
Noisy Population Recovery from Unknown Noise

Shachar Lovett ∗

University of California, San Diego

Jiapeng Zhang †

University of California, San Diego

Abstract

The noisy population recovery problem is a statistical inference problem, which is a special
case of the problem of learning mixtures of product distributions. Given an unknown distribution
on n-bit strings with support of size k, and given access only to noisy samples from it, where
each bit is flipped independently with some unknown noise probability, estimate from a few
samples the underlying parameters of the model. Previous work designed quasi-polynomial
time algorithms which work under the assumption that the noise parameters are exactly known.
In this work, we remove this assumption, and show how to recover all the underlying parameters,
even when the noise is unknown, in quasi-polynomial time.

∗Email: slovett@cs.ucsd.edu. Research supported by NSF CAREER award 1350481.
†Email: jpeng.zhang@gmail.com. Research supported by NSF CAREER award 1350481.

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Report No. 21 (2016)

1 Introduction

Consider a database of patients in a hospital, where for each patient the database lists a large
number of traits. Researchers are interested in obtaining this database to perform various statistical
studies, but due to privacy concerns the database cannot be released. A possible solution (other
than deleting identifying parameters of patients, such as their name) is to delete information at
random from the database, or even better, add randomness to the information, with the goal that
this will maintain the privacy of the original database, but would still provide researchers with
useful information. The question is: does this process ensure privacy, or can the original database
be recovered (up to its row order) from a lossy or noisy version of it?

The problem of recovery of data from lossy or noisy samples was studied extensively in statistics
in the context of continuous distributions, and was introduced to computer science by Kearns et
al. [KMR+94] who focused on discrete distributions. In this paper, we focus on the binary setting.
Setting parameters, the goal is as follows: given a mixture of k product distributions supported on
{0, 1}n, recover the parameters within accuracy ε as efficiently as possible, by an algorithm which
has access to samples from the overall mixed distribution. As far as we know, this may be possible
to achieve in time poly(n, k, 1/ε) (although, there is some evidence that nlog k might be a lower
bound, see [FOS08]). However, the best known algorithm to date is by [FOS08], whose algorithm
requires running time of poly(n, k, 1/ε)O(k3). Thus, it can only recover mixtures of essentially a
fixed number of product distributions.

A special case of this problem, termed “population recovery”, regained attention recently in
a work by Dvir et al. [DRWY12], who related it to the problem of learning DNFs from partial
information. The main reason is that in this restricted settings, much better dependence on the
sparsity k is possible. It was further studied in [MS13; WY16; BIMP13; LZ15]. This problem is
better described as that of recovering an unknown sparse distribution given noisy samples.

Formally, suppose there is an unknown distribution π over k unknown elements in {0, 1}n (which
we think of as “centers”), and a vector of noise parameters ~µ = (µ1, . . . µn) ∈ [0, 1]n. Samples from
the noisy distribution are obtained as follows:

• Sample a string v ∈ {0, 1}n according to π.

• Output x = v ⊕ e ∈ {0, 1}n, obtained by sampling each ei ∈ {0, 1} independently with
Pr[ei = 0] = (1 + µi)/2.

Note that µi = 1 corresponds to no error in coordinate i, while µi = 0 corresponds to fully
randomizing coordinate i. We denote this noisy distribution by σ(π, ~µ)

The goal is to recover all of the underlying parameters of the model, as efficiently as possible,
given samples from the noisy distribution. Most of the work so far [DRWY12; WY16; LZ15] focused
on the case where the noise distribution is fully known, and moreover µ1 = . . . = µn = µ (we note
that all these works easily extend to the case where µ1, . . . , µn are exactly known, even if they are
not equal). While an unrealistic assumption in practice, the main benefit is that the dependence
on the sparsity of the mixture k can be greatly improved. The best results to date are by [LZ15]
who show that in this case, all underlying parameters can be learned in time poly(n, 1/ε, klog log k),
where we are suppressing the exact dependence on µ. One exception is the work of Batman et
al. [BIMP13], who are able to recover in the same time complexity a superset of points in the
support of π, even under much weaker assumptions on the noise. However, they cannot recover the
remaining parameters (that is, the distribution π and the noise parameters ~µ).

1

1.1 Our results

The goal of the current work is to relax the conditions under which we can learn mixtures of product
distributions. Our main focus is on removing the assumption that the noise parameters have to be
known. This question was posed by [WY16] as an open problem; we resolve it in this work. To do
that, we need to assume that the noise is somewhat bounded. For µ > 0, we say that the noise
parameters ~µ = (µ1, . . . , µn) are µ-bounded if µi ≥ µ for all i ∈ [n].

