Randomness Extraction in AC0 and with Small Locality

Kuan Cheng * \quad Xin Li ${ }^{\dagger}$

February 3, 2016

Abstract

We study two variants of seeded randomness extractors. The first one, as studied by Goldreich et al. [7], is seeded extractors that can be computed by AC^{0} circuits. The second one, as introduced by Bogdanov and Guo [3], is (strong) extractor families that consist of sparse transformations, i.e., functions that have a small number of overall input-output dependencies (called sparse extractor families). In this paper we focus on the stronger condition where any function in the family can be computed by local functions. The parameters here are the length of the source n, the min-entropy $k=k(n)$, the seed length $d=d(n)$, the output length $m=m(n)$, the error $\epsilon=\epsilon(n)$, and the locality of functions $\ell=\ell(n)$.

In the AC^{0} extractor case, our main results substantially improve the positive results in [7], where for $k \geq n /$ poly $(\log n)$ a seed length of $O(m)$ is required to extract m bits with error $1 /$ poly (n). We give constructions of strong seeded extractors for $k=\delta n \geq n / \operatorname{poly}(\log n)$, with seed length $d=O(\log n)$, output length $m=k^{\Omega(1)}$, and error any $1 /$ poly (n). We can then boost the output length to $\Omega(\delta k)$ with seed length $d=O(\log n)$, or to $(1-\gamma) k$ for any constant $0<\gamma<1$ with $d=O\left(\frac{1}{\delta} \log n\right)$. In the special case where δ is a constant and $\epsilon=1 /$ poly (n), our parameters are essentially optimal. In addition, we can reduce the error to $2^{- \text {poly }(\log n)}$ at the price of increasing the seed length to $d=\operatorname{poly}(\log n)$.

In the case of sparse extractor families, Bogdanov and Guo [3] gave constructions for any minentropy k with locality at least $O(n / k \log (m / \epsilon) \log (n / m))$, but the family size is quite large, i.e., $2^{n m}$. Equivalently, this means the seed length is at least $n m$. In this paper we significantly reduce the seed length. For $k \geq n /$ poly $(\log n)$ and error $1 /$ poly (n), our AC^{0} extractor with output $k^{\Omega(1)}$ also has small locality $\ell=$ poly $(\log n)$, and the seed length is only $O(\log n)$. We then show that for $k \geq n / \operatorname{poly}(\log n)$ and $\epsilon \geq 2^{-k^{\Omega(1)}}$, we can use our error reduction techniques to get a strong seeded extractor with seed length $d=O\left(\log n+\frac{\log ^{2}(1 / \epsilon)}{\log n}\right)$, output length $m=k^{\Omega(1)}$ and $\operatorname{locality} \log ^{2}(1 / \epsilon)$ poly $(\log n)$. Finally, for min-entropy $k=\Omega\left(\log ^{2} n\right)$ and error $\epsilon \geq 2^{-k^{\Omega(1)}}$, we give a strong seeded extractor with seed length $d=O(k), m=(1-\gamma) k$ and locality $\frac{n}{k} \log ^{2}(1 / \epsilon)(\log n)$ poly $(\log k)$. As an intermediate tool for this extractor, we construct a condenser that condenses an (n, k)-source into a $(10 k, \Omega(k))$-source with seed length $d=O(k)$, error $2^{-\Omega(k)}$ and locality $\Theta\left(\frac{n}{k} \log n\right)$.

[^0]
1 Introduction

Randomness extractors are functions that transform biased random sources into almost uniform random bits. Throughout this paper, we model biased random sources by the standard model of general weak random sources, which are probability distributions over n-bit strings with a certain amount of min-entropy k. Such sources are referred to as (n, k)-sources. In this case, it is well known that no deterministic extractors can exist for one single weak random source even if $k=n-1$; therefore seeded randomness extractors were introduced in [16], which allow the extractors to have a short uniform random seed (say length $O(\log n)$). In typical situations, we require the extractor to be strong in the sense that the output is close to uniform even given the seed.

Since their introduction, seeded randomness extractors have become fundamental objects in pseudorandomness, and have found numerous applications in derandomization, complexity theory, cryptography and many other areas in theoretical computer science. In addition, through a long line of research, we now have explicit constructions of seeded randomness extractors with almost optimal parameters (e.g., [8]).

While in general "explicit constructions" means constructions that can be computed in polynomial time of the input size, some of the known constructions are actually more explicit than that. These include for example extractors based on universal hashing [4], and Trevisan's extractor [20], which can be computed by highly uniform constant-depth circuits of polynomial size with parity gates. Motivated by this, Goldreich et al. [7] studied the problem of constructing randomness extractors in AC^{0} (i.e., constant depth circuits of polynomial size). From the complexity aspect, this also helps us better understand the computational power of the class AC^{0}. We continue with their study in this paper.

In a similar flavor, one can also consider randomness extractors that can be computed by local functions, i.e., where every output bit only depends on a small number (say ℓ) of input bits. However, one can easily see that in this case, just fixing at most ℓ bits of the weak source will cause the extractor to fail (at least in the strong extractor case). To get around this, Bogdanov and Guo [3] introduced the notion of sparse extractor families. These are a family of functions such that each function has a small number of overall input-output dependencies, while taking a random function from the family serves as a randomness extractor. Such extractors can be used generally in situations where hashing is used and preserving small input-output dependencies is need. As an example, the authors in [3] used such extractors to obtain a transformation of non-uniform one-way functions into non-uniform pseudorandom generators that preserve output locality. We recall the definition of such extractors in [3].

Definition 1.1. [3] (sparse extractor family) An extractor family for (n, k)-sources with error ϵ is a distribution H on functions $\{0,1\}^{n} \times\{0,1\}^{s} \rightarrow\{0,1\}^{m}$ such that for any (n, k)-source X, we have

$$
\left|\left(H, H\left(X, U_{s}\right)\right)-\left(H, U_{m}\right)\right| \leq \epsilon
$$

The extractor family is strong if $s=0$. Moreover, the family is t-sparse if for any function in the family, the number of input-output pairs (i, j) such that the j 'th output bit depends on the i 'th input bit is at most t. The family is ℓ-local if for any function in the family, any output bit depends on at most ℓ input bits.

In this paper, we continue the study of such extractors under the stronger condition of the family being ℓ-local (instead of just being sparse). Furthermore, we will focus on the case of strong extractor families. Note that a strong extractor family is equivalent to a strong seeded extractor, since the randomness used to choose a function from the family can be included in the seed. Formally, we define such extractors as follows.

Definition 1.2. A seeded extractor Ext : $\{0,1\}^{n} \times\{0,1\}^{d} \rightarrow\{0,1\}^{m}$ is a strong (k, ϵ)-extractor family with locality ℓ, if Ext satisfies the following two conditions.

- For any (n, k)-source X and independent uniform seed $R \in\{0,1\}^{d}$, we have

$$
\left|(\operatorname{Ext}(X, R), R)-U_{m+d}\right| \leq \epsilon
$$

- For any fixing of the seed $R=r$, we have that $\operatorname{Ext}(x, r)$ is computable by ℓ-local functions, i.e., each output bit depends on at most ℓ bits of x.

It can be seen that our definition of extractor families with small locality is a stronger notion than sparse extractor families. Indeed, an extractor family with m output bits and locality ℓ is automatically an ℓm sparse extractor family, while the other direction may not hold.

Comparing with t-local extractors in [21] It is worthwhile to compare our definition of a strong extractor family with small locality to the definition of t-local extractors by Vadhan [21]. For a t-local extractor, one requires that for any fixing of the seed r, the outputs of the function $\operatorname{Ext}(x, r)$ as a whole depend on only t bits of x. In contrast, in our definition we only require that each output bit of the function Ext (x, r) depends on at most ℓ bits of x, while as a whole the output bits can depend on more than ℓ bits of x.

Of course, the definition of t-local extractors is stronger than ours, since any t-local extractor also has locality at most ℓ according to our definition. However, the construction of t-local extractors in [21], which uses the sample-then-extract approach, only works for large min-entropy (at least $k>\sqrt{n}$); while our goal here is to construct strong extractor families even for very small min-entropy. Furthermore, by a lower bound in [21], the parameter t in local-extractors is at least $\Omega(n m / k)$, which is larger than the output length m. Although this is inevitable for local extractors, we can construct strong extractor families with long output and small locality (i.e., $\ell \ll m$).

1.1 Prior Work and Resuls

As mentioned before, Goldreich et al. [7] studied the problem of constructing randomness extractors in AC^{0}. They showed that in the strong extractor case, even extracting a single bit is impossible if $k<n / \operatorname{poly}(\log n)$. When $k \geq n /$ poly $(\log n)$, they showed how to extract $\Omega(\log n)$ bits using $O(\log n)$ bits of seed, or more generally how to extract $m<k / 2$ bits using $O(m)$ bits of seed. Note that in this case the seed length is longer than the output length. ${ }^{1}$ In the non-strong extractor case, they showed that extracting $r+\Omega(r)$ bits is impossible if $k<n /$ poly $(\log n)$; while if $k \geq n /$ poly $(\log n)$ one can extract $(1+c) r$ bits for some constant $c>0$, using r bits of seed. All of the above positive results have error $1 / \operatorname{poly}(n)$. Therefore, a natural and main open problem left in [7] is to see if one can construct randomness extractors in AC^{0} with shorter seed and longer output. Specifically, [7] asks if one can extract more than poly $(\log n) r$ bits in AC^{0} using a seed length $r=\Omega(\log n)$, when $k \geq n /$ poly $(\log n)$. In [7] the authors conjectured that the answer is negative.

We now turn to sparse extractor families. The authors in [3] gave a construction of a strong extractor family for all entropy k with output length $m \leq k$, error ϵ, and sparsity $O(n \log (m / \epsilon) \log (n / m)$), which roughly corresponds to locality $O(n / m \log (m / \epsilon) \log (n / m)) \geq O(n / k \log (m / \epsilon) \log (n / m)) \geq$ $O(n / k \log (n / \epsilon))$ whenever $k \leq n / 2$. They also showed that such sparsity is necessary when $n^{0.99} \leq$ $m \leq n / 6$ and ϵ is a constant. However, the main drawback of the construction in [3] is that the family size is quite large. Indeed the family size is $2^{n m}$, which corresponds to a seed length of at least $n m$ (in fact, since the distribution H is not uniform, it will take even more random bits to sample from the family). Therefore, a main open problem left in [3] is to reduce the size of the family (or, equivalently, the seed length).

De and Trevisan [5], using similar techniques as ours, also obtained a strong extractor for (n, k) sources with $k=\delta n$ for any constant δ with seed length $d=O(\log n)$ such that for any fixing of the seed, each bit of the extractor's output only depends on poly $(\log n)$ bits of the source. Their extractor outputs $k^{\Omega(1)}$ bits,

[^1]but the error is only $n^{-\alpha}$ for some small constant $0<\alpha<1$. Our results apply to a much wider setting of parameters. Indeed, as we shall see in the following, we can handle min-entropy as small as $k=\Omega\left(\log ^{2} n\right)$ and error as small as $2^{-k^{\Omega(1)}}$.

1.2 Our Results

As our first contribution, we show that the authors' conjecture about seeded AC^{0} extractors in [7] is false. We give explicit constructions of strong seeded extractors in AC^{0} with much better parameters. This in particular answers open problems 8.1 and 8.2 in [7]. To start with, we have the following theorem.

Theorem 1.3. For any constant $c \in \mathbb{N}$, any $k=\Omega\left(n / \log ^{c} n\right)$ and any $\epsilon=1 / \operatorname{poly}(n)$, there exists an explicit construction of a strong (k, ϵ)-extractor Ext : $\{0,1\}^{n} \times\{0,1\}^{d} \rightarrow\{0,1\}^{m}$ that can be computed by an AC^{0} circuit of depth $c+10$, where $d=O(\log n), m=k^{\Omega(1)}$ and the extractor family has locality $O\left(\log ^{c+5} n\right)$.

Note that the depth of the circuit is almost optimal, within an additive $O(1)$ factor of the lower bound given in [7]. In addition, our construction is also a family with locality only poly $(\log n)$. Note that the seed length $d=O(\log n)$ is (asymptotically) optimal, while the locality beats the one obtained in [3] (which is $\left.O(n / m \log (m / \epsilon) \log (n / m))=n^{\Omega(1)}\right)$ and is within a $\log ^{4} n$ factor to $O(n / k \log (n / \epsilon))$.

Our result also improves that of De and Trevisan [5], even in the high min-entropy case, as our error can be any $1 / \operatorname{poly}(n)$ instead of just $n^{-\alpha}$ for some constant $0<\alpha<1$. Moreover, our seed length remains $O(\log n)$ even for $k=n /$ poly $(\log n)$, while in this case the seed length of the extractor in [5] becomes poly $(\log n)$.

Next, we can boost our construction to extract almost all the entropy. Specifically, we have
Theorem 1.4. For any constant $c \in \mathbb{N}$, any $k=\delta n=\Omega\left(n / \log ^{c} n\right)$, and any $\epsilon=1 /$ poly (n), there exists an explicit construction of a strong (k, ϵ)-extractor Ext : $\{0,1\}^{n} \times\{0,1\}^{d} \rightarrow\{0,1\}^{m}$ that can be computed by an AC^{0} circuit of depth $O(c)+O(1)$ with either of the following parameters.

1. $m=\Omega(\delta k)$ and $d=O(\log n)$.
2. $m=(1-\gamma) k$ for any constant $0<\gamma<1$ and $d=O\left(\frac{1}{\delta} \log n\right)$.

Note that if δ is a constant, then we can extract $(1-\gamma) k$ bits with seed length $O(\log n)$ and error $\epsilon=1 / \operatorname{poly}(n)$, which is essentially optimal. In the case where $k=n / \operatorname{poly}(\log n)$, we can either use $O(\log n)$ bits to extract $k /$ poly $(\log n)$ bits or use poly $(\log n)$ bits to extract $(1-\gamma) k$ bits.

By increasing the seed length, we can achieve even smaller error with extractors in AC^{0}. Specifically, we have the following theorem.

Theorem 1.5. For any constants $c_{1}, c_{2} \in \mathbb{N}, \gamma \in(0,1)$, any $k=\Omega\left(n / \log ^{c_{1}} n\right)$, and any $\epsilon=2^{-\log ^{c_{2}} n}$, there exists an explicit construction of a strong (k, ϵ)-extractor Ext : $\{0,1\}^{n} \times\{0,1\}^{d} \rightarrow\{0,1\}^{m}$ that can be computed by an AC^{0} circuit of depth $O\left(c_{1}+c_{2}\right)+O(1)$, where $d=\operatorname{poly}(\log n)$ and $m=(1-\gamma) k$.

Unfortunately the above two theorems do not preserve small locality as in Theorem 1.3, because our output length boosting step does not preserve locality. However, we can still reduce the error of Theorem 1.3 while keeping the locality small. Specifically, we have the following theorem.

Theorem 1.6. There exists a constant $\alpha \in(0,1)$ such that for any $k \geq \frac{n}{\operatorname{poly}(\log n)}$ and $\epsilon \geq 2^{-k^{\alpha}}$, there exists an explicit construction of a strong (k, ϵ)-extractor Ext : $\{0,1\}^{n} \times\{0,1\}^{d} \rightarrow\{0,1\}^{m}$, with $d=$ $O\left(\log n+\frac{\log ^{2}(1 / \epsilon)}{\log n}\right), m=k^{\Theta(1)}$ and locality $\log ^{2}(1 / \epsilon) \operatorname{poly}(\log n)$.

Finally, we consider strong extractor families with small locality for min-entropy k as small as $\log ^{2} n$. Our approach is to first condense it into another weak source with constant entropy rate. For this purpose we introduce the following definition of a (strong) randomness condenser with small locality.

Definition 1.7. A function Cond : $\{0,1\}^{n} \times\{0,1\}^{d} \rightarrow\{0,1\}^{n_{1}}$ is a strong ($n, k, n_{1}, k_{1}, \epsilon$)-condenser if for every (n, k)-source X and independent uniform seed $R \in\{0,1\}^{d}, R \circ \operatorname{Cond}(X, R)$ is ϵ-close to $R \circ D$, where D is a distribution on $\{0,1\}^{n_{1}}$ such that for any $r \in\{0,1\}^{d}$, we have that $\left.D\right|_{R=r}$ is an $\left(n_{1}, k_{1}\right)$ source. We say the condenser family has locality ℓ if for every fixing of $R=r$, the function Cond (., r) can be computed by an ℓ-local function.

We now have the following theorem.
Theorem 1.8. For any $k \geq \log ^{2} n$, there exists a strong ($n, k, t=10 k, 0.08 k, \epsilon$)-condenser Cond : $\{0,1\}^{n} \times\{0,1\}^{d} \rightarrow\{0,1\}^{t}$ with $d=O(k), \epsilon=2^{-\Omega(k)}$ and locality $\Theta\left(\frac{n}{k} \log n\right)$.

Combining the condenser with our previous extractors, we get strong extractor families with small locality for any min-entropy $k \geq \log ^{2} n$. Specifically, we have

Theorem 1.9. There exits a constant $\alpha \in(0,1)$ such that for any $k \geq \log ^{2} n$, any constant $\gamma \in(0,1)$ and any $\epsilon \geq 2^{-k^{\alpha}}$, there exists a strong (k, ϵ)-extractor Ext : $\{0,1\}^{n} \times\{0,1\}^{d} \rightarrow\{0,1\}^{m}$, where $d=$ $O(k), m=(1-\gamma) k$ and the extractor family has locality $\frac{n}{k} \log ^{2}(1 / \epsilon)(\log n) \operatorname{poly}(\log k)$.

In the above two extractors, our seed length is still much better than that of [3]. However, our locality becomes slightly worse, i.e., the dependence on ϵ changes from $\log (1 / \epsilon)$ to $\log ^{2}(1 / \epsilon)$. Whether one can improve this is an interesting open problem.

1.3 Overview of the Constructions and Techniques

To get strong randomness extractors in AC^{0}, we will extensively use the following two facts: the parity and inner product over poly $(\log n)$ bits can be computed by AC^{0} circuits of size poly (n); in addition, any Boolean function on $O(\log n)$ bits can be computed by a depth- $2 \mathrm{AC}^{0}$ circuit of size poly (n).

1.3.1 Basic construction

All our constructions are based on a basic construction of a strong extractor in AC^{0} for any $k \geq \frac{n}{\text { poly }(\log n)}$ with seed length $d=O(\log n)$ and error $\epsilon=n^{-\Omega(1)}$. This construction is a modification of the ImpagliazzoWidgerson pseudorandom generator [10], interpreted as a randomness extractor in the general framework found by Trevisan [20]. In the IW-generator, first one takes a Boolean function on n bits that is worst case hard for circuits of size $2^{\Omega(n)}$, and uses a series of hardness amplification steps to get another function that cannot be predicted with advantage more than $2^{-\Omega(n)}$ by circuits of size $2^{\Omega(n)}$. One can now use the NisanWidgerson generator [15] together with this new function to get a pseudorandom generator that stretches $O(\log n)$ random bits to n bits that fool any polynomial size circuit. Note that in the final step the hard function is applied on only $O(\log n)$ bits, so one can think of the initial Boolean function to be on $\log n$ bits.

Trevisan [20] showed that given an (n, k)-source X, if one regards the n bits of X as the truth table of the initial Boolean function on $\log n$ bits and apply the IW-generator, then by setting parameters appropriately (e.g., set output length to be n^{α}) one gets an extractor. The reason is that if the function is not an extractor, then one can "reconstruct" part of the source X. More specifically, by the same argument of the IWgenerator, one can show that any $x \in \operatorname{supp}(X)$ that makes the output of the extractor to fail a certain statistical test T, can be computed by a small size circuit (when viewing x as the truth table of the function) with T gates. Since the total number of such circuits is small, the number of such bad elements in supp (X) is also small. This extractor can work for min-entropy $k \geq n^{\alpha}$.

However, this extractor itself is not in AC^{0} (which should be no surprise since it can handle min-entropy $k \geq n^{\alpha}$). Thus, at least one of the steps in the construction of the IW-generator/extractor is not in AC^{0}. In more details, the construction has four steps, with the first three steps used for hardness amplification and the last step applying the NW-generator. In hardness amplification, the first step is developed by Babai et al. [2] to obtain a mild average-case hard function from a worst-case hard function; the second step involves a constant number of sub steps, with each sub step amplifying the hardness by using Impagliazzo's hard core set theorem [12], and eventually obtain a function with constant hardness; the third step is developed by Impagliazzo and Widgerson [10], which uses a derandomized direct-product generator to obtain a function that can only be predicted with exponentially small advantage. By carefully examining each step one can see that the only step not in AC^{0} is actually the fist step of hardness amplification. Indeed, all the other steps of hardness amplification are essentially doing the same thing: obtaining a function f^{\prime} on $O(\log n)$ bits from another function f on $O(\log n)$ bits, where the output of f^{\prime} is obtained by taking the inner product over two $O(\log n)$ bit strings s and r. In addition, s is obtained directly from part of the input of f^{\prime}, while r is obtained by using the other part of the input of f^{\prime} to generate $O(\log n)$ inputs to f and concatenate the outputs. All of these can be done in AC^{0}, assuming f is in AC^{0} (note that f here depends on X).

We therefore modify the IW-generator by removing the first step of hardness amplification, and start with the second step of hardness amplification with the source X as the truth table of the initial Boolean function. Thus the initial function f can be computed by using the $\log n$ input bits to select a bit from X, which can be done in AC^{0}. Therefore the final Boolean function f^{\prime} can be computed in AC^{0}. The last step of the construction, which applies the NW-generator, is just computing f^{\prime} on several blocks of size $O(\log n)$, which certainly is in AC^{0}. This gives our basic extractor in AC^{0}.

The analysis is again similar to Trevisan's argument [20]. However, since we have removed the first step of hardness amplification, now for any $x \in \operatorname{supp}(X)$ that makes the output of the extractor to fail a certain statistical test T, we cannot obtain a small circuit that exactly comptues x. On the other hand, we can obtain a small circuit that can approximate x well, i.e., can compute x correctly on $1-\gamma$ fraction of inputs for some $\gamma=1 /$ poly $(\log n)$. We then argue that the total number of strings within relative distance γ to the outputs of the circuit is bounded, and therefore combining the total number of possible circuits we can again get a bound on the number of such bad elements in $\operatorname{supp}(X)$. A careful analysis shows that our extractor works for any min-entropy $k \geq n /$ poly $(\log n)$. However, to keep the circuit size small we have to set the output length to be small enough, i.e., n^{α} and set the error to be large enough, i.e., $n^{-\beta}$. Note that in each hardness amplification step the output of f^{\prime} only depends on $O(\log n)$ outputs from f, thus our extractor also enjoys the property of small locality, i.e., poly $(\log n)$ since the construction only has a constant number of hardness amplification steps.

1.3.2 Error reduction

We now describe how we reduce the error of the extractor. We will use techniques similar to that of Raz et al. [17], in which the authors showed a general way to reduce the error of strong seeded extractors. However, the reduction in Raz et al. [17] does not preserve the $A C^{0}$ property or small locality, thus we cannot directly use it. Nevertheless, we will still use a lemma from [17], which roughly says the following: given any strong seeded (k, ϵ)-extractor Ext with seed length d and output length m, then for any $x \in\{0,1\}^{n}$ there exists a set $G_{x} \subset\{0,1\}^{d}$ of density $1-O(\epsilon)$, such that if X is a source with entropy slightly larger than k, then the distribution $\operatorname{Ext}\left(X, G_{X}\right)$ is very close to having min-entropy $m-O(1)$. Here $\operatorname{Ext}\left(X, G_{X}\right)$ is the distribution obtained by first sampling x according to X, then sampling r uniformly in G_{x} and outputting $\operatorname{Ext}(x, r)$.

Suppose now we want to achieve an error of any $1 /$ poly (n). Giving this lemma, we can apply our basic AC^{0} extractor with error $\epsilon=n^{-\beta}$ for some t times, each time with fresh random seed, and then concatenate the outputs. By the above lemma, the concatenation is roughly $(O(\epsilon))^{t}$-close to a source such that one of the output has min-entropy $m-O(1)$ (i.e., a somewhere high min-entropy source). By choosing t to be a
large enough constant the $(O(\epsilon))^{t}$ can be smaller than any $1 /$ poly (n). We now describe how to extract from the somewhere high min-entropy source with error smaller than any $1 / \operatorname{poly}(n)$.

Assume that we have an AC^{0} extractor Ext' that can extract from $(m, m-\sqrt{m})$-sources with error any $\epsilon^{\prime}=1 / \operatorname{poly}(n)$ and output length $m^{1 / 3}$. Then we can extract from the somewhere high min-entropy source as follows. We use Ext' to extract from each row of the source with fresh random seed, and then compute the XOR of the outputs. We claim the output is $\left(2^{-m^{\Omega(1)}}+\epsilon^{\prime}\right)$-close to uniform. To see this, assume without loss of generality that the i 'th row has min-entropy $m-O(1)$. We can now fix the outputs of all the other rows, which has a total size of $t m^{1 / 3} \ll \sqrt{m}$ as long as t is small. Thus, even after the fixing, with probability $1-2^{-m^{\Omega(1)}}$, we have that the i 'th row has min-entropy at least $m-\sqrt{m}$. By applying Ext ${ }^{\prime}$ we know that the XOR of the outputs is close to uniform.

What remains is the extractor Ext'. To construct it we divide the source with length m sequentially into $m^{1 / 3}$ blocks of length $m^{2 / 3}$. Since the source has min-entropy $m-\sqrt{m}$, this forms a block source such that each block roughly has min-entropy at least $m^{2 / 3}-\sqrt{m}$ conditioned on the fixing of all previous ones. We can now take a strong extractor Ext" in AC^{0} with seed length $O(\log n)$ and use the same seed to extract from all the blocks, and concatenate the outputs. It suffices to have this extractor output one bit for each block. Such AC^{0} extractors are easy to construct since each block has high min-entropy rate (i.e., $1-o(1)$). For example, we can use the extractors given by Goldreich et al. [7].

It is straightforward to check that our construction is in AC^{0}, as long as the final step of computing the XOR of t outputs can be done in AC^{0}. For error $1 / \operatorname{poly}(n)$, it suffices to take t to be a constant and the whole construction is in AC^{0}, with seed length $O(\log n)$. We can even take t to be poly $(\log n)$, which will give us error $2^{-\operatorname{poly}(\log n)}$ and the construction is till in AC^{0}; although we need to change Ext ${ }^{\prime \prime}$ a little bit and the seed length now becomes poly $(\log n)$. In addition, our error reduction step also preserves small locality.

1.3.3 Increasing output length

The error reduction step reduces the output length from m to $m^{1 / 3}$, which is still $n^{\Omega(1)}$. We can increase the output length by using a standard boosting technique as that developed by Nisan and Zuckerman [16, 25]. Specifically, we first use random bits to sample from the source for several times (using a sampler in $A C^{0}$), and the outputs will form a block source. We then apply our AC^{0} extractor on the block source backwards, and use the output of one block as the seed to extract from the previous block. When doing this we divide the seed into blocks each with the same length as the seed of the $A C^{0}$ extractor, apply the $A C^{0}$ extractor using each block as the seed, and then concatenate the outputs. This way each time the output will increase by a factor of $n^{\Omega(1)}$. Thus after a constant number of times it will become say $\Omega(k)$. Since each step is computable in $A C^{0}$, the whole construction is still in $A C^{0}$. Unfortunately, this step does not preserve small locality.

1.3.4 Extractors with small locality for low entropy

To get strong extractor families with small locality for min-entropy $k=\Omega\left(\log ^{2} n\right)$, we adapt the techniques in [3]. There the authors constructed a strong extractor family with small sparsity by randomly sampling an $m \times n$ matrix M and outputting $M X$, where X is the (n, k)-source. Each entry in M is independently sampled according to a Bernoulli distribution, and thus the family size is $2^{n m}$. We derandomize this construction by sampling the second row to the last row using a random walk on an expander graph, starting from the first row. For the first row, we observe that the process of generating the entries and doing inner product with X can be realized by read-once small space computation, thus we can sample the first row using the output of a pseudorandom generator for space bounded computation (e.g., Nisan's generator [14]). We show that this gives us a very good condenser with small locality, i.e., Theorem 1.8. Combining the condenser with our previous extractors we then obtain strong extractor families with small locality.

1.4 Organization of this Paper

The rest of the paper is organized as follows. In Section 2 we review some basic definitions and the relevant background. In Section 3 we describe our construction of a basic extractor in AC^{0}, and with small locality. Section 4 describes the error reduction techniques for AC^{0} extractors. In Section 5 we show how to increase the output length of AC^{0} extractors. Section 6 deals with error reduction for extractor families with small locality. In Section 7 we give our condenser and extractor with small locality for low entropy sources. Finally, while our work improves previous works in many aspects, there are also many natural and interesting open problems left. We conclude with some of the open problems in Section 8.

2 Preliminaries

For any $i \in \mathbb{N}$, we use $\langle i\rangle$ to denote the binary string representing i. Let $\langle\cdot, \cdot\rangle$ denote the inner product of two binary strings having the same length. Let $|\cdot|$ denote the length of the input string. Let $w(\cdot)$ denote the weight of the input binary string. For any strings x_{1} and x_{2}, let $x_{1} \circ x_{2}$ denote the concatenation of x_{1} and x_{2}. For any strings $x_{1}, x_{2}, \ldots, x_{t}$, let $\bigcirc_{i=1}^{t} x_{i}$ denote $x_{1} \circ x_{2} \circ \cdots \circ x_{t}$.

Let supp (\cdot) denote the support of the input random variable.
Definition 2.1 (Weak Random Source, Block Source). The min-entropy of a random variable X is

$$
H_{\infty}(X)=\min _{x \in \operatorname{supp}(X)}\{-\log \operatorname{Pr}(X=x)\} .
$$

We say a random variable X is an (n, k)-source if the length of X is n and $H_{\infty}(X) \geq k$. We say $X=\bigcirc_{i=1}^{m} X_{i}$ is an $\left(\left(n_{1}, k_{1}\right),\left(n_{2}, k_{2}\right), \ldots,\left(n_{m}, k_{m}\right)\right)$-block source if $\forall i \in[m], \forall x \in \operatorname{supp}\left(\bigcirc_{j=1}^{i-1} X_{j}\right)$, $\left.X_{i}\right|_{\bigcirc_{j=1}^{i-1} X_{j}=x}$ is an $\left(n_{i}, k_{i}\right)$-source.

