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Abstract

We describe a general method of proving degree lower bounds for conical juntas
(nonnegative combinations of conjunctions) that compute recursively defined boolean
functions. Such lower bounds are known to carry over to communication complexity.
We give two applications:

• AND-OR trees. We show a near-optimal Ω̃(n0.753...) randomised communica-
tion lower bound for the recursive NAND function (a.k.a. AND-OR tree).

• Majority trees. We show an Ω(2.59k) randomised communication lower
bound for the 3-majority tree of height k. This improves over the state-of-the-
art already in the context of randomised decision tree complexity.

†Work done while at IBM Research Almaden.
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1 Conical Juntas?

Conical juntas are nonnegative linear combinations of conjunctions. Here are two examples, one
computing the two-bit OR function OR : {0, 1}2 → {0, 1} and another computing the three-bit
majority function Maj3 : {0, 1}3 → {0, 1}:

h1(x) = 1
2x1 + 1

2x2 + 1
2 x̄1x2 + 1

2x1x̄2,

h2(y) = 1
3y1y2 + 1

3y2y3 + 1
3y1y3 + 2

3 ȳ1y2y3 + 2
3y1ȳ2y3 + 2

3y1y2ȳ3.
(1)

The purpose of this work is to prove lower bounds on the degree deg(h) (maximum width of a
conjunction in h) of any conical junta h that computes—even approximately—a given boolean
function f : {0, 1}n → {0, 1}. More precisely, we study the ε-approximate conical junta degree of f ,
denoted degε(f), that is defined as the minimum degree of a conical junta h satisfying

∀x : |h(x)− f(x)| ≤ ε.

Communication complexity connection. A major motivation for studying conical junta degree
comes from the works [CLRS13, GLM+15, LRS15] that connect conical juntas with nonnegative
rank, a basic measure in communication complexity. Roughly speaking, lower bounds on approximate
conical junta degree of f can be translated into lower bounds on the approximate nonnegative rank
of a certain two-party “lift” of f , and therefore into lower bounds against randomised protocols.

Related models. Conical juntas have been studied under such names as the (one-sided) partition
bound for query complexity [JK10] and query complexity in expectation [KLdW15]. Another closely
related model is that of randomised subcube partitions [FKW02, JLV14, KRS15]. Moreover, if we
restrict the coefficients in a conical junta to be 0-1, we obtain the model of subcube partitions a.k.a.
unambiguous DNFs [Sav02, Bel06, Göö15, GPW15, KRS15].

2 Our Results

Our main technical result is a Composition Theorem that makes it easy to prove conical junta
degree lower bounds for functions that are defined from simpler functions via composition. If f and
g are boolean functions on n and m bits, respectively, their composition f ◦ gn is the function on
nm bits that maps an input x = (x1, . . . , xn) ∈ ({0, 1}m)n to the output

(f ◦ gn)(x) := f(g(x1), . . . , g(xn)).

Define also f◦k := f ◦ (f◦(k−1))n where f◦1 := f . The exact statement of the Composition Theorem
is deferred to Section 4 as it is somewhat technical. It is phrased in terms of dual solutions (or
certificates) to a linear program that captures a certain average version of conical junta degree
(defined in Section 3). The theorem splits the task of proving lower bounds into two steps: we
first need to find dual certificates for f and g (e.g., by solving an LP, either by inspection, or by
using a computer), and then we can let the Composition Theorem construct a dual certificate for
f ◦ gn in a black-box fashion. We note that similar LP-based approaches have been extremely
popular in analysing the degree of multivariate polynomials (see [She13, She14, BT15] for recent
examples)—in short, this work develops such a framework for conical juntas, a nonnegative analogue
of multivariate polynomials.

Setting these technical matters aside for a moment, let us illustrate the power the Composition
Theorem by looking at some of its consequences.
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Figure 1: Examples of recursively defined boolean functions studied in this work.

2.1 Query complexity

We give applications for two well-studied recursively defined boolean functions; see Figure 1.

Theorem 1. degε(NAND
◦k) ≥ Ω(n0.753...) for all ε ≤ 1/n where n := 2k.

Theorem 2. degε(Maj◦k3 ) ≥ Ω(2.59...k) for all ε ≤ 1/n where n := 3k.

Discussion of Theorem 1. The function NAND◦k is computed by a height-k binary tree consisting
of NAND gates (a.k.a. AND-OR tree). A classical result [SW86, San95] states that any randomised
decision tree needs to query Ω(n0.753...) (here 0.753... = log(1 +

√
33)− 2) many input bits in order

to compute NAND◦k with high probability. This matches an upper bound due to Snir [Sni85]. Our
Theorem 1 shows that the same lower bound holds even for conical juntas that approximate NAND◦k

sufficiently well. This is a qualitative strengthening of the classical results since conical juntas are
relaxations of decision trees. Indeed, a randomised decision tree of depth d that computes a function
f to within error ε > 0 can be converted into a degree-d ε-approximate conical junta for f (the
reason is the same as for multivariate polynomials [BdW02, Theorem 15]).