It is easy to see that, when the noise is a parameter, it is impossible in general to recover the
“true” parameters π, ~µ from the noisy distribution. For example, let n = 1, π(0) = p, π(1) = 1− p
and µ1 = µ. Then the noisy distribution is

σ(0) = p
1 + µ

2
+ (1− p)1− µ

2
=

1 + (2p− 1)µ

2
, σ(1) = 1− σ(0).

So, even given perfect knowledge of σ, we can only recover (2p − 1)µ. So for example, we cannot
distinguish p = 2/3, µ = 1 from p = 3/4, µ = 2/3. Thus, the best that we can is to recover some
π̂, ~̂µ such that the noisy distribution σ(π̂, ~̂µ) is close in statistical distance to the observable noisy
distribution. Thus, it gives a succinct representation to the observable data.

Theorem 1.1 (Main theorem). Fix µ > 0. Let π be an unknown distribution over {0, 1}n of
support size k. Let ~µ ∈ [µ, 1]n be unknown noise parameters. Then, for any ε > 0 there exists an
algorithm which, given samples from σ(π, ~µ), returns

• A distribution π̂ over {0, 1}n of support size at most k.

• A vector ~̂µ ∈ [µ, 1]n of noise parameters.

Such that the noisy distributions σ(π, ~µ), σ(π̂, ~̂µ) are ε-close in statistical distance. The algorithm
requires time poly(nlog k, (1/ε)(log k)

2
, k(log k)

3
), where we surpress the exact dependence on µ.

1.2 Proof overview

Our proof has three steps, the first step is to recover a list of candidates of noise parameters, such
that one of them is very close to the real noise parameters. Our main contribution is the following
theorem.

Theorem 1.2. Let V ⊂ {0, 1}n be an unknown set of size |V | = k, π an unknown probability
distribution on V , ~µ ∈ [µ, 1]n unknown noise parameters. Then, for any ε > 0 there exists an
algorithm which, given samples from the noisy distribution σ = σ(π, ~µ), returns a list L ⊂ [µ, 1]n

of potential noise parameters such that

• There exist µ̂ ∈ L for which ‖µ̂− µ‖∞ ≤ ε.

• |L| ≤ (k/εµ)O(log2 k) · nlog k.

Moreover, the algorithm runs in time poly(|L|).

Once we recovered almost perfect noise parameters, we will run Wigderson-Yehudayoff’s al-
gorithm, which can recover the underlying parameters assuming that the noise parameters are
perfectly known. As part of the analysis, we show that there algorithm is robust, in the sense that
if we know the noise parameters up to a small error, it still succeeds in recovering the remaining
parameters V, π.

2

Theorem 1.3 (Recovering mixture from almost perfect noise parameters). Fix µ > 0.
Let ~µ ∈ [µ, 1]n be a vector of noise parameters, and let ~µ′ ∈ [µ, 1]n be assumed noise parame-
ters, where ‖~µ − ~µ′‖∞ ≤ δ for δ = ε · k−O(log k). Let π be an unknown distribution over {0, 1}n
of support size k. Given access to samples from the noisy distribution corresponding to σ(π, ~µ),
the algorithm given in [WY16], which assumes (erroneously) that ~µ′ are the noise parameters, still
recovers π within accuracy ε in the same running time.

We have so far built a short list of potential candidates for the distribution π and the noise
parameters ~µ. In the last stage, we prune any distribution which does not match the actual
observed noisy distribution. This part is generic and does not rely on the specific properties of our
parametric model, except that we can both sample and compute probability of individual elements.
See Lemma 3.6 for the details.

1.3 Open problems

An obvious open problem is to improve the parameters in Theorem 1.2. Concretely, if we can apply
the method from [LZ15] to the framework of this paper, then it can improve our algorithm runtime
to poly((n · k/ε)(log k)·(log log k)2).

Another open problem is to extend our current algorithm to the more general model of mixtures
of product distributions. We note that in this case, the best algorithms have exponential dependency
on k, in contrast with the current work where the dependence is quasi-polynomial (eg of the form
exp(log(k)O(1)).

2 Preliminaries

2.1 Noisy distributions

We recall and slightly adapt some definitions from the introduction. Let V ⊆ {0, 1}n be a collection
of |V | = k binary vectors, and let π be a distribution on V , called the mixing distribution. Both V
and π are unknown, and our goal is to recover V and π from noisy samples. Let ~µ = (µ1, . . . µn) ∈
[0, 1]n be a vector of (also unknown) noise parameters. We sample from the noisy distribution as
follows:

• Sample a string v ∈ V according to π.