For simplicity, if $n_{1}, n_{2}, \cdots, n_{m}$ are clear from the context, then we simply say that the block source X is a $\left(k_{1}, k_{2}, \ldots, k_{m}\right)$-block source.

We say an (n, k)-source X is a flat (n, k)-source if $\forall a \in \operatorname{supp}(X), \operatorname{Pr}[X=a]=2^{-k}$. In this paper, X is usually a random binary string with finite length. So $\operatorname{supp}(X)$ includes all the binary strings of that length such that $\forall x \in \operatorname{supp}(X), \operatorname{Pr}[X=x]>0$.

We use U to denote the uniform distribution. In the following, we do not always claim the length of U, but its length can be figured out from the context.

Definition 2.2 (Statistical Distance). The statistical distance between two random variables X and Y, where $|X|=|Y|$, is $\mathrm{SD}(X, Y)$ which is defined as follows.

$$
\mathrm{SD}(X, Y)=1 / 2 \sum_{a \in\{0,1\}|X|}|\operatorname{Pr}[X=a]-\operatorname{Pr}[Y=a]|
$$

Lemma 2.3 (Properties of Statistical Distance [1]). Statistical distance has the following properties.

1. (Triangle Inequality) For any random variables X, Y, Z, such that $|X|=|Y|=|Z|$, we have

$$
\mathrm{SD}(X, Y) \leq \mathrm{SD}(X, Z)+\mathrm{SD}(Y, Z)
$$

2. For any $n, m \in \mathbb{N}^{+}$, any deterministic function $f:\{0,1\}^{n} \rightarrow\{0,1\}^{m}$ and any random variables X, Y over $\{0,1\}^{n}, \mathrm{SD}(f(X), f(Y)) \leq \mathrm{SD}(X, Y)$.

Definition 2.4 (Extractor). A (k, ϵ)-extractor is a function Ext : $\{0,1\}^{n} \times\{0,1\}^{d} \rightarrow\{0,1\}^{m}$ with the following property. For every (n, k)-source X, the distribution $\operatorname{Ext}(X, U)$ is within statistical distance ϵ from uniform distributions over $\{0,1\}^{m}$.

A strong (k, ϵ)-extractor is a function Ext : $\{0,1\}^{n} \times\{0,1\}^{d} \rightarrow\{0,1\}^{m}$ with the following property. For every (n, k)-source X, the distribution $U \circ \operatorname{Ext}(X, U)$ is within statistical distance ϵ from uniform distributions over $\{0,1\}^{d+m}$. The entropy loss of the extractor is $k-m$.

The existence of extractors can be proved using the probabilistic method. The result is stated as follows.
Theorem 2.5 ([23]). For any $n, k \in \mathbb{N}$ and $\epsilon>0$, there exists a strong (k, ϵ)-extractor Ext : $\{0,1\}^{n} \times$ $\{0,1\}^{d} \rightarrow\{0,1\}^{m}$ such that $d=\log (n-k)+2 \log (1 / \epsilon)+O(1), m=k-2 \log 1 / \epsilon+O(1)$.

In addition, researchers have found explicit extractors with almost optimal parameters, for example we have the following theorem.

Theorem 2.6 ([8]). For every constant $\alpha>0$, every $n, k \in \mathbb{N}$ and $\epsilon>0$, there exist an explicit construction of strong (k, ϵ)-extractor Ext : $\{0,1\}^{n} \times\{0,1\}^{d} \rightarrow\{0,1\}^{m}$ with $d=O\left(\log \frac{n}{\epsilon}\right), m \geq(1-\alpha) k$.

We also use the following version of Trevisan's extractor [20].
Theorem 2.7 (Trevisan's Extractor [20]). For any constant $\gamma \in(0,1]$, let $k=n^{\gamma}$. For any $\epsilon \in\left(0,2^{-k / 12}\right)$, there exists an explicit construction of (k, ϵ)-extractor Ext : $\{0,1\}^{n} \times\{0,1\}^{d} \rightarrow\{0,1\}^{m}$ such that $d=$ $O\left((\log n / \epsilon)^{2} / \log n\right), m \in[36, k / 2)$.

For block sources, randomness extraction can be done in parallel, using the same seed for each block.
Lemma 2.8 (Block Source Extraction). For any $t \in \mathbb{N}^{+}$, let $X=\bigcirc_{i=1}^{t} X_{i}$ be any $\left(k_{1}, k_{2}, \ldots, k_{t}\right)$-block source where for each $i \in[t],\left|X_{i}\right|=n_{i}$. For every $i \in[t]$, let $\operatorname{Ext}_{i}:\{0,1\}^{n_{i}} \times\{0,1\}^{d} \rightarrow\{0,1\}^{m_{i}}$ be a strong $\left(k_{i}, \epsilon_{i}\right)$-extractor. Then the distribution $R \circ \operatorname{Ext}_{1}\left(X_{1}, R\right) \circ \operatorname{Ext}_{2}\left(X_{2}, R\right) \circ \ldots \circ \operatorname{Ext}_{t}\left(X_{t}, R\right)$ is $\sum_{i \in[t]} \epsilon_{i}$-close to uniform, where R is uniformly sampled from $\{0,1\}^{d}$, and independent of X.

Proof. We use induction. If the source has only 1 block, then the statement is true by the definition of strong extractors.

Assume for $(t-1)$ blocks, the statement is true. We view $\operatorname{Ext}_{1}\left(X_{1}, R\right) \circ \operatorname{Ext}_{2}\left(X_{2}, R\right) \circ \ldots \circ \operatorname{Ext}_{t}\left(X_{t}, R\right)$ as $Y \circ \operatorname{Ext}_{t}\left(X_{t}, R\right)$. Here $Y=\operatorname{Ext}_{1}\left(X_{1}, R\right) \circ \operatorname{Ext}_{2}\left(X_{2}, R\right) \circ \ldots \circ \operatorname{Ext}_{t-1}\left(X_{t-1}, R\right)$. Let U_{1}, U_{2} be two independent uniform distributions, where $\left|U_{1}\right|=|Y|=m$ and $\left|U_{2}\right|=m_{t}$. Then

$$
\begin{align*}
& \quad \mathrm{SD}\left(R \circ Y \circ \operatorname{Ext}_{t}\left(X_{t}, R\right), R \circ U_{1} \circ U_{2}\right) \\
& \leq \mathrm{SD}\left(R \circ Y \circ \operatorname{Ext}_{t}\left(X_{t}, R\right), R \circ U_{1} \circ Z\right)+\mathrm{SD}\left(R \circ U_{1} \circ Z, R \circ U_{1} \circ U_{2}\right) . \tag{1}
\end{align*}
$$

Here Z is the random variable such that $\forall r \in\{0,1\}^{d}, \forall y \in\{0,1\}^{m},\left.Z\right|_{R=r, U_{1}=y}$ has the same distribution as $\left.\operatorname{Ext}_{t}\left(X_{t}, R\right)\right|_{R=r, Y=y}$.

First we give the upper bound of $\mathrm{SD}\left(R \circ Y \circ \operatorname{Ext}_{t}\left(X_{t}, R\right), R \circ U_{1} \circ Z\right)$.

$$
\begin{align*}
& \operatorname{SD}\left(R \circ Y \circ \operatorname{Ext}_{t}\left(X_{t}, R\right), R \circ U_{1} \circ Z\right) \tag{2}\\
= & \left.\frac{1}{2} \sum_{r \in\{0,1\}^{d}} \sum_{y \in\{0,1\}^{m}} \sum_{z \in\{0,1\}^{m}} \right\rvert\, \operatorname{Pr}[R=r] \operatorname{Pr}\left[Y=\left.y\right|_{R=r}\right] \operatorname{Pr}\left[\operatorname{Ext}_{t}\left(X_{t}, R\right)=\left.z\right|_{R=r, Y=y}\right] \\
& -\operatorname{Pr}[R=r] \operatorname{Pr}\left[U_{1}=y\right] \operatorname{Pr}\left[Z=\left.z\right|_{R=r, U_{1}=y}\right] \mid \\
= & \frac{1}{2} \sum_{r \in\{0,1\}^{d}} \sum_{y \in\{0,1\}^{m}} \sum_{z \in\{0,1\}^{m_{t}}} \operatorname{Pr}[R=r] \operatorname{Pr}\left[Z=\left.z\right|_{R=r, U_{1}=y}\right]\left|\operatorname{Pr}\left[Y=\left.y\right|_{R=r}\right]-\operatorname{Pr}\left[U_{1}=y\right]\right|
\end{align*}
$$

$$
\begin{aligned}
& =\frac{1}{2} \sum_{r \in\{0,1\}^{d}} \sum_{y \in\{0,1\}^{m}} \operatorname{Pr}[R=r]\left|\operatorname{Pr}\left[Y=\left.y\right|_{R=r}\right]-\operatorname{Pr}\left[U_{1}=y\right]\right| \sum_{z \in\{0,1\}^{m_{t}}} \operatorname{Pr}\left[Z=\left.z\right|_{R=r, U_{1}=y}\right] \\
& =\frac{1}{2} \sum_{r \in\{0,1\}^{d}} \sum_{y \in\{0,1\}^{m}} \operatorname{Pr}[R=r]\left|\operatorname{Pr}\left[Y=\left.y\right|_{R=r}\right]-\operatorname{Pr}\left[U_{1}=y\right]\right| \\
& =\operatorname{SD}(R \circ Y, R \circ U) \\
& \leq \sum_{i=1}^{t-1} \epsilon_{i}
\end{aligned}
$$

Next we give the upper bound of $\mathrm{SD}\left(R \circ U_{1} \circ Z, R \circ U_{1} \circ U_{2}\right)$.

$$
\begin{aligned}
& \operatorname{SD}\left(R \circ U_{1} \circ Z, R \circ U_{1} \circ U_{2}\right) \\
= & \left.\frac{1}{2} \sum_{r \in\{0,1\}^{r}} \sum_{u \in\{0,1\}^{m}} \sum_{z \in\{0,1\}^{m} m_{t}} \right\rvert\, \operatorname{Pr}[R=r] \operatorname{Pr}\left[U_{1}=u\right] \operatorname{Pr}\left[Z=\left.z\right|_{R=r, U_{1}=u}\right] \\
& -\operatorname{Pr}[R=r] \operatorname{Pr}\left[U_{1}=u\right] \operatorname{Pr}\left[U_{2}=z\right] \mid \\
= & \frac{1}{2} \sum_{r \in\{0,1\}^{r}} \sum_{u \in\{0,1\}^{m}} \sum_{z \in\{0,1\}^{m_{t}}} \operatorname{Pr}[R=r] \operatorname{Pr}\left[U_{1}=u\right]\left|\operatorname{Pr}\left[Z=\left.z\right|_{R=r, U_{1}=u}\right]-\operatorname{Pr}\left[U_{2}=z\right]\right| \\
= & \frac{1}{2} \sum_{u \in\{0,1\}^{m}} \sum_{r \in\{0,1\}^{r}} \sum_{z \in\{0,1\}^{m} m_{t}} \operatorname{Pr}[R=r] \operatorname{Pr}\left[U_{1}=u\right]\left|\operatorname{Pr}\left[Z=\left.z\right|_{R=r, U_{1}=u}\right]-\operatorname{Pr}\left[U_{2}=z\right]\right| \\
= & \frac{1}{2} \sum_{u \in\{0,1\}^{m}} \operatorname{Pr}\left[U_{1}=u\right] \sum_{r \in\{0,1\}^{r}} \sum_{z \in\{0,1\}^{m_{t}}} \operatorname{Pr}[R=r]\left|\operatorname{Pr}\left[Z=\left.z\right|_{R=r, U_{1}=u}\right]-\operatorname{Pr}\left[U_{2}=z\right]\right| \\
= & \frac{1}{2} \sum_{u \in\{0,1\}^{m}} \operatorname{Pr}\left[U_{1}=u\right] \sum_{r \in\{0,1\}^{r} r} \sum_{z \in\{0,1\}^{m_{t}}} \operatorname{Pr}[R=r]\left|\operatorname{Pr}\left[\operatorname{Ext} t_{t}\left(X_{t}, R\right)=\left.z\right|_{R=r, Y=u}\right]-\operatorname{Pr}\left[U_{2}=z\right]\right| \\
= & \sum_{u \in\{0,1\}^{m}} \operatorname{Pr}\left[U_{1}=u\right] \operatorname{SD}\left(R \circ \operatorname{Ext} t\left(X_{t}, R\right) \mid Y=u, R \circ U_{2}\right) \\
\leq & \sum_{u \in\{0,1\}^{m}} \operatorname{Pr}\left[U_{1}=u\right] \epsilon_{t} \\
= & \epsilon_{t}
\end{aligned}
$$

So $\operatorname{SD}\left(R \circ Y \circ \operatorname{Ext}_{t}\left(X_{t}, R\right), R \circ U_{1} \circ U_{2}\right) \leq \sum_{i=1}^{t} \epsilon_{t}$. This proves the lemma.
For any circuit C, the size of C is denoted as size (C). The depth of C is denoted as depth (C).
Definition $2.9\left(\mathrm{AC}^{0}\right) . \mathrm{AC}^{0}$ is the complexity class which consists of all families of circuits having constant depth and polynomial size. The gates in those circuits are NOT gates, AND gates and OR gates where AND gates and OR gates have unbounded fan-in.

Lemma 2.10. The following are some well known properties of AC^{0} circuits.

1. Any boolean function $f:\{0,1\}^{l=\Theta(\log n)} \rightarrow\{0,1\}$ can be computed by an AC^{0} circuit of size poly (n) and depth 2 . In fact, it can be represented by either a CNF or a DNF.
2. For every $c \in \mathbb{N}$, every integer $l=\Theta\left(\log ^{c} n\right)$, the inner product function $\langle\cdot, \cdot\rangle:\{0,1\}^{l} \times\{0,1\}^{l} \rightarrow$ $\{0,1\}$ can be computed by an AC^{0} circuit of size poly (n) and depth $c+1$.
Proof. For the first property, for an input string $u \in\{0,1\}^{l}$,

$$
f(u)=\bigvee_{j=0}^{2^{l}-1}\left(I_{u=\langle j\rangle} \wedge f(\langle j\rangle)\right)=\bigwedge_{j=0}^{2^{l}-1}\left(I_{u \neq\langle j\rangle} \vee f(\langle j\rangle)\right)
$$

Here I_{e} is the indicator function such that $I_{e}=1$ if e is true and $I_{e}=0$ otherwise. We know that $I_{u=\langle j\rangle}$ can be represented as a boolean formula with only AND and NOT gates, checking whether $u=\langle j\rangle$ bit by bit. Similarly $I_{u \neq\langle j\rangle}$ can be represented as a boolean formula with only OR and NOT gates by taking the negation of $I_{u=\langle j\rangle}$. So the computation of obtaining $f(u)$ can be represented by a CNF/DNF. Thus it can be realized by a circuit of depth 2 by merging the gates of adjacent levels.

For the second property, assume we are computing $\langle s, x\rangle$. Consider a c-step algorithm which is as follows.

In the first step, we divide s into blocks $s_{1}, s_{2}, \ldots, s_{t}$, where $\left|s_{i}\right|=l^{\prime}=\Theta(\log n), \forall i \in[t]$. Also we divide x into blocks $x_{1}, x_{2}, \ldots, x_{t}$, where $\left|x_{i}\right|=l^{\prime}, \forall i \in[t]$. Then we compute $\left\langle s_{i}, x_{i}\right\rangle$ for each $i \in[t]$ and provide them as the input bits for the next step. As each block has $\Theta(\log n)$ bits, this step can be done by a circuit of depth 2 according to the first property.

For the j th step where $j=2, \ldots, c$, we divide the input bits into blocks where each block has size l^{\prime}. We compute the parity of the bits in each block and pass them to the next step as the inputs for the next step.

For the last step, if l^{\prime} is large enough, there will be only 1 block and the parity of this block is $\langle s, x\rangle$.
For the j th step, where $j=2, \ldots, c$, as the size of each block is $\Theta(\log n)$, we only need a circuit of depth 2 and polynomial size to compute the parity of each block according to the first property. The computation for all the blocks can be done in parallel. Thus the j th step can be computed by a circuit of depth 2 and polynomial size.

As a result, this algorithm can be realized by a circuit of depth $2 c$ and polynomial size. By merging the gates of adjacent depths, we can have a circuit of depth $c+1$ and polynomial size to compute $\langle s, x\rangle$.

Definition 2.11. A boolean function $f:\{0,1\}^{l} \rightarrow\{0,1\}$ is δ-hard on uniform distributions for circuit size g, if for any circuit C with at most g gates (size $(C) \leq g$), we have $\operatorname{Pr}_{x \leftarrow U}[C(x)=f(x)]<1-\delta$.
Definition 2.12 (Graphs). Let $G=(V, E)$ be a graph. Let A be the adjacency matrix of G. Let $\lambda(G)$ be the second largest eigenvalue of A. We say G is d-regular, if the degree of G is d. When G is clear in the context, we simply denote $\lambda(G)$ as λ.

3 The Basic Construction of Extractors in AC^{0}

Our basic construction is based on the general idea of I-W generator [10]. In [20], Trevisan showed that I-W generator is an extractor if we regard the string x drawn from the input (n, k)-source X as the truth table of a function f_{x} s.t. $f_{x}(\langle i\rangle), i \in[n]$ outputs the i th bit of x.

The construction of I-W generator involves a process of hardness amplifications from a worst-case hard function to an average-case hard function. There are mainly 3 amplification steps. Viola [24] summarizes these results in details, and we review them again. The first step is established by Babai et al. [2], which is an amplification from worst-case hardness to mildly average-case hardness.
Lemma 3.1 ([2]). If there is a boolean function $f:\{0,1\}^{l} \rightarrow\{0,1\}$ which is 0 -hard for circuit size $g=2^{\Omega(l)}$ then there is a boolean function $f^{\prime}:\{0,1\}^{\Theta(l)} \rightarrow\{0,1\}$ that is $1 /$ poly (l)-hard for circuit size $g^{\prime}=2^{\Omega(l)}$.

The second step is an amplification from mildly average-case hardness to constant average-case hardness, established by Impagliazzo [12].

Lemma 3.2 ([12]). 1. If there is a boolean function $f:\{0,1\}^{l} \rightarrow\{0,1\}$ that is δ-hard for circuit size g where $\delta<1 /(16 l)$, then there is a boolean function $f^{\prime}:\{0,1\}^{3 l} \rightarrow\{0,1\}$ that is $0.05 \delta l$-hard for circuit size $g^{\prime}=\delta^{O(1)} l^{-O(1)} g$.

$$
f^{\prime}(s, r)=\left\langle s, f\left(a_{1}\right) \circ f\left(a_{2}\right) \circ \cdots \circ f\left(a_{l}\right)\right\rangle
$$

Here $|s|=l,|r|=2 l$ and $\left|a_{i}\right|=l, \forall i \in[l]$. Regarding r as a uniform random string, a_{1}, \ldots, a_{l} are generated as pairwise independent random strings from the seed r.
2. If there is a boolean function $f:\{0,1\}^{l} \rightarrow\{0,1\}$ that is δ-hard for circuit size g where $\delta<1$ is a constant, then there is a boolean function $f^{\prime}:\{0,1\}^{3 l} \rightarrow\{0,1\}$ that is $1 / 2-O\left(l^{-2 / 3}\right)$-hard for circuit size $g^{\prime}=l^{-O(1)} g$, where

$$
f^{\prime}(s, r)=\left\langle s, f\left(a_{1}\right) \circ f\left(a_{2}\right) \circ \cdots \circ f\left(a_{l}\right)\right\rangle .
$$

Here $|s|=l,|r|=2 l$ and $\left|a_{i}\right|=l, \forall i \in[l]$. Regarding r as a uniform random string, a_{1}, \ldots, a_{l} are generated as pairwise independent random strings from the seed r.

The first part of this lemma can be applied for a constant number of times to get a function having constant average-case hardness. After that the second part is usually applied for only once to get a function with constant average-case hardness such that the constant is large enough (at least $1 / 3$).

The third step is an amplification from constant average-case hardness to even stronger average-case hardness, developed by Impagliazzo and Widgerson [10]. Their construction uses the following NisanWidgerson Generator [15] which is widely used in hardness amplification.

Definition 3.3 ((n, m, k, l)-design and Nisan-Widgerson Generator [15]). A system of sets $S_{1}, S_{2}, \ldots, S_{m} \subseteq$ $[n]$ is an (n, m, k, l)-design, if $\forall i \in[m],\left|S_{i}\right|=l$ and $\forall i, j \in[m], i \neq j,\left|S_{i} \cap S_{j}\right| \leq k$.

Let $\mathcal{S}=\left\{S_{1}, S_{2}, \ldots, S_{m}\right\}$ be an (n, m, k, l) design and $f:\{0,1\}^{l} \rightarrow\{0,1\}$ be a boolean function. The Nisan-Widgerson Generator is defined as $\mathrm{NW}_{f, \mathcal{S}}(u)=f\left(\left.u\right|_{S_{1}}\right) \circ f\left(\left.u\right|_{S_{2}}\right) \circ \cdots \circ f\left(\left.u\right|_{S_{m}}\right)$. Here $\left.u\right|_{S_{i}}=$ $u_{i_{1}} \circ u_{i_{2}} \circ \cdots \circ u_{i_{m}}$ assuming $S_{i}=\left\{i_{1}, \ldots, i_{m}\right\}$.

Nisan and Widgeson [15] showed that the (n, m, k, l)-design can be constructed efficiently.
Lemma 3.4 (Implicit in [15]). For any $\alpha \in(0,1)$, for any large enough $l \in \mathbb{N}$, for any $m<\exp \left\{\frac{\alpha l}{4}\right\}$, there exists a $(n, m, \alpha l, l)$-design where $n=\left\lfloor\frac{10 l}{\alpha}\right\rfloor$. This design can be computed in time polynomial of 2^{n}.

As we need the parameters to be concrete (while in [15] they use big- O notations), we prove it again.
Proof. Our algorithm will construct these S_{i} s one by one. For S_{1}, we can choose an arbitrary subset of $[n]$ of size αl.

First of all, S_{1} can constructed by choosing l elements from $[n]$.
Assume we have constructed S_{1}, \ldots, S_{i-1}, now we construct S_{i}. We first prove that S_{i} exists. Consider a random subset of size l from $[n]$. Let $H_{i, j}=\left|S_{i} \cap S_{j}\right|$. We know that $\mathbf{E} H_{i, j}=l^{2} / n$. As $n=\left\lfloor\frac{10 l}{\alpha}\right\rfloor \in$ $\left[\frac{10 l}{\alpha}-1, \frac{10 l}{\alpha}\right], \mathbf{E} H_{i, j} \in\left[\frac{\alpha l}{10}, \frac{\alpha l}{10}+1\right]$.

So $\operatorname{Pr}\left[H_{i, j} \geq \alpha l\right] \leq \operatorname{Pr}\left[H_{i, j} \geq(1+9)\left(\mathbf{E} H_{i, j}-1\right)\right]$
By the Chernoff bound,

$$
\operatorname{Pr}\left[H_{i, j} \geq 10\left(\mathbf{E} H_{i, j}-1\right)\right] \leq \operatorname{Pr}\left[H_{i, j} \geq 9 \mathbf{E} H_{i, j}\right] \leq \exp \left\{-\frac{8 \mathbf{E} H_{i, j}}{3}\right\} \leq \exp \left\{-\frac{4}{15} \alpha l\right\} \leq \exp \left\{-\frac{\alpha l}{4}\right\}
$$

By the union bound,

$$
\operatorname{Pr}\left[\forall j=1, \ldots, i-1, H_{i, j} \leq \alpha l\right] \geq 1-m \exp \left\{-\frac{\alpha l}{4}\right\}>0 .
$$

This proves that there exists a proper S_{i}. As there are n bits totally, we can find it in time polynomial of 2^{n}.

The following is the third step of hardness amplification.
Lemma 3.5 (Implicit in [10]). For any $\gamma \in(0,1 / 30)$, if there is a boolean function $f:\{0,1\}^{l} \rightarrow\{0,1\}$ that is $1 / 3$-hard for circuit size $g=2^{\gamma l}$, then there is a boolean function $f^{\prime}:\{0,1\}^{l^{\prime}=\Theta(l)} \rightarrow\{0,1\}$ that is $(1 / 2-\epsilon)$-hard for circuit size $g^{\prime}=\Theta\left(g^{1 / 4} \epsilon^{2} l^{-O(1)}\right)$ where ϵ can be at least $g^{-1 / 4}$.

$$
f^{\prime}\left(a, s, v_{1}, w\right)=\left\langle s, f\left(\left.a\right|_{S_{1}} \oplus v_{1}\right) \circ f\left(\left.a\right|_{S_{2}} \oplus v_{2}\right) \circ \cdots f\left(\left.a\right|_{S_{l}} \oplus v_{l}\right)\right\rangle
$$

Here $\left(S_{1}, \ldots, S_{l}\right)$ is an $(|a|, l, \gamma l / 4, l)$-design where $|a|=\left\lfloor\frac{40 l}{\gamma}\right\rfloor$. The vectors v_{1}, \ldots, v_{l} are obtained by a random walk on an expander graph, starting at v_{1} and walking according to w where $\left|v_{1}\right|=l,|w|=\Theta(l)$. The length of s is l. So $l^{\prime}=|a|+|s|+\left|v_{1}\right|+|w|=\Theta(l)$.

The construction of the Impagliazzo Widgerson Generator [10] is as follows. Given the input $x \leftarrow X$, let $f:\{0,1\}^{\log n} \rightarrow\{0,1\}$ be such that $f(\langle a\rangle)=x_{a}, \forall a \in[n]$. Then we run the 3 amplification steps, Lemma 3.1, Lemma 3.2 (part1 for a constant number of times, part 2 for once) and Lemma 3.5 sequentially to get function f^{\prime} from f. The generator $\operatorname{IW}(x, u)=\mathrm{NW}_{f^{\prime}, \mathcal{S}}(u)$. As pointed out by Trevisan [20], the function IW is a (k, ϵ)-extractor. Let's call it the IW-Extractor. It is implicit in [20] that the output length of the IW-Extractor is k^{α} and the statistical distance of $\operatorname{IW}(X, U)$ from uniform distributions is $\epsilon=1 / k^{\beta}$ for some $0<\alpha, \beta<1$. This can be verified by a detailed analysis of the IW-Extractor.

However, this construction is not in $A C^{0}$ because the first amplification step is not in $A C^{0}$.
Our basic construction is an adjustment of the IW-Extractor.
Construction 3.6. For any $c_{2} \in \mathbb{N}^{+}$such that $c_{2} \geq 2$ and any $k=\Theta\left(n / \log ^{c_{2}-2} n\right)$, let X be an (n, k) source. We construct a strong ($k, 2 \epsilon$) extractor $\operatorname{Ext}_{0}:\{0,1\}^{n} \times\{0,1\}^{d} \rightarrow\{0,1\}^{m}$ where $\epsilon=1 / n^{\beta}$, $\beta=1 / 600, d=O(\log n), m=k^{\Theta(1)}$. Let U be the uniform distribution of length d.

1. Draw x from X and u from U. Let $f_{1}:\{0,1\}^{l_{1}} \rightarrow\{0,1\}$ be a boolean function such that $\forall i \in\left[2^{l_{1}}\right]$, $f_{1}(\langle i\rangle)=x_{i}$ where $l_{1}=\log n$.
2. Run amplification step of Lemma 3.2 part 1 for c_{2} times and run amplification step of Lemma 3.2 part 2 once to get function $f_{2}:\{0,1\}^{l_{2}} \rightarrow\{0,1\}$ from f_{1} where $l_{2}=3^{c_{2}+1} l_{1}=\Theta(\log n)$.
3. Run amplification step Lemma 3.5 to get function $f_{3}:\{0,1\}^{l_{3}} \rightarrow\{0,1\}$ from f_{2} where $l_{3}=\Theta(\log n)$.
4. Construct function Ext_{0} such that $\operatorname{Ext}_{0}(x, u)=\mathrm{NW}_{f_{3}, \mathcal{S}}(u)$.

Here $\mathcal{S}=\left\{S_{1}, S_{2}, \ldots, S_{m}\right\}$ is a $\left(d, m, \theta l_{3}, l_{3}\right)$-design with $\theta=l_{1} /\left(900 l_{3}\right), d=\left\lfloor 10 l_{3} / \theta\right\rfloor, m=\left\lfloor 2^{\frac{\theta l_{3}}{4}}\right\rfloor=$ $\left\lfloor n^{\frac{1}{3600}}\right\rfloor$.

Lemma 3.7. In Construction 3.6, Ext ${ }_{0}$ is a strong $(k, 2 \epsilon)$ extractor.
The proof follows from the "Bad Set" argument given by Trevisan [20]. In Trevisan [20] the argument is not explicit for strong extractors. Here our argument is explicit for proving that our construction gives a strong extractor.

Proof. We will prove that for every (n, k)-source X and for every $A:\{0,1\}^{d+m} \rightarrow\{0,1\}$ the following holds.

$$
\left|\operatorname{Pr}\left[A\left(U_{s} \circ \operatorname{Ext}_{0}\left(X, U_{s}\right)\right)=1\right]-\operatorname{Pr}[A(U)=1]\right| \leq 2 \epsilon
$$

Here U_{s} is the uniform distribution over $\{0,1\}^{d}$ and U is the uniform distribution over $\{0,1\}^{d+m}$.
For every flat (n, k)-source X, and for every (fixed) function A, let's focus on a set $B \subseteq\{0,1\}^{n}$ such that $\forall x \in \operatorname{supp}(X)$, if $x \in B$, then

$$
\left|\operatorname{Pr}\left[A\left(U_{s} \circ \operatorname{Ext}_{0}\left(x, U_{s}\right)\right)=1\right]-\operatorname{Pr}[A(U)=1]\right|>\epsilon .
$$

According to Nisan and Widgerson [15], we have the following lemma.
Lemma 3.8 (Implicit in [15] [20]). If there exists an A-gate such that

$$
\left|\operatorname{Pr}\left[A\left(U_{s} \circ \operatorname{Ext}_{0}\left(x, U_{s}\right)\right)=1\right]-\operatorname{Pr}[A(U)=1]\right|>\epsilon,
$$

then there is a circuit C_{3} of size $O\left(2^{\theta l_{3}} m\right.$), using A-gates, that can compute f_{3} correctly for $1 / 2+\epsilon / m$ fraction of inputs.