Note: A caveat with Theorems 1–2 is that we only know how to prove them for ε ≤ 1/n. By
contrast, one usually takes ε = 1/3 when studying decision trees, and this is well-known to be
w.l.o.g., because the error can be reduced below any ε < 1/3 with only a factor O(log(1/ε)) increase
in query complexity. Interestingly, for conical juntas, it is known [GLM+15] that ε cannot always
be efficiently reduced: for any constants ε > δ > 0 there exists a partial function f with degε(f) = 1
but degδ(f) ≥ Ω(n). For total functions, it is still open whether efficient error reduction is possible
(standard techniques [BdW02] at least show that degε(f) is polynomially related to deg0(f)). In
any case, Theorems 1–2 do indeed imply lower bounds for randomised decision trees with error
ε = 1/3: we simply have to reduce the error below 1/n first and only then convert the decision tree
into a conical junta. This incurs a factor Θ(log n) loss in the value of the lower bound.

Discussion of Theorem 2. For the reasons discussed above, Theorem 2 implies a lower bound
of Ω̃(2.59...k) ≥ Ω(2.59k) (here 2.59... = 3

√
35/2, and the Ω̃-notation hides polylog(n) factors) for

the randomised query complexity of the recursive majority function Maj◦k3 . This slightly improves
over the previous bound of Ω(2.57k) that is the culmination of the line of work [JKS03, LNPV06,
Leo13, MNS+15] wielding information theoretic tools. For comparison, a randomised zero-error
decision tree of cost O(2.65k) is known [MNS+15]. Even though our quantitative improvement in
Theorem 2 is modest, the theorem nevertheless suggests that our new techniques are rather powerful:
they are already competitive with highly optimised prior work, especially [MNS+15].
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2.2 Communication complexity

Using the machinery of [GLM+15] we can now translate Theorems 1–2 into analogous communication
results. The translation incurs some polylog(n) factor loss in parameters, which is suppressed by
the Ω̃-notation used below. Here BPPcc(F ) stands for the bounded-error communication complexity
of F under a worst-case Alice–Bob bipartition of the input bits. For our functions, we may take the
bipartition to be such that Alice gets the first bit of every bottom gate and Bob gets the rest.

Theorem 3. BPPcc(NAND◦k) ≥ Ω̃(n0.753...).

Theorem 4. BPPcc(Maj◦k3 ) ≥ Ω(2.59k).

Discussion of Theorem 3. Two independent works [JKR09, LS10] (building on [JKS03]) arrived
at a lower bound of Ω(n/2O(k)) (or slightly worse Ω(n/kO(k)) in [JKR09]) for the randomised
communication complexity of any height-k unbounded fan-in alternating AND-OR tree (with fan-in 2
gates next to the inputs). While this lower bound is tight when k = O(1), the bound becomes trivial
in the setting of Theorem 3 where k = log n. This shortcoming was partially addressed by [JKZ10]
who showed, via a reduction from set-disjointness, a lower bound of Ω(

√
n) for such AND-OR trees,

independently of the height. Our Theorem 3 now gives an essentially optimal Ω̃(n0.753...) bound
for the particular case of NAND◦k. It remains open whether this lower bound holds for all AND-OR
trees (with the appropriate gates next to the inputs). For query complexity, Amano [Ama11a] has
come close to settling this question, known as the Saks–Wigderson conjecture [SW86] for the class
of read-once formulas (a more general version of the conjecture was recently disproved [ABB+15]).

Discussion of Theorem 4. The function Maj◦k3 has not been studied in communication complexity
previously—after all, even its randomised query complexity is not yet completely understood.

3 Definitions and Examples

We write h =
∑
wCC for a generic conical junta, where the sum ranges over different conjunctions

of literals C : {0, 1}n → {0, 1} and wC ≥ 0 for each C. Note that h : {0, 1}n → R≥0. Let |C| denote
the width of a conjunction C, i.e., the number of literals in C. The degree of h, denoted deg(h), is
defined as the maximum width of a conjunction C with wC > 0. Here, it is helpful to work with a
more robust notion of degree that we call average degree. The average degree of h, denoted adeg(h),
is defined as the maximum over all inputs x of

adegx(h) :=
∑

wC |C|C(x) =
∑

wC adegx(C).

In particular, adeg(h) ≤ deg(h) in the natural setting where h(x) ≤ 1 for all x. Our definition of
average degree is in perfect analogy to the usual definition of cost for randomised zero-error decision
trees, namely, charging for the expected number of queries made on a given input. Indeed, it is
not hard to see that any zero-error decision tree of cost d gives rise to a conical junta of average
degree d computing exactly the same boolean function as the decision tree.