• Output x = v ⊕ e ∈ {0, 1}n, obtained by sampling each ei ∈ {0, 1} independently with
Pr[ei = 0] = (1 + µi)/2.

We denote the resulting noisy distribution by σ(π, ~µ). For 0 < µ < 1, we say that the noise is
µ-bounded if µi ≥ µ for all i ∈ [n].

It will be useful to view this as applying a noise operator to the original distribution. Slightly
abusing notations, identity a distribution π on {0, 1}n with the function π : {0, 1}n → R where
π(x) is the probability that π assigns to x. Let T~µ denote the noise operator operating on functions
f : {0, 1}n → R, defined as

(T~µ ◦ f)(x) = Ee[f(x+ e)],

where e ∈ {0, 1}n is sampled as Pr[ei = 0] = (1 + µi)/2 independently for each i ∈ [n]. Then
σ(π, ~µ) = T~µ ◦ π.

3

For a distribution π on {0, 1}n and S ⊆ [n], define πS to be the marginal distribution on {0, 1}S .
For ~µ let µS = (µi : i ∈ S). Observe that the noisy distribution on S can be obtained by applying
noise to the original distribution on S,

(T~µ ◦ π)S = TµS ◦ πS .

We denote by T−1~µ , T−1µS
the inverse operators, which exist whenever the noise is µ-bounded for any

µ > 1.

2.2 PID graphs

We follow definitions from [WY16]. Let V ⊂ {0, 1}n. A PID graph defined over V is a labeled
directed graph G = (V,E, {Sv : v ∈ V }) defined as follows. The vertices of G are identified with V .
For every v ∈ V , we associate a subset Sv ⊆ [n], called the partial ID (abbreviated PID) of v. For
any S ⊆ [n], denote by v[S] ∈ {0, 1}S the restriction of v to the coordinates in S. The imposters of
v are the set of vertices which agree with v on Sv,

I(v) = {u ∈ V \ {v} : u[Sv] = v[Sv]}.

The edges in G are E = {(v, u) : v ∈ V, u ∈ I(v)}. A partial ID vS is said to be a unique ID
(abbreviated UID) for v ∈ V if I(v) = ∅. That is, v is uniquely identified by its restriction to Sv.

Wigderson and Yehudayoff proved that for any choice of V ⊂ {0, 1}n there exists a choice of
PIDs such that the resulting PID graph is efficient in two ways: the size of the sets Sv, as well as
the depth of of the tree, are both at most logarithmic in V . In this paper, all logarithms are in
base two.

Theorem 2.1 ([WY16]). For any subset V ⊂ {0, 1}n of size |V | = k, there exists a choice of
Sv ⊂ [n] for each v ∈ V , such that

(i) |Sv| ≤ log k for all v ∈ V .

(ii) The PID graph G = (V,E, {Sv : v ∈ V }) has depth ≤ log k.

Moreover, the choices of {Sv : v ∈ V } and the PID graph can be constructed in time poly(n, k).

2.3 Previous work: learning when the noise parameters are known

Several clever ideas introduced in previous works allow to learn the underlying parameters of the
distribution, under the assumption that the noise parameters are known exactly. To recall, the
underlying parameters are as follows: an unknown distribution π over an unknown set in {0, 1}n
of size k. We denote by V ⊂ {0, 1}n the support of π.

First, Dvir et al. [DRWY12] showed that one can reduce to the easier problem, where the
support V of π is known. That is, assuming the existence of an algorithm which can recover π
given V from noisy samples, we wish to recover both V, π. The high level idea is to recover them
one coordinate at a time.First, if n = 1 then we can clearly set V = {0, 1} and recover π. Note
that as we allow π(v) = 0 for some v ∈ V , so its sufficient that V is a superset of the support of π.
Given the restriction of V, π to the first t < n coordinates, we extend them to t+ 1 coordiantes as
follows. First, extend V to all possible values of the t + 1 bit; this at most doubles the size of V .
Then, run our assumed algorith, which learns π given V . Then, delete from V any element whose
probability under π is negligible. Thus, we may assume from now on that V is known while π is

4

unknown; this will only introduce an overhead of n in the overall running time. For the full details,
see the original paper [DRWY12].

Next, we introduce the learning algorithm of [WY16], under the assumption that both V and
the noise parameters are known. It starts by constructing a PID graph for V of depth log k, where
each PID has size ≤ log k. We assume below that µ1, . . . , µn ≥ µ. They do as follows:

• Estimate the restriction of the distribution π to each Sv. As the noise is known exactly, this
can be achieved as follows. First, estimate the noisy distribution σSv . Then compute

π|Sv = T−1µS
◦ σSv .