Here A-gate is a special gate that can compute the function A.
By Lemma 3.8, there is a circuit C_{3} of size $O\left(m 2^{\theta l_{3}}\right)=O\left(2^{\frac{5 \theta l_{3}}{4}}\right)=O\left(n^{1 / 720}\right)$, using A-gates, that can compute f_{3} correctly for $1 / 2+\epsilon / m \geq 1 / 2+1 / n^{1 / 360}$ fraction of inputs.

By Lemma 3.5, there is a circuit C_{2}, with A-gates, of size at most $\Theta\left(n^{\frac{1}{30}}\right)$ which can compute f_{2} correctly for at least $2 / 3$ fraction of inputs.

According to Lemma 3.2 and our settings, there is a circuit C_{1}, with A-gates, of size $n^{\frac{1}{30}}$ poly $\log n$ which can compute f_{1} correctly for at least $1-1 /\left(c_{1} \log ^{c_{2}} n\right)$ fraction of inputs for some constant $c_{1}>0$.

Next we give an upper bound on the size of $B . \forall x \in B$, assume we have a circuit of size $S=$ $n^{1 / 30}$ poly $(\log n)$, using A-gates, that can compute at least $1-1 /\left(c_{1} \log ^{c_{2}} n\right)$ fraction of bits of x. The total number of circuits, with A-gates, of size S is at most $2^{\Theta(m S \log S)}=2^{n^{1 / 15} \text { poly }(\log n)}$, as A is fixed and has fan-in $m+d=O(m)$. Each one of them corresponds to at most $\sum_{i=0}^{n /\left(c_{1} \log ^{c_{2}} n\right)}\binom{n}{i} \leq(e$. $\left.c_{1} \log ^{c_{2}} n\right)^{n /\left(c_{1} \log ^{c_{2}} n\right)}=2^{O\left(n /\left(\log ^{c_{2}-1} n\right)\right.}$ number of x. So

$$
|B| \leq 2^{n^{1 / 15}} \mathrm{poly}(\log n) 2^{O\left(n /\left(\log ^{c_{2}-1} n\right)\right.}=2^{O\left(n /\left(\log ^{c_{2}-1} n\right)\right.} .
$$

As X is an (n, k)-source with $k=\Theta\left(n / \log ^{c_{2}-2} n\right)$,

$$
\operatorname{Pr}[X \in B] \leq|B| \cdot 2^{-k} \leq \epsilon
$$

Then we know,

$$
\begin{align*}
& \left|\operatorname{Pr}\left[A\left(U_{s} \circ \operatorname{Ext}\left(X, U_{s}\right)\right)=1\right]-\operatorname{Pr}[A(U)=1]\right| \\
= & \sum_{x \in B} \operatorname{Pr}[X=x]\left|\operatorname{Pr}\left[A\left(U_{s} \circ \operatorname{Ext}\left(x, U_{s}\right)\right)=1\right]-\operatorname{Pr}[A(U)=1]\right| \\
& +\sum_{x \notin B} \operatorname{Pr}[X=x]\left|\operatorname{Pr}\left[A\left(U_{s} \circ \operatorname{Ext}\left(x, U_{s}\right)\right)=1\right]-\operatorname{Pr}[A(U)=1]\right| \tag{4}\\
\leq & 2 \epsilon .
\end{align*}
$$

Lemma 3.9. The seed length of construction 3.6 is $\Theta(\log n)$.

Proof. We know that $l_{1}=\log n, l_{2}=3^{c_{2}+1} l_{1}=\Theta(\log n), l_{3}=\Theta(\log n)$. Also \mathcal{S} is a $\left(\left\lceil 10 l_{3} / c\right\rceil=\right.$ $\left.\Theta\left(l_{3}\right), m, c l_{3}, l_{3}\right)$-design. So $d=\left\lfloor 10 l_{3} / c\right\rfloor=\Theta\left(l_{3}\right)=\Theta(\log n)$.

Lemma 3.10. The function Ext_{0} in Construction 3.6 is in AC^{0}. The circuit depth is $c_{2}+5$. The locality is $\Theta\left(\log ^{c_{2}+2} n\right)=$ poly $(\log n)$.

Proof. First we prove that the locality is $\Theta\left(\log ^{c_{2}+2} n\right)$.
By the construction of f_{1}, we know $f_{1}(\langle i\rangle)$ is equal to the i th bit of x.
Fix the seed u. According to Lemma 3.2 part 1, if we apply the amplification once to get f^{\prime} from f, then $f^{\prime}(s, r)$ depends on $f\left(w_{1}\right), f\left(w_{2}\right), \cdots, f\left(w_{l}\right)$, as

$$
f^{\prime}(s, r)=\left\langle s, f\left(w_{1}\right) \circ f\left(w_{2}\right) \circ \cdots \circ f\left(w_{l}\right)\right\rangle
$$

Here $l=O(\log n)$ is equal to the input length of f.
The construction in Lemma 3.2 part 2 is the same as that of Lemma 3.2 part 1. As a result, if apply Lemma 3.2 part 1 for c_{2} times and Lemma 3.2 part 2 for 1 time to get f_{2} from f_{1}, the output of f_{2} depends on $\Theta\left(\log ^{c_{2}+1} n\right)$ bits of the input x.

According to Lemma 3.5, the output of f_{3} depends on $f_{2}\left(\left.a\right|_{S_{1}} \oplus v_{1}\right), f_{2}\left(\left.a\right|_{S_{2}} \oplus v_{2}\right), \cdots, f_{2}\left(\left.a\right|_{S_{l}} \oplus v_{l_{2}}\right)$, as

$$
f_{3}\left(a, s, v_{1}, w\right)=\left\langle s, f_{2}\left(\left.a\right|_{S_{1}} \oplus v_{1}\right) \circ f_{2}\left(\left.a\right|_{S_{2}} \oplus v_{2}\right) \circ \cdots f_{2}\left(\left.a\right|_{S_{l}} \oplus v_{l_{2}}\right)\right\rangle
$$

So the output of f_{3} depends on $O\left(\log ^{c_{2}+2} n\right)$ bits of the x.
So the overall locality is $O\left(\log ^{c_{2}+2} n\right)=$ poly $\log n$.
Next we prove that the construction is in AC^{0}.
The input of Ext ${ }_{0}$ has two parts, x and u. Combining all the hardness amplification steps and the NW generator, we can see that essentially u is used for two purposes: to select some $t=\Theta\left(\log ^{c_{2}+2}(n)\right)$ bits (denote it as x^{\prime}) from x (i.e., provide t indices $u_{1}^{\prime}, \ldots, u_{t}^{\prime}$ in $[n]$), and to provide a vector s^{\prime} of length t, finally taking the inner product of x^{\prime} and the vector s^{\prime}. Here although for each amplification step we do an inner product operation, the overall procedure can be realized by doing only one inner product operation.

Since u has $O(\log n)$ bits, s^{\prime} can be computed from u by using a circuit of depth 2, according to Lemma 2.10 part 1.

Next we show that selecting x^{\prime} from x using the indices can be computed by CNF/DNFs, of polynomial size, with inputs being x and the indices. The indices, $u_{i}^{\prime}, i \in[t]$, are decided by u. Let's assume $\forall i \in$ $[t], u_{i}^{\prime}=h_{i}(u)$ for some deterministic functions $h_{i}, i \in[t]$. As $|u|=O(\log n)$, the indices can be computed by CNF/DNFs of polynomial size. Also $\forall i \in[t], f\left(u_{i}^{\prime}\right)$ can be represented by a CNF/DNF when u_{i}^{\prime} is given. This is because

$$
f\left(u_{i}^{\prime}\right)=\bigvee_{j=0}^{|x|}\left(I_{u_{i}^{\prime}=j} \wedge x_{j}\right)=\bigwedge_{j=0}^{|x|}\left(I_{u_{i}^{\prime} \neq j} \vee x_{j}\right)
$$

Here I_{e} is the indicator function such that $I_{e}=1$ if e is true and $I_{e}=0$ otherwise. We know that $I_{u_{i}^{\prime}=j}$ can be represented by a boolean formula with only AND and NOT gates, checking whether $u_{i}^{\prime}=j$ bit by bit. Similarly $I_{u_{i}^{\prime} \neq j}$ can be represented by a boolean formula with only OR and NOT gates, taking the negation of $I_{u_{i}^{\prime}=j}$. As a result, this step can be computed by a circuit of depth 2 .

So the computation of obtaining x^{\prime} can be realized by a circuit of depth 3 by merging the gates between adjacent depths.

Finally we can take the inner product of two vectors x^{\prime} and s^{\prime} of length $t=\Theta\left(\log ^{c_{2}+2}(n)\right)$. By Lemma 2.10 part 2 , we know that this computation can be represented by a poly-size circuit of depth $c_{2}+3$.

The two parts of computation can be merged together to be a circuit of depth $c_{2}+5$, as we can merge the last depth of the circuit obtaining x^{\prime} and the first depth of the circuit computing the inner product. The
size of the circuit is polynomial in n as both obtaining x^{\prime} and the inner product operation can be realized by poly-size circuits.

According to to Lemma 3, Lemma 3.9, Lemma 3.10, we have the following theorem.
Theorem 3.11. For any $c \in \mathbb{N}$, any $k=\Theta\left(n / \log ^{c} n\right)$, there exists an explicit strong (k, ϵ)-extractor Ext : $\{0,1\}^{n} \times\{0,1\}^{d} \rightarrow\{0,1\}^{m}$ in AC^{0} of depth $c+7$, where $\epsilon=n^{-1 / 600}, d=\Theta(\log n), m=\left\lfloor n \frac{1}{3600}\right\rfloor$ and the locality is $\Theta\left(\log ^{c+4} n\right)=$ poly $\log n$.

We call this extractor the Basic-AC ${ }^{0}$-Extractor.

4 Error Reduction for $A C^{0}$ Extractors

4.1 For Polynomially Small Error

According to Theorem 3.11, for any $k=\frac{n}{\text { poly }(\log n)}$, we have a (k, ϵ)-extractor in AC^{0}, with $\epsilon=1 / n^{\beta}$ where β is a constant. In this subsection, we will reduce the error parameter ϵ to give an explicit (k, ϵ)-extractor in AC^{0} such that ϵ can be any $1 / \operatorname{poly}(n)$.

The first tool we will use is the AC^{0} extractor given by Goldreich et al. [7]. Although it's output length is only $O(\log n)$, the error parameter can be any $1 / \operatorname{poly}(n)$.

Lemma 4.1 (Theorem 3.1 of Goldreich et al. [7]). For every $k=\delta n=n / \operatorname{poly}(\log n)$ and every $\epsilon=$ $1 / \operatorname{poly}(n)$, there exist an explicit construction of a strong extractor Ext : $\{0,1\}^{n} \times\{0,1\}^{O(\log n)} \rightarrow$ $\{0,1\}^{\Theta(\log n)}$ which is in AC^{0} of depth $4+\left\lceil\frac{\log (n / k(n))}{\log \log n}\right\rceil$.

If $\delta \in(0,1]$ is a constant, the locality of this extractor is $\Theta(\log n)$.
The construction of Theorem 4.1 is a classic sample-then-extract procedure following from Vadhan [22]. First they developed a sampling method in AC^{0}, then on input X they sample a source of length poly $(\log n)$ with entropy rate $O(\delta)$. At last they use the extractor in [6] to finish the extraction.

Another tool we will be relying on is the error reduction method for extractors, given by Raz et al. [17]. They give an error reduction method for poly-time extractors and we will adapt it to the $A C^{0}$ settings.

Lemma 4.2 (G_{x} Property [17]). Let Ext : $\{0,1\}^{n} \times\{0,1\}^{d} \rightarrow\{0,1\}^{m}$ be a (k, ϵ)-extractor with $\epsilon<1 / 4$. Let X be any $(n, k+t)$-source. For every $x \in\{0,1\}^{n}$, there exists a set G_{x} such that the following holds.

- For every $x \in\{0,1\}^{n}, G_{x} \subset\{0,1\}^{d}$ and $\left|G_{x}\right| / 2^{d}=1-2 \epsilon$.
- $\operatorname{Ext}\left(X, G_{X}\right)$ is within distance at most 2^{-t} from an $(m, m-O(1))$-source. Here $\operatorname{Ext}\left(X, G_{X}\right)$ is obtained by first sampling x according to X, then choosing r uniformly from G_{x}, and outputting $\operatorname{Ext}(x, r)$. We also denote $\operatorname{Ext}\left(X, G_{X}\right)$ as $\left.\operatorname{Ext}(X, U)\right|_{U \in G_{X}}$.

Raz et al. [17] showed the following result.
Lemma 4.3 ([17]). Let Ext : $\{0,1\}^{n} \times\{0,1\}^{d} \rightarrow\{0,1\}^{m}$ be a (k, ϵ)-extractor. Consider Ext $:\{0,1\}^{n} \times$ $\{0,1\}^{2 d} \rightarrow\{0,1\}^{2 m}$ which is constructed in the following way.

$$
\operatorname{Ext}^{\prime}(x, u)=\operatorname{Ext}\left(x, u_{1}\right) \circ \operatorname{Ext}\left(x, u_{2}\right)
$$

Here $u=u_{1} \circ u_{2}$.
For any $t \leq n-k$, let X be an $(n, k+t)$-source. Let U be the uniform distribution of length $2 d$. With probability at least $1-O\left(\epsilon^{2}\right)$, $\operatorname{Ext}^{\prime}(X, U)$ is 2^{-t}-close to having entropy $m-O(1)$.

Remark 4.4. Here we briefly explain the result in lemma 4.3. The distribution of $Y=\operatorname{Ext}^{\prime}\left(X, U_{1} \circ U_{2}\right)$ is the convex combination of $\left.Y\right|_{U_{1} \in G_{X}, U_{2} \in G_{X}},\left.Y\right|_{U_{1} \notin G_{X}, U_{2} \in G_{X}},\left.Y\right|_{U_{1} \in G_{X}, U_{2} \notin G_{X}}$ and $\left.Y\right|_{U_{1} \notin G_{X}, U_{2} \notin G_{X}}$. That is

$$
\begin{align*}
Y= & \left.I_{U_{1} \in G_{X}, U_{2} \in G_{X}} Y\right|_{U_{1} \in G_{X}, U_{2} \in G_{X}}+\left.I_{U_{1} \notin G_{X}, U_{2} \in G_{X}} Y\right|_{U_{1} \notin G_{X}, U_{2} \in G_{X}} \tag{5}\\
& +\left.I_{U_{1} \in G_{X}, U_{2} \notin G_{X}} Y\right|_{U_{1} \in G_{X}, U_{2} \notin G_{X}}+\left.I_{U_{1} \notin G_{X}, U_{2} \notin G_{X}} Y\right|_{U_{1} \notin G_{X}, U_{2} \notin G_{X}} .
\end{align*}
$$

Also we know that $\operatorname{Pr}\left[I_{U_{1} \notin G_{X}, U_{2} \notin G_{X}}=1\right]=O\left(\epsilon^{2}\right)$. As a result, according to Lemma 4.2, this lemma follows.

Informally speaking, this means that if view $Y=\operatorname{Ext}^{\prime}(X, U)=Y_{1} \circ Y_{2}$, then with high probability either Y_{1} or Y_{2} is 2^{t}-close to having entropy $m-O(1)$.

We adapt this lemma by doing the extraction for any $t \in \mathbb{N}^{+}$times instead of 2 times. We have the following result.

Lemma 4.5. Let Ext : $\{0,1\}^{n} \times\{0,1\}^{d} \rightarrow\{0,1\}^{m}$ be a (k, ϵ)-extractor. For any $t \in \mathbb{N}^{+}$, consider Ext ${ }^{\prime}:\{0,1\}^{n} \times\{0,1\}^{t d} \rightarrow\{0,1\}^{t m}$ which is constructed in the following way.

$$
\operatorname{Ext}^{\prime}(x, u)=\operatorname{Ext}\left(x, u_{1}\right) \circ \operatorname{Ext}\left(x, u_{2}\right) \circ \cdots \circ \operatorname{Ext}\left(x, u_{t}\right)
$$

Here $u=u_{1} \circ u_{2} \circ \cdots \circ u_{t}$.
For any $a \leq n-k$, let X be an $(n, k+a)$-source. Let $U=\bigcirc_{i=1}^{t} U_{i}$ be the uniform distribution such that $\forall i \in[t],\left|U_{i}\right|=d$.

1. For $S \subseteq[t]$, let $I_{S, X}$ be the indicator such that $I_{S, X}=1$ if $\forall i \in S, U_{i} \in G_{X}, \forall j \notin S, U_{j} \notin G_{X}$ and $I_{S, X}=0$ otherwise. Here G_{X} is defined according to 4.2. The distribution of $\operatorname{Ext}^{\prime}(X, U)$ is a convex combination of the distributions of $\left.\mathrm{Ext}^{\prime}(X, U)\right|_{I_{S, X}=1}, S \subseteq[t]$. That is

$$
U \circ \operatorname{Ext}^{\prime}(X, U)=\left.\sum_{S \subseteq[t]} I_{S, X} U \circ \operatorname{Ext}^{\prime}(X, U)\right|_{I_{S, X}=1}
$$

2. For every $S \subseteq\left[t_{1}\right], S \neq \emptyset$, there exists an $i^{*} \in\left[t_{1}\right]$ such that $\left.\operatorname{Ext}\left(X, U_{i^{*}}\right)\right|_{I_{S, X}=1}$ is 2^{-a}-close to having entropy $m-O(1)$.

Proof. The first assertion is proved as the follows. By the definition of G_{x} of Lemma 4.2, for each fixed $x \in \operatorname{supp}(X), \sum_{S \subseteq[t]} I_{S, x}=1$ as for each $i, U_{i} \in G_{x}$ either happens or not. Also $I_{S, X}$ is a convex combination of $I_{S, x}, \forall x \in \operatorname{supp}(X)$. So $\sum_{S \subseteq[t]} I_{S, X}=\sum_{S \subseteq[t]} \sum_{x \in \operatorname{supp}(X)} I_{S, x} I_{X=x}=1$. As a result, the assertion follows.

The second assertion is proved as the follows. For every $S \subseteq\left[t_{1}\right], S \neq \emptyset$, by the definition of $I_{S, X}$, there exists an $i^{*} \in\left[t_{1}\right], U_{i^{*}} \in G_{X}$. By Lemma 4.2, $\left.\operatorname{Ext}\left(X, U_{i^{*}}\right)\right|_{U_{i^{*}} \in G_{X}}=\left.\operatorname{Ext}\left(X, U_{i^{*}}\right)\right|_{I_{S, X}=1}$ is 2^{-a}-close to having entropy $m-O(1)$.

Finally we consider the following construction of an error reduction procedure.
Construction 4.6 (Error Reduction). For any $c, c_{0} \in \mathbb{N}$, let k be any $\Theta\left(n / \log ^{c} n\right)$ and ϵ be any $\Theta\left(1 / n^{c_{0}}\right)$. Let X be an (n, k)-source. We construct a strong (k, ϵ)-extractor Ext : $\{0,1\}^{n} \times\{0,1\}^{d} \rightarrow\{0,1\}^{m}$ where $d=O(\log n), m=k^{\Theta(1)}$.

- Let $\operatorname{Ext}_{0}:\{0,1\}^{n_{0}=n} \times\{0,1\}^{d_{0}} \rightarrow\{0,1\}^{m_{0}}$ be a $\left(k_{0}, \epsilon_{0}\right)$-extractor following from Theorem 3.11 where $k_{0}=k-\Delta_{1}, \Delta_{1}=\log (n / \epsilon), \epsilon_{0}=n^{-\Theta(1)}, d_{0}=O(\log n), m_{0}=k^{\Theta(1)}$.
- Let $\operatorname{Ext}_{1}:\{0,1\}^{n_{1}=m_{0} / t_{2}} \times\{0,1\}^{d_{1}} \rightarrow\{0,1\}^{m_{1}}$ be $a\left(k_{1}, \epsilon_{1}\right)$-extractor following from Lemma 4.1 where $k_{1}=0.9 n_{1}, \epsilon_{1}=\epsilon / n, d_{1}=O(\log n), m_{1}=\Theta(\log n)$.
- Let t_{1} be such that $\left(2 \epsilon_{0}\right)^{t_{1}} \leq 0.1 \epsilon$. (We only consider the case that $\epsilon<\epsilon_{0}$. If $\epsilon \geq \epsilon_{0}$, we set Ext to be Ext ${ }_{0}$.)
- Let $t_{2}=m_{0}^{1 / 3}$.

Our construction is as follows.

1. Let $R_{1}, R_{2}, \ldots, R_{t_{1}}$ be independent uniform distributions such that for every $i \in\left[t_{1}\right]$ the length of R_{i} is d_{0}. Get $Y_{1}=\operatorname{Ext}_{0}\left(X, R_{1}\right), \ldots, Y_{t_{1}}=\operatorname{Ext}_{0}\left(X, R_{t_{1}}\right)$.
2. Get $Y=Y_{1} \circ Y_{2} \circ Y_{3} \circ \cdots \circ Y_{t_{1}}$.
3. For each $i \in\left[t_{1}\right]$, let $Y_{i}=Y_{i, 1} \circ Y_{i, 2} \circ \cdots \circ Y_{i, t_{2}}$ such that for every $j \in\left[t_{2}\right], Y_{i, j}$ has length $n_{1}=m_{0} / t_{2}$. Let $S_{1}, S_{2}, \ldots, S_{t_{1}}$ be independent uniform distributions, each having length d_{1}. Get $Z_{i, j}=\operatorname{Ext}_{1}\left(Y_{i, j}, S_{i}\right), \forall i \in\left[t_{1}\right], j \in\left[t_{2}\right]$. Let $Z_{i}=Z_{i, 1} \circ Z_{i, 2} \circ \cdots Z_{i, t_{2}}$.
4. Let $R=\bigcirc_{i} R_{i}, S=\bigcirc_{i} S_{i}$. We get $\operatorname{Ext}(X, U)=Z=\bigoplus_{i}^{t_{1}} Z_{i}$ where $U=R \circ S$.

Lemma 4.7. Construction 4.6 gives a strong (k, ϵ)-extractor.
Lemma 4.8 (Chain Rule of Min-Entropy [23]). Let (X, Y) be a jointly distributed random variable with entropy k. The length of X is l. For every $\epsilon>0$, with probability at least $1-\epsilon$ over $x \leftarrow X,\left.Y\right|_{X=x}$ has entropy $k-l-\log (1 / \epsilon)$.

Also there exists another source $\left(X, Y^{\prime}\right)$ such that $\forall x \in\{0,1\}^{l},\left.Y^{\prime}\right|_{X=x}$ has entropy $k-l-\log (1 / \epsilon)$ and $\mathrm{SD}\left((X, Y),\left(X, Y^{\prime}\right)\right) \leq \epsilon$.

Lemma 4.9. Let $X=X_{1} \circ \cdots \circ X_{t}$ be an $(n, n-\Delta)$-source where for each $i \in[t],\left|X_{i}\right|=n_{1}=\omega(\Delta)$.
Let $k_{1}=n_{1}-\Delta-\log \left(1 / \epsilon_{0}\right)$ where ϵ_{0} can be as small as $1 / 2^{0.9 n_{1}}$.
Let $\operatorname{Ext}_{1}:\{0,1\}^{n_{1}} \times\{0,1\}^{d_{1}} \rightarrow\{0,1\}^{m_{1}}$ be a strong $\left(k_{1}, \epsilon_{1}\right)$-extractor.
Let Ext : $\{0,1\}^{n} \times\{0,1\}^{d} \rightarrow\{0,1\}^{m}$ be constructed as the following,

$$
\operatorname{Ext}\left(X, U_{s}\right)=\operatorname{Ext}_{1}\left(X_{1}, U_{s}\right) \circ \cdots \circ \operatorname{Ext}_{1}\left(X_{t}, U_{s}\right)
$$

Then Ext is a strong $(n-\Delta, \epsilon)$-extractor where $\epsilon=\operatorname{SD}\left(U_{s} \circ \operatorname{Ext}\left(X, U_{s}\right), U\right) \leq t\left(\epsilon_{0}+\epsilon_{1}\right)$.
Proof. We prove by induction over the block index i.
For simplicity, let $\tilde{X}_{i}=X_{1} \circ \cdots \circ X_{i}$ for every i. We slightly abuse the notation Ext here so that $\operatorname{Ext}\left(\tilde{X}_{i}, U_{s}\right)=\operatorname{Ext}_{1}\left(X_{1}, U_{s}\right) \circ \cdots \circ \operatorname{Ext}_{1}\left(X_{i}, U_{s}\right)$ denotes the extraction for the first i blocks.

For the first block, we know $H_{\infty}\left(X_{1}\right)=n_{1}-\Delta$. According to the definition of Ext ${ }_{1}$,

$$
\mathrm{SD}\left(U_{s} \circ \operatorname{Ext}_{1}\left(X_{1}, U_{s}\right), U\right) \leq \epsilon_{1} \leq\left(\epsilon_{0}+\epsilon_{1}\right) .
$$

Assume for the first $i-1$ blocks, $\operatorname{SD}\left(U_{s} \circ \operatorname{Ext}_{1}\left(\tilde{X}_{i-1}, U_{s}\right), U\right) \leq(i-1)\left(\epsilon_{0}+\epsilon_{1}\right)$. Consider \tilde{X}_{i}. By Lemma 4.8, we know that there exists X_{i}^{\prime} such that $\operatorname{SD}\left(\tilde{X}_{i}, \tilde{X}_{i-1} \circ X_{i}^{\prime}\right) \leq \epsilon_{0}$, where X_{i}^{\prime} is such that $\forall \tilde{x}_{i-1} \in \operatorname{supp}\left(\tilde{X}_{i-1}\right), H_{\infty}\left(X_{i}^{\prime} \mid \tilde{X}_{i-1}=\tilde{x}_{i-1}\right) \geq n_{1}-\Delta-\log \left(1 / \epsilon_{0}\right)$. So according to Lemma 2.3 part 2, as $U_{s} \circ \operatorname{Ext}\left(\tilde{X}_{i-1}, U_{s}\right) \circ \operatorname{Ext}_{1}\left(X_{i}, U_{s}\right)$ is a convex combination of $u \circ \operatorname{Ext}\left(\tilde{X}_{i-1}, u\right) \circ \operatorname{Ext}_{1}\left(X_{i}, u\right), \forall u \in \operatorname{supp}\left(U_{s}\right)$ and $U_{s} \circ \operatorname{Ext}\left(\tilde{X}_{i-1}, U_{s}\right) \circ \operatorname{Ext}_{1}\left(X_{i}^{\prime}, U_{s}\right)$ is a convex combination of $u \circ \operatorname{Ext}\left(\tilde{X}_{i-1}, u\right) \circ \operatorname{Ext} 1\left(X_{i}^{\prime}, u\right), \forall u \in$ $\operatorname{supp}\left(U_{s}\right)$, we have

$$
\operatorname{SD}\left(U_{s} \circ \operatorname{Ext}\left(\tilde{X}_{i-1}, U_{s}\right) \circ \operatorname{Ext}_{1}\left(X_{i}, U_{s}\right), U_{s} \circ \operatorname{Ext}\left(\tilde{X}_{i-1}, U_{s}\right) \circ \operatorname{Ext}_{1}\left(X_{i}^{\prime}, U_{s}\right)\right) \leq \operatorname{SD}\left(\tilde{X}_{i}, \tilde{X}_{i-1} \circ X_{i}^{\prime}\right) \leq \epsilon_{0}
$$

According to the assumption, Lemma 2.8 and the triangle inequality of Lemma 2.3, we have the following.

$$
\begin{align*}
& \mathrm{SD}\left(U_{s} \circ \operatorname{Ext}\left(\tilde{X}_{i-1}, U_{s}\right) \circ \operatorname{Ext}_{1}\left(X_{i}, U_{s}\right), U\right) \\
\leq & \mathrm{SD}\left(U_{s} \circ \operatorname{Ext}\left(\tilde{X}_{i-1}, U_{s}\right) \circ \operatorname{Ext}_{1}\left(X_{i}, U_{s}\right), U_{s} \circ \operatorname{Ext}\left(\tilde{X}_{i-1}, U_{s}\right) \circ \operatorname{Ext}_{1}\left(X_{i}^{\prime}, U_{s}\right)\right) \\
& +\operatorname{SD}\left(U_{s} \circ \operatorname{Ext}\left(\tilde{X}_{i-1}, U_{s}\right) \circ \operatorname{Ext}_{1}\left(X_{i}^{\prime}, U_{s}\right), U\right) \tag{6}\\
\leq & \epsilon_{0}+(i-1)\left(\epsilon_{0}+\epsilon_{1}\right)+\epsilon_{1} \\
= & i\left(\epsilon_{0}+\epsilon_{1}\right)
\end{align*}
$$

The first inequality is due to the triangle property of Lemma 2.3. For the second inequality, first we have already shown that $\mathrm{SD}\left(U_{s} \circ \operatorname{Ext}\left(\tilde{X}_{i-1}, U_{s}\right) \circ \operatorname{Ext}_{1}\left(X_{i}, U_{s}\right), U_{s} \circ \operatorname{Ext}\left(\tilde{X}_{i-1}, U_{s}\right) \circ \operatorname{Ext}_{1}\left(X_{i}^{\prime}, U_{s}\right)\right) \leq \epsilon_{0}$. Second, as $\tilde{X}_{i-1} \circ X_{i}^{\prime}$ is a $\left((i-1) n_{1}-\Delta, n_{1}-\Delta-\log \left(1 / \epsilon_{0}\right)\right)$-block source, by our assumption and Lemma 2.8, $\operatorname{SD}\left(U_{s} \circ \operatorname{Ext}\left(\tilde{X}_{i-1}, U_{s}\right) \circ \operatorname{Ext}_{1}\left(X_{i}^{\prime}, U_{s}\right), U\right) \leq(i-1)\left(\epsilon_{0}+\epsilon_{1}\right)+\epsilon_{1}$. This proves the induction step.