For a boolean function f : {0, 1}n → {0, 1} we define

− Degree: deg(f) is the minimum deg(h) over all conical juntas h computing f .
− Average degree: adeg(f) is the minimum adeg(h) over all conical juntas h computing f .
− Approximate degree: degε(f) is the minimum deg(h) over all conical juntas h that compute f

to within error ε, i.e., h(x) ∈ f(x)± ε for all x.
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3.1 Tame examples

For our conical juntas h1 and h2 from (1), we have adeg(h1) = adeg10(h1) = 3/2 < 2 = deg(h1) and
adeg(h2) = adeg110(h2) = 8/3 < 3 = deg(h2). In fact, h1 and h2 are optimal:

adeg(OR) = 3/2 and adeg(Maj3) = 8/3.

This can be seen by solving an LP whose value is adeg(f), as is discussed shortly. Note that our
degree measures are inherently one-sided : f and its negation ¬f need not have the same degree.
For example, we have adeg(¬OR) = 2 (observe that x̄1x̄2 is the only conical junta for ¬OR) even
though adeg(OR) = 3/2. (More dramatic gaps can be demonstrated using variations of a function
introduced in [GPW15].) By contrast, Maj3 is self-dual, ¬Maj3(x1, x2, x3) = Maj3(¬x1,¬x2,¬x3), so
we automatically have adeg(Maj3) = adeg(¬Maj3).

3.2 A wild example!

What is the average degree of OR ◦Maj23? We can obtain a conical junta for this function starting
with the optimal conical juntas h1(x), h2(y), h̄2(y) := h2(ȳ1, ȳ2, ȳ3) computing OR, Maj3, ¬Maj3,
respectively, as follows: Let z1 = (z1

1 , z
1
2 , z

1
3) and z2 = (z2

1 , z
2
2 , z

2
3) be fresh variables. Start with

h1(x) and replace every positive literal xi by h2(zi) and every negative literal x̄i by h̄2(zi). This
construction shows that

adeg(OR ◦Maj23) ≤ 3/2 · 8/3 = 4.

It would be natural to conjecture that this is tight—but this conjecture is false! There is in fact
a more effective conical junta of average degree only 47/12 ≈ 3.92. An analogous phenomenon is
well-known in the context of zero-error decision trees: so-called directional decision trees need not
be optimal for composed functions [SW86, Ver98, Ama11b].

What of it? This example shows that we cannot hope for a perfect composition theorem for
average degree that would determine adeg(f ◦ gn) solely in terms of adeg(f), adeg(g), and adeg(¬g),
even assuming adeg(g) = adeg(¬g). Consequently, for our LP-based Composition Theorem, we will
have to introduce some technical assumptions: to enable the construction of a dual certificate for
adeg(f ◦ gn), we assume we have dual certificates of a special form for adeg(f), adeg(g), adeg(¬g).
The rest of this section develops our LP formalism for average degree.

3.3 Generalised input costs

Let us first generalise the definition of adeg(h) by allowing arbitrary costs b0, b1 ≥ 0 to be assigned
to reading the input bits. That is, for a conjunction C, we set |C|b0,b1 := b0 · (# of 0’s read by C) +
b1 · (# of 1’s read by C). In particular, |C|1,1 = |C|. Then adeg(h; b0, b1) is defined as the maximum
over all inputs x of

adegx(h; b0, b1) :=
∑

wC |C|b0,b1C(x) =
∑

wC adegx(C; b0, b1).

We also introduce some “distributional” notation: for a distribution D1 over f−1(1) we let

adegD1
(h; b0, b1) := E

x∼D1

[
adegx(h; b0, b1)

]
.

For a boolean function f : {0, 1}n → {0, 1} we define

− adeg(f ; b0, b1) is the minimum of adeg(h; b0, b1) over all conical juntas h computing f .
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− adegD1
(f ; b0, b1) is the minimum of adegD1

(h; b0, b1) over all conical juntas h computing f .

It is clear that adeg(f ; b0, b1) ≥ adegD1
(f ; b0, b1) for all distributions D1. (In fact, it can be shown

using the minimax theorem that this inequality can be turned into an equality if we maximise
over D1 on the right hand side—however, we do not use this fact.)