It can be shown that in order to estimate π|Sv within accuracy ε, we need to estimate σSv

within accuracy εµ|Sv |. Recalling that |Sv| = log k and surprassing the dependence on µ, this
takes poly(k, 1/ε) time.

• Solve equations for π(v) for each v ∈ V . The main idea is to traverse the PID graph from
bottom to top. Given a node v ∈ V , assume that we already recovered π(u) for all his
children, namely for all u ∈ I(v). We also know Pr[π|Sv = v[Sv]] by the first step. Then we
can solve

π(v) = Pr[π|Sv = v[Sv]]−
∑
u∈I(v)

π(u).

Due to approximation errors, if we are aiming for an overall error of ε in approximating π,
it is needed to approximate π|Sv to within error of ε · k−O(log k), where we surpress the exact
dependence on µ. The overall running time of the algorithm is thus poly(n, 1/ε, klog k). See
the original paper [WY16] for details.

We summarize these in the following theorem.

Theorem 2.2 (Recovering mixture from exact noise parameters). Fix µ > 0. Let ~µ ∈
[µ, 1]n be a known vector of noise parameters. Let π be an unknown distribution over {0, 1}n
of support size k. Given access to samples from the noisy distribution corresponding to (π, ~µ), it is
possible to recover π within accuracy ε in time

poly(n, 1/ε, klog k)

where we supress the exact dependence on µ.

We would need a variant of Theorem 2.2 where we assume that the noise parameters are known
not exactly, but up to a very small error, so that the existing algorithms would work as is. That is,
if we are given noisy samples according to (π, ~µ), but instead we believe that the noise parameters
are ~µ′ where |µi − µ′i| ≤ δ for all i ∈ [n] where δ is small enough, then the algorithm given in
Theorem 2.2 would still succeed in producing an ε approximation of π.

To calculate how small δ needs to be, observe that the noisy distribution is used in the algorithm
of [WY16] to estimate π|Sv for all PIDs Sv, v ∈ V . So, they estimate σ|Sv and calculate π|Sv =
T−1
µ′S
◦ σSv instead of π|Sv = T−1

µ′S
◦ σSv .

Claim 2.3. Let ~µ, ~µ′ ∈ [µ, 1]n be two noise distribution such that ‖~µ − ~µ′‖∞ ≤ δ. Then for any
S ⊂ [n] and any distribution σS on {0, 1}S,

‖T−1µS
◦ σS − T−1µ′S

◦ σS‖1 ≤ δ|S|(2/µ)2|S|.

5

We defer the proof to the appendix (Claim A.1). Note that as |Sv| ≤ log k for all v ∈ V , the
statistical distance introduced is δ · poly(k) where we surpress the dependence on µ. To recall, the
algorithm of [WY16] requires an approximation of each π|Sv to within ε · k−O(log k) accuracy; this
requires us to also choose δ = ε · k−O(log k). We summarize this in the following theorem.

Theorem 1.3 (restated). Fix µ > 0. Let ~µ ∈ [µ, 1]n be a vector of noise parameters, and
let ~µ′ ∈ [µ, 1]n be assumed noise parameters, where ‖~µ − ~µ′‖∞ ≤ δ for δ = ε · k−O(log k). Let
π be an unknown distribution over {0, 1}n of support size k. Given access to samples from the
noisy distribution corresponding to σ(π, ~µ), the algorithm given in Theorem 2.2, which assumes
(erroneously) that ~µ′ are the noise parameters, still recovers π within accuracy ε in the same time.

3 Recovering mixtures with unknown noise parameters

Let V ⊂ {0, 1}n be an unknown set of |V | = k vectors, π an unknown distribution on V , and
~µ ∈ [0, 1]n an unknown set of noise parameters which are assumed to be µ-bounded for some
0 < µ < 1. Our goal is to recover the noise parameters, and then apply Theorem 1.3 to recover the
remaining parameters V, π.

Let σ = σ(π, ~µ) = T~µ ◦ π denote the observed distribution. Recall that σS for S ⊆ [n] is the
marginal of σ on S.

3.1 Recovering the noise parameters

Our main contribution is an algorithm which recovers a small list of noise parameters, one of which
is guaranteed to be close to the true noise parameters.

Theorem 1.2 (restated). Let V ⊂ {0, 1}n be an unknown set of size |V | = k, π an unknown
probability distribution on V , ~µ ∈ [µ, 1]n unknown noise parameters. Then, for any ε > 0 there
exists an algorithm which, given samples from the noisy distribution σ = σ(π, ~µ), returns a list
L ⊂ [µ, 1]n of potential noise parameters such that

• There exist µ̂ ∈ L for which ‖µ̂− µ‖∞ ≤ ε.