As a result, $\mathrm{SD}\left(U_{s} \circ \operatorname{Ext}\left(X, U_{s}\right), U\right) \leq\left(\epsilon_{0}+\epsilon_{1}\right) t$.
Lemma 4.10. In Construction 4.6, the output length of Ext is $m=\Theta\left(m_{0}^{1 / 3} \log n\right)=\Theta\left(n^{10800} \log n\right)$.
Proof. The output length is equal to $t_{2} \times m_{1}=m_{0}^{1 / 3} \Theta(\log n)=\Theta\left(n^{1 / 10800} \log n\right)$

Next we prove Lemma 4.7.
Proof of Lemma 4.7. By Lemma 4.5,

$$
\begin{align*}
& R \circ Y \\
= & \sum_{T \subseteq\left[t_{1}\right]} I_{T, X}\left(\left.R \circ Y\right|_{I_{T, X}=1}\right) \\
= & I_{\emptyset, X}\left(\left.R \circ Y\right|_{I_{\emptyset, X}=1}\right)+\left(1-I_{\emptyset, X}\right)\left(\left.R \circ Y\right|_{I_{\emptyset, X}=0}\right) \tag{7}\\
= & I_{\emptyset, X}\left(\left.R \circ Y\right|_{I_{\emptyset, X}=1}\right)+\sum_{T \subseteq\left[t_{1}\right], T \neq \emptyset} I_{T, X}\left(\left.R \circ Y\right|_{I_{T, X}=1}\right)
\end{align*}
$$

where $I_{T, X}$ is the indicator such that $I_{T, X}=1$, if $\forall i \in T, R_{i} \in G_{X}, \forall i \notin T, R_{i} \notin G_{X}$ and $I_{T, X}=0$, otherwise. The G_{X} here is defined by Lemma 4.2 on X and Ext_{0}.

Fixing a set $T \subseteq\left[t_{1}\right], T \neq \emptyset$, by Lemma 4.5, there exists an $i^{*} \in\left[t_{1}\right]$ such that $R_{i^{*}} \in G_{X}$ and $\left.R \circ Y\right|_{I_{T, X}=1}$ is $2^{-\Delta_{1}}$-close to

$$
R^{\prime} \circ A \circ W \circ B=\bigcirc_{i} R_{i}^{\prime} \circ A \circ W \circ B
$$

where $W=\left.Y_{i^{*}}\right|_{R_{i} \in G_{X}}$ has entropy at least $m_{0}-O(1)$. Here A, B and $R_{i}^{\prime}, i=1,2, \ldots, t$ are some random variables where $A=\left(i^{*}-1\right) m_{1},|B|=\left(t-i^{*}\right) m_{1}$ and $\forall i \in[t],\left|R_{i}^{\prime}\right|=d_{1}$. In fact, $R^{\prime}=\left.R\right|_{I_{T, X}=1}$.

According to our construction, next step we view $A \circ W \circ B$ as having $t_{1} t_{2}$ blocks of block size n_{1}. We apply the extractor Ext ${ }_{1}$ on each block. Although for all blocks the extractions are conducted simultaneously, we can still view the procedure as first extracting A and B, then extracting W. Assume for A, after extraction by using seed S_{A}, it outputs A^{\prime}. Also for B, after extraction by using seed S_{B}, it outputs B^{\prime}. So after extracting A and B, we get $A^{\prime} \circ W \circ B^{\prime}$. The length of $A^{\prime} \circ B^{\prime}$ is at most $t_{1} m_{0} m_{1} / n_{1}=t_{1} t_{2} m_{1}=$ $\Theta\left(t_{1} t_{2} \log n\right)$, as $n_{1}=m_{0} / t_{2}$.

We know that $n_{1}=m_{0} / t_{2}=m_{0}^{2 / 3} \geq 10 t_{1} t_{2} m_{1}=m_{0}^{1 / 3} \operatorname{poly}(\log n)$. Also according to Lemma 4.8, $R^{\prime} \circ S_{A} \circ S_{B} \circ A^{\prime} \circ W \circ B^{\prime}$ is ϵ^{\prime}-close to $R^{\prime} \circ S_{A} \circ S_{B} \circ A^{\prime} \circ W^{\prime} \circ B^{\prime}$ such that for every $r^{\prime} \in$
$\operatorname{supp}\left(R^{\prime}\right), a \in \operatorname{supp}\left(A^{\prime}\right), b \in \operatorname{supp}\left(B^{\prime}\right), s_{A} \in \operatorname{supp}\left(S_{A}\right), s_{B} \in \operatorname{supp}\left(S_{B}\right)$, conditioned on $R^{\prime}=r^{\prime}, S_{A}=$ $s_{A}, S_{B}=s_{B}, A^{\prime}=a, B^{\prime}=b, W^{\prime}$ has entropy at least $n_{1}-O(\log n)-t_{1} t_{2} m_{1}-\log \left(1 / \epsilon^{\prime}\right)=n_{1}-\Delta_{2}$ where $\Delta_{2}=O(\log n)+t_{1} t_{2} m_{1}+\log \left(1 / \epsilon^{\prime}\right)=O\left(m_{0}^{1 / 3} \log n\right)$. Here ϵ^{\prime} can be as small as $2^{-k^{\Omega(1)}}$. That is

$$
\begin{align*}
& \forall r^{\prime} \in \operatorname{supp}\left(R^{\prime}\right), a \in \operatorname{supp}\left(A^{\prime}\right), b \in \operatorname{supp}\left(B^{\prime}\right), s_{A} \in \operatorname{supp}\left(S_{A}\right), s_{B} \in \operatorname{supp}\left(S_{B}\right), \tag{8}\\
& H_{\infty}\left(\left.W^{\prime}\right|_{R^{\prime}=r^{\prime}, S_{A}=s_{A}, S_{B}=s_{B}, A^{\prime}=a, B^{\prime}=b}\right) \geq n_{1}-\Delta_{2} .
\end{align*}
$$

Let $\operatorname{Ext}_{1}^{\prime}\left(W^{\prime}, S_{i^{*}}\right)=\bigcirc_{i \in\left[t_{2}\right]} \operatorname{Ext}_{1}\left(W_{i}^{\prime}, S_{i^{*}}\right)$ where $W^{\prime}=\bigcirc_{i \in\left[t_{2}\right]} W_{i}^{\prime}$ and $\forall i \in\left[t_{2}\right],\left|W_{i}^{\prime}\right|=n_{1}$. By Lemma 4.9, as $k_{1}=0.9 n_{1} \leq n_{1}-\Delta_{2},\left.S_{i^{*}} \circ \operatorname{Ext}_{1}^{\prime}\left(W^{\prime}, S_{i^{*}}\right)\right|_{R^{\prime}=r^{\prime}, S_{A}=s_{A}, S_{B}=s_{B}, A^{\prime}=a, B^{\prime}=b}$ is $\left(\epsilon_{0}^{\prime}+\epsilon_{1}\right) t_{2}-$ close to uniform distributions where ϵ_{0}^{\prime} can be as small as $2^{-k^{\Omega(1)}}$.

As a result, we have the following.

$$
\begin{align*}
& \mathrm{SD}\left(U \circ \operatorname{Ext}(X, U), U^{\prime}\right) \\
= & \mathrm{SD}(R \circ S \circ \operatorname{Ext}(X, U), R \circ S \circ \tilde{U}) \\
= & \mathrm{SD}\left(I_{\emptyset, X}\left(\left.R \circ S \circ \operatorname{Ext}(X, U)\right|_{I_{\emptyset, X}=1}\right), I_{\emptyset, X}\left(\left.R \circ S \circ \tilde{U}\right|_{I_{\emptyset, X}=1}\right)\right) \\
& +\operatorname{SD}\left(\left(1-I_{\emptyset, X}\right)\left(\left.R \circ S \circ \operatorname{Ext}(X, U)\right|_{I_{\emptyset, X}=0}\right),\left(1-I_{\emptyset, X}\right)\left(\left.R \circ S \circ \tilde{U}\right|_{I_{\emptyset, X}=0}\right)\right) \tag{9}\\
= & \operatorname{Pr}\left[I_{\emptyset, X}=1\right] \operatorname{SD}\left(\left.R \circ S \circ \operatorname{Ext}(X, U)\right|_{I_{\emptyset, X}=1},\left.R \circ S \circ \tilde{U}\right|_{I_{\emptyset, X}=1}\right) \\
= & \left(2 \epsilon_{0}\right)^{t_{1}} \operatorname{SD}\left(\left.R \circ S \circ \operatorname{Ext}(X, U)\right|_{I_{\emptyset, X}=1},\left.R \circ S \circ \tilde{U}\right|_{I_{\emptyset, X}=1}\right) \\
& +\operatorname{SD}\left(\left(1-I_{\emptyset, X}\right)\left(\left.R \circ S \circ \operatorname{Ext}(X, U)\right|_{I_{\emptyset, X}=0}\right),\left(1-I_{\emptyset, X}\right)\left(\left.R \circ S \circ \tilde{U}\right|_{I_{\emptyset, X}=0}\right)\right)
\end{align*}
$$

As

$$
\left(2 \epsilon_{0}\right)^{t_{1}} \mathrm{SD}\left(\left.R \circ S \circ \operatorname{Ext}(X, U)\right|_{I_{\emptyset, X}=1},\left.R \circ S \circ \tilde{U}\right|_{I_{\emptyset, X}=1}\right) \leq\left(2 \epsilon_{0}\right)^{t_{1}}
$$

let's focus on $\operatorname{SD}\left(\left(1-I_{\emptyset, X}\right)\left(\left.R \circ S \circ \operatorname{Ext}(X, U)\right|_{I_{\emptyset, X}=0}\right),\left(1-I_{\emptyset, X}\right)\left(\left.R \circ S \circ \tilde{U}\right|_{I_{\emptyset, X}=0}\right)\right)$.

$$
\begin{align*}
& \mathrm{SD}\left(\left(1-I_{\emptyset, X}\right)\left(\left.R \circ S \circ \operatorname{Ext}(X, U)\right|_{I_{\emptyset, X}=0}\right),\left(1-I_{\emptyset, X}\right)\left(\left.R \circ S \circ \tilde{U}\right|_{I_{\emptyset, X}=0}\right)\right) \\
= & \mathrm{SD}\left(\sum_{T \subseteq\left[t_{1}\right], T \neq \emptyset} I_{T, X}\left(\left.R \circ S \circ \operatorname{Ext}(X, U)\right|_{I_{T, X}=1}\right), \sum_{T \subseteq\left[t_{1}\right], T \neq \emptyset} I_{T, X}\left(\left.R \circ S \circ \tilde{U}\right|_{I_{T, X}=1}\right)\right) \\
= & \sum_{T \subseteq\left[t_{1}\right], T \neq \emptyset} \operatorname{Pr}\left[I_{T, X}=1\right] \operatorname{SD}\left(\left.R \circ S \circ \operatorname{Ext}(X, U)\right|_{I_{T, X}=1},\left.R \circ S \circ \tilde{U}\right|_{I_{T, X}=1}\right) \\
\leq & \sum_{T \subseteq\left[t_{1}\right], T \neq \emptyset} \operatorname{Pr}\left[I_{T, X}=1\right]\left(2^{-\Delta_{1}}+\mathrm{SD}\left(R^{\prime} \circ S \circ\left(A^{\prime} \oplus \operatorname{Ext}_{1}^{\prime}\left(W, S_{i^{*}}\right) \oplus B^{\prime}\right), R^{\prime} \circ S \circ \tilde{U}\right)\right) \tag{10}\\
= & \left(1-\left(2 \epsilon_{0}\right)^{t_{1}}\right)\left(2^{-\Delta_{1}}+\mathrm{SD}\left(R^{\prime} \circ S \circ\left(A^{\prime} \oplus \operatorname{Ext}_{1}^{\prime}\left(W, S_{i^{*}}\right) \oplus B^{\prime}\right), R^{\prime} \circ S \circ \tilde{U}\right)\right) \\
\leq & 2^{-\Delta_{1}}+\mathrm{SD}\left(R^{\prime} \circ S \circ\left(A^{\prime} \oplus \operatorname{Ext}_{1}^{\prime}\left(W, S_{i^{*}}\right) \oplus B^{\prime}\right), R^{\prime} \circ S \circ \tilde{U}\right) \\
\leq & 2^{-\Delta_{1}}+\mathrm{SD}\left(R^{\prime} \circ S \circ\left(A^{\prime} \oplus \operatorname{Ext}_{1}^{\prime}\left(W, S_{i^{*}}\right) \oplus B^{\prime}\right), R^{\prime} \circ S \circ\left(A^{\prime} \oplus \operatorname{Ext}_{1}^{\prime}\left(W^{\prime}, S_{i^{*}}\right) \oplus B^{\prime}\right)\right) \\
& +\operatorname{SD}\left(R^{\prime} \circ S \circ\left(A^{\prime} \oplus \operatorname{Ext}_{1}^{\prime}\left(W^{\prime}, S_{i^{*}}\right) \oplus B^{\prime}\right), R^{\prime} \circ S \circ \tilde{U}\right) \\
\leq & 2^{-\Delta_{1}}+\epsilon^{\prime}+\mathrm{SD}\left(R^{\prime} \circ S \circ\left(A^{\prime} \oplus \operatorname{Ext}_{1}^{\prime}\left(W^{\prime}, S_{i^{*}}\right) \oplus B^{\prime}\right), R^{\prime} \circ S \circ \tilde{U}\right) \\
\leq & 2^{-\Delta_{1}}+\epsilon^{\prime}+\left(\epsilon_{0}^{\prime}+\epsilon_{1}\right) t_{2}
\end{align*}
$$

Here U, U^{\prime}, \tilde{U} are uniform distributions. In the second equation, $I_{\emptyset, X}$ is the indicator such that $I_{\emptyset, X}=1$ if $\forall i \in\left[t_{1}\right], R_{i} \notin G_{X}$ where G_{X} is defined by Lemma 4.2 on X and $E^{2}{ }_{0}$. For the first inequality, we need to show that

$$
\mathrm{SD}\left(\left.R \circ S \circ \operatorname{Ext}(X, U)\right|_{I_{T, X}=1}, R^{\prime} \circ S \circ\left(A^{\prime} \oplus \operatorname{Ext}_{1}^{\prime}\left(W, S_{i^{*}}\right) \oplus B^{\prime}\right)\right) \leq 2^{-\Delta_{1}} .
$$

We know that for every $s \in \operatorname{supp}(S)$, by Lemma 2.3 part 2,

$$
\begin{align*}
& \mathrm{SD}\left(\left.R \circ S \circ \operatorname{Ext}(X, U)\right|_{I_{T, X}=1, S=s},\left.R^{\prime} \circ S \circ\left(A^{\prime} \oplus \operatorname{Ext}_{1}^{\prime}\left(W, S_{i^{*}}\right) \oplus B^{\prime}\right)\right|_{S=s}\right) \\
\leq & \mathrm{SD}\left(\left.R \circ Y\right|_{I_{T, X}=1}, R^{\prime} \circ A \circ W \circ B\right) \tag{11}\\
\leq & 2^{-\Delta_{1}} .
\end{align*}
$$

Here $\left.R \circ S \circ \operatorname{Ext}(X, U)\right|_{I_{T, X}=1, S=s}=h\left(\left.R \circ Y\right|_{I_{T, X}=1}\right)$ for some deterministic function h as $S=s$ is fixed. Also $\left.R^{\prime} \circ S \circ\left(A^{\prime} \oplus \operatorname{Ext}_{1}^{\prime}\left(W, S_{i^{*}}\right) \oplus B^{\prime}\right)\right|_{S=s}=h\left(R^{\prime} \circ A \circ W \circ B\right)$ for the same reason. As a result,

$$
\begin{align*}
& \operatorname{SD}\left(\left.R \circ S \circ \operatorname{Ext}(X, U)\right|_{I_{T, X}=1}, R^{\prime} \circ S \circ\left(A^{\prime} \oplus \operatorname{Ext}_{1}^{\prime}\left(W, S_{i^{*}}\right) \oplus B^{\prime}\right)\right) \\
= & \sum_{s \in \operatorname{supp}(S)} \operatorname{Pr}[S=s] \operatorname{SD}\left(\left.R \circ S \circ \operatorname{Ext}(X, U)\right|_{I_{T, X}=1, S=s},\left.R^{\prime} \circ S \circ\left(A^{\prime} \oplus \operatorname{Ext}_{1}^{\prime}\left(W, S_{i^{*}}\right) \oplus B^{\prime}\right)\right|_{S=s}\right) \tag{12}\\
\leq & 2^{-\Delta_{1}} .
\end{align*}
$$

The third inequality holds by the triangle property of Lemma 2.3 part 1 . The 4th inequality holds because by Lemma 2.3 part 2,

$$
\begin{align*}
& \mathrm{SD}\left(\left.R^{\prime} \circ S \circ\left(A^{\prime} \oplus \operatorname{Ext}_{1}^{\prime}\left(W, S_{i^{*}}\right) \oplus B^{\prime}\right)\right|_{S=s},\left.R^{\prime} \circ S \circ\left(A^{\prime} \oplus \operatorname{Ext}_{1}^{\prime}\left(W^{\prime}, S_{i^{*}}\right) \oplus B^{\prime}\right)\right|_{S=s}\right) \\
\leq & \mathrm{SD}\left(R^{\prime} \circ S \circ A \circ W \circ B, R^{\prime} \circ S \circ A \circ W^{\prime} \circ B\right) \tag{13}\\
\leq & \epsilon^{\prime} .
\end{align*}
$$

As a result, the total error is at most

$$
\left(2 \epsilon_{0}\right)^{t_{1}}+\left(2^{-\Delta_{1}}+\epsilon^{\prime}+\left(\epsilon_{0}^{\prime}+\epsilon_{1}\right) t_{2}\right)
$$

We can set $\epsilon^{\prime}=0.1 \epsilon, \epsilon_{0}^{\prime}=\epsilon / n$ so that $\left(2^{-\Delta_{1}}+\epsilon^{\prime}+\left(\epsilon_{0}^{\prime}+\epsilon_{1}\right) t_{2}\right) \leq 0.1 \epsilon$. As $\left(2 \epsilon_{0}\right)^{t_{1}}<0.1 \epsilon$, we know $\mathrm{SD}\left(U \circ \operatorname{Ext}(X, U), U^{\prime}\right) \leq \epsilon$.

Lemma 4.11. In Construction 4.6, the function Ext can be realized by a circuit of depth $c+10$. Its locality is $\Theta\left(\log ^{c+5} n\right)=\operatorname{poly}(\log n)$.

Proof. According to Theorem 3.11 and Lemma 4.1, both Ext_{0} and Ext_{1} in our construction are in AC^{0}. For Ext_{0}, it can be realized by circuits of depth $c+5$. For Ext ${ }_{1}$, it can be realized by circuits of depth $4+\left\lceil\frac{\log \left(n_{1} / k_{1}\right)}{\log \log n_{1}}\right\rceil$. As $k_{1}=\delta_{1} n_{1}$ where δ_{1} is a constant, the depth is in fact 5 .

In the first and second steps of Construction 4.6, we only run Ext ${ }_{0}$ for t_{1} times in parallel. So the computation can be realized by circuits of depth $c+7$

For the third step, we run Ext ${ }_{1}$ for $t_{1} t_{2}$ times in parallel, which can be realized by circuits of depth 5 .
The last step, according to Lemma 2.10, taking the XOR of a constant number of bits can be realized by circuits of depth 2 . Each bit of Z is the XOR of t_{1} bits and all the bits of Z can be computed in parallel. So the computations in this step can be realized by circuits of depth 2 .

Now we merge the three parts of circuits together. As the circuits between each parts can be merged by deleting one depth, our construction can be realized by circuits of depth

$$
(c+5)+5+2-2=c+10 .
$$

For the locality, according to Theorem 3.11, the locality of Ext_{0} is poly $(\log n)$. According to Lemma 4.1, the locality of Ext t_{1} is $\Theta(\log n)$. So each bit of Z is related with at most $t_{1} \times \Theta(\log n) \times \Theta\left(\log ^{c+4} n\right)=$ $\Theta\left(\log ^{c+5} n\right)=$ poly $(\log n)$ bits of X. So the locality is $\Theta\left(\log ^{c+5} n\right)=$ poly $(\log n)$.

Lemma 4.12. In Construction 4.6, $d=O\left(t_{1}\left(d_{0}+d_{1}\right)\right)=O(\log n)$.
Proof. In Construction 4.6, as

$$
U=R \circ S=\bigcirc_{i} R_{i} \circ \bigcirc_{i} S_{i}
$$

$|U|=O\left(t_{1} d_{0}+t_{1} d_{1}\right)$. According to the settings of Ext ${ }_{0}$ and Ext ${ }_{1}$, we know that $d_{0}=O(\log n)$ and $d_{1}=O(\log n)$. Also we know that $t_{1}=O(1)$ as $\epsilon_{0}=n^{-\Theta(1)}$ and $\epsilon=1 / \Theta\left(n^{c_{0}}\right)$. So $d=O(\log n)$.

Theorem 4.13. For any constant $c \in \mathbb{N}$, any $k=\Theta\left(n / \log ^{c} n\right)$ and any $\epsilon=1 / \operatorname{poly}(n)$, there exists an explicit construction of a strong (k, ϵ)-extractor Ext : $\{0,1\}^{n} \times\{0,1\}^{d} \rightarrow\{0,1\}^{m}$ in AC^{0} of depth $c+10$ where $d=O(\log n), m=\Theta\left(n^{1 / 10800} \log n\right)=k^{\Theta(1)}$ and the locality is $\Theta\left(\log ^{c+5} n\right)=$ poly $(\log n)$.

Proof. It follows from Construction 4.6, Lemma 4.7, Lemma 4.10 , Lemma 4.11 and Lemma 4.12.

4.2 For Super-Polynomially Small Error

By using poly-log length seeds, we can achieve even smaller errors. We mainly improve the sample-thenextract procedure.

We first analyze the sampling method which is well studied by Zuckerman [25], Vadhan [22], Goldreich et al. [7], etc.

Definition 4.14 ([22]). $A\left(\mu_{1}, \mu_{2}, \gamma\right)$-averaging sampler is a function Samp : $\{0,1\}^{r} \rightarrow[n]^{t}$ such that $\forall f:[n] \rightarrow[0,1]$, if $\mathbf{E}_{i \in[n]}[f(i)] \geq \mu_{1}$, then

$$
\operatorname{Pr}_{I \leftarrow \operatorname{Samp}\left(U_{r}\right)}\left[\frac{1}{t} \sum_{i \in I} f(i)<\mu_{2}\right] \leq \gamma
$$

The t samples generated by the sampler must be distinct.
According to Vadhan [22], we have the following lemma.
Lemma 4.15 (Sample a Source [22]). Let $0<3 \tau \leq \delta \leq 1$. If Samp : $\{0,1\}^{r} \rightarrow[n]^{t}$ is a $\left(\mu_{1}, \mu_{2}, \gamma\right)$ averaging sampler for $\mu_{1}=(\delta-2 \tau) / \log (1 / \tau)$ and $\mu_{2}=(\delta-3 \tau) / \log (1 / \tau)$, then for every $(n, \delta n)$-source X, we have $\mathrm{SD}\left(U \circ X_{\operatorname{Samp}\left(U_{r}\right)}, U \circ W\right) \leq \gamma+2^{-\Omega(\tau n)}$. Here U is the uniform distribution over $\{0,1\}^{r}$. For every a in $\{0,1\}^{r}$, the random variable $\left.W\right|_{U=a}$ is a $(t,(\delta-3 \tau) t)$-source.

In fact, Zuckerman [25] has already given a very good sampler (oblivious sampler) construction. This construction is based on the existence of randomness extractors.

Definition 4.16 ([25]). An $(n, m, t, \gamma, \epsilon)$-oblivious sampler is a deterministic function Samp : $\{0,1\}^{n} \rightarrow$ $\left(\{0,1\}^{m}\right)^{t}$ such that $\forall f:\{0,1\}^{m} \rightarrow[0,1]$,

$$
\operatorname{Pr}_{I \leftarrow \operatorname{Samp}\left(U_{r}\right)}\left[\left|\frac{1}{t} \sum_{i \in I} f(i)-\mathbf{E} f\right|>\epsilon\right] \leq \gamma .
$$

The following lemma explicitly gives a construction of oblivious samplers using extractors.
Lemma 4.17 ([25]). If there is an explicit $(k=\delta n, \epsilon)$-extractor Ext : $\{0,1\}^{n} \times\{0,1\}^{d} \rightarrow\{0,1\}^{m}$, then there is an explicit $\left(n, m, t=2^{d}, \gamma=2^{1-(1-\delta) n}, \epsilon\right)$-oblivious sampler.

The sampler is constructed as follows. Given a seed x of length n, the $t=2^{d}$ samples are $\operatorname{Ext}(x, u)$, $\forall u \in\{0,1\}^{d}$.

As a result, we can construct the following samplers.
Lemma 4.18. For any $a \in \mathbb{N}^{+}$, let γ be any $1 / 2^{\Theta\left(\log ^{a} n\right)}$.

- For any $c \in \mathbb{N}$, let ϵ be any $\Theta\left(1 / \log ^{c} n\right)$. There exists an explicit $\left(\Theta\left(\log ^{a} n\right), \log n, t, \gamma, \epsilon\right)$-oblivious sampler for any integer $t \in\left[t_{0}, n\right]$ with $t_{0}=\operatorname{poly}(\log n)$.
- For any constant α in $(0,1)$, any $c \in \mathbb{N}$, any $\mu=\Theta\left(1 / \log ^{c} n\right)$, there exists an explicit $(\mu, \alpha \mu, \gamma)$ averaging sampler Samp : $\{0,1\}^{\Theta\left(\log ^{a} n\right)} \rightarrow[n]^{t}$ in AC^{0} of circuit depth $a+2$, for any integer $t \in\left[t_{0}, n\right]$ with $t_{0}=\operatorname{poly}(\log n)$.
Specifically, if $c=0$, t can be any integer in $\left[t_{0}, n\right]$ with $t_{0}=(\log n)^{\Theta(a)}$.
Proof. Let $k=\log ^{a} n$. For any $\epsilon=\Theta\left(1 / \log ^{c} n\right)$, let's consider a (k, ϵ)-extractor Ext : $\{0,1\}^{n^{\prime}=c_{0} \log ^{a} n} \times$ $\{0,1\}^{d} \rightarrow\{0,1\}^{\log n}$ for some constant c_{0}, following Lemma 2.7. Here we make one modification. We replace the last d bits of the output with the seed. We can see in this way, Ext is still an extractor.

Here the entropy rate is $\delta=1 / c_{0}$ which is a constant. According to Lemma 2.7, we know that, d can be $\Theta\left(\frac{\log ^{2}\left(n^{\prime} / \epsilon\right)}{\log n^{\prime}}\right)=\Theta(\log \log n)$.

For the first assertion, according to Lemma 4.17, there exists an explicit construction of a $\left(c \log ^{a} n\right.$, $\log n, t, \gamma, \epsilon)$-oblivious sampler where $\gamma=2^{1-(1-2 / c)\left(\log ^{a} n\right)}$. As we can increase the seed length to $\log n$ by padding uniform random bits, t can be any integer in $\left[t_{0}, n\right]$ with $t_{0}=2^{\Theta\left(\frac{\log ^{2}\left(n^{\prime} / \epsilon\right)}{\log n^{\prime}}\right)}=\operatorname{poly}(\log n)$. As c_{0} can be any large enough constant, γ can be $1 / 2^{\Theta\left(\log ^{a} n\right)}$.

Next we prove the second assertion.
According to the definition of oblivious sampler, we know that $\forall f:[n] \rightarrow[0,1]$,

$$
\operatorname{Pr}_{I \leftarrow \operatorname{Samp}(U)}\left[\left|\frac{1}{t} \sum_{i \in I} f(i)-\mathbf{E} f\right|>\epsilon\right] \leq \gamma .
$$

Next we consider the definition of averaging sampler.
Let $(1-\alpha) \mu=\epsilon$. As $\mu=\Theta\left(1 / \log ^{c} n\right), \epsilon=\Theta\left(1 / \log ^{c} n\right)$. For any $f:[n] \rightarrow[0,1]$ such that $\mu \leq \mathbf{E} f$, we have the following inequalities, where Samp is a $\left(c \log ^{a} n, \log n, t, \gamma, \epsilon\right)$-oblivious sampler.

$$
\begin{align*}
& \operatorname{Pr}_{I \leftarrow \operatorname{Samp}(U)}\left[\frac{1}{t} \sum_{i \in I} f(i)<\alpha \mu\right] \\
= & \operatorname{Pr}_{I \leftarrow \operatorname{Samp}(U)}\left[\frac{1}{t} \sum_{i \in I} f(i)<\mu-\epsilon\right] \\
= & \operatorname{Pr}_{I \leftarrow \operatorname{Samp}(U)}\left[\mu-\frac{1}{t} \sum_{i \in I} f(i)>\epsilon\right] \tag{14}\\
\leq & \operatorname{Pr}_{I \leftarrow \operatorname{Samp}(U)}\left[\mathbf{E} f-\frac{1}{t} \sum_{i \in I} f(i)>\epsilon\right] \\
\leq & \operatorname{Pr}_{I \leftarrow \operatorname{Samp}(U)}\left[\left|\frac{1}{t} \sum_{i \in I} f(i)-\mathbf{E} f\right|>\epsilon\right]
\end{align*}
$$

$$
\leq \gamma
$$

The first inequality holds because if the event that $\mu-\frac{1}{t} \sum_{i \in I} f(i)>\epsilon$ happens, then the event that $\mathbf{E} f-\frac{1}{t} \sum_{i \in I} f(i)>\epsilon$ will happen, as $\mu \leq \mathbf{E} f$. The second inequality is because $\mathbf{E} f-\frac{1}{t} \sum_{i \in I} f(i) \leq$ $\left|\mathbf{E} f-\frac{1}{t} \sum_{i \in I} f(i)\right|$. So if $\mathbf{E} f-\frac{1}{t} \sum_{i \in I} f(i)>\epsilon$ happens, then $\left|\frac{1}{t} \sum_{i \in I} f(i)-\mathbf{E} f\right|>\epsilon$ happens.

Also as we replace the last d bits of the output of our extractor with the seed, the samples are distinct according to the construction of Lemma 4.17.

According to the definition of averaging sampler, we know that this gives an explicit ($\mu, \alpha \mu, \gamma$)averaging sampler.

According to the construction described in the proof of Lemma 4.17, the output of the sampler is computed by running the extractor following Lemma 2.7 for t times in parallel. So the circuit depth is equal to the circuit depth of the extractor Ext.

Let's recall the construction of the Trevisan's extractor Ext.
The encoding procedure is doing the multiplication of the encoding matrix and the input x of length $n^{\prime}=c \log ^{a} n$. By Lemma 2.10, this can be done by a circuit of depth $a+1$.

