In IARCS Annual Conference on Foundations of Software Technology and
Theoretical Computer Science, FSTTCS 2012, December 15-17, 2012, Hyderabad, India,
pages 36–47, 2012.

[6] Zipei Nie and Anthony Y. Wang. Hilbert functions and the finite degree zariski closure in
finite field combinatorial geometry. Journal of Combinatorial Theory, Series A, 134:196 –
220, 2015.

[7] Igor Carboni Oliveira and Rahul Santhanam. Majority is incompressible by acˆ0[p] circuits.
In 30th Conference on Computational Complexity, CCC 2015, June 17-19, 2015, Portland,
Oregon, USA, pages 124–157, 2015.

[8] Alexander A. Razborov. Lower bounds on the size of constant-depth networks over a com-
plete basis with logical addition. Mathematicheskie Zametki, 41(4):598–607, 1987.

5

ECCC ISSN 1433-8092

http://eccc.hpi-web.de