• |L| ≤ (k/εµ)O(log2 k) · nlog k.

Moreover, the algorithm runs in time poly(|L|, n).
Let V be the unknown population set, and let {Sv ⊆ [n] : v ∈ V } be the (unknown) cor-

responding PIDs guaranteed by Theorem 2.1, so that |Sv| ≤ log k and the resulting PID graph
G = (V,E, {Sv : v ∈ V }) has depth ≤ log k.

For v ∈ V , let d(v) ∈ {1, . . . , log k} denote the depth of v in G, where the root have depth 1
and leaves have depth ≤ log k. Intuitively, the probabilities of nodes with higher depth are easier
to recover, as they have less imposters. To formalize this, we introduce the notion of dominant
elements.

Definition 3.1 (Dominant elements). Let γ := ε/(16k). An element v ∈ V is said to dominant
if π(v) ≥ γd(v), and for each u ∈ I(v), π(u) < γd(u).

Claim 3.2. There exist at least one dominant element v ∈ V .

Proof. Let A = {v ∈ V : π(v) ≥ γd(v)}. If A is nonempty, then any node v ∈ A of maximum depth
is dominant. The set A cannot be empty since this would imply that

1 =
∑
v∈V

π(v) ≤
∑
v∈V

γd(v) ≤ kγ = ε/16 < 1.

6

Assume that v ∈ V is dominant, and that furthermore we know (µi : i ∈ Sv). We next show
how to use this to learn all the other noise parameters.

Claim 3.3. Let v ∈ V be a dominant element and denote S := Sv. Let ρ := T−1µS
◦ σ. For each

i 6∈ S define

µ̂i := 2
ρS∪{i}[vS∪{i}]

ρS(v[S])
− 1.

Then ‖~̂µ− ~µ‖∞ ≤ ε/2, where to recall ~µ are the real noise parameters.

Proof. Let d = d(v). Initially, note that ρS = πS and hence

ρS(v[S]) = π(v[S]) = π(v) +
∑
u∈I(v)

π(u).

By our assumption that v is dominant, we have π(v) ≥ γd and∑
u∈I(v)

π(u) ≤ kγd+1 ≤ (kγ)π(v).

Thus,

1 ≤ ρS(v[S])

π(v)
≤ 1 + kγ.

Next, as ρS∪{i} = Tµi ◦ π then we have

ρS∪{i}(v[S ∪ {i}]) = (Tµi ◦ π)(v[S ∪ {i}])

=
∑

u∈{v}∪Iv ,ui=vi

π(u)(1 + µi)/2 +
∑

u∈∪Iv ,ui 6=vi

π(u)(1− µi)/2.

We thus have
|ρS∪{i}(v[S ∪ {i}])− π(v)(1 + µi)/2| ≤

∑
u∈I(v)

π(u) ≤ (kγ)π(v).

Combining the estimates we obtain that

|ρS∪{i}(v[S ∪ {i}])− ρS(v[S]) · (1 + µi)/2| ≤ 2kγπ(v) ≤ 4kγρS(v[S]).

Hence ∣∣∣∣ρS∪{i}(v[S ∪ {i}])
ρS(v[S])

− 1 + µi
2

∣∣∣∣ ≤ 4kγ.

This implies that |µ̂i − µi| ≤ 8kγ ≤ ε/2.

In order to apply Claim 3.3, we would need to first guess v ∈ V to be dominant, and then
enumerate over µi, i ∈ S. The next claim shows that it suffices to approximate µi within a fine
enough accuracy.

Claim 3.4. Let v ∈ V be a dominant element and denote S := Sv. Let µ′i ∈ [µ, 1] for i ∈ S be
such that |µ′i − µi| ≤ δ for δ = (k/εµ)−O(log k). Define ρ′ := T−1

µ′S
◦ σ. For each i 6∈ S define

µ̂i := 2
ρ′S∪{i}[vS∪{i}]

ρ′S(v[S])
− 1.

Then |µ̂i − µi| ≤ ε for all i ∈ [n].

7

Proof. Let ρ = T−1µS
◦σ be the distribution obtain after removing the correct noises in the coordinates

of S. We will show that as expected, ρ′S∪{i}[vS∪{i}] ≈ ρS∪{i}[vS∪{i}] and ρ′S [vS] ≈ ρS [vS], and then
apply Claim 3.3. Formally, we will show for a small enough η > 0 that

‖ρ′ − ρ‖1 ≤ η.