The last step is the procedure of N-W generator. The selection procedure can be represented as a CNF/DNF, as the seed length for Ext is at most $\Theta(\log n)$. (Detailed proof is the same as the proof of Lemma 3.10.)

As a result, we need a circuit of depth $a+2$ to realize Samp.
For the special situation that $c=0$, the seed length d for Ext can be $\Theta(a \log \log n)$. So $t_{0}=2^{d}=$ $(\log n)^{\Theta(a)}$.

After sampling, we give an extractor with smaller errors that can be applied on the samples. Specifically, we use leftover hash lemma.

Lemma 4.19 (Leftover Hash Lemma [11]). Let X be an ($\left.n^{\prime}, k=\delta n^{\prime}\right)$-source. For any $\Delta>0$, let H be a universal family of hash functions mapping n^{\prime} bits to $m=k-2 \Delta$ bits. The distribution $U \circ \operatorname{Ext}(X, U)$ is at distance at most $1 / 2^{\Delta}$ to uniform distribution where the function Ext : $\{0,1\}^{n^{\prime}} \times\{0,1\}^{d} \rightarrow\{0,1\}^{m}$ chooses the U 'th hash function h_{U} in H and outputs $h_{U}(X)$.

We use the following universal hash function family $H=\left\{h_{u}, u \in\{0,1\}^{n^{\prime}}\right\}$. For every u, the hash function $h_{u}(x)$ equals to the last m bits of $u \cdot x$ where $u \cdot x$ is computed in $\mathbb{F}_{2^{n^{\prime}}}$.

Specifically, for any constant $a \in \mathbb{N}^{+}$, for any $n^{\prime}=\Theta\left(\log ^{a} n\right)$ then Ext can be computed by an AC^{0} circuit of depth $a+1$.

Proof. The proof in [11] has already shown that the universal hash function is a strong extractor. We only need to show that the hash functions can be computed in AC^{0}.

Given a seed u, we need to compute $u \cdot x$ which is a multiplication in $\mathbb{F}_{2^{n^{\prime}}}$. We claim that this can be done in $A C^{0}$. Note that since the multiplication is in $\mathbb{F}_{2^{n^{\prime}}}$, it is also a bi-linear function when regarding the two inputs as two n^{\prime}-bit strings. Thus, each output bit is essentially the inner product over some input bits.

This shows that each output bit of $p \cdot q$ is an inner product of two vectors of n^{\prime} dimension. As $n^{\prime}=$ $\Theta\left(\log ^{a} n\right)$, by Lemma 2.10, this can be done in AC^{0} of depth $a+1$ and size poly (n). All the output bits can be computed in parallel. So $u \cdot x$ can be computed in AC^{0} of depth $a+1$ and size poly (n).

Theorem 4.20. For any constant $a \in \mathbb{N}^{+}$, any constant $\delta \in(0,1]$ and any $\epsilon=1 / 2^{\Theta\left(\log ^{a} n\right)}$, there exists an explicit construction of $a(k=\delta n, \epsilon)$-extractor $\mathrm{Ext}:\{0,1\}^{n} \times\{0,1\}^{d} \rightarrow\{0,1\}^{m}$ in AC^{0} of depth $\Theta(a)$, where $d=(\log n)^{\Theta(a)}, m=\Theta\left(\log ^{a} n\right)$ and the locality is $(\log n)^{\Theta(a)}$.

Proof. We follow the sample-then-extract procedure.
Let Samp : $\{0,1\}^{r_{s}} \rightarrow\{0,1\}^{t}$ be a $\left(\mu_{1}, \mu_{2}, \gamma\right)$-averaging sampler following from Lemma 4.18. Let $\tau=0.1 \delta, \mu_{1}=(\delta-2 \tau) / \log (1 / \tau), \mu_{2}=(\delta-3 \tau) / \log (1 / \tau), \gamma=0.8 \epsilon$. As a result, μ_{1} is a constant and $\mu_{2}=\alpha \mu_{1}$ for some constant $\alpha \in(0,1)$. For an (n, k)-source X, by Lemma 4.15, we have $\operatorname{SD}(R \circ$ $\left.X_{\operatorname{Samp}(R)}, R \circ W\right) \leq \gamma+2^{-\Omega(\tau n)}$. Here R is a uniform random variable. For every r in $\{0,1\}^{r_{s}}$, the random variable $\left.W\right|_{R=r}$ is a $(t,(\delta-3 \tau) t)$-source.

By Lemma 4.18, $r_{s}=\Theta\left(\log ^{a} n\right)$ and t can be any integer in $\left[t_{0}, n\right]$ with $t_{0}=(\log n)^{\Theta(a)}$.

Let t be such that $(\delta-3 \tau) t \geq 10 \log ^{a} n$. Let $m=6 \log ^{a} n$. Let Ext ${ }_{1}:\{0,1\}^{t} \times\{0,1\}^{d_{1}} \rightarrow\{0,1\}^{m}$ be $\mathrm{a}\left((\delta-3 \tau) t, \epsilon_{1}=0.1 \epsilon\right)$-extractor following from Lemma 4.19. As a result,

$$
\mathrm{SD}\left(U \circ \operatorname{Ext}_{1}(W, U), U^{\prime}\right) \leq \epsilon_{1},
$$

where U, U^{\prime} are uniform distributions.
As a result, the sample-then-extract procedure gives an extractor of error

$$
\gamma+2^{-\Omega(\tau n)}+\epsilon_{1} \leq 0.8 \epsilon+2^{-\Omega(\tau n)}+0.1 \epsilon
$$

As τ is a constant, $2^{-\Omega(\tau n)} \leq 0.1 \epsilon$.
Thus the error of the extractor is at most ϵ.
The seed length is $r_{s}+d_{1}=\Theta\left(\log ^{a} n+t\right)=(\log n)^{\Theta(a)}$.
The locality is $t=(\log n)^{\Theta(a)}$ because when the seed is fixed, we select t bits from X by sampling.
The sampler Samp is in AC^{0} of depth $a+1$. The extractor Ext ${ }_{1}$ is in AC^{0} of depth $\Theta(a)$. So Ext is in AC^{0} of depth $\Theta(a)$

In this way, we in fact have an extractor with a smaller error comparing to Lemma 4.1.
Next we give the construction for error reduction of super-polynomially small errors.
Construction 4.21 (Error Reduction for Super-Polynomially Small Error). For any constant $a \in \mathbb{N}^{+}$, any constant $c \in \mathbb{N}$, any $k=\Theta\left(n / \log ^{c} n\right)$ and any $\epsilon=1 / 2^{\Theta\left(\log ^{a} n\right)}$, let X be an (n, k)-source. We construct a strong (k, ϵ)-extractor $\mathrm{Ext}:\{0,1\}^{n} \times\{0,1\}^{d} \rightarrow\{0,1\}^{m}$ with $m=k^{\Omega(1)}$.

- Let $\operatorname{Ext}_{0}:\{0,1\}^{n_{0}=n} \times\{0,1\}^{d_{0}} \rightarrow\{0,1\}^{m_{0}}$ be a $\left(k_{0}, \epsilon_{0}\right)$-extractor following from Theorem 3.11 with $k_{0} \leq k-\Delta_{1}, \Delta_{1}=\log (n / \epsilon), \epsilon_{0}=k^{-\Theta(1)}, d_{0}=\Theta(\log n), m_{0}=k^{O(1)}$.
- Let $\operatorname{Ext}_{1}:\{0,1\}^{n_{1}=m_{0} / t_{2}} \times\{0,1\}^{d_{1}} \rightarrow\{0,1\}^{m_{1}}$ be a $\left(k_{1}, \epsilon_{1}\right)$-extractor following from Theorem 4.20 where $k_{1}=0.9 n_{1}, \epsilon_{1}=\epsilon / n, d_{1}=(\log n)^{\Theta(a)}, m_{1}=(\log n)^{\Theta(a)}$.
- Let t_{1} be such that $\left(2 \epsilon_{0}\right)^{t_{1}} \leq 0.1 \epsilon$. (We only consider the case that $\epsilon<\epsilon_{0}$. If $\epsilon \geq \epsilon_{0}$, we set Ext to be Exto.)
- Let $t_{2}=m_{0}^{1 / 3}$.

Our construction is as follows.

1. Let $R_{1}, R_{2}, \ldots, R_{t_{1}}$ be independent uniform distributions such that for every $i \in\left[t_{1}\right]$ the length of R_{i} is $d_{0} . G e t Y_{1}=\operatorname{Ext}_{0}\left(X, R_{1}\right), \ldots, Y_{t_{1}}=\operatorname{Ext}_{0}\left(X, R_{t_{1}}\right)$.
2. Get $Y=Y_{1} \circ Y_{2} \circ Y_{3} \circ \cdots \circ Y_{t_{1}}$.
3. For each $i \in\left[t_{1}\right]$, let $Y_{i}=Y_{i, 1} \circ Y_{i, 2} \circ \cdots \circ Y_{i, t_{2}}$ such that for every $j \in\left[t_{2}\right], Y_{i, j}$ has length $n_{1}=m_{0} / t_{2}$. Let $S_{1}, S_{2}, \ldots, S_{t_{1}}$ be independent uniform distributions, each having length d_{1}. Get $Z_{i, j}=\operatorname{Ext}_{1}\left(Y_{i, j}, S_{i}\right), \forall i \in\left[t_{1}\right], j \in\left[t_{2}\right]$. Let $Z_{i}=Z_{i, 1} \circ Z_{i, 2} \circ \cdots Z_{i, t_{2}}$.
4. Let $R=\bigcirc_{i} R_{i}, S=\bigcirc_{i} S_{i}$. We get $\operatorname{Ext}(X, U)=Z=\bigoplus_{i}^{t_{1}} Z_{i}$ where $U=R \circ S$.

Theorem 4.22. For any constant $a \in \mathbb{N}^{+}$, any constant $c \in \mathbb{N}$, any $k=\Theta\left(n / \log ^{c} n\right)$, any $\epsilon=1 / 2^{\Theta\left(\log ^{a} n\right)}$ and any constant $\gamma \in(0,1)$, there exists an explicit construction of a strong (k, ϵ)-extractor Ext : $\{0,1\}^{n} \times$ $\{0,1\}^{d} \rightarrow\{0,1\}^{m}$ in AC^{0} of depth $\Theta(a+c)$, where $d=(\log n)^{\Theta(a)}, m=n^{1 / 10800}(\log n)^{\Theta(a)}=k^{\Omega(1)}$ and the locality is $(\log n)^{\Theta(a+c)}$.

Proof Sketch. The proof is almost the same as that of Theorem 4.13. We only need to make sure the parameters are correct.

There are two differences between Construction 4.21 and Construction 4.6. First, in Construction 4.21, the extractor Ext ${ }_{1}$ follows from Theorem 4.18. Second, the ϵ in Construction 4.21 is super-polynomially small.

We first claim that Ext is a (k, ϵ)-extractor. The proof strategy is the same as that of Lemma 4.7, except that the parameters need to be modified.

As $\left(2 \epsilon_{0}\right)^{t_{1}} \leq 0.1 \epsilon$, we can take $t_{1}=\Theta\left(\log ^{a-1} n\right)$. According to the proof of Lemma 4.7, the error of Ext is

$$
\left(2 \epsilon_{0}\right)^{t_{1}}+\left(2^{-\Delta_{1}}+\epsilon^{\prime}+\left(\epsilon_{0}^{\prime}+\epsilon_{1}\right) t_{2}\right)
$$

Here $\epsilon^{\prime}, \epsilon_{0}^{\prime}$ follow the same definitions as those in the proof of Lemma 4.7. As a result, we know that both ϵ^{\prime} and ϵ_{0}^{\prime} can be $1 / 2^{k^{\Omega(1)}}$.

Also we know that $\Delta_{1}=\log (n / \epsilon), \epsilon_{1}=\epsilon / n, t_{2}=k^{O(1)}$.
So we can set ϵ^{\prime}, ϵ_{0}^{\prime} small enough so that $2^{-\Delta_{1}}+\epsilon^{\prime}+\left(\epsilon_{0}^{\prime}+\epsilon_{1}\right) t_{2} \leq 0.1 \epsilon$.
As a result, the overall error will be at most ϵ.
By the same proof as that of Lemma 4.10, we know that the output length is

$$
m=t_{2} \times m_{1}=m_{0}^{1 / 3}(\log n)^{\Theta(a)}=k^{\Omega(1)} .
$$

For the seed length, we know that according to the settings of Ext ${ }_{0}$ and $E x t_{1}$, as $t_{1}=\Theta\left(\log ^{a-1} n\right)$, $d=O\left(t_{1} d_{0}+t_{1} d_{1}\right)=(\log n)^{\Theta(a)}$.

As the locality of Ext_{0} is $l_{0}=(\log n)^{\Theta(c)}$, and the locality of Ext_{1} is $l_{1}=(\log n)^{\Theta(a)}$, the locality of Ext is $t_{1} \times l_{1} \times l_{0}=(\log n)^{\Theta(a+c)}$.

According to our settings we know that Ext ${ }_{0}$ is in AC^{0} of depth $\Theta(c)$ and Ext_{0} is in AC^{0} of depth $\Theta(a)$. Also we know that $t_{1}=\Theta\left(\log ^{a-1} n\right), t_{2}=m_{0}^{1 / 3}$, so the XOR of t_{1} bits can be computed in AC^{0} of depth $\Theta(a)$ and size poly (n) by Lemma 2.10. So Ext is in AC^{0} of depth $\Theta(a+c)$.

5 Output Length Optimization for AC^{0} Extractors

In this section, we show how to extract $(1-\gamma) k$ bits for any constant $\gamma>0$.

5.1 Output Length OPT for Polynomially Small Error

By Theorem 4.13, we have a (k, ϵ)-extractor in AC^{0} for any $k=n / \operatorname{poly}(\log n)$ and any $\epsilon=1 / \operatorname{poly}(n)$.
According to Lemma 4.17, we can have the following lemma which gives an explicit construction of oblivious samplers and averaging samplers.

Lemma 5.1. For any $\gamma=1 / \operatorname{poly}(n)$ and any $\epsilon=1 / \operatorname{poly}(\log n)$, there exists an explicit $(O(\log n), \log n$, $t, \gamma, \epsilon)$-oblivious sampler for any integer t in $\left[t_{0}, n\right]$ with $t_{0}=\operatorname{poly}(\log n)$.

Let $\alpha \in(0,1)$ be an arbitrary constant. For any $\mu=1 / \operatorname{poly}(\log n)$ and any $\gamma=1 / \operatorname{poly}(n)$, there exists an explicit $(\mu, \alpha \mu, \gamma)$-averaging sampler Samp : $\{0,1\}^{O(\log n)} \rightarrow[n]^{t}$, for any integer t in $\left[t_{0}, n\right]$ with $t_{0}=\operatorname{poly}(\log n)$.

Proof. Let $k=2 \log n$. Consider a (k, ϵ)-extractor Ext : $\{0,1\}^{c \log n} \times\{0,1\}^{d} \rightarrow\{0,1\}^{\log n}$ for some constant $c \in \mathbb{N}^{+}$, following Lemma 2.6. Here we make one modification. We replace the last d bits of the output with the seed. We can see in this way, Ext is still an extractor.

The entropy rate is $\delta=2 / c$. By Lemma 2.6, we know that, d can be $\Theta(\log (c \log n)+\log (1 / \epsilon))=$ $\Theta(\log \log n)$.

As a result, by Lemma 4.17, there exists an explicit $(c \log n, \log n, t, \gamma, \epsilon)$-oblivious sampler where $t=2^{d}=\operatorname{poly}(\log n), \gamma=2^{1-(1-2 / c)(c \log n)}, \epsilon=1 / \operatorname{poly}(\log n)$. For t, we claim that t can be any number in the range $\left[t_{0}, n\right]$ with $t_{0}=\operatorname{poly}(\log n)$. This is because we can always add more bits in the seed (The total length of the seed can be added up to $\log n$). As we do not require the extractor to be strong, we can always use the seed to replace the last d bits of the output. This shows that t can be any number in $\left[t_{0}, n\right]$ with $t_{0}=\operatorname{poly}(\log n)$. Since c can be any large enough constant, γ can be any $1 / \operatorname{poly}(n)$.

According to the definition of the oblivious sampler, we know that $\forall f:[n] \rightarrow[0,1]$,

$$
\operatorname{Pr}_{I \leftarrow \operatorname{Samp}(U)}\left[\left|\frac{1}{t} \sum_{i \in I} f(i)-\mathbf{E} f\right|>\epsilon\right] \leq \gamma .
$$

Next we consider the definition of the averaging sampler.
Let $(1-\alpha) \mu=\epsilon$. As $\mu=1 / \operatorname{poly}(\log n), \epsilon=\operatorname{poly}(\log n)$. For any $f:[n] \rightarrow[0,1]$ such that $\mu \leq \mathbf{E} f$, we have the following inequalities.

$$
\begin{align*}
& \operatorname{Pr}_{I \leftarrow \operatorname{Samp}(U)}\left[\frac{1}{t} \sum_{i \in I} f(i)<\alpha \mu\right] \\
= & \operatorname{Pr}_{I \leftarrow \operatorname{Samp}(U)}\left[\frac{1}{t} \sum_{i \in I} f(i)<\mu-\epsilon\right] \\
= & \operatorname{Prr}_{I \leftarrow \operatorname{Samp}(U)}\left[\mu-\frac{1}{t} \sum_{i \in I} f(i)>\epsilon\right] \tag{15}\\
\leq & \operatorname{Pr}_{I \leftarrow \operatorname{Samp}(U)}\left[\mathbf{E} f-\frac{1}{t} \sum_{i \in I} f(i)>\epsilon\right] \\
\leq & \operatorname{Pr}_{I \leftarrow \operatorname{Samp}(U)}\left[\left|\frac{1}{t} \sum_{i \in I} f(i)-\mathbf{E} f\right|>\epsilon\right] \\
\leq & \gamma .
\end{align*}
$$

The first inequality holds because if the event that $\mu-\frac{1}{t} \sum_{i \in I} f(i)>\epsilon$ happens, then the event that $\mathbf{E} f-\frac{1}{t} \sum_{i \in I} f(i)>\epsilon$ must happen, as $\mu \leq \mathbf{E} f$. The second inequality is because $\mathbf{E} f-\frac{1}{t} \sum_{i \in I} f(i) \leq$ $\left|\mathbf{E} f-\frac{1}{t} \sum_{i \in I} f(i)\right|$. So if $\mathbf{E} f-\frac{1}{t} \sum_{i \in I} f(i)>\epsilon$ happens, then $\left|\frac{1}{t} \sum_{i \in I} f(i)-\mathbf{E} f\right|>\epsilon$ happens.

Also as we replace the last d bits of the output of our extractor with the seed, the samples are distinct according to the construction of Lemma 4.17.

This meets the definition of the averaging sampler. So this also gives an explicit ($\mu, \alpha \mu, \gamma$)-averaging sampler.

By Lemma 4.15, we can sample several times to get a block source.
Lemma 5.2 (Sample a Block Source). Let t be any constant in \mathbb{N}^{+}. For any $\delta>0$, let X be an $(n, k=\delta n)$ source . Let Samp : $\{0,1\}^{r} \rightarrow[n]^{m}$ be a $\left(\mu_{1}, \mu_{2}, \gamma\right)$-averaging sampler where $\mu_{1}=\left(\frac{1}{t} \delta-2 \tau\right) / \log (1 / \tau)$ and $\mu_{2}=\left(\frac{1}{t} \delta-3 \tau\right) / \log (1 / \tau)$, $m=\left(\frac{t-1}{t} k-\log \left(1 / \epsilon_{0}\right)\right) / t$. Let $\epsilon_{s}=\gamma+2^{-\Omega(\tau n)}$. For any $i \in[t]$, let $U_{i} s$ be uniform distributions over $\{0,1\}^{r}$. Let $X_{i}=X_{\operatorname{Samp}\left(U_{i}\right)}$, for $i \in[t]$.

It concludes that $\bigcirc_{i=1}^{t} U_{i} \circ \bigcirc_{i=1}^{t} X_{i}$ is $\epsilon=t\left(\epsilon_{s}+\epsilon_{0}\right)$-close to $\bigcirc_{i=1}^{t} U_{i} \circ \bigcirc_{i=1}^{t} W_{i}$ where for every $u \in \operatorname{supp}\left(\bigcirc_{i=1}^{t} U_{i}\right)$, conditioned on $\bigcirc_{i=1}^{t} U_{i}=u, \bigcirc_{i=1}^{t} W_{i}$ is a $\left(k_{1}, k_{2}, \ldots, k_{t}\right)$-block source with block size m and $k_{1}=k_{2}=\cdots=k_{t}=(\delta / t-3 \tau) m$. Here ϵ_{0} can be as small as $1 / 2^{\Omega(k)}$.

Proof. We prove by induction on $i \in[t]$.
If $i=1$, according to Lemma 4.15, we know $U_{1} \circ X_{1}$ is $\epsilon_{s}=\left(\gamma+2^{-\Omega(\tau n)}\right)$-close to $U_{1} \circ W$ such that $\forall u \in \operatorname{supp}\left(U_{1}\right), H_{\infty}\left(\left.W\right|_{U_{1}=u}\right)=(\delta / t-3 \tau) m$.

Next we prove the induction step.
Suppose $\bigcirc_{j=1}^{i} U_{j} \circ \bigcirc_{j=1}^{i} X_{j}$ is $\left(\epsilon_{s}+\epsilon_{0}\right) i$-close to $\bigcirc_{j=1}^{i} U_{j} \circ \bigcirc_{j=1}^{i} W_{j}$, where for every $u \in\{0,1\}^{i r}$, conditioned on $\bigcirc_{j=1}^{i} U_{j}=u, \bigcirc_{j=1}^{i} W_{j}$ is a $\left(k_{1}, k_{2}, \ldots, k_{i}\right)$-block source with block size m and $k_{1}=k_{2}=$ $\cdots=k_{i}=(\delta / t-3 \tau) m$.

Consider $i+1$. Recall the Chain Rule Lemma 4.8. First notice that $\bigcirc_{j=1}^{i} U_{j} \circ \bigcirc_{j=1}^{i} X_{j} \circ X$ has entropy ir $+k$. Then we know that $\bigcirc_{j=1}^{i} U_{j} \circ \bigcirc_{j=1}^{i} X_{j} \circ X$ is ϵ_{0}-close to $\bigcirc_{j=1}^{i} U_{j} \circ \bigcirc_{j=1}^{i} X_{j} \circ X^{\prime}$ such that for every $u \in\{0,1\}^{i r}$ and every $x \in\{0,1\}^{i m}$, conditioned on $\bigcirc_{j=1}^{i} U_{j}=u, \bigcirc_{j=1}^{i} X_{j}=x, X^{\prime}$ has entropy $k-i m-\log \left(1 / \epsilon_{0}\right) \geq k / t$ which means the entropy rate is at least δ / t.

By our assumption for $i, \bigcirc_{j=1}^{i} U_{j} \circ \bigcirc_{j=1}^{i} X_{j} \circ X^{\prime}$ is $\left(\epsilon_{s}+\epsilon_{0}\right) i$-close to $\bigcirc_{j=1}^{i} U_{j} \circ \bigcirc_{j=1}^{i} W_{j} \circ \tilde{X}$, where \tilde{X} is a random variable such that $\forall u \in\{0,1\}^{i r}, \forall x \in\{0,1\}^{i m},\left.\tilde{X}\right|_{\bigcirc_{j=1}^{i} U_{j}=u, \bigcirc_{j=1}^{i} X_{j}=x}$ has the same distribution as $\left.X^{\prime}\right|_{\bigcirc_{j=1}^{i} U_{j}=u, \bigcirc_{j=1}^{i} W_{j}=x}$. As a result, for every $u \in\{0,1\}^{i r}$ and $x \in\{0,1\}^{i m}$, conditioned on $\bigcirc_{j=1}^{i} U_{j}=u, \bigcirc_{j=1}^{i} W_{j}=x, \tilde{X}$ has entropy $k-i m-\log \left(1 / \epsilon_{0}\right) \geq k / t$.

Denote the event $\left(\bigcirc_{j=1}^{i} U_{j}=u, \bigcirc_{j=1}^{i} W_{j}=x\right)$ as e, by Lemma 4.15, by sampling on source $\left.\tilde{X}\right|_{e}$, we get $U_{i+1} \circ\left(\left.\tilde{X}\right|_{e}\right)_{\operatorname{Samp}\left(U_{i+1}\right)}=\left.U_{i+1} \circ \tilde{X}_{\operatorname{Samp}\left(U_{i+1}\right)}\right|_{e}$. It is ϵ_{s}-close to $\left.U_{i+1} \circ W\right|_{e}$ where $\forall a \in\{0,1\}^{r}$, $\left.\left(\left.W\right|_{e}\right)\right|_{U_{i+1}=a}$ is a $(m,(\delta / t-3 \tau) m)$-source. Thus $\bigcirc_{j=1}^{i+1} U_{j} \circ \bigcirc_{j=1}^{i} W_{j} \circ \tilde{X}_{\text {Samp }\left(U_{i+1}\right)}$ is ϵ_{s}-close to $\bigcirc_{j=1}^{i+1} U_{j} \circ$ $\bigcirc_{j=1}^{i} W_{j} \circ W$.

Let $W_{i+1}=W$. As a result, $\bigcirc_{j=1}^{i+1} U_{j} \circ \bigcirc_{j=1}^{i} X_{j}$ is $\left(\epsilon_{s}+\epsilon_{0}\right)(i+1)$-close to $\bigcirc_{j=1}^{i+1} U_{j} \circ \bigcirc_{j=1}^{i+1} W_{j}$ such that for every $u \in\{0,1\}^{i r}$, conditioned on $\bigcirc_{j=1}^{i+1} U_{j}=u, \bigcirc_{j=1}^{i+1} W_{j}$ is a $\left(k_{1}, k_{2}, \ldots, k_{i}\right)$-block source with block size m and $k_{1}=k_{2}=\cdots=k_{i+1}=(\delta / t-3 \tau) m$.

This proves that induction step.

This lemma reveals a way to get a block source by sampling. Block sources are easier to extract.
Another important technique is the parallel extraction. According to Raz at al. [18], we have the following lemma.

Lemma 5.3 ([18]). Let $\operatorname{Ext}_{1}:\{0,1\}^{n} \times\{0,1\}^{d_{1}} \rightarrow\{0,1\}^{m_{1}}$ be a strong (k, ϵ)-extractor with entropy loss Δ_{1} and $\operatorname{Ext}_{2}:\{0,1\}^{n} \times\{0,1\}^{d_{2}} \rightarrow\{0,1\}^{m_{2}}$ be a strong $\left(\Delta_{1}-s, \epsilon_{2}\right)$-extractor with entropy loss Δ_{2} for any $s<\Delta_{1}$. Suppose the function Ext : $\{0,1\}^{n} \times\{0,1\}^{d_{1}+d_{2}} \rightarrow\{0,1\}^{m_{1}+m_{2}}$ is as follows.

$$
\operatorname{Ext}\left(x, u_{1} \circ u_{2}\right)=\operatorname{Ext}_{1}\left(x, u_{1}\right) \circ \operatorname{Ext}_{2}\left(x, u_{2}\right)
$$

Then Ext is a strong $\left(k,\left(\frac{1}{1-2^{-s}}\right) \epsilon_{1}+\epsilon_{2} \leq \epsilon_{1}+\epsilon_{2}+2^{-s}\right)$-extractor with entropy loss $\Delta_{2}+s$.
This can be generalized to the parallel extraction for multiple times.
Lemma 5.4. Let X be an (n, k)-source. Let Ext : $\{0,1\}^{n} \times\{0,1\}^{d} \rightarrow\{0,1\}^{m}$ be a strong ($\left.k_{0}, \epsilon\right)$-extractor with $k_{0}=k-t m-s$ for any t, s such that $t m+s<k$. Let $\mathrm{Ext}^{\prime}:\{0,1\}^{n} \times\{0,1\}^{t d} \rightarrow\{0,1\}^{t m}$ be constructed as follows.

$$
\operatorname{Ext}^{\prime}\left(x, \bigcirc_{i=1}^{t} u_{i}\right)=\operatorname{Ext}\left(x, u_{1}\right) \circ \operatorname{Ext}\left(x, u_{2}\right) \circ \cdots \circ \operatorname{Ext}\left(x, u_{t}\right)
$$

Then Ext^{\prime} is a strong $\left(k, t\left(\epsilon+2^{-s}\right)\right)$-extractor.

Proof. Consider the mathematical induction on j.
For $j=1$, it is true. As Ext is a strong $\left(k_{0}, \epsilon\right)$-extractor, it is also a strong $\left(k, j\left(\epsilon+2^{-s}\right)\right)$-extractor.
Next we prove the induction step.
Assume it is true for j. Consider $j+1$.

$$
\operatorname{Ext}^{\prime}\left(x, \bigcirc_{i=1}^{j+1} u_{i}\right)=\operatorname{Ext}^{\prime}\left(x, \bigcirc_{i=1}^{j} u_{i}\right) \circ \operatorname{Ext}\left(x, u_{j+1}\right)
$$

Here $\operatorname{Ext}^{\prime}\left(x, \bigcirc_{i=1}^{j} u_{i}\right)$ is a strong $\left(k, j\left(\epsilon+2^{-s}\right)\right)$-source. Its entropy loss is $k-j m$. Also we know that Ext is a strong $(k-t m-s, \epsilon)$-extractor, thus a strong $(k-j m-s, \epsilon)$-extractor. According to Lemma 5.3, $\operatorname{Ext}^{\prime}\left(x, \bigcirc_{i=1}^{j+1} u_{i}\right)$ is a strong $\left(k,(j+1)\left(\epsilon+2^{-s}\right)\right)$-extractor. Its entropy loss is $k-(j+1) m$.

This completes the proof.

Lemma 5.4 shows a way to extract more bits. Assume we have an (n, k)-source and an extractor, if the output length of the extractor is $k^{\beta}, \beta<1$, then we can extract several times to get a longer output. However, if we merely do it in this way, we need a longer seed. In fact, if we extract enough times to make the output length to be $\Theta(k)$, we need a seed with length $\Theta\left(k^{1-\beta} \log n\right)$. This immediately gives us the following theorem.