3.4 An LP for average degree

We formulate adegD1
(f ; b0, b1) as the optimum value of an LP—here the data f , D1, b0, b1, is

thought of as fixed. We have a nonnegative variable wC ≥ 0 for each of the 3n possible conjunctions
C : {0, 1}n → {0, 1}. Here is the LP:

min adegD1

(∑
wCC; b0, b1

)
subject to

∑
wCC(x) = f(x), ∀x

wC ≥ 0, ∀C

(Primal)

Here is the LP dual; the free variables are packaged into a function Ψ: {0, 1}n → R.

max 〈Ψ, f〉
subject to 〈Ψ, C〉 ≤ adegD1

(C; b0, b1), ∀C
Ψ(x) ∈ R, ∀x

(Dual)

Since we are interested in proving lower bounds on average degree, we are only going to need
the “weak” form of LP duality: Suppose h =

∑
wCC is an optimal solution to (Primal). Then any

solution Ψ that is feasible for (Dual) witnesses a lower bound on adeg(f ; b0, b1) like so:

adeg(f ; b0, b1) ≥ adegD1
(f ; b0, b1)

= adegD1
(h; b0, b1)

=
∑
wC adegD1

(C; b0, b1)

≥
∑
wC〈Ψ, C〉

= 〈Ψ,
∑
wCC〉

= 〈Ψ, f〉.

(2)

4 Statement of the Composition Theorem

We start by defining an (a0, a1; b0, b1)-certificate for f as a special collection of certificates witnessing

adeg(f ; b0, b1) ≥ a1,

adeg(¬f ; b0, b1) ≥ a0.
(3)

Definition 5. Call a function Ψ: {0, 1}n → R balanced if
∑

x Ψ(x) = 0, and also write X≥0 :=
max{X, 0} for short. An (a0, a1; b0, b1)-certificate for a function f : {0, 1}n → {0, 1} consists of four
balanced functions {Ψv, Ψ̂v}v=0,1 mapping {0, 1}n → R such that the following hold.
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• Special form: Functions Ψ0 and Ψ1 have the form

Ψv = av(Dv −D1−v), (4)

where Dv is a distribution over f−1(v). Moreover, Ψ̂v is supported on f−1(v).

• Feasibility: For all conjunctions C and v ∈ {0, 1},

〈Ψv, C〉≥0 + 〈Ψ̂v, C〉 ≤ adegDv
(C; b0, b1). (5)

Theorem 6 (Composition Theorem). Suppose f admits an (a0, a1; b0, b1)-certificate and g admits
a (b0, b1; 1, 1)-certificate. Then f ◦ gn admits an (a0, a1; 1, 1)-certificate.

Discussion. First, we note that (5) actually packs together two linear inequalities; it would be
equivalent to require that both Ψv + Ψ̂v and Ψ̂v are feasible for (Dual), namely that{

〈Ψv + Ψ̂v, C〉 ≤ adegDv
(C; b0, b1),

〈Ψ̂v, C〉 ≤ adegDv
(C; b0, b1).

(5’)

Here Ψ1 +Ψ̂1 is the main attraction: it witnesses a lower bound of 〈Ψ1 +Ψ̂1, f〉 = 〈Ψ1, f〉+〈Ψ̂1, f〉 =
a1 +0 = a1 for adeg(f ; b0, b1) as promised above (3); similarly, Ψ0 +Ψ̂0 witnesses the complementary
lower bound adeg(¬f ; b0, b1) ≥ a0.

The requirement that Ψ1 + Ψ̂1 must be balanced is perhaps our most critical assumption. We
use it to manoeuvre around the counterexample of Section 3.2: we have adeg(Maj3) = 8/3, while
the best balanced solution to (Dual) only witnesses the lower bound adeg(Maj3) ≥ 5/2 (see also
Figure 3). The requirement that Ψ̂v is feasible for (Dual) is merely a technical assumption that
helps us in the upcoming proof (akin to a “strengthened induction hypothesis”); we do not know
whether the theorem is true without this condition. Another technical assumption is (4), which
allows us to assume that Ψ1 and Ψ0 have opposite signs: Ψ1 = −a1/a0 ·Ψ0.

Some simple certificates are illustrated in Figures 2–3. Their feasibility can be checked by hand.
For more involved functions, certificates can in principle be found via a computer search (using
computers is not uncommon even in “lower bounds” research [Ama14]). We will in fact use this
approach for Maj◦k3 in Section 6.

5 Proof of the Composition Theorem

Let {Ψv, Ψ̂v}v=0,1 and {Φv, Φ̂v}v=0,1 be the certificates for f and g, respectively. Our goal is to
construct a certificate {Υv, Υ̂v}v=0,1 for f ◦ gn. We use the following notation:

Ψv := av(Fv − F1−v)︸ ︷︷ ︸
given

, Φv := bv(Gv −G1−v)︸ ︷︷ ︸
given

, Υv := av(Dv −D1−v)︸ ︷︷ ︸
want to construct

.

By assumption, the distribution Fv is supported on f−1(v) and Gv is supported on g−1(v). We will
define Dv to be supported on (f ◦ gn)−1(v).