In the proof of Claim 3.3 we showed that

ρS(v[S]) ≥ π(v) ≥ γ|S|.

Thus, if we choose η = O(ε ·γ|S|) then we would obtain than both the enumerator and denominator
in the definition of µ̂i approximate up to a multiplicative factor of 1 ± O(ε) the corresponding
quantities with ρ instead of ρ′; the claim then follows from Claim 3.3.

So, our goal is to show that for a small enough δ > 0 we obtain ‖ρ′ − ρ‖1 ≤ η. We have

ρ = T−1µS
◦ σ =

(∏
i∈S

T−1µi

)
◦ σ.

Explicitly computing this, the inverse noise operator T−1µ corresponds to the following 2×2 matrix

1

2

(
1 + µ 1− µ
1− µ 1 + µ

)−1
=

1

2µ

(
1 + µ −1 + µ
−1 + µ 1 + µ

)
Thus we have

ρ(x) =
∑

y∈{0,1}n:ySc=xSc

∏
i∈S

(
(−1)xi+yi + µi

2µi

)
σ(y)

and similarly

ρ′(x) =
∑

y∈{0,1}n:ySc=xSc

∏
i∈S

(
(−1)xi+yi + µ′i

2µ′i

)
σ(y).

We can bound ∣∣∣∣∣∏
i∈S

(
(−1)xi+yi + µi

2µi

)
−
∏
i∈S

(
(−1)xi+yi + µi

2µi

)∣∣∣∣∣
≤ 1

µ|S|−1

∑
i∈S

|µ′i − µi|
2µ′iµi

≤ |S|δ
µ|S|+1

.

where we assume µ′i, µi ≥ µ and |µ′i − µi| ≤ δ. Thus

‖ρ′ − ρ‖1 ≤
|S|δ2|S|

µ|S|+1
≤ δ(k/µ)klog(1/µ) log k.

we to obtain ‖ρ′ − ρ‖1 ≤ O(εγ|S|) we need to choose δ = (k/εµ)−O(log k).

In final step, we need to argue that given some noise parameters µ′ we can estimate ρ′.

8

Claim 3.5. Fix S ⊆ [n], noise parameters µ′S ∈ [µ, 1]S. Let ρ′(x) = T−1
µ′S
σ. Then we can estimate

ρ′S and ρ′S∪{i} for any i within error η, with success probability 1−δ, using (2/µ)O(|S|)poly(1/η) log(1/δ)
samples.

Proof. Let S′ = S or S′ = S ∪ {i}. Estimate σS′ within error µ|S
′|η with probability 1 − δ using

standard estimation techniques. As each value of ρ′S′ is the linear combination of the elements of
σS′ with coefficients bounded by (1/µ)|S

′|, the claim follows.

We can now describe the algorithm, that would generate a list of potential suggestions for the
noise parameters. The main observation is that in order to compute ~̂µ given in Claim 3.4, we don’t
really need to know v ∈ V . We only need to know:

• a PID Sv ⊂ [n] of size |Sv| ≤ log k

• The value v[Sv]

• A good enough approximation for µSv .

Note that Claim 3.4 requires us to know v[Sv∪{i}] for each i ∈ [n]. However, as we assume that v is
dominant, this can be easily found from samples. Indeed, let S = Sv, fix i /∈ S and let S′ = S ∪{i}
and v′ = v ⊕ ei. Then

πS′(v
′[S′]) ≤ (kγ) · πS′(v[S]) ≤ ε · πS′(v[S])

That is, if we sample x ∼ π and condition that xS = vS , then Pr[xi = vi] ≥ 1− ε. Now, we do not
have access to π, but we do have access to ρ = T−1µS

◦ σ. Note that ρS′ = Tµi ◦ π, and hence

Pr
x∼ρ

[xi = vi|xS = vS] = Pr
x∼π

[xi = vi|xS = vS] ·
(

1 + µi
2

)
+ Pr
x∼π

[xi = v′i|xS = vS] ·
(

1− µi
2

)
≥ 1 + µi

2
− ε

≥ 1 + µ

2
− ε.

Thus, we can learn all the bits of v by samples. We thus obtain the following algorithm.

Algorithm: Recover-Noise-Parameters

• Input: Samples from σ = σ(π, ~µ).

• Output: A list of candidates of noisy parameters.