Theorem 5.5. For any constant $c \in \mathbb{N}$, any $k=\Theta\left(n / \log ^{c} n\right)$, any $\epsilon=1 /$ poly (n) and any constant $\gamma \in(0,1)$, there exists an explicit construction of a strong (k, ϵ)-extractor Ext : $\{0,1\}^{n} \times\{0,1\}^{d} \rightarrow\{0,1\}^{m}$ in AC^{0} of depth $c+10$. The locality is $\Theta\left(\log ^{c+5} n\right)=\operatorname{poly}(\log n)$. The seed length $d=O\left(\frac{k}{n^{1 / 10800}}\right)$. The output length $m=(1-\gamma) k$.

Proof. Let Ext $\mathrm{EA}_{0}:\{0,1\}^{n_{0}} \times\{0,1\}^{d_{0}} \rightarrow\{0,1\}^{m_{0}}$ be a $\left(k_{0}, \epsilon_{0}=\epsilon / n\right)$ extractor following from Theorem 4.13. Here $k_{0}=k-t m_{0}-s$ where $s=\log (n / \epsilon), t=(1-\gamma) k / m_{0}$. By lemma 5.4, we know that there exists a $\left(k, \epsilon^{\prime}\right)$ extractor Ext with $\epsilon^{\prime}=t\left(\epsilon_{0}+2^{-s}\right) \leq \epsilon$. The output length is $(1-\gamma) k$.

According to the construction in Lemma 5.4, Ext has the same circuit depth as Ext ${ }_{0}$. So Ext is in AC^{0} of depth $c+10$. The locality of Ext is also the same as that of Ext ${ }_{0}$ which is $\Theta\left(\log ^{c+5} n\right)=$ poly $(\log n)$. The seed length is $t \times O(\log n)=O\left(\frac{k}{n^{1 / 10800}}\right)$.

In order to achieve a small seed length, next we use classic bootstrapping techniques to extract more bits. Our construction will be in AC^{0}. However, our construction cannot keep the locality small.

Construction 5.6. For any $c \in \mathbb{N}$, any $k=\delta n=\Theta\left(n / \log ^{c} n\right)$ and any $\epsilon=1$ /poly (n), we construct a (k, ϵ)-extractor Ext : $\{0,1\}^{n} \times\{0,1\}^{d} \rightarrow\{0,1\}^{m}$ where $d=O(\log n), m=\Theta(\delta k)$.

- Let X be an (n, k)-source
- Let $t \geq 10800$ be a constant.
- Let Samp : $\{0,1\}^{r} \rightarrow[n]^{m_{s}}$ be a $\left(\mu_{1}, \mu_{2}, \gamma\right)$-averaging sampler following from Lemma 5.1, where $\mu_{1}=\left(\frac{1}{t} \delta-2 \tau\right) / \log (1 / \tau)$ and $\mu_{2}=\left(\frac{1}{t} \delta-3 \tau\right) / \log (1 / \tau), m_{s}=\left(\frac{t-1}{t} k-\log \left(1 / \epsilon_{0}\right)\right) / t, \tau=\frac{1}{4} \delta$, $\gamma=\epsilon / n$. Let $\epsilon_{s}=\gamma+2^{-\Omega(\tau n)}$.
- Let $\operatorname{Ext}_{0}:\{0,1\}^{n_{0}=m_{s}} \times\{0,1\}^{d_{0}} \rightarrow\{0,1\}^{m_{0}}$ be a $\left(k_{0}, \epsilon_{0}\right)$-extractor following from Theorem 4.13 where $k_{0}=0.1\left(\frac{1}{t} \delta-3 \tau\right) m_{s}-s, \epsilon_{0}=\epsilon /(10 t n), d_{0}=O\left(\log n_{0}\right), m_{0}=\Theta\left(n_{0}^{1 / 10800} \log n_{0}\right)$. Let s be such that $2^{-s} \leq \epsilon /(10 t n)$.

Next we construct the function Ext as follows.

1. Get Let $X_{i}=X_{\operatorname{Samp}\left(S_{i}\right)}$ for $i \in[t]$, where $S_{i}, i \in[t]$ are independent uniform distributions.
2. Get $Y_{t}=\operatorname{Ext}_{0}\left(X_{t}, U_{0}\right)$ where U_{0} is the uniform distribution with length d_{0}.
3. For $i=t-1$ to 1 , get $Y_{i}=\operatorname{Ext}^{\prime}\left(X_{i}, Y_{i+1}\right)$ sequentially.
4. Output $\operatorname{Ext}\left(X, U_{d}\right)=Y_{1}=\operatorname{Ext}^{\prime}\left(X_{1}, Y_{2}\right)$, where $U_{d}=U_{0} \circ \bigcirc_{i=1}^{t} S_{i}$ and the function $\operatorname{Ext}^{\prime}$ is defined as follows.

$$
\operatorname{Ext}^{\prime}(x, r)=\bigcirc_{i=1}^{\min \left\{\left\lfloor|r| / d_{0}\right\rfloor,\left\lfloor 0.9\left(\frac{1}{t} \delta-3 \tau\right) m_{s} / m_{0}\right\rfloor\right\}} \operatorname{Ext}_{0}\left(x, r_{i}\right),
$$

where $r=\bigcirc_{i=1}^{\left\lfloor|r| / d_{0}\right\rfloor} r_{i} \circ r^{\prime}$ for some extra bits r^{\prime} and $\forall i,\left|r_{i}\right|=d_{0}$.
Lemma 5.7. For $\epsilon_{1}=1 / 2^{\Omega(k)}$ and for any $\epsilon_{s}=1 / \operatorname{poly}(n), \bigcirc_{i=1}^{t} S_{i} \circ \bigcirc_{i=1}^{t} X_{i}$ is $t\left(\epsilon_{s}+\epsilon_{1}\right)$-close to $\bigcirc_{i=1}^{t} S_{i} \circ \bigcirc_{i=1}^{t} W_{i}$ where $S_{i} s$ are independent uniform distributions.

Here $\forall r \in \operatorname{supp}\left(\bigcirc_{i=1}^{t} S_{i}\right)$, conditioned on $\bigcirc_{i=1}^{t} S_{i}=r, \bigcirc_{i=1}^{t} W_{i}$ is a $\left(k_{1}, k_{2}, \ldots, k_{t}\right)$-block source with $k_{1}=k_{2}=\cdots=k_{t}=k^{\prime}=\left(\frac{1}{t} \delta-3 \tau\right) m_{s}$.

Proof. It follows from Lemma 5.2.

Lemma 5.8. In Construction 5.6, the function Ext is a strong ($k, \tilde{\epsilon}$)-extractor with

$$
\tilde{\epsilon}=t\left(\epsilon_{s}+\epsilon_{1}\right)+t k\left(\epsilon_{0}+2^{-s}\right) .
$$

By setting $\epsilon_{1}=1 / 2^{\Omega(k)}$, according to the settings of $\epsilon_{s}, \epsilon_{0}$ and s, we have $\tilde{\epsilon} \leq \epsilon$.
Proof of Lemma 5.8. By Lemma 5.7, $\bigcirc_{i=1}^{t} S_{i} \circ \bigcirc_{i=1}^{t} X_{i}$ is $t\left(\epsilon_{s}+\epsilon_{1}\right)=1 /$ poly (n)-close to $\bigcirc_{i=1}^{t} S_{i} \circ B$ where $B=B_{1} \circ B_{2} \circ \ldots \circ B_{t}$. The $S_{i} \mathrm{~s}$ are independent uniform distributions. Also $\forall s \in \operatorname{supp}\left(\bigcirc_{i=1}^{t} S_{i}\right)$, conditioned on $\bigcirc_{i=1}^{t} S_{i}=s, B$ is a $\left(k_{1}, k_{2}, \ldots, k_{t}\right)$-block source with $k_{1}=k_{2}=\cdots=k_{t}=k^{\prime}=$ $\left(\frac{1}{t} \delta-3 \tau\right) m_{s}$. We denote the first i blocks to be $\tilde{B}_{i}=\bigcirc_{j=1}^{i} B_{i}$.

Let $Y_{i}^{\prime}=\operatorname{Ext}^{\prime}\left(B_{i}, Y_{i+1}^{\prime}\right)$ for $i=1,2, \ldots, t$ where $Y_{t+1}^{\prime}=U_{0}$ is the uniform distribution with length d_{0}.
Next we use induction over i (from t to 1) to show that

$$
\mathrm{SD}\left(U_{0} \circ Y_{i}^{\prime}, U\right) \leq(t+1-i) k\left(\epsilon_{0}+2^{-s}\right)
$$

The basic step is to prove that $\forall b_{1}, b_{2}, \ldots, b_{t-1} \in\{0,1\}^{m_{s}}$, conditioned on $B_{1}=b_{1}, \ldots, B_{t-1}=b_{t-1}$, $\mathrm{SD}\left(U_{0} \circ Y_{t}^{\prime}, U\right) \leq k\left(\epsilon_{0}+2^{-s}\right)$. According to the definition of Ext ${ }^{\prime}$,

$$
\operatorname{SD}\left(U_{0} \circ \operatorname{Ext}^{\prime}\left(B_{t}, U_{0}\right), U\right) \leq \epsilon_{0}
$$

This proves the basic step.
For the induction step, assume that $\forall b_{1}, b_{2}, \ldots, b_{i-1} \in\{0,1\}^{m_{s}}$, conditioned on $B_{1}=b_{1}, \ldots, B_{i-1}=$ b_{i-1},

$$
\mathrm{SD}\left(U_{0} \circ Y_{i}^{\prime}, U\right) \leq(t+1-i) k\left(\epsilon_{0}+2^{-s}\right) .
$$

Consider $U_{0} \circ Y_{i-1}^{\prime}=U_{0} \circ \operatorname{Ext}^{\prime}\left(B_{i-1}, Y_{i}^{\prime}\right)$.
We know that $\forall b_{1}, b_{2}, \ldots, b_{t-2} \in\{0,1\}^{m_{s}}$, conditioned on $B_{1}=b_{1}, \ldots, B_{i-2}=b_{i-2}, \tilde{B}_{i-1} \circ U_{0} \circ Y_{i}^{\prime}$ is a convex combination of $b_{i-1} \circ U_{0} \circ Y_{i}^{\prime}, \forall b_{i-1} \in \operatorname{supp}\left(\tilde{B}_{i-1}\right)$. As a result,

$$
\operatorname{SD}\left(\tilde{B}_{i-1} \circ U_{0} \circ Y_{i}^{\prime}, \tilde{B}_{i-1} \circ U\right) \leq(t+1-i) k\left(\epsilon_{0}+2^{-s}\right) .
$$

Thus, $\forall b_{1}, b_{2}, \ldots, b_{t-2} \in\{0,1\}^{m_{s}}$, conditioned on $B_{1}=b_{1}, \ldots, B_{i-2}=b_{i-2}$, as $\tilde{B}_{i-1} \circ U_{0} \circ Y_{i}^{\prime}$ is a convex combination of $b_{i-1} \circ U_{0} \circ Y_{i}^{\prime}, \forall b_{i-1} \in \operatorname{supp}\left(\tilde{B}_{i-1}\right)$ and $\tilde{B}_{i-1} \circ U$ is a convex combination of $b_{i-1} \circ U, \forall b \in \operatorname{supp}\left(\tilde{B}_{i-1}\right)$, by Lemma 2.3 part 2,

$$
\begin{align*}
& \operatorname{SD}\left(U_{0} \circ \operatorname{Ext}^{\prime}\left(B_{i-1}, Y_{i}^{\prime}\right), U_{1} \circ \operatorname{Ext}^{\prime}\left(B_{i-1}, U_{2}\right)\right) \\
\leq & \operatorname{SD}\left(\tilde{B}_{i-1} \circ U_{0} \circ Y_{i}^{\prime}, \tilde{B}_{i-1} \circ U\right) \tag{16}\\
\leq & (t+1-i) k\left(\epsilon_{0}+2^{-s}\right) .
\end{align*}
$$

Here $U=U_{1} \circ U_{2} . U_{1}$ is the uniform distribution having $\left|U_{1}\right|=\left|U_{0}\right| . U_{2}$ is the uniform distribution having $\left|U_{2}\right|=\left|Y_{i}^{\prime}\right|$.

According to the definition of Ext' and Lemma 5.4, we know that $\forall b_{1}, b_{2}, \ldots, b_{i-2} \in\{0,1\}^{m_{s}}$, conditioned on $B_{1}=b_{1}, \ldots, B_{i-2}=b_{i-2}$,

$$
\mathrm{SD}\left(U_{1} \circ \operatorname{Ext}^{\prime}\left(B_{i-1}, U_{2}\right), U\right) \leq k\left(\epsilon_{0}+2^{-s}\right)
$$

So according to triangle inequality of Lemma 2.3, $\forall b_{1}, b_{2}, \ldots, b_{t-2} \in\{0,1\}^{m_{s}}$, conditioned on $B_{1}=$ $b_{1}, \ldots, B_{i-2}=b_{i-2}$,

$$
\begin{align*}
& \operatorname{SD}\left(U_{0} \circ Y_{i-1}^{\prime}, U\right) \\
= & \operatorname{SD}\left(U_{0} \circ \operatorname{Ext}^{\prime}\left(B_{i-1}, Y_{i}^{\prime}\right), U\right) \\
\leq & \operatorname{SD}\left(U_{0} \circ \operatorname{Ext}^{\prime}\left(B_{i-1}, Y_{i}^{\prime}\right), U_{1} \circ \operatorname{Ext}^{\prime}\left(B_{i-1}, U_{2}\right)\right)+\operatorname{SD}\left(U_{1} \circ \operatorname{Ext}^{\prime}\left(B_{i-1}, U_{2}\right), U\right) \tag{17}\\
\leq & (t+1-i) k\left(\epsilon_{0}+2^{-s}\right)+k\left(\epsilon_{0}+2^{-s}\right) \\
= & (t+1-(i-1)) k\left(\epsilon_{0}+2^{-s}\right) .
\end{align*}
$$

This proves the induction step.
So we have $\operatorname{SD}\left(U_{0} \circ Y_{1}^{\prime}, U\right) \leq t k\left(\epsilon_{0}+2^{-s}\right)$.
As a result,

$$
\begin{align*}
& \operatorname{SD}\left(U_{d} \circ \operatorname{Ext}\left(X, U_{d}\right), U\right) \\
= & \operatorname{SD}\left(U_{0} \circ \bigcirc_{i=1}^{t} S_{i} \circ Y_{1}, U\right) \\
\leq & \operatorname{SD}\left(U_{0} \circ \bigcirc_{i=1}^{t} S_{i} \circ Y_{1}, U_{0} \circ \bigcirc_{i=1}^{t} S_{i} \circ Y_{1}^{\prime}\right)+\operatorname{SD}\left(U_{0} \circ \bigcirc_{i=1}^{t} S_{i} \circ Y_{1}^{\prime}, U\right) \tag{18}\\
\leq & \operatorname{SD}\left(U_{0} \circ \bigcirc_{i=1}^{t} S_{i} \circ \bigcirc_{i=1}^{t} X_{i}, U_{0} \circ \bigcirc_{i=1}^{t} S_{i} \circ \bigcirc_{i=1}^{t} B_{i}\right)+\operatorname{SD}\left(U_{0} \circ \bigcirc_{i=1}^{t} S_{i} \circ Y_{1}^{\prime}, U\right) \\
\leq & t\left(\epsilon_{s}+\epsilon_{1}\right)+t k\left(\epsilon_{0}+2^{-s}\right) .
\end{align*}
$$

According to the settings of $\epsilon_{0}, \epsilon_{s}, t, \epsilon_{1}$, we know the error is at most ϵ.

Lemma 5.9. In Construction 5.6, the length of Y_{i} is

$$
\left|Y_{i}\right|=\Theta\left(\min \left\{m_{0}\left(\frac{m_{0}}{d_{0}}\right)^{t-i}, 0.9\left(\frac{1}{t} \delta-3 \tau\right) m_{s}\right\}\right) .
$$

Specifically, $m=\left|Y_{1}\right|=\Theta\left(\left(\frac{1}{t} \delta-3 \tau\right) m_{s}\right)=\Theta(\delta k)$.
Proof. For each time we compute $Y_{i}=\operatorname{Ext}^{\prime}\left(X_{i}, Y_{i+1}\right)$, we know $\left|Y_{i}\right| \leq\left|Y_{i+1}\right|\left(\frac{m_{0}}{d_{0}}\right)$. Also according to the definition of Ext', $\left|Y_{i}\right| \leq 0.9\left(\frac{1}{t} \delta-3 \tau\right) m_{s}$. So $\left|Y_{i}\right|=\Theta\left(\min \left\{m_{0}\left(\frac{m_{0}}{d_{0}}\right)^{t-i}, 0.9\left(\frac{1}{t} \delta-3 \tau\right) m_{s}\right\}\right)$ for $i \in[t]$.

By Theorem 4.13, $m_{0}=\Theta\left(n_{0}^{1 / 10800} \log n\right)$. Also we know that $n_{0}=m_{s}=O(t k)$. As a result, when $t \geq 10800, m_{0}\left(\frac{m_{0}}{d_{0}}\right)^{t-1}=\omega\left(m_{s}\right)$. As a result, $m=\left|Y_{1}\right|=\Theta\left(\left(\frac{1}{t} \delta-3 \tau\right) m_{s}\right)=\Theta(\delta k)$.

Lemma 5.10. In Construction 5.6, the seed length $d=\Theta(\log n)$.
Proof. The seed for this extractor is $U_{d}=U_{0} \circ \bigcirc_{i=1}^{t} S_{i}$. So $\left|U_{d}\right|=\left|U_{0}\right|+\Sigma_{i}^{t}\left|S_{i}\right|=\Theta(\log n)+\Theta(\log n)=$ $\Theta(\log n)$.

Lemma 5.11. In Construction 5.6, the function Ext is in AC^{0}. The depth of the circuit is $10800 c+97203$.
Proof. As the seed length of Samp is $O(\log n)$, the sampling procedure is in AC^{0} which can be realized by a CNF/DNF. Thus the circuit depth is 2 .

As the sampling procedure gives the indices for us to select bits from X, we needs 1 level of CNF/DNF to select the bits. This also needs a circuit of depth 2 .

By Theorem 4.13, Ext ${ }_{0}$ is in AC^{0} with depth $c+10$. According to the definition of Ext ${ }^{\prime}$, it runs Ext_{0} for polynomial times in parallel, so it is also in AC^{0} of depth $c+10$.

In the first step of Construction 5.6, we do sampling by t times in parallel. As a t is a constant, this operation is in $A C^{0}$ of depth 2 . Next the construction do a sequence of extractions. In step 2 and 3 , we run Ext ${ }^{\prime}$ for t times sequentially. As t is a constant and Ext ${ }^{\prime}$ is in AC^{0} with depth $c+10$, the total depth is $t(c+10)-t+1$.

The last step outputs Y_{1}, there is no gates used here, so the depth is 0 .
So the function Ext in Construction 5.6 is in AC^{0} with depth $t(c+10)-t+1+2+2-2=c t+9 t+3=$ $10800 c+97203$.

Theorem 5.12. For any constant $\gamma \in(0,1)$, any $c \in \mathbb{N}$, any $k=\delta n=\Theta\left(n / \log ^{c} n\right)$ and any $\epsilon=$ $1 /$ poly (n), there exists an explicit construction of a strong (k, ϵ)-extractor Ext : $\{0,1\}^{n} \times\{0,1\}^{d} \rightarrow$ $\{0,1\}^{m}$ in AC^{0} with depth $10800 c+97203$, where $d=\Theta(\log n), m=\Theta(\delta k)$.

Proof. By Construction 5.6, Lemma 5.8, Lemma 5.9, Lemma 5.10, and Lemma 5.11, the conclusion immediately follows.

Theorem 5.13. For any constant $\gamma \in(0,1)$, any $c \in \mathbb{N}$, any $k=\delta n=\Theta\left(n / \log ^{c} n\right)$ and any $\epsilon=$ $1 / \operatorname{poly}(n)$, there exists an explicit construction of a strong (k, ϵ)-extractor Ext : $\{0,1\}^{n} \times\{0,1\}^{d} \rightarrow$ $\{0,1\}^{m}$ in AC^{0} with depth $10800 c+97203$ where $d=\Theta\left(\log ^{c+1} n\right)=\operatorname{poly}(\log n), m=(1-\gamma) k$.

Proof. Let the extractor following Theorem $5.12{\text { be } \operatorname{Ext}_{0}:\{0,1\}^{n_{0}} \times\{0,1\}^{d_{0}} \rightarrow\{0,1\}^{m_{0}} \text { which is a }}^{\text {a }}$ $\left(k_{0}, \epsilon_{0}\right)$-extractor with $n_{0}=n, k_{0}=\gamma k-s$. The construction of Ext is

$$
\operatorname{Ext}(x, u)=\bigcirc_{i=1}^{t} \operatorname{Ext}_{0}\left(x, u_{i}\right)
$$

Here t is such that $t m_{0}=(1-\gamma) k$.
By Lemma 5.12, we know that $m_{0}=\Theta(\delta k)$ where $\delta=\frac{1}{\log ^{c} n}$. So $t=O(1 / \delta)$. By Lemma 5.4, if $t m_{0}=(1-\gamma) k$, then Ext is a (k, ϵ)-extractor with output length $(1-\gamma) k$ and $\epsilon=t\left(\epsilon_{0}+2^{-s}\right)$. As s can be any poly $(\log n)$ and ϵ_{0} can be any $1 / \operatorname{poly}(n), \epsilon$ can be any $1 / \operatorname{poly}(n)$. The seed length $d=t d_{0}$. By Theorem 5.12, $d_{0}=\Theta(\log n), m_{0}=\Theta(\delta k)$, so $d=\Theta\left(\frac{\log n}{\delta}\right)=\Theta\left(\log ^{c+1} n\right)=$ poly $(\log n), m=(1-\gamma) k$. The circuit depth maintains the same as that in Theorem 5.12 because the extraction is conducted in parallel.

5.2 Output Length OPT for Super-Polynomially Small Error

In this subsection, we give the method which can extract more bits while having super-polynomially small errors.

Construction 5.14 (Output Length OPT for Super-Polynomial Small Errors). For any constant $a \in \mathbb{N}^{+}$, any constant $c \in \mathbb{N}$, any $k=\delta n=\Theta\left(n / \log ^{c} n\right)$ and any $\epsilon=1 / 2^{\Theta\left(\log ^{a} n\right)}$, we construct a (k, ϵ)-extractor Ext : $\{0,1\}^{n} \times\{0,1\}^{d} \rightarrow\{0,1\}^{m}$ where $d=(\log n)^{\Theta(a)}$, $m=(1-\gamma) k$.

- Let X be an $(n, k=\delta n)$-source
- Let $t \geq 10800$ be a constant.
- Let Samp : $\{0,1\}^{r} \rightarrow[n]^{m_{s}}$ be a $\left(\mu_{1}, \mu_{2}, \gamma\right)$-averaging sampler following from Lemma 4.18, where $\mu_{1}=\left(\frac{1}{t} \delta-2 \tau\right) / \log (1 / \tau)$ and $\mu_{2}=\left(\frac{1}{t} \delta-3 \tau\right) / \log (1 / \tau), m_{s}=\left(\frac{t-1}{t} k-\log \left(1 / \epsilon_{0}\right)\right) / t, \tau=\frac{1}{4} \delta$, $\gamma=\epsilon / n$. Let $\epsilon_{s}=\gamma+2^{-\Omega(\tau n)}$.
- Let $\operatorname{Ext}_{0}:\{0,1\}^{n_{0}=m_{s}} \times\{0,1\}^{d_{0}} \rightarrow\{0,1\}^{m_{0}}$ be a $\left(k_{0}, \epsilon_{0}\right)$-extractor following from Theorem 4.22 where $k_{0}=0.1\left(\frac{1}{t} \delta-3 \tau\right) m_{s}-s, \epsilon_{0}=\epsilon /(10 t n), d_{0}=\left(\log n_{0}\right)^{\Theta(a)}, m_{0}=n_{0}^{1 / 10800} \Theta\left(\log ^{a} n_{0}\right)$. Let s be such that $2^{-s} \leq \epsilon /(10 t n)$.
Next we construct the function Ext as follows.

1. Get Let $X_{i}=X_{\operatorname{Samp}\left(X, S_{i}\right)}$ for $i \in[t]$, where $S_{i}, i \in[t]$ are independent uniform distributions.
2. Get $Y_{t}=\operatorname{Ext}_{0}\left(X_{t}, U_{0}\right)$ where U_{0} is the uniform distribution with length d_{0}.
3. For $i=t-1$ to 1 , get $Y_{i}=\operatorname{Ext}^{\prime}\left(X_{i}, Y_{i+1}\right)$ sequentially.
4. Output $\operatorname{Ext}\left(X, U_{d}\right)=Y_{1}=\operatorname{Ext}^{\prime}\left(X_{1}, Y_{2}\right)$, where $U_{d}=U_{0} \circ \bigcirc_{i=1}^{t} S_{i}$ and the function Ext' is defined as follows.

$$
\operatorname{Ext}^{\prime}(x, r)=\bigcirc_{i=1}^{\min \left\{\left\lfloor|r| / d_{0}\right\rfloor,\left\lfloor 0.9\left(\frac{1}{t} \delta-3 \tau\right) m_{s} / m_{0}\right\rfloor\right\}} \operatorname{Ext}_{0}\left(x, r_{i}\right)
$$

where $r=\bigcirc_{i=1}^{\left\lfloor|r| / d_{0}\right\rfloor} r_{i} \circ r^{\prime}$ for some extra bits r^{\prime} and $\forall i,\left|r_{i}\right|=d_{0}$.
Theorem 5.15. For any constant $a \in \mathbb{N}^{+}$, any constant $c \in \mathbb{N}$, any $k=\delta n=\Theta\left(n / \log ^{c} n\right)$, any $\epsilon=1 / 2^{\Theta\left(\log ^{a} n\right)}$ and any constant $\gamma \in(0,1)$, there exists an explicit construction of a strong (k, ϵ)-extractor Ext : $\{0,1\}^{n} \times\{0,1\}^{d} \rightarrow\{0,1\}^{m}$ in AC^{0} of depth $\Theta(a+c)$, where $d=(\log n)^{\Theta(a+c)}$, $m=(1-\gamma) k$.
Proof Sketch. The proof is almost the same as the proof of Theorem 5.13. We need to make sure that the parameters are correct.

We first claim that Ext in Construction 5.14 is a (k, ϵ)-extractor. The proof strategy is the same as that of Lemma 5.8 except that the parameters need to be modified. According to the same arguments as in the proof of Lemma 5.8, the overall error is

$$
\tilde{\epsilon} \leq t\left(\epsilon_{s}+\epsilon_{1}\right)+t k\left(\epsilon_{0}+2^{-s}\right) .
$$

According to our settings, $\epsilon_{s}=O(\epsilon / n), \epsilon_{0}=\epsilon /(10 t n), 2^{-s} \leq \epsilon /(10 t n)$ and t is a constant. Also according to the definition of ϵ_{1} in Lemma $5.8, \epsilon_{1}$ can be $1 / 2^{\Omega(k)}$. So $\tilde{\epsilon} \leq \epsilon$.

The seed length of Ext is $\left|U_{d}\right|=\sum_{i=1}^{t}\left|S_{i}\right|+\left|U_{0}\right|=(\log n)^{\Theta(a)}$.
The output length of Ext is $\left|Y_{1}\right|=\Theta(\delta k)$ which follows the same argument of that of Lemma 5.9.
According to our settings, Samp is in AC^{0} of depth $\Theta(a)$ and Ext_{1} is in AC^{0} of depth $\Theta(a+c)$. Also we know that t is a constant. So Ext is in AC^{0} of depth $\Theta(a+c)$.

The theorem holds according to the same argument (Extraction in parallel) as the proof of Theorem 5.13. The seed length increases to $(\log n)^{\Theta(a+c)}$ as we extract $\Theta(1 / \delta)$ times in parallel.

6 Error Reduction For Sparse Extractors

Now we give error reduction methods for extractor families with small locality. As we do not require our construction to be in AC^{0}, the error can be exponentially small.

First we consider the construction of averaging samplers given by Vadhan [22] .
Lemma 6.1 ([22]). For every $n \in \mathbb{N}, 0<\theta<\mu<1, \gamma>0$, there is a $(\mu, \mu-\theta, \gamma)$-averaging sampler Samp : $\{0,1\}^{r} \rightarrow[n]^{t}$ that

1. outputs t distinct samples for $t \in\left[t_{0}, n\right]$, where $t_{0}=O\left(\frac{\log (1 / \gamma)}{\theta^{2}}\right)$;
2. uses $r=\log (n / t)+\log (1 / \gamma) \cdot$ poly $(1 / \theta)$ random bits.

Theorem 6.2. For any constant $\delta \in(0,1]$, there exists an explicit construction of a $(k=\delta n, \epsilon)$-extractor Ext : $\{0,1\}^{n} \times\{0,1\}^{d} \rightarrow\{0,1\}^{m}$ where ϵ can be as small as $2^{-\Omega(k)}, m=\Theta(\log (1 / \epsilon)), d=O(\log (n / \epsilon))$ and the locality is $\Theta(\log (1 / \epsilon))$.

Proof. We follow a sample-then-extract procedure.
Let Samp : $\{0,1\}^{r_{s}} \rightarrow\{0,1\}^{t}$ be a $\left(\mu_{1}, \mu_{2}, \gamma\right)$-averaging sampler following from Lemma 6.1. Let $\tau=0.1 \delta, \mu_{1}=(\delta-2 \tau) / \log (1 / \tau), \mu_{2}=(\delta-3 \tau) / \log (1 / \tau)$.

For any (n, k)-source X, by Lemma 4.15, we have $\operatorname{SD}\left(R \circ X_{\operatorname{Samp}(R)}, R \circ W\right) \leq \gamma+2^{-\Omega(\tau n)}$. Here R is uniformly sampled from $\{0,1\}^{r_{s}}$. For every r in $\{0,1\}^{r_{s}}$, the random variable $\left.W\right|_{R=r}$ is a $(t,(\delta-3 \tau) t)$ source.

As δ is a constant, we know that τ is a constant. So $\theta=\mu_{1}-\mu_{2}$ is a constant.
By Lemma 6.1, we can set $t=\Theta\left(\frac{\log (1 / \gamma)}{\theta^{2}}\right)=\Theta(\log (1 / \gamma)), r_{s}=\log (n / t)+\log (1 / \gamma) \cdot$ poly $(1 / \theta)=$ $O\left(\log \left(\frac{n}{t \gamma}\right)\right)$.