6



0

1

0 1

10

00

D0

2b1−b1

−b10

Ψ0

+

00

00

Ψ̂0

=

2b1−b1

−b10

Ψ0 + Ψ̂0

0

1

0 1

0
1

2

1

2
0

D1

−b0−
b1
2

b0
2

+
b1
4

b0
2

+
b1
4

0

Ψ1

+

0
b1
4

b1
4

−b1
2

Ψ̂1

=

−b0−
b1
2

b0 + b1
2

b0 + b1
2

−b1
2

Ψ1 + Ψ̂1

Figure 2: A (2b1, b0+ 1
2b1; b0, b1)-certificate for NAND : {0, 1}2 → {0, 1} that is valid for all b0, b1 ≥ 0.

The 1-inputs NAND−1(1) are highlighted in gray. For feasibility, there are 6 equivalence classes (see
Section 6.2) of conjunctions to check: {∗∗, ∗, ∗, , , }.
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Figure 3: A (5
2 ,

5
2 ; 1, 1)-certificate for Maj3 : {0, 1}3 → {0, 1}. The 1-inputs Maj−1

3 (1) are highlighted

in gray. Only Ψ1, Ψ̂1 are shown as Ψ0, Ψ̂0 are defined via self-duality. Here Dv is uniform on
inputs of Hamming weight v + 1. For feasibility, there are 10 equivalence classes of conjunctions to
check: {∗∗∗, ∗∗, ∗∗, ∗, ∗, ∗, , , , }. Note that for any α ≥ 0, we can obtain an
(5

2α,
5
2α;α, α)-certificate by simply scaling the functions Ψv, Ψ̂v by α.
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5.1 Construction

Lifts. Let Γ: {0, 1}n → R and suppose that for each y ∈ {0, 1}n we have a function Hy : {0, 1}mn →
R supported on (gn)−1(y) = g−1(y1)× · · · × g−1(yn). The lift of Γ by H is

ΓH :=
∑

y∈{0,1}n Γ(y) ·Hy.

In particular, if Γ and the Hy’s are probability distributions, so is ΓH . Note also that if Γ is
supported on f−1(v), then ΓH is supported on (f ◦ gn)−1(v).

New certificate. Write Gy := Gy1×· · ·×Gyn for the canonical product distribution on (gn)−1(y).
We also need a modified version of Gy, denoted (G←i Φ̂)y where i ∈ [n], that has a copy of Φ̂yi in
place of Gyi ; more formally

(G←i Φ̂)y(x) := Φ̂yi(xi) ·
∏
j 6=iGyj (xj).

Note that (G←i Φ̂)y is a balanced function supported on (gn)−1(y). We now define {Υv, Υ̂v}v=0,1 by

Υv := ΨG
v ,

Υ̂v := Ψ̂G
v +

∑n
i=1 F

G←i Φ̂
v .

(6)

Since ΨG
v = av(F

G
v − FG1−v), we have Dv = FGv . It is also easy to check that Υ̂v is a balanced

function supported on (f ◦ gn)−1(v). Hence {Υv, Υ̂v}v=0,1 is of the special form required of an
(a0, a1; 1, 1)-certificate for f ◦ gn. The interesting part is to verify the feasibility condition (5).

5.2 Feasibility

Fix a conjunction C in the domain of f ◦ gn. Our goal is to show

〈ΨG
v , C〉≥0 + 〈Ψ̂G

v +
∑

i F
G←i Φ̂
v , C〉 ≤ adegDv

(C). (7)

Extracting a conical junta from C. Our analysis will be centered around a conical junta
h(y), defined below, that computes the acceptance probability Prx∼Gy [C(x) = 1] = Ex∼Gy [C(x)] =
〈Gy, C〉. In a certain sense, h serves as a projection of C to the domain of f . Write C(x) =

∏n
i=1Ci(xi)

where Ci is a conjunction depending only on xi. Since Gy is a product distribution,

〈Gy, C〉 =
∏
i〈Gyi , Ci〉 =:

∏
i pi,yi ,

where we wrote pi,v := 〈Gv, Ci〉 ∈ R≥0 for short. Fix y∗ ∈ {0, 1}n such that pi,y∗i ≥ pi,1−y∗i for all i.
We now define h(y) that computes 〈Gy, C〉:

h(y) :=
∏n
i=1

(
pi,1−y∗i + (pi,y∗i − pi,1−y∗i )︸ ︷︷ ︸

≥0

· `i
)

where literal `i is

{
yi if y∗i = 1,

ȳi if y∗i = 0.
(8)

This product expression can be expanded into a conical combination of conjunctions, h =
∑
wTT ,

in the natural way, but the above “implicit” form is more concise.
Next, we record two properties of h that will suffice for the remaining analysis.