1. Initialize empty list L = ∅.

2. Enumerate S ⊆ [n] with |S| ≤ log k and vS ∈ {0, 1}S . For each choice:

2.1 Enumerate all possible values of µ′S ∈ [µ, 1]S within accuracy δ = (k/εµ)−O(log k) in each
coordinate. For each choice:

2.2.1 For each i ∈ [n], estimate T−1
µ′S
◦ σS∪{i} and compute µ′i for all i /∈ S as in Claim 3.4.

2.2.2 Add µ′ ∈ [µ, 1]n to the list L.

4. Output L.

This concludes the proof of Theorem 1.2: some choice of v ∈ V is dominant by Claim 3.2. For
this v, some choice of µ′S is δ-close to the true noise parameters on S. By Claim 3.4, this suffices
to learn the remaining noise parameters. The running time is dominated by the enumeration of ~µ′,
which takes (1/δ)log k = (k/εµ)−O(log2 k) time.

9

3.2 The full algorithm

Given the algorithms given in Theorem 1.3 and Theorem 1.2, the full algorithm follows by simply
composing the two. To recall, the algorithm given in Theorem 1.3 guarantees to approximate
π within an error of ε, assuming knowledge of all the noise parameters to within accuracy of
δ = 1/ε · k−O(log k). Its run time is poly(nlog k, 1/ε, klog k). The algorithm given in Theorem 1.2
outputs a list L of potential noise parameters. If we want one of them to be a δ-approximation of
the true noise parameters, we have |L| = (k/δ)O(log2 k). Thus, we obtain a list of

T = poly(nlog k, (1/ε)log
2 k, klog

3 k)

potential choices of {(π̂i, ~̂µi) : i ∈ [T]}, where it is guaranteed that there exists some i ∈ [T] for
which

‖π̂i − π‖1 ≤ ε, ‖~̂µi − ~µ‖∞ ≤ δ
and hence ‖σ(π, ~µ)− σ(π̂i, ~̂µi)‖1 ≤ O(ε).

So, we are given a list of potential noisy distributions described by π̂i, ~̂µi. Let σ̂i = σ(π̂i, ~̂µi).
Observe that we can both sample from σ̂i, as well as calculate the probability of each specific
element. The next lemma shows that this is sufficient to prune any distribution σ̂i which is far
from the true distribution σ.

Lemma 3.6 (Pruning lemma). Let S = {σi : i ∈ [T]} be a set of distributions over a universe
X, given by some succinct representation, such that we can:

• Sample efficiently from each σi.

• Calculate σi(x) for each x ∈ X.

Let σ be an (unknown) observable distribution over X that we can get samples from. Then, for any
ε > 0 we can find a subset S ′ ⊂ S such that:

• If the statistical distance between σ and σi is ≥ 4ε, then σi /∈ S ′.

• If the statistical distance between σ and σi is ≤ ε, then σi ∈ S ′.
Moreover, we can find S ′ with high probability in time O((T/ε)2 · log T).

Proof. The main idea is as follows. Assume that σi, σj ∈ S are two distributions whose statistical
distance is ≥ 4ε. Then it cannot be the case that both are ε close to σ. The following procedure
will reject at least one of them which is not ε close to σ. Define

A = {x : σi(x) > σj(x)}.

By definition of statistical distance,

Pr
x∼σi

[x ∈ A]− Pr
x∼σj

[x ∈ A] ≥ 4ε.

We will estimate Pr[σ ∈ A],Pr[σi ∈ A],Pr[σj ∈ A], and reject either σi or σj (or both) for which
the probability is 2ε far from that of σ. To estimate Pr[σ ∈ A], sample x ∼ σ, calculate σi(x), σj(x)
and decide whether x ∈ A or not. Similarly estimate Pr[σi ∈ A] and Pr[σj ∈ A]. Reject i if the
estimated Pr[σ ∈ A]− Pr[σi ∈ A] exceed 2ε. To make sure that we make the correct decision with
probability 1− δ we need O((1/ε)2 log(1/δ)) samples.

So, set δ = 1/|T |2, enumerate all pairs i, j ∈ [T] and apply the above procedure. Let S ′
be the non-rejected distributions. By the above analysis, with high probability we will keep all
distributions which are ε-close to σ, and reject all distributions which are 4ε-far from σ.

The full algorithm is as follows.

10

Algorithm: Recover-Mixture

• Input: Samples from σ = σ(π, ~µ).

• Output: π̂, ~̂µ such that σ(π̂, ~̂µ) is ε-close to σ in statistical distance.

1. Enumerate noise parameters by Recover-Noise-Parameters given in Theorem 1.2.

2. For each noise parameter ~̂µi, recover π̂i by applying the Wigderson-Yehudayoff algorithm
given in Theorem 1.3.

3. Apply the pruning procedures given in Lemma 3.6 to prune any pair π̂i, ~̂µi whose noisy
distribution σ(π̂i, ~̂µi) is ε-far from the observable noisy distribution.