Let Ext $:\{0,1\}^{t} \times\{0,1\}^{d_{1}} \rightarrow\{0,1\}^{m}$ be a $\left((\delta-3 \tau) t, \epsilon_{1}\right)$-extractor following from Lemma 2.6 where ϵ_{1} can be $2^{-\Omega(k)}$. As a result,

$$
\mathrm{SD}\left(U \circ \operatorname{Ext}_{1}(W, U), U^{\prime}\right) \leq \epsilon_{1},
$$

where U, U^{\prime} are uniform distributions. Also $d_{1}=O\left(\log \left(t / \epsilon_{1}\right)\right), m=\Theta(\delta t)=\Theta(\log (1 / \gamma))$.
As a result, the sample-then-extract procedure gives an extractor with the error

$$
\gamma+2^{-\Omega(\tau n)}+\epsilon_{1} .
$$

According to our settings, $\gamma+2^{-\Omega(\tau n)}$ can be as small as $2^{-\Omega(k)}$ when $\gamma=2^{-\Omega(k)}$ and ϵ_{1} can be $2^{-\Omega(k)}$.
Thus the error of the extractor can be $2^{-\Omega(k)}$ by setting $2^{-\Omega(\tau n)} \leq 0.1 \epsilon, \gamma=0.1 \epsilon, \epsilon_{1}=0.1 \epsilon$.
The seed length is $r_{s}+d_{1}=\Theta(\log (n / t)+\log (1 / \gamma))+\Theta\left(\log \left(t / \epsilon_{1}\right)\right)=\Theta(\log (n / \epsilon))$.
The locality is $t=O(\log (1 / \epsilon))$. This is because when the seed is fixed, we select t bits from X by sampling. After that, we apply Ext ${ }_{1}$ on these t bits. So each output bit depends on t bits when the seed is fixed.

The output length $m=\Theta(\delta t)=\Theta(\log (1 / \gamma))=\Theta(\log (1 / \epsilon))$.
Next we construct extractors with small locality and exponentially small errors.
First we give the construction for error reduction.
Construction 6.3 (Error Reduction for Sparse Extractors with Exponentially Small Errors). For any $k=$ $\frac{n}{\text { poly }(\log n)}$, let X be an (n, k)-source. We construct a strong (k, ϵ)-extractor Ext : $\{0,1\}^{n} \times\{0,1\}^{d} \rightarrow$ $\{0,1\}^{m}$ where ϵ can be as small as $2^{-k^{\Omega(1)}}, d=\Theta\left(\log n+\frac{\log ^{2}(1 / \epsilon)}{\log n}\right), m=k^{\Theta(1)}$.

- Let $\operatorname{Ext}_{0}:\{0,1\}^{n_{0}=n} \times\{0,1\}^{d_{0}} \rightarrow\{0,1\}^{m_{0}}$ be a $\left(k_{0}, \epsilon_{0}\right)$-extractor following from Theorem 3.11 where $k_{0}=k-\Delta_{1}, \Delta_{1}=\log (n / \epsilon), \epsilon_{0}=k^{-\Theta(1)}, d_{0}=\Theta(\log n), m_{0}=k^{\Theta(1)}$.
- Let $\operatorname{Ext}_{1}:\{0,1\}^{n_{1}=m_{0} / t_{2}} \times\{0,1\}^{d_{1}} \rightarrow\{0,1\}^{m_{1}}$ be $a\left(k_{1}, \epsilon_{1}\right)$-extractor following from Lemma 6.2 where $k_{1}=0.9 n_{1}, \epsilon_{1}=2^{-\Omega\left(k_{1}\right)}, d_{1}=O\left(\log \left(n / \epsilon_{1}\right)\right), m_{1}=\Theta\left(\log \left(1 / \epsilon_{1}\right)\right)$.
- Let t_{1} be such that $\left(2 \epsilon_{0}\right)^{t_{1}} \leq 0.1 \epsilon$. (We only consider the case that $\epsilon<\epsilon_{0}$. If $\epsilon \geq \epsilon_{0}$, we set Ext to be Ext_{0}.)
- Let $t_{2}=m_{0}^{1 / 3}$.

Our construction is as follows.

1. Let $R_{1}, R_{2}, \ldots, R_{t_{1}}$ be independent uniform distributions such that for every $i \in\left[t_{1}\right]$ the length of R_{i} is d_{0}. Get $Y_{1}=\operatorname{Ext}_{0}\left(X, R_{1}\right), \ldots, Y_{t_{1}}=\operatorname{Ext}_{0}\left(X, R_{t_{1}}\right)$.
2. Get $Y=Y_{1} \circ Y_{2} \circ Y_{3} \circ \cdots \circ Y_{t_{1}}$.
3. For each $i \in\left[t_{1}\right]$, let $Y_{i}=Y_{i, 1} \circ Y_{i, 2} \circ \cdots \circ Y_{i, t_{2}}$ such that for every $j \in\left[t_{2}\right], Y_{i, j}$ has length $n_{1}=m_{0} / t_{2}$. Let $S_{1}, S_{2}, \ldots, S_{t_{1}}$ be independent uniform distributions, each having length d_{1}. Get $Z_{i, j}=\operatorname{Ext}_{1}\left(Y_{i, j}, S_{i}\right), \forall i \in\left[t_{1}\right], j \in\left[t_{2}\right.$. Let $Z_{i}=Z_{i, 1} \circ Z_{i, 2} \circ \cdots Z_{i, t_{2}}$.
4. Let $R=\bigcirc_{i} R_{i}, S=\bigcirc_{i} S_{i}$. We get $\operatorname{Ext}(X, U)=Z=\bigoplus_{i}^{t_{1}} Z_{i}$ where $U=R \circ S$.

Theorem 6.4. For any $k=\frac{n}{\text { poly }(\log n)}$, there exists an explicit construction of a strong (k, ϵ)-extractor Ext : $\{0,1\}^{n} \times\{0,1\}^{d} \rightarrow\{0,1\}^{m}$, where ϵ can be as small as $2^{-k^{\Omega(1)}}, d=\Theta\left(\log n+\frac{\log ^{2}(1 / \epsilon)}{\log n}\right), m=$ $\Theta\left(\delta n \frac{1}{10800} \log \left(\frac{1}{\epsilon}\right)\right)=k^{\Theta(1)}$ and the locality is $\log ^{2}(1 / \epsilon) \operatorname{poly}(\log n)$.

Proof Sketch. The proof is almost the same as that of Theorem 4.13. We only need to make sure the parameters are correct.

There are two differences between Construction 6.3 and Construction 4.6. First, in Construction 6.3, the extractor Ext ${ }_{1}$ follows from Theorem 6.1. Second, Construction 6.3 works for ϵ which can be as small as $2^{-k^{\Omega(1)}}$.

We first claim that the function Ext is a (k, ϵ)-extractor. The proof strategy is the same as that of Lemma 4.7, except that the parameters need to be modified.

As $\left(2 \epsilon_{0}\right)^{t_{1}} \leq 0.1 \epsilon, t_{1}=O\left(\frac{\log (1 / \epsilon)}{\log n}\right)$.
According to the proof of Lemma 4.7, the error for Ext is

$$
\left(2 \epsilon_{0}\right)^{t_{1}}+\left(2^{-\Delta_{1}}+\epsilon^{\prime}+\left(\epsilon_{0}^{\prime}+\epsilon_{1}\right) t_{2}\right)
$$

Here $\epsilon^{\prime}, \epsilon_{0}^{\prime}$ follows the same definitions as that in the proof of Lemma 4.7. As a result, we know that both ϵ^{\prime} and ϵ_{0}^{\prime} can be $2^{-k^{\Omega(1)}}$. Also $\Delta_{1}=\log (n / \epsilon), \epsilon_{1}=\epsilon / n$.

As a result $\epsilon=2^{-\Delta_{1}}+\epsilon^{\prime}+\left(\epsilon_{0}^{\prime}+\epsilon_{1}\right) t_{2}$ can be $2^{-k^{\Omega(1)}}$ and the overall error can be at least $2^{-k^{\Omega(1)}}$.
By the same proof as that of Lemma 4.10, we know that the output length is $m=\Theta\left(n \frac{1}{10800} \delta \log \left(\frac{1}{\epsilon}\right)\right)$.
For the seed length, we know that according to the settings of Ext_{0} and Ext_{1}, as $t_{1}=O\left(\frac{\log (1 / \epsilon)}{\log n}\right)$, if $t_{1}=\omega(1)$ then $d=\Theta\left(t_{1} d_{0}+t_{1} d_{1}\right)=\Theta\left(\frac{\log ^{2}(1 / \epsilon)}{\log n}\right)$. If $t=O(1)$, the seed length should be $\Theta(\log n)$ as we need at least run Ext ${ }_{0}$ for once. As a result, the seed length is $\Theta\left(\log n+\frac{\log ^{2}(1 / \epsilon)}{\log n}\right)$.

As the locality of Ext_{0} is $l_{0}=$ poly $(\log n)$ and the locality of Ext_{1} is $l_{1}=O(\log (1 / \epsilon))$, the locality of Ext is $t_{1} \times l_{1} \times l_{0}=\log ^{2}(1 / \epsilon)$ poly $(\log n)$.

Theorem 6.5. For any $k=\delta n=\frac{n}{\text { poly }(\log n)}$ and any constant $\gamma \in(0,1)$, there exists an explicit construction of a strong (k, ϵ)-extractor $\operatorname{Ext}:\{0,1\}^{n} \times\{0,1\}^{d} \rightarrow\{0,1\}^{m}$, where ϵ can be as small as $2^{-k^{\Omega(1)}}, d=k^{\alpha}$ for some constant $\alpha \in(0,1], m=(1-\gamma) k$ and the locality is $\log ^{2}(1 / \epsilon) \operatorname{poly}(\log n)$.

Proof. Let $\epsilon=2^{-k^{\beta}}$ for some very small constant $\beta<1$. Let $\operatorname{Ext}_{0}:\{0,1\}^{n_{0}} \times\{0,1\}^{d_{0}} \rightarrow\{0,1\}^{m_{0}}$ be a $\left(k_{0}, \epsilon_{0}=\epsilon / n\right)$-extractor following from Theorem 6.4. Here $k_{0}=k-t m_{0}-s$ where $s=\log (n / \epsilon)$, $t=(1-\gamma) k / m_{0}$. By lemma 5.4, we know that there exists a $\left(k, \epsilon^{\prime}\right)$-extractor Ext with $\epsilon^{\prime}=t\left(\epsilon_{0}+2^{-s}\right) \leq \epsilon$. The output length is $(1-\gamma) k$.

According to the construction in Lemma 5.4, the locality of Ext is the same as that of Ext ${ }_{0}$ which is $\log ^{2}(1 / \epsilon) \operatorname{poly}(\log n)$. The seed length is $t \times \Theta\left(\log n+\frac{\log ^{2}(1 / \epsilon)}{\log n}\right)=k^{\alpha}$ for some $\alpha \in(0,1]$ as β can be small enough.

7 Randomness Condenser with Small Locality

In this section, we consider constructions of extractor families with small locality by first constructing a condenser family with small locality. Our condenser will be based on random walks on expander graphs and pseudorandom generators for space bounded computation.

7.1 Basic Construction

We give a condense-then-extract procedure by first constructing a randomness condenser.
Theorem 7.1 (Hitting Property of Random Walks [13] Theorem 23.6). Let $G=(V, E)$ be a d-regular graph with $\lambda(G)=\lambda$. Let $B \subseteq V$ such that $|B|=\beta|V|$. Let (B, t) be the event that a random walk of length t stays in B. Then $\operatorname{Pr}[(B, t)] \leq(\beta+\lambda)^{t}$.

Lemma 7.2 ([1] implicit). For every $n \in \mathbb{N}$ and for every $0<\alpha<1$, there is an explicit construction of d-regular Graphs G_{n} which have the following properties.

1. $\lambda \leq \alpha$.
2. G_{n} has n vertices.
3. dis a constant.
4. There exists a poly $(\log n)$-time algorithm that given a label of a vertex v in G_{n} and an index $i \in d$, output the ith neighbour of v in G_{n}.

Lemma 7.3 ([19]). Let $H_{2}(X)=\log (1 / \operatorname{coll}(X))$, $\operatorname{coll}(X)=\operatorname{Pr}_{X_{1}, X_{2}}\left[X_{1}=X_{2}\right]$, where X_{1}, X_{2} are independent random variables having the same distribution as X.

For any random variable X,

$$
2 H_{\infty}(X) \geq H_{2}(X)
$$

Recall that $w(\cdot)$ denotes the weight of the input string as we defined in Section 2.
Lemma 7.4. Given any (n, k)-source X and any string $x \in\{0,1\}^{n}$, with probability $1-2^{-0.5 k}, w(X \oplus x) \geq$ $k /\left(c_{1} \log n\right)$ for any constant $c_{1} \geq 2$; with probability $1-2^{-0.5 k}, w(X \oplus x) \leq n-k /\left(c_{1} \log n\right)$ for any constant $c_{1} \geq 2$.

Proof. The number of strings which have i digits different from x is $\binom{n}{i}$. So the number of strings which have at most $l=k /\left(c_{1} \log n\right)$ digits different from x is at most $\sum_{i=0}^{l}\binom{n}{i} \leq\left(\frac{e n}{l}\right)^{l} \leq 2^{0.5 k}$ for any constant $c_{1} \geq 2$. So with probability at least $1-2^{-0.5 k}, w(X \oplus x) \geq l$.

Also as $\sum_{i=n-l}^{n}\binom{n}{i}=\sum_{i=0}^{l}\binom{n}{i}$, with probability $1-2^{-0.5 k}, w(X \oplus x) \leq n-l$.
Lemma 7.5. Consider a random vector $v \in\{0,1\}^{n}$ where v_{1}, \ldots, v_{n} are independent random bits and $\forall i, \operatorname{Pr}\left[v_{i}=1\right]=p=1 /$ poly (n). For any $\epsilon=1 /$ poly (n), there is an explicit function $f:\{0,1\}^{l} \rightarrow\{0,1\}^{n}$ where $l=O(n \log n)$, such that

$$
\forall i \in[n],\left|\operatorname{Pr}\left[f(U)_{i}=1\right]-p\right| \leq \epsilon
$$

where U is the uniform distribution of length l.
There exists an algorithm A which runs in $O(\log n)$ space and can compute $f(s)_{i}$, given input $s \in$ $\{0,1\}^{l}$ and $i \in[n]$.

Proof. We give the algorithm A which runs in $O(\log n)$ space and can compute $f(s)_{i}$, given input $s \in$ $\{0,1\}^{l}$ and $i \in[n]$.

Assume the binary expression of p is $0 . b_{1} b_{2} b_{3} \ldots$. The algorithm A is as follows. Intuitively, A divides s into n blocks and uses the i th block to generate a bit which simulates v_{i} roughly according to the probability p.

1. Assume that s has n blocks. The i th block is s_{i} where $\left|s_{i}\right|=t=c \log n$ for some constant c. Let $j=1$.
2. If $j=t+1$, go to step 3. If $s_{i, j}<b_{j}$, then set $f(s)_{i}=1$ and stop; if $s_{i, j}>b_{j}$, set $f(s)_{i}=0$ and stop; if $s_{i, j}=b_{j}$, set $j=j+1$ and go to step 2 .
3. Set $f(s)_{i}=1$ and stop.

For every i, the probability

$$
\operatorname{Pr}\left[f(s)_{i}=1\right]=\operatorname{Pr}\left[0 . s_{i, 1} \ldots s_{i, t} \leq 0 . b_{1} b_{2} \ldots b_{t}\right]=0 . b_{1} b_{2} \ldots b_{t}
$$

As a result,

$$
\forall i \in[n],\left|\operatorname{Pr}\left[f(s)_{i}=1\right]-\operatorname{Pr}\left[v_{i}=1\right]\right| \leq 0.00 \ldots b_{t+1} b_{t+2} \ldots \leq 2^{-t}=2^{-c \log n}
$$

For any $\epsilon=1 /$ poly (n), if c is large enough, then $2^{-t}=2^{-c \log n} \leq \epsilon$.
The input length for f is $l=n \times t=O(n \log n)$.
As all the iterators and variables in A only need $O(\log n)$ space, A runs in space $O(\log n)$. This proves our conclusion.

Construction 7.6. For any $k=\Omega\left(\log ^{2} n\right)$, we construct an $\left(n, k, t=10 k, 0.1 k, \epsilon_{c}=2^{-0.1 k}\right)$-condenser Cond : $\{0,1\}^{n} \times\{0,1\}^{d} \rightarrow\{0,1\}^{t}$ with $d=O(n \log n)$ and locality $c=n / l, l=\frac{k}{2 \log n}$.

1. Construct an expander graph $G=(V, E)$ where $V=\{0,1\}^{r_{0}=O(n \log n)}$ and $\lambda=0.01$.
2. Use a uniform random string U_{1} of length r_{0} to select a vertex v_{1} of V.
3. Take a random walk on G starting from v_{1} to get v_{2}, \ldots, v_{t} for $t=10 k$.
4. For $i \in[t]$, get an n-bit string $v_{i}^{\prime}=f\left(v_{i}\right)$ such that $\forall j \in[n], \operatorname{Pr}\left[v_{i, j}^{\prime}=1\right]-1 / l \mid \leq 1 / n^{2}$, where $f:\{0,1\}^{r_{0}} \rightarrow\{0,1\}^{n}$ follows from Lemma 7.5, $r_{0}=O(n \log n)$.
5. Let $M=\left(v_{1}^{\prime}, \ldots, v_{t}^{\prime}\right)^{T}$.
6. Let $\operatorname{Cond}(x, u)=M x$.

Let $V^{\prime}=\{0,1\}^{n}$. Let $B_{i}=\left\{v \in V^{\prime}: w(v)=i\right\}, i \in[d]$. Let $A_{x, j}=\left\{v \in B_{j}:\langle v, x\rangle=0\right\}$.
For any $x \in\{0,1\}^{n}$, let $V_{x}=\{v \in V:\langle f(v), x\rangle=0\}$. Let $T=\{v \in V: w(f(v)) \in[0.8 c, 1.2 c]\}$.
Lemma 7.7. In Construction 7.6, with probability $1-2 \exp \{-\Theta(c)\}, w\left(v_{1}^{\prime}\right) \in[0.8 c, 1.2 c]$. That is,

$$
\frac{|T|}{|V|} \geq 1-2 \exp \{-\Theta(c)\}
$$

Proof. According to our construction, $\forall i \in[n], \operatorname{Pr}\left[v_{1, i}^{\prime}=1\right] \in\left[1 / l-1 / n^{2}, 1 / l+1 / n^{2}\right]$. As a result, $\mathbf{E} w\left(v_{1}^{\prime}\right) \in[n / l-1 / n, n / l+1 / n]=[c-1 / n, c+1 / n]$. According to Chernoff Bound, we know that $\operatorname{Pr}\left[w\left(v_{1}^{\prime}\right) \in[0.8 c, 1.2 c]\right] \geq \operatorname{Pr}\left[w\left(v_{1}^{\prime}\right) \in\left[0.9 \mathbf{E} w\left(v_{1}^{\prime}\right), 1.1 \mathbf{E} w\left(v_{1}^{\prime}\right)\right]\right] \geq 1-2 \exp \{-\Theta(c)\}$.

Lemma 7.8. In construction 7.6, we have the following conclusions.

1. For any $x \in\{0,1\}^{n}$ with $w(x) \in[l, n-l]$, for any integer $j \in[0.8 c, 1.2 c], \beta_{x, j}=\left|A_{x, j}\right| /\left|B_{j}\right| \leq 5 / 6$.
2. For any $x \in\{0,1\}^{n}$ with $w(x) \in[l, n-l],\left|V_{x}\right| /|V| \leq 5 / 6+1 / \operatorname{poly}(n)$.
3. $\operatorname{Pr}\left[M X_{1}=M X_{2}\right]=p_{0} \leq 2^{-0.5 k+1}+(5 / 6+1 / \operatorname{poly}(n)+\lambda)^{t}$ where X_{1}, X_{2} are independent random variables that both have the same distribution as X.
4. $U_{d} \circ \operatorname{Cond}\left(X, U_{d}\right)$ is $p_{0}^{1 / 3}$-close to $U_{d} \circ W$. Here U_{d} is a uniform distribution of length d. For every $u,\left.W\right|_{U_{d}=u}$ has entropy $\frac{1}{3} \log \frac{1}{p_{0}}$.
5. $U_{d} \circ \operatorname{Cond}\left(X, U_{d}\right)$ is $\epsilon_{c}=2^{-0.1 k}$-close to $U_{d} \circ W$ where $\forall u \in\{0,1\}^{d},\left.W\right|_{U_{d}=u}$ has entropy $d+0.1 k$.

Proof. We know that

$$
\beta_{x, j}=\frac{1}{2}\left(1+\frac{\sum_{i=0}^{\min \{w(x), j\}}\binom{w(x)}{i}\binom{n-w(x)}{j-i}(-1)^{i}}{\binom{n}{j}}\right) .
$$

Because $\langle v, x\rangle=0$ happens if and only if $\left|\left\{i \in[n]: x_{i}=v_{i}=1\right\}\right|$ is even.
Let $\Delta=\sum_{i=0}^{\min \{w(x), j\}}\binom{w(x)}{i}\binom{n-w(x)}{j-i}(-1)^{i}$.
Consider the series $\Delta_{i}=\binom{w(x)}{i}\binom{n-w(x)}{j-i}, i=0,1, \ldots, \min \{w(x), j\}$. Let $\Delta_{i} \geq \Delta_{i+1}$, we can get

$$
i \geq \frac{j w(x)-n+w(x)+j-1}{n+2} \in\left[\frac{0.8 w(x)}{l}-3, \frac{1.2 w(x)}{l}\right]
$$

Let $\Delta_{i-1} \leq \Delta_{i}$, we can get

$$
i \leq \frac{j w(x)+w(x)+j+1}{n-2} \in\left[\frac{0.8 w(x)}{l}, \frac{1.2 w(x)}{l}+3\right] .
$$

So series $\Delta_{i}, i=0,1, \ldots, \min \{w(x), j\}$ has its maximum for some $i \in\left[\frac{0.8 w(x)}{l}-3, \frac{1.2 w(x)}{l}+3\right]$.
To make it simpler, first we consider the situation that $0<\frac{w(x)}{l}-3$ and $j>\frac{w(x)}{l}+3$.

Let $i^{\prime}=\arg \max _{i}\left\{\Delta_{i}\right\}$ which is in $\left[\frac{w(x)}{l}-3, \frac{w(x)}{l}+3\right]$. Consider $\Delta_{i^{\prime}} / \Delta_{i^{\prime}-1}$. Let $i^{\prime}=\frac{\theta w(x)}{l}+\delta$ for some $\theta \in[0.8,1.2], \delta \in[-3,3]$.

$$
\begin{align*}
\frac{\Delta_{i^{\prime}}}{\Delta_{i^{\prime}-1}} & =\frac{w(x)-i^{\prime}+1}{i^{\prime}} \cdot \frac{j-i^{\prime}+1}{n-w(x)-j+i^{\prime}} \\
& =\frac{w(x)-\frac{\theta}{l} w(x)-\delta+1}{\frac{\theta}{l} w(x)+\delta} \cdot \frac{j-\frac{\theta}{l} w(x)-\delta+1}{n-w(x)-j+\frac{\theta}{l} w(x)+\delta} \tag{19}
\end{align*}
$$

The first term

$$
\frac{w(x)-\frac{\theta}{l} w(x)-\delta+1}{\frac{\theta}{l} w(x)+\delta}=l+O(1) .
$$

As $j \in[0.8 c, 1.2 c]$, we know

$$
\frac{n-w(x)-j+\frac{\theta}{l} w(x)+\delta}{j-\frac{\theta}{l} w(x)-\delta+1} \geq \frac{n-w(x)-0.8 c+\frac{\theta}{l} w(x)+3}{0.8 c-\frac{\theta}{l} w(x)-2} \geq \frac{5 l}{6}
$$

So $\frac{\Delta_{i^{\prime}}}{\Delta_{i^{\prime}-1}} \leq 2$.
As $\binom{n}{c} \geq \Delta_{i^{\prime}}+\Delta_{i^{\prime}-1}$, we know $\frac{\Delta_{i^{\prime}}}{\binom{n}{c}} \leq 2 / 3$. Thus $\beta_{x} \leq 1 / 2\left(1+\frac{\Delta_{i^{\prime}}}{\binom{n}{c}}\right) \leq 5 / 6$.
If either 0 or j is in $\left[\frac{w(x)}{l}-3, \frac{w(x)}{l}+3\right]$, to prove our conclusion, we only need to check the situation that $i^{\prime}=0$ and $i^{\prime}=j$.

If $i^{\prime}=0$ or j then,

$$
\beta_{x, j} \leq \frac{1}{2}\left(1+\frac{\binom{n-l}{j}}{\binom{n}{j}}\right) \leq \frac{1}{2}\left(1+\left(1-\frac{l}{n}\right)^{j}\right) \leq \frac{1}{2}\left(1+\left(1-\frac{l}{n}\right)^{0.8 n / l}\right) \leq 3 / 4
$$

For the second assertion, let's consider the expander graph $G=(V, E)$. Assume v is a random node uniformly drawn from V. For any $i \in[n]$, the conditional random variable $\left.f(v)\right|_{w(f(v))=i}$ is uniformly distributed on B_{i}. This is because v is uniform, thus $v_{j}^{\prime}, j \in[n]$ are independently identically distributed according to Lemma 7.5. So $\operatorname{Pr}\left[\left.f(v)\right|_{w(f(v))=i}=v^{\prime}\right], v^{\prime} \in B_{i}$ are all equal.

According to the Union Bound,

$$
\begin{align*}
\left|V_{x}\right| /|V| & \leq(1-\operatorname{Pr}[w(f(v)) \in[0.8 c, 1.2 c]])+\sum_{i \in[0.8 c, 1.2 c]} \operatorname{Pr}[w(f(v))=i] \frac{\left|A_{x, i}\right|}{\left|B_{i}\right|} \\
& \leq(1-\operatorname{Pr}[w(f(v)) \in 0.8 c, 1.2 c])+\sum_{i \in[0.8 c, 1.2 c]} \operatorname{Pr}[w(f(v))=i] \times 5 / 6 \tag{20}\\
& \leq 2 \exp \{-\Theta(c)\}+5 / 6 .
\end{align*}
$$

Our assertion follows as $c=n / l \geq 2 \log n$.
For the 3rd assertion, let's consider $\operatorname{Pr}[M X=0]$ when $l \leq w(X) \leq n-l$.
By Theorem 7.1, for any x such that $l \leq w(x) \leq n-l, \operatorname{Pr}[M x=0] \leq\left(\frac{\left|V_{x}\right|}{|V|}+\lambda\right)^{t}$. Here $\frac{\left|V_{x}\right|}{|V|} \leq$ $5 / 6+1 /$ poly (n).

Let X_{1}, X_{2} be independent random variables and have the same distribution as X.

$$
p_{0}=\operatorname{Pr}_{X_{1}, X_{2}}\left[M X_{1}=M X_{2}\right]=\sum_{x_{2} \in \operatorname{supp}\left(X_{2}\right)} \operatorname{Pr}\left[X_{2}=x_{2}\right] \cdot \operatorname{Pr}\left[M X_{1}=M x_{2}\right]
$$

For any fixed $x_{2} \in \operatorname{supp}\left(X_{2}\right)$, let $X^{\prime}=X_{1} \oplus x_{2}$. So $\operatorname{Pr}\left[M X_{1}=M x_{2}\right]=\operatorname{Pr}\left[M X^{\prime}=\mathbf{0}\right]$. We know that X^{\prime} is also an (n, k)-source. As a result, we have the following.

$$
\begin{align*}
& \operatorname{Pr}\left[M\left(X^{\prime}\right)=0\right] \\
\leq & \operatorname{Pr}\left[w\left(X^{\prime}\right) \notin[l, n-l]\right]+\operatorname{Pr}\left[w\left(X^{\prime}\right) \in[l, n-l]\right] \times \operatorname{Pr}\left[M X^{\prime}=\left.\mathbf{0}\right|_{w\left(X^{\prime}\right) \in[l, n-l]}\right] \\
\leq & \operatorname{Pr}\left[w\left(X^{\prime}\right) \notin[l, n-l]\right]+\operatorname{Pr}\left[M X^{\prime}=\left.\mathbf{0}\right|_{w\left(X^{\prime}\right) \in[l, n-l]}\right] \\
\leq & \operatorname{Pr}\left[w\left(X^{\prime}\right) \notin[l, n-l]\right]+\left(\frac{\left|V_{x}\right|}{|V|}+\lambda\right)^{t} \tag{21}\\
\leq & \operatorname{Pr}\left[w\left(X^{\prime}\right) \notin[l, n-l]\right]+(5 / 6+1 / \operatorname{poly}(n)+\lambda)^{t} \\
\leq & 2 \times 2^{-0.5 k}+(5 / 6+1 / \operatorname{poly}(n)+\lambda)^{t} .
\end{align*}
$$

Thus,

$$
\begin{align*}
p_{0} & =\sum_{x_{2} \in \operatorname{supp}\left(X_{2}\right)} \operatorname{Pr}\left[X_{2}=x_{2}\right] \cdot \operatorname{Pr}\left[M\left(X_{1} \oplus x_{2}\right)=\mathbf{0}\right] \tag{22}\\
& \leq 2^{-0.5 k+1}+(5 / 6+1 / \operatorname{poly}(n)+\lambda)^{t}
\end{align*}
$$

For the 4th conclusion, let's fix a $M_{u} \in \operatorname{supp}(M)$. We consider $H_{2}\left(M_{u} X\right)$ as the following.

$$
\begin{align*}
H_{2}\left(M_{u} X\right) & =-\log \operatorname{Pr}\left[M_{u} X_{1}=M_{u} X_{2}\right] \\
& =-\log \sum_{x_{1}, x_{2} \in \operatorname{supp}(X)} \operatorname{Pr}\left[X_{1}=x_{1}\right] \operatorname{Pr}\left[X_{2}=x_{2}\right] I_{M_{u} x_{1}=M_{u} x_{2}} \tag{23}
\end{align*}
$$

Here I_{e} is the indicator function such that $I_{e}=1$ if and only if the event e happens. Here for each x_{1}, x_{2}, $I_{M_{u} x_{1}=M_{u} x_{2}}$ is a fixed value (either 0 or 1 , not a random variable because M_{u} is fixed).