Lemma 7. adegy(h; b0, b1) =
∑

i〈Φyi , Ci〉≥0
∏
j 6=i〈Gyj , Cj〉.
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Proof. Write h =
∑
wTT . We compute the average degree by summing together the weights∑

T3`i wTT (y) contributed by each of the n literals `i, i.e.,

adegy(h; b0, b1) =
∑

i |`i|b0,b1 ·
∑

T3`i wTT (y).

If i is such that yi 6= y∗i , we have `i(y) = 0 and so T (y) = 0 for all T 3 `i; hence `i contributes no
weight in this case. Suppose then that i is such that yi = y∗i ; here we can write

h(y) = pi,1−yi
∏
j 6=i pj,yj + `i · (pi,yi − pi,1−yi)

∏
j 6=i pj,yj .

The conjunctions T underlying the first term do not involve `i, so they contribute no weight for `i.
The conjunctions T underlying the second term all involve `i and contribute a total weight of
(pi,yi − pi,1−yi)

∏
j 6=i pj,yj . Altogether we get

adegy(h; b0, b1) =
∑

i |`i|b0,b1 ·
∑

T3`i wTT (y)

=
∑

i:yi=y∗i
byi · (pi,yi − pi,1−yi)

∏
j 6=i pj,yj

=
∑

i byi(pi,yi − pi,1−yi)≥0
∏
j 6=i pj,yj

=
∑

i byi(〈Gyi , Ci〉 − 〈G1−yi , Ci〉)≥0
∏
j 6=i〈Gyj , Cj〉

=
∑

i〈byi(Gyi −G1−yi), Ci〉≥0
∏
j 6=i〈Gyj , Cj〉

=
∑

i〈Φyi , Ci〉≥0
∏
j 6=i〈Gyj , Cj〉.

Lemma 8. 〈Γ, h〉 = 〈ΓG, C〉 for all Γ: {0, 1}n → R.

Proof. We calculate

〈Γ, h〉 =
∑

y Γ(y)h(y) =
∑

y Γ(y)〈Gy, C〉 =
∑

y Γ(y)
[∑

xGy(x)C(x)
]

=
∑

x

[∑
y Γ(y)Gy(x)

]
C(x) =

∑
x ΓG(x)C(x) = 〈ΓG, C〉.

Analysis. Let us expand the right hand side of the desired inequality (7):

adegDv
(C) = |C| · 〈FGv , C〉

= Ey∼Fv

[
|C| · 〈Gy, C〉

]
= Ey∼Fv

[(∑
i |Ci|

)
·
∏
i〈Gyi , Ci〉

]
= Ey∼Fv

[∑
i |Ci|〈Gyi , Ci〉

∏
j 6=i〈Gyj , Cj〉

]
= Ey∼Fv

[∑
i adegGyi

(Ci)
∏
j 6=i〈Gyj , Cj〉

]
.

Substituting our hypothesis adegGyi
(Ci) ≥ 〈Φyi , Ci〉≥0 + 〈Φ̂yi , Ci〉 into the above, we obtain

adegDv
(C) ≥ Ey∼Fv

[∑
i〈Φyi , Ci〉≥0

∏
j 6=i〈Gyj , Cj〉

]︸ ︷︷ ︸
(I)

+ Ey∼Fv

[∑
i〈Φ̂yi , Ci〉

∏
j 6=i〈Gyj , Cj〉

]︸ ︷︷ ︸
(II)

.

For the first term,

(I) = Ey∼Fv

[
adegy(h; b0, b1)

]
(Lemma 7)

= adegFv
(h; b0, b1)

≥ 〈Ψv, h〉≥0 + 〈Ψ̂v, h〉 (Feasibility of {Ψv, Ψ̂v} and (2))

= 〈ΨG
v , C〉≥0 + 〈Ψ̂G

v , C〉. (Lemma 8)
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For the second term,

(II) = Ey∼Fv

[∑
i〈(G←i Φ̂)y, C〉

]
=
〈∑

i F
G←i Φ̂
v , C

〉
.

Combining these yields (7). This concludes the proof of Theorem 6.

6 Approximate Degree Lower Bounds

In this section we prove Theorems 1–2 using the Composition Theorem. We begin by observing that
(a0, a1; b0, b1)-certificates {Ψv, Ψ̂v}v=0,1 also yield lower bounds for approximate degree, if the 1-norm
‖Ψ̂1‖1 is not too large. We call {Ψv, Ψ̂v}v=0,1 an (a0, a1; b0, b1; c)-certificate if maxv ‖Ψ̂v‖1 ≤ c.

Lemma 9. Suppose f admits an (a0, a1; 1, 1; c)-certificate. If ε ≤ 1/4 and c · ε ≤ a1/4, then

degε(f) ≥ Ω(a1).