4. Output an arbitrary π̂i, ~̂µi which was not pruned.

11

References

[BIMP13] Lucia Batman, Russell Impagliazzo, Cody Murray, and Ramamohan Paturi. “Finding
Heavy Hitters from Lossy or Noisy Data”. In: Approximation, Randomization, and
Combinatorial Optimization. Algorithms and Techniques. Springer, 2013, pp. 347–362
(cit. on p. 1).

[DRWY12] Zeev Dvir, Anup Rao, Avi Wigderson, and Amir Yehudayoff. “Restriction access”.
In: Proceedings of the 3rd Innovations in Theoretical Computer Science Conference.
ACM. 2012, pp. 19–33 (cit. on pp. 1, 4, 5).

[FOS08] Jon Feldman, Ryan O’Donnell, and Rocco A Servedio. “Learning mixtures of product
distributions over discrete domains”. In: SIAM Journal on Computing 37.5 (2008),
pp. 1536–1564 (cit. on p. 1).

[KMR+94] Michael Kearns, Yishay Mansour, Dana Ron, Ronitt Rubinfeld, Robert E Schapire,
and Linda Sellie. “On the learnability of discrete distributions”. In: Proceedings of the
twenty-sixth annual ACM symposium on Theory of computing. ACM. 1994, pp. 273–
282 (cit. on p. 1).

[LZ15] Shachar Lovett and Jiapeng Zhang. “Improved Noisy Population Recovery, and Re-
verse Bonami-Beckner Inequality for Sparse Functions”. In: Proceedings of the Forty-
Seventh Annual ACM on Symposium on Theory of Computing. ACM. 2015, pp. 137–
142 (cit. on pp. 1, 3).

[MS13] Ankur Moitra and Michael Saks. “A polynomial time algorithm for lossy population
recovery”. In: Foundations of Computer Science (FOCS), 2013 IEEE 54th Annual
Symposium on. IEEE. 2013, pp. 110–116 (cit. on p. 1).

[WY16] Avi Wigderson and Amir Yehudayoff. “Population recovery and partial identification”.
In: Machine Learning 102.1 (2016), pp. 29–56 (cit. on pp. 1–6).

A Technical claims

Claim A.1. Let ~µ, ~µ′ ∈ [µ, 1]n be two vectors with ‖~µ− ~µ′‖∞ ≤ ε, then for all f : {0, 1}n → R and
S ⊆ [n],

‖T−1µS
f − T−1

µ′S
f‖1 ≤ (1/µ)2·|S| · ε · 2|S|+1 · |S| · ‖f‖1

Proof. To prove the claim, we first need the following claim.

Claim A.2. Let ~µ, ~µ′ ∈ [0, µ]n be two vectors with ‖~µ− ~µ′‖∞ ≤ ε, then for all f : {0, 1}n → R and
S ⊆ [n], we have that

‖(TµS − Tµ′S)f‖1 ≤ ε · 2|S|+1 · |S| · ‖f‖1.

Proof. By the definitions, we have that

‖(TµS − Tµ′S)f‖1 =
∑
x

|(TµSf)(x)− (Tµ′Sf)(x)|

=
∑
x

|Ee∼µS [f(x+ e)]− Ee∼µ′S [f(x+ e)]|

≤
∑
x

max
e∈{0,1}S

{| Pr
e′∼µS

[e′ = e]− Pr
e′∼µ′S

[e′ = e]|} ·
(∑
e∈{0,1}S

|f(x+ e)|
)

= 2|S|‖f‖1 · max
e∈{0,1}S

{| Pr
e′∼µS

[e′ = e]− Pr
e′∼µ′S

[e′ = e]|}

≤ ε · 2|S|+1 · |S| · ‖f‖1

The claim then follows.

Then by A.2, we have that

‖T−1µS
f − T−1

µ′S
f‖1 = ‖T−1µS

(f − T~µST
−1
~µ′S
f)‖1

≤ ‖T−1µS
‖1→1 · ‖f − TµST

−1
µ′S
f‖1

≤ (1/µ)|S| · ‖f − (Tµ′S − Tµ′S + TµS)T−1
µ′S
f‖1

= (1/µ)|S| · ‖(Tµ′S − TµS)(T−1
µ′S
f)‖1

≤ (1/µ)|S| · ‖(Tµ′S − TµS)‖1→1 · ‖T−1µ′S
‖1→1 · ‖f‖1

≤ (1/µ)2·|S| · ε · 2|S|+1 · |S| · ‖f‖1

This completes the proof.

ECCC ISSN 1433-8092

http://eccc.hpi-web.de