Next let's consider M to be a random variable generated by the seed U_{d}.
Let $Z_{M}=\sum_{x_{1}, x_{2} \in \operatorname{supp}(X)} \operatorname{Pr}\left[X_{1}=x_{1}\right] \operatorname{Pr}\left[X_{2}=x_{2}\right] I_{M x_{1}=M x_{2}}$. We know that

$$
\mathbf{E} Z_{M}=\sum_{x_{1}, x_{2} \in \operatorname{supp}(X)} \operatorname{Pr}\left[X_{1}=x_{1}\right] \operatorname{Pr}\left[X_{2}=x_{2}\right] \operatorname{Pr}\left[M x_{1}=M x_{2}\right]=p_{0} .
$$

So according to Markov's Inequality,

$$
\operatorname{Pr}\left[Z_{M} \geq p_{0}^{2 / 3}\right] \leq p_{0}^{1 / 3}
$$

So with probability at least $1-p_{0}^{1 / 3}$ over M (over $\left.U_{d}\right), Z_{M} \leq p_{0}^{2 / 3}$.
Let's fix $M_{u} \in \operatorname{supp}(M)$ such that $Z_{M_{u}} \leq p_{0}^{2 / 3}$.
Thus

$$
\begin{align*}
H_{\infty}\left(M_{u} X\right) & \geq 1 / 2 H_{2}\left(M_{u} X\right) \\
& =1 / 2\left(-\log \left(Z_{M_{u}}\right)\right) \\
& \geq-1 / 2 \log \left(p_{0}^{2 / 3}\right) \tag{24}\\
& =\frac{1}{3} \log \frac{1}{p_{0}} .
\end{align*}
$$

This concludes that $U_{d} \circ \operatorname{Cond}\left(X, U_{d}\right)=U_{d} \circ M X$ is $p_{0}^{1 / 3}$-close to $U_{d} \circ W$ where for every $u,\left.W\right|_{U_{d}=u}$ has entropy $1 / 3 \log \frac{1}{p_{0}}$.

As we know $p_{0} \leq 2^{-0.5 k+1}+(5 / 6+1 / \text { poly }(n)+\lambda)^{t}, k=\Omega\left(\log ^{2} n\right)$. So if $t=10 k$, then $p_{0}^{1 / 3} \leq 2^{-0.1 k}$.
According to conclusion 5, $U_{d} \circ \operatorname{Cond}\left(X, U_{d}\right)$ is ϵ_{c}-close to $U_{d} \circ W$ where for every $u,\left.W\right|_{U_{d}=u}$ has entropy at least $0.1 k$ where $\epsilon_{c}=2^{-0.1 k}$. This proves the last assertion.

7.2 Seed Length Reduction

The seed length can be shorter by applying the following PRG technique.
Theorem 7.9 (Space Bounded PRG[14]). For any $s>0,0<n \leq 2^{s}$, there exists an explicit PRG $g:\{0,1\}^{r} \rightarrow\{0,1\}^{n}$, such that for any algorithm A using space s,

$$
\left|\operatorname{Pr}\left[A\left(g\left(U_{r}\right)\right)=1\right]-\operatorname{Pr}\left[A\left(U_{n}\right)=1\right]\right| \leq 2^{-s} .
$$

Here $r=O(s \log n)$, U_{r} is uniform over $\{0,1\}^{r}, U_{n}$ is uniform over $\{0,1\}^{n}$.
Lemma 7.10. Let $g:\{0,1\}^{r=O\left(\log ^{2} n\right)} \rightarrow\{0,1\}^{r_{0}=O(n \log n)}$ be the PRG from Lemma 7.9 with error parameter $\epsilon_{g}=1 / \operatorname{poly}(n)$. Replace the 1-3 steps of Construction 7.6 with the following 3 steps.

1. Construct an expander graph $\tilde{G}=(\tilde{V}, \tilde{E})$ where $\tilde{V}=\{0,1\}^{r}$ and $\lambda=0.01$.
2. Use a uniform random string U_{1} of length r to select a vertex \tilde{v}_{1} of \tilde{V}.
3. Take a random walk on \tilde{G} starting from \tilde{v}_{1} to get $\tilde{v}_{2}, \ldots, \tilde{v}_{t}$, for $t=10 \mathrm{k}$. Let $v_{i}=g\left(\tilde{v}_{i}\right), i=1, \ldots, t$.

Let $\tilde{V}_{x}=\{v \in \tilde{V}:\langle f(g(v)), x\rangle=0\}$. We have the following conclusions.

1. For any $x \in\{0,1\}^{n}$ such that $w(x) \in[l, n-l]$,

$$
\left|\frac{\left|\tilde{V}_{x}\right|}{|\tilde{V}|}-\frac{\left|V_{x}\right|}{|V|}\right| \leq \epsilon_{g} .
$$

2. $p_{0}=\operatorname{Pr}\left[M X_{1}=M X_{2}\right] \leq 2^{-0.5 k+1}+(5 / 6+1 / \operatorname{poly}(n)+\lambda)^{t}$ where X_{1}, X_{2} are independent random variables that both have the same distribution as X.
3. $U_{d} \circ \operatorname{Cond}\left(X, U_{d}\right)$ is $p_{0}^{1 / 3}$-close to $U_{d} \circ W$. Here U_{d} is a uniform distribution of length d. For every u, $\left.W\right|_{U_{d}=u}$ has entropy $\frac{1}{3} \log \frac{1}{p_{0}}$.
4. $U_{d} \circ \operatorname{Cond}\left(X, U_{d}\right)$ is $\epsilon_{c}=2^{-0.1 k}$-close to $U_{d} \circ W$ where $\forall u \in\{0,1\}^{d},\left.W\right|_{U_{d}=u}$ has entropy $d+0.1 k$.

Proof. Consider the following algorithm A which decides whether $v \in V_{x}$ on input (v, x).

```
Algorithm 1: Algorithm \(A(v, x)\)
    Input: \(v \in\{0,1\}^{r_{0}}\) and \(x \in\{0,1\}^{n}\)
    res \(=0\);
    for \(i=1\) to \(n\) do
        compute \(f(v)_{i}\);
        if \(f(v)_{i}=1\) then
            res \(=\operatorname{res}+f(v)_{i} \cdot x_{i} ;\)
        end
    end
    if res \(=0\) then Output 1 ;
    else Output 0 ;
```

We can see that algorithm A runs in space $O(\log n)$ because $f(v)_{i}, i=1, \ldots, n$ can be computed sequentially by using $O(\log n)$ space according to Lemma 7.5 and all the other variables need $O(\log n)$ space to record. Also $A(v, x)=1$ if and only if $v \in V_{x}$. So $\operatorname{Pr}\left[A\left(U_{r_{0}}, x\right)=1\right]=\frac{\left|V_{x}\right|}{|V|}$.

Similarly, we can see $\operatorname{Pr}\left[A\left(g\left(U_{r}\right), x\right)=1\right]=\frac{\left|\tilde{V}_{x}\right|}{|\tilde{V}|}$.
According to the definition of our PRG g, we know that,

$$
\left|\operatorname{Pr}\left[A\left(g\left(U_{r}\right), x\right)=1\right]-\operatorname{Pr}\left[A\left(U_{r_{0}}, x\right)=1\right]\right| \leq \epsilon_{g} .
$$

So

$$
\left|\frac{\left|\tilde{V}_{x}\right|}{|\tilde{V}|}-\frac{\left|V_{x}\right|}{|V|}\right| \leq \epsilon_{g} .
$$

For the 2 nd assertion, let's consider $\operatorname{Pr}[M X=0]$ when $l \leq w(X) \leq n-l$.
By Theorem 7.1, for any x such that $l \leq w(x) \leq n-l, \operatorname{Pr}[M x=\mathbf{0}] \leq\left(\frac{\left|\tilde{V}_{x}\right|}{|\tilde{V}|}+\lambda\right)^{t}$.
Let X_{1}, X_{2} be independent random variables and have the same distribution as X.

$$
p_{0}=\sum_{x_{2} \in \operatorname{supp}\left(X_{2}\right)} \operatorname{Pr}\left[X_{2}=x_{2}\right] \cdot \operatorname{Pr}\left[M X_{1}=M x_{2}\right]
$$

For any fixed $x_{2} \in \operatorname{supp}\left(X_{2}\right)$, let $X^{\prime}=X_{1} \oplus x_{2}$. So $\operatorname{Pr}\left[M X_{1}=M x_{2}\right]=\operatorname{Pr}\left[M X^{\prime}=\mathbf{0}\right]$. We know that X^{\prime} is also an (n, k)-source. As a result, we have the following.

$$
\begin{align*}
& \operatorname{Pr}\left[M\left(X^{\prime}\right)=0\right] \\
\leq & \operatorname{Pr}\left[w\left(X^{\prime}\right) \notin[l, n-l]\right]+\operatorname{Pr}\left[w\left(X^{\prime}\right) \in[l, n-l]\right] \times \operatorname{Pr}\left[M X^{\prime}=\left.\mathbf{0}\right|_{w\left(X^{\prime}\right) \in[l, n-l]}\right] \\
\leq & \operatorname{Pr}\left[w\left(X^{\prime}\right) \notin[l, n-l]\right]+\operatorname{Pr}\left[M X^{\prime}=\left.\mathbf{0}\right|_{w\left(X^{\prime}\right) \in[l, n-l]}\right] \\
\leq & \operatorname{Pr}\left[w\left(X^{\prime}\right) \notin[l, n-l]\right]+\left(\frac{\left|\tilde{V}_{x}\right|}{|\tilde{V}|}+\lambda\right)^{t} \tag{25}\\
\leq & \operatorname{Pr}\left[w\left(X^{\prime}\right) \notin[l, n-l]\right]+\left(\frac{\left|V_{x}\right|}{|V|}+\epsilon_{g}+\lambda\right)^{t} \\
\leq & \operatorname{Pr}\left[w\left(X^{\prime}\right) \notin[l, n-l]\right]+(5 / 6+1 / \operatorname{poly}(n)+\lambda)^{t} \\
\leq & 2 \times 2^{-0.5 k}+(5 / 6+1 / \operatorname{poly}(n)+\lambda)^{t} .
\end{align*}
$$

Thus,

$$
\begin{align*}
p_{0} & =\sum_{x_{2} \in \operatorname{supp}\left(X_{2}\right)} \operatorname{Pr}\left[X_{2}=x_{2}\right] \cdot \operatorname{Pr}\left[M\left(X_{1} \oplus x_{2}\right)=\mathbf{0}\right] \tag{26}\\
& \leq 2^{-0.5 k+1}+(5 / 6+1 / \operatorname{poly}(n)+\lambda)^{t}
\end{align*}
$$

Conclusion 3 and 4 follow the same proof as that of Lemma 7.8.

Theorem 7.11. For any $k=\Omega\left(\log ^{2} n\right)$, there exists an explicit construction of an $\left(n, k, 10 k, 0.1 k, 2^{-0.1 k}\right)$ condenser with seed length $\Theta(k)$.

Proof. According to Lemma 7.10, it immediately follows that the function Cond in Construction 7.6 is an $\left(n, k, t, 0.1 k, \epsilon_{c}\right)$-condenser for $t=10 k, \epsilon_{c}=2^{-0.1 k}$.

Now consider the seed length. We know that $\left|U_{1}\right|=\Theta\left(\log ^{2} n\right)$. For the random walks, the random bits needed have length $\Theta(t)=\Theta(k)$. So the seed length is $\left|U_{1}\right|+\Theta(t)=\Theta(k)$.

7.3 Locality Control

There is one problem left in our construction. We want the locality of our extractor to be small. However, in the current construction, we cannot guarantee that the locality is small, because the random walk may hit some vectors that have large weights. We bypass this barrier by setting these vectors to be 0 .

We need the following Chernoff Bound for random walks on expander graphs.
Lemma 7.12 ([9]). Let G be a regular graph with N vertices where the second largest eigenvalue is λ. For every $i \in[t]$, let $f_{i}:[N] \rightarrow[0,1]$ be any function. Consider a random walk $v_{1}, v_{2}, \ldots, v_{t}$ in G from a uniform start-vertex v_{1}. Then for any $\epsilon>0$,

$$
\operatorname{Pr}\left[\left|\sum_{i=1}^{t} f\left(v_{i}\right)-\sum_{i=1}^{t} \mathbf{E} f_{i}\right| \geq \epsilon t\right] \leq 2 e^{-\frac{\epsilon^{2}(1-\lambda) t}{4}} .
$$

Now we give our final construction.
Construction 7.13. For any $k=\Omega\left(\log ^{2} n\right)$, we construct an $\left(n, k, t=10 k, 0.08 k, \epsilon_{c}\right)$-condenser Cond: $\{0,1\}^{n} \times\{0,1\}^{d} \rightarrow\{0,1\}^{t}$ with $d=\Theta(k)$, locality $c=n / l, l=\frac{k}{2 \log n}, \epsilon_{c}=2^{-k / 500000}$.

Let $g:\{0,1\}^{r=O\left(\log ^{2} n\right)} \rightarrow\{0,1\}^{r_{0}=O(n \log n)}$ be the $P R G$ from Lemma 7.9 with error parameter $\epsilon_{g}=$ $1 /$ poly (n).

1. Construct an expander graph $\tilde{G}=(\tilde{V}, \tilde{E})$ where $\tilde{V}=\{0,1\}^{r}$ and $\lambda(\tilde{G})=0.01$ where $r=$ $O\left(\log ^{2} n\right)$.
2. Using a uniform random string U_{1} of length r to select a vertex \tilde{v}_{1} of \tilde{V}.
3. Take a random walk on \tilde{G} to get $\tilde{v}_{2}, \ldots, \tilde{v}_{t}$. Let $v_{i}=g\left(\tilde{v}_{i}\right), i=1, \ldots, t$.
4. For $i \in[t]$, get an n-bit string $v_{i}^{\prime}=f\left(v_{i}\right)$ such that $\forall j \in[n], \operatorname{Pr}\left[v_{i, j}^{\prime}=1\right]-1 / l \mid \leq 1 / n^{2}$, where $f:\{0,1\}^{r_{0}} \rightarrow\{0,1\}^{n}$ follows from Lemma 7.5, $r_{0}=O(n \log n)$.
5. Let $M=\left(v_{1}^{\prime}, \ldots, v_{t}^{\prime}\right)^{T}$.
6. Construct the matrix $M^{\prime}=\left(\bar{v}_{1}, \ldots, \bar{v}_{t}\right)$ such that for $i \in[t]$, if $w\left(v_{i}^{\prime}\right)>1.2 c, \bar{v}_{i}=\mathbf{0}$, otherwise $\bar{v}_{i}=v_{i}^{\prime}$.
7. Let $\operatorname{Cond}(x, u)=M^{\prime} x$.

Let $\tilde{T}=\{v \in \tilde{V}: w(f(g(v))) \in[0.8 c, 1.2 c]\}$.
Lemma 7.14. In Construction 7.13, with probability $1-2 e^{-k / 500000}$,

$$
\left|\left\{i: w\left(v_{i}^{\prime}\right) \in[0.8 c, 1.2 c]\right\}\right| \geq 0.998 t
$$

Proof. Consider the following algorithm A. Given $v \in\{0,1\}^{r_{0}}, A$ tests whether $w(f(v)) \in[0.8 c, 1.2 c]$.

```
Algorithm 2: Algorithm \(A(v)\)
    Input: \(v \in\{0,1\}^{r_{0}}\)
    count \(=0\);
    for \(i=1\) to \(n\) do
        compute \(f(v)_{i}\);
        if \(f(v)_{i}=1\) then
            count++;
        end
    end
    if count is in \([0.8 c, 1.2 c]\) then Output 1 ;
    else Output 0 ;
```

It can be seen that A runs in space $O(\log n)$. Because $f(v)_{i}, i=1, \ldots, n$ can be computed sequentially using space $O(\log n)$ according to Lemma 7.5. Also all the iterators and variables used during the computation require only $O(\log n)$ space.

As a result, according to the definition of space bounded PRG, for any $\epsilon_{g}=1 / \operatorname{poly}(n)$,

$$
\left|\operatorname{Pr}\left[A\left(g\left(U_{r}\right)\right)=1\right]-\operatorname{Pr}\left[A\left(U_{r_{0}}\right)=1\right]\right| \leq \epsilon_{g} .
$$

We know that $\operatorname{Pr}\left[A\left(g\left(U_{r}\right)\right)=1\right]=\frac{|\tilde{T}|}{|\tilde{V}|}$ and $\operatorname{Pr}\left[A\left(U_{r_{0}}\right)=1\right]=\frac{|T|}{|V|}$. Thus, $\left|\frac{|\tilde{T}|}{|\tilde{V}|}-\frac{|T|}{|V|}\right| \leq \epsilon_{g}$.
According to Lemma 7.7, $\left\lvert\, \frac{|T|}{|V|} \geq 1-2 \exp \{-\Theta(c)\}\right.$.
As a result, $\frac{|\tilde{T}|}{|\tilde{V}|} \geq 1-2 \exp \{-\Theta(c)\}-\epsilon_{g} \geq 1-1 / \operatorname{poly}(n)$.
Thus for each $i, \operatorname{Pr}[w(f(g(\tilde{v}))) \in[0.8 c, 1.2 c]] \geq 1-1 / \operatorname{poly}(n)$. Let $\mathbf{E} I_{\tilde{v}_{i} \in \tilde{T}}=u$. Then $u \geq 1-$ 1/poly (n).

According to our construction, we can assume $I_{\tilde{v}_{i} \in \tilde{T}}=h\left(\tilde{v}_{i}\right), i=1, \ldots, t$ for some function h. By Lemma 7.12,

$$
\operatorname{Pr}\left[\left|\sum_{i=1}^{t} I_{\tilde{v}_{i} \in \tilde{T}}-\sum_{i=1}^{t} u\right| \geq 0.001 t\right] \leq 2 e^{-\frac{(0.001)^{2}(1-\lambda) t}{4}} \leq 2 e^{-t / 5000000}
$$

We know that $t=10 k$ and $\left|\left\{i: w\left(v_{i}^{\prime}\right) \in[0.8 c, 1.2 c]\right\}\right|=\sum_{i=1}^{t} I_{\tilde{v}_{i} \in \tilde{T}}$. So with probability at least $1-2 e^{-k / 500000}$,

$$
\left|\left\{i: w\left(v_{i}^{\prime}\right) \in[0.8 c, 1.2 c]\right\}\right| \geq \sum_{i=1}^{t} u-0.001 t \geq(1-1 / \operatorname{poly}(n)) t-0.001 t \geq 0.998 t .
$$

Lemma 7.15. The function Cond : $\{0,1\}^{n} \times\{0,1\}^{d}$ in Construction 7.13 is an $\left(n, k, t, 0.08 k, \epsilon_{c}\right)$-condenser with seed length $\Theta(k)$.

Proof. According to Lemma 7.11, we know that for $\epsilon=2^{-0.1 k}, U_{d} \circ M X$ is ϵ-close to $U_{d} \circ W$ where for every $a \in\{0,1\}^{d}, H_{\infty}\left(\left.W\right|_{U_{d}=a}\right)=0.1 k$. Let $M^{\prime} X=h\left(U_{d}, M X\right)$. According to our construction, we know that h is a deterministic function. More specifically, $h(u, y)$ will set the i th coordinate of y to be 0 for any i such that $\tilde{v}_{i} \notin \tilde{T}$. The function h can check $\tilde{v}_{i} \notin \tilde{T}$ according to u deterministically.

As a result,

$$
\begin{align*}
& \operatorname{SD}\left(U_{d} \circ M^{\prime} X, U_{d} \circ h\left(U_{d}, W\right)\right) \\
= & \operatorname{SD}\left(U_{d} \circ h\left(U_{d}, M X\right), U_{d} \circ h\left(U_{d}, W\right)\right) \tag{27}\\
\leq & \operatorname{SD}\left(U_{d} \circ M X, U_{d} \circ W\right)
\end{align*}
$$

$\leq \epsilon$.
Now let's consider the entropy of $U_{d} \circ h\left(U_{d}, W\right)$. let $\epsilon_{0}=2 e^{-k / 500000}$. By Lemma 7.14, for $1-\epsilon_{0}$ fraction of $u \in\{0,1\}^{d}$, there are at most $0.002 t$ bits in $\left.W\right|_{U_{d}=u}$ that are set to be 0 .

As a result, for $1-\epsilon_{0}$ fraction of $u \in\{0,1\}^{d}, u \circ h\left(u,\left.W\right|_{U_{d}=u}\right)$ has entropy $0.1 k-0.002 t \geq 0.08 k$. As a result, $U_{d} \circ h\left(U_{d}, W\right)$ is ϵ_{0}-close to $U_{d} \circ W^{\prime}$ where for every $u \in\{0,1\}^{d},\left.W^{\prime}\right|_{U_{d}=u}$ has entropy $0.08 k$. So $U_{d} \circ M^{\prime} X$ is $\epsilon+\epsilon_{0} \leq 2^{-k / 500000}$-close to $U_{d} \circ W^{\prime}$ where for every $u \in\{0,1\}^{d},\left.W^{\prime}\right|_{U_{d}=u}$ has entropy $0.08 k$.

Lemma 7.16. The locality of Construction 7.13 is $1.2 c=\Theta\left(\frac{n}{k} \log n\right)$.
Proof. As for every M_{i}^{\prime}, the number of 1 s in it is at most $1.2 c$, the locality is $1.2 c=1.2 n / l=\Theta\left(\frac{n}{k} \log n\right)$

Theorem 7.17. For any $k=\Omega\left(\log ^{2} n\right)$, there exists an $\left(n, k, t=10 k, 0.08 k, \epsilon_{c}\right)$-condenser Cond : $\{0,1\}^{n} \times\{0,1\}^{d} \rightarrow\{0,1\}^{t}$ with $d=\Theta(k), \epsilon_{c}=2^{-k / 500000}$ and the locality is $\Theta\left(\frac{n}{k} \log n\right)$.

Proof. It follows from Lemma 7.15 and Lemma 7.16.

Theorem 7.18. For any $k=\Omega\left(\log ^{2} n\right)$, for any constant $\gamma \in(0,1)$, there exists a strong (k, ϵ)-extractor Ext : $\{0,1\}^{n} \times\{0,1\}^{d} \rightarrow\{0,1\}^{m}$, where ϵ can be as small as $2^{-k^{\Omega(1)}}, d=\Theta(k), m=(1-\gamma) k$ and the locality is $\frac{n}{k} \log ^{2}(1 / \epsilon)(\log n)$ poly $(\log k)$.

Proof Sketch. We combine our $\left(n, k, m_{c}=10 k, 0.08 k, \epsilon_{c}=2^{-0.1 k}\right)$-condenser Cond : $\{0,1\}^{n} \times\{0,1\}^{r} \rightarrow$ $\{0,1\}^{m_{c}}$ where $r=\Theta(k)$ from Lemma 7.11 with the $\left(0.08 k, \epsilon_{0}\right)$-extractor $\operatorname{Ext}_{0}:\{0,1\}^{m_{c}} \times\{0,1\}^{d_{0}=k^{\alpha}} \rightarrow$ $\{0,1\}^{m_{0}}$ from Theorem 6.5 for some constant $\alpha \in(0,1]$ and for $\epsilon_{c}=2^{-k^{\Omega(1)}}$.

Let $\operatorname{Ext}(X, U)=\operatorname{Ext}_{0}\left(\operatorname{Cond}\left(X, U_{1}\right), U_{2}\right)$, where $U=U_{1} \circ U_{2}$. We know that $U \circ \operatorname{Ext}(X, U)$ is $\epsilon=\epsilon_{c}+\epsilon_{0}=2^{-k^{\Omega(1)}}$-close to uniform distribution over $\{0,1\}^{\Theta(k)}$.

The locality of Cond is $\Theta\left(\frac{n}{k} \log n\right)$. The locality of Ext_{0} is $\log ^{2}\left(1 / \epsilon_{0}\right)$ poly $(\log k)$. So the overall locality is $\frac{n}{k} \log ^{2}(1 / \epsilon)(\log n)$ poly $(\log k)$. The seed length is $|U|=\left|U_{1}\right|+\left|U_{2}\right|=d_{0}+\Theta(k)=\Theta(k)$.

Our theorem holds by applying the extraction in parallel technique in Lemma 5.4 to increase the output length to $(1-\gamma) k$.

8 Open Problems

Our work leaves many natural open problems. First of all, the error of our AC^{0} extractor can only be as small as $2^{-\operatorname{poly}(\log n)}$, even though the min-entropy is $k \geq n / \operatorname{poly}(\log n)$. Can we get smaller error (e.g., $2^{-k^{\Omega(1)}}$ or even $2^{-\Omega(k)}$? Second, in terms of the seed length and output length, our AC^{0} extractor is only optimal when $k=\Omega(n)$. Is it possible to achieve optimal seed length and output length when $k=n / \operatorname{poly}(\log n)$?

Turning to strong extractor families with small locality, again the parameters of our constructions do not match the parameters of optimal seeded extractors. In particular, our seed length is still $O(k)$ when the minentropy k is small. Can we reduce the seed length further? We note that using our analysis together with the IW-generator/extractor, one can get something meaningful (i.e., a strong extractor family with a relatively
short seed and small locality) even when $k=n^{\alpha}$ for some $\alpha>1 / 2$. But it's unclear how to get below this entropy. In addition, our technique to increase output length fails to preserve locality. Is it possible to develop a locality-preserving technique for output length optimization? Furthermore, in general the locality in our construction is a little worse in terms of the error ϵ than that of [3] (i.e., $\log ^{2}(1 / \epsilon)$ vs. $\log (1 / \epsilon)$). This stems from our error reduction technique. Can we improve it to reduce the locality? Finally, a basic question here is still not clear: what is the correct relation between the six parameters input length n, min-entropy k, seed length d, output length m, error ϵ, and locality ℓ ? It would be nice to obtain a matching upper bound and lower bound, as in the case of standard seeded extractors. We conjecture that a lower bound of locality $\frac{n}{k} \log (n / \epsilon)$ should hold, although we were not able to prove it in general.

References

[1] Sanjeev Arora and Boaz Barak. Computational complexity: a modern approach. Cambridge University Press, 2009.
[2] L. Babai, L. Fortnow, N. Nisan, and A. Wigderson. Bpp has subexponential simulation unless Exptime has publishable proofs. Computational Complexity, 3:307-318, 1993.
[3] Andrej Bogdanov and Siyao Guo. Sparse extractor families for all the entropy. In Proceedings of the 4th conference on Innovations in Theoretical Computer Science, pages 553-560. ACM, 2013.
[4] J. L. Carter and M. N. Wegman. Universal classes of hash functions. Journal of Computer and System Sciences, 18:143-154, 1979.
[5] Anindya De and Luca Trevisan. Extractors using hardness amplification. In RANDOM 2009, 13th International Workshop on Randomization and Approximation Techniques in Computer Science, 2009.
[6] O. Goldreich and A. Wigderson. Tiny families of families with random properties: A quality-size trade-off for hashing. Random Structures and Algorithms, 11:315-343, 1997.
[7] Oded Goldreich, Emanuele Viola, and Avi Wigderson. On randomness extraction in ac0. In 30th Conference on Computational Complexity (CCC 2015), volume 33, pages 601-668. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2015.
[8] Venkatesan Guruswami, Christopher Umans, and Salil Vadhan. Unbalanced expanders and randomness extractors from Parvaresh-Vardy codes. Journal of the ACM, 56(4), 2009.
[9] Alexander D Healy. Randomness-efficient sampling within nc1. Computational Complexity, 17(1):337, 2008.
[10] R. Impagliazzo and A. Wigderson. $\mathrm{P}=\mathrm{BPP}$ if E requires exponential circuits: Derandomizing the XOR lemma. In Proceedings of the 29th Annual ACM Symposium on Theory of Computing, pages 220-229, 1997.
[11] R. Impagliazzo and D. Zuckerman. How to recycle random bits. In Proceedings of the 30th Annual IEEE Symposium on Foundations of Computer Science, pages 248-253, 1989.
[12] Russell Impagliazzo. Hard-core distributions for somewhat hard problems. In Foundations of Computer Science, 1995. Proceedings., 36th Annual Symposium on, pages 538-545. IEEE, 1995.
[13] Stasys Jukna. Extremal combinatorics: with applications in computer science. Springer Science \& Business Media, 2011.
[14] Noam Nisan. Pseudorandom generators for space-bounded computation. Combinatorica, 12:449-461, 1992.
[15] Noam Nisan and Avi Wigderson. Hardness vs randomness. Journal of Computer and System Sciences, 49(2):149-167, October 1994.
[16] Noam Nisan and David Zuckerman. Randomness is linear in space. Journal of Computer and System Sciences, 52(1):43-52, 1996.
[17] R. Raz, O. Reingold, and S. Vadhan. Error reduction for extractors. In Proceedings of the 40th Annual IEEE Symposium on Foundations of Computer Science, pages 191-201, 1999.
[18] Ran Raz, Omer Reingold, and Salil Vadhan. Extracting all the randomness and reducing the error in trevisan's extractors. JCSS, 65(1):97-128, 2002.
[19] Maciej Skórski. Shannon entropy versus renyi entropy from a cryptographic viewpoint. In Cryptography and Coding, pages 257-274. Springer, 2015.
[20] Luca Trevisan. Extractors and pseudorandom generators. Journal of the ACM, pages 860-879, 2001.
[21] S. Vadhan. On constructing locally computable extractors and cryptosystems in the bounded storage model. In Advances in Cryptology - CRYPTO '03, 23 rd Annual International Cryptology Conference, Proceedings, 2003.
[22] Salil P. Vadhan. Constructing locally computable extractors and cryptosystems in the bounded-storage model. J. Cryptology, 17(1):43-77, 2004.
[23] Salil P Vadhan. Pseudorandomness. Now, 2012.
[24] Emanuele Viola. The complexity of constructing pseudorandom generators from hard functions. computational complexity, 13(3-4):147-188, 2005.
[25] D. Zuckerman. Randomness-optimal oblivious sampling. Random Structures and Algorithms, 11:345367, 1997.

[^0]: *kcheng17@jhu.edu. Department of Computer Science, Johns Hopkins University.
 ${ }^{\dagger}$ lixints@cs.jhu.edu. Department of Computer Science, Johns Hopkins University

[^1]: ${ }^{1}$ They also showed how to extract poly $(\log n)$ bits using $O(\log n)$ bits, but the error of the extractor becomes $1 /$ poly $(\log n)$.