Proof. Fix a certificate {Ψv, Ψ̂v}v=0,1 for f and suppose degε(f) = deg(h) where h is a conical junta
with ‖h− f‖∞ ≤ ε. Since h(x) ≤ 1 + ε for all x, we have deg(h) ≥ (1 + ε)−1 adeg(h) ≥ Ω(adeg(h)).
Now we calculate

adeg(h) ≥ 〈Ψ1 + Ψ̂1, h〉 (as in (2))

= 〈Ψ1 + Ψ̂1, f〉+ 〈Ψ1 + Ψ̂1, h− f〉
≥ a1 − |〈Ψ1 + Ψ̂1, h− f〉|
≥ a1 − ‖Ψ1 + Ψ̂1‖1 · ‖h− f‖∞
≥ a1 − (‖Ψ1‖1 + ‖Ψ̂1‖1) · ε
≥ a1 − (2a1 + c) · ε
≥ a1/4.

We use the following version of the Composition Theorem where the bounds on 1-norms (following
immediately from the definition (6)) are made explicit.

Theorem 10. Suppose f admits an (a0, a1; b0, b1; c)-certificate and g admits a (b0, b1; 1, 1; d)-
certificate. Then f ◦ gn admits an (a0, a1; 1, 1; c+ nd)-certificate.

6.1 Proof of Theorem 1

We iteratively apply Theorem 10 as follows.

1. Assume we have an (αk, βk; 1, 1; γk)-certificate for NAND◦k where γk ≥ αk, βk.
2. Obtain a (2βk, αk + 1

2βk;αk, βk;βk)-certificate for NAND from Figure 2.

3. Compose the above to get an (αk+1, βk+1; 1, 1; γk+1)-certificate for NAND◦(k+1) where

αk+1 := 2βk,

βk+1 := αk + βk/2,

γk+1 := βk + 2γk.

Note that αk+1, βk+1 ≤ γk+1 ≤ 3γk. Starting with α0 = β0 = γ0 = 1 these recurrences (fa-
mously [SW86]) evaluate to αk, βk = Θ(n0.753...) where n := 2k. In addition, γk ≤ 3k ≤ n1.6. Now
take ε ≤ 1/n in Lemma 9 to prove Theorem 1.
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Function Class representative Class size Ψ1 Ψ̂1 Ψ1 + Ψ̂1

Maj◦13

(0, 0, 1) 3 −5/2 0 −5/2
(0, 1, 1) 3 5/2 1/2 3
(1, 1, 1) 1 0 −1/2 −1/2

All others 0 0 0

Maj◦23

(001, 001, 011) 81 −20/3 0 −20/3
(001, 011, 011) 81 20/3 7/3 9
(000, 011, 011) 27 0 −1/3 −1/3
(001, 011, 111) 54 0 −2/3 −2/3
(011, 011, 011) 27 0 −4/3 −4/3

All others 0 0 0

Maj◦33

(112, 112, 122) 1594323 −35/2 0 -35/2
(112, 122, 122) 1594323 35/2 19/2 27
(122, 122, 122) 531441 0 −7/2 −7/2
(112, 122, 222) 1062882 0 −2 −2
(112, 122, 123) 2125764 0 −4/3 −4/3
(112, 122, 022) 1062882 0 −2/3 −2/3
(111, 122, 122) 531441 0 −5/6 −5/6
(113, 122, 122) 531441 0 −1/2 −1/2
(012, 122, 122) 1062882 0 −2/3 −2/3

All others 0 0 0

Table 1: Certificates for Maj◦`3 for heights ` = 1, 2, 3. The table lists (α`, α`; 1, 1)-certificates with
values α1 = 5/2 (also illustrated in Figure 3), α2 = 20/3, and α3 = 35/2. Only Ψ1, Ψ̂1 are shown
as Ψ0, Ψ̂0 are defined dually. We give the total weight for each equivalence class of inputs; the
functions are uniform on each class. For height ` = 3 we represent the inputs to the bottom-most
Maj3 gates by their Hamming weight, e.g., 001 ; 1, 011 ; 2, etc.

6.2 Computer search for certificates

Iteratively composing (scaled versions of) the (5/2, 5/2; 1, 1)-certificate given in Figure 3 would yield
only an Ω(2.5k) lower bound for Maj◦k3 . This is the best possible for our approach if we were to just
compose certificates for individual Maj3 functions. To obtain a better lower bound, we can instead
directly find a certificate for Maj◦`3 where ` is a small constant, and then compose that certificate.
Table 1 gives certificates for Maj◦`3 for height up to ` = 3. We used a computer to solve the dual LP
(Dual), with the additional restriction that Ψ (= Ψ1 + Ψ̂1) should be balanced. The best balanced Ψ
happened to satisfy the other conditions required by our Definition 5.

Notes on implementation. For computational efficiency, it is useful to prune the search space
by eliminating symmetries. The symmetries of Maj◦`3 (permutations of input coordinates that do
not change the value of the function) are the symmetries of the underlying height-` ternary tree.
These symmetries partition the set of inputs and the set of conjunctions into equivalence classes:
two inputs/conjunctions are “equivalent” if one can be mapped to the other by a symmetry. The
set of feasible solutions to the LP is also invariant under these symmetries. It follows that we may
look w.l.o.g. for a Ψ that is invariant, i.e., uniform on each equivalence class. (Indeed, if Ψ is any
feasible solution, we obtain an invariant solution by averaging Ψ over all the symmetries.) Thus we
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need only maintain one variable in the LP per equivalence class X ⊆ {0, 1}n recording the total
weight

∑
x∈X Ψ(x) of that class. Also, for such invariant Ψ, we need only check the LP feasibility

constraint 〈Ψ, C〉 ≤ adegD1
(C; b0, b1) for a single representative C from each class of conjunctions.

The optimal height-2 certificate happens to have the same support as the certificate produced
by our Composition Theorem starting with two height-1 certificates. Inspired by this, in order to
speed up the search for height 3, we only optimised over those Ψ whose support coincides with that
coming from the Composition Theorem—this LP has only 9 variables (i.e., equivalence classes of
inputs), but well over 100,000 constraints (i.e., equivalence classes of conjunctions).

It is open to analyse height 4. Is there an efficient separation oracle for (Dual)?

6.3 Proof of Theorem 2

Table 1 defines a certificate for Maj◦33 with parameters (35/2, 35/2; 1, 1; 19) and we may scale the
certificate by any scalar α ≥ 0 to obtain one with parameters ((35/2)α, (35/2)α;α, α; 19α). Using
Theorem 10 iteratively as in Section 6.1, we get a certificate for Maj◦k3 with parameters

((35/2)k/3, (35/2)k/3; 1, 1; 28k/3 · 19).

Here (35/2)k/3 ≥ n0.8 and 28k/3 · 19 ≤ n1.1 where n := 3k. Hence we may apply Lemma 9 with
ε ≤ 1/n to conclude an ε-approximate degree lower bound of Ω((35/2)k/3) = Ω(2.59...k).

7 Communication Lower Bounds

In this section we prove Theorems 3–4 by applying the main result of [GLM+15]: a simulation of
randomised communication protocols by conical juntas. To this end, let IPb : {0, 1}b×{0, 1}b → {0, 1}
be the two-party (Alice has x, Bob has y) inner-product function given by

IPb(x, y) := 〈x, y〉 mod 2.

Let BPPcc
ε (F ) denote the randomised ε-error communication complexity of F : X × Y → {0, 1}.

The following is a corollary of [GLM+15, Theorem 31] (the original formulation there talks
about WAPPdt

ε (f) which is the same as degε(f); moreover, the result is stated for ε = Θ(1),
but the theorem is true more generally for ε = 2−Θ(b)).

Theorem 11 ([GLM+15]). Let ε := 1/n and b := Θ(log n) (with a large enough implicit constant).
For any f : {0, 1}n → {0, 1} we have

BPPcc
ε/2(f ◦ IPnb ) ≥ Ω(degε(f) · b).

Let us prove Theorem 3 (a similar argument works for Theorem 4). A key observation (also
made in [JKZ10, §3]) is that IPb = XORb ◦ ANDb reduces to computing a binary NAND tree on O(b2)
bits. To see this, think of the b-bit parity function XORb as a height-(log b) binary tree of XOR gates.
Each such XOR gate can be rewritten as a height-2 NAND tree (with some negations on inputs):

∧̄ ∧̄

∧̄

∧ ∧

∨
+

x y x̄ y x ȳ x̄ y x ȳ

=;
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In the binary XOR tree, replace the top XOR gate with this NAND tree (this involves making copies of
some subtrees), push the negations to inputs, and repeat recursively. This gives us a height-(2 log b)
NAND tree. Moreover, the bottom layer of AND gates in IPb is also easily simulated by NAND gates.
Consequently, for some N := Θ(nb2), the communication matrix of NAND◦ logn ◦ IPnb appears as a
submatrix of NAND◦ logN (relative to some bipartition of the input given by the reduction).

We can now derive Theorem 3—here ε and b are defined as in Theorem 11, and & means that
we ignore polylog(N) factors.

BPPcc
1/3(NAND◦ logN ) & BPPcc

ε/2(NAND◦ logN ) (Error reduction)

& BPPcc
ε/2(NAND◦ logn ◦ IPnb ) (Key observation)

& degε(NAND
◦ logn) (Theorem 11)

& n0.753... (Theorem 1)

= Θ̃(N0.753...).
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