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Abstract

We consider the point-to-point message passing model of communication in which there are k processors
with individual private inputs, each n-bit long. Each processor is located at the node of an underlying
undirected graph and has access to private random coins. An edge of the graph is a private channel of
communication between its endpoints. The processors have to compute a given function of all their inputs
by communicating along these channels. While this model has been widely used in distributed computing,
strong lower bounds on the amount of communication needed to compute simple functions have just begun
to appear.

In this work, we prove a tight lower bound of Ω(kn) on the communication needed for computing the
Tribes function, when the underlying graph is a star of k + 1 nodes that has k leaves with inputs and a center
with no input. Lower bound on this topology easily implies comparable bounds for others. Our lower bounds
are obtained by building upon the recent information theoretic techniques of Braverman et.al ([BEO+13],
FOCS’13) and combining it with the earlier work of Jayram, Kumar and Sivakumar ([JKS03], STOC’03).
This approach yields information complexity bounds that is of independent interest.

1 Introduction

The classical model of 2-party communication was introduced in the seminal work of Yao[Yao79], motivated by
problems of distributed computing. This model has proved to be of fundamental importance (see the book by
Kushilevitz and Nisan [KN97]) and forms the core of the vibrant subject of communication complexity. It is fair
to say that the wide applicability of this model to different areas of computer science cannot be over-emphasized.

However, a commonly encountered situation in distributed computing is one where there are multiple
processors, each holding a private input, that are connected by an underlying communication graph. An edge of
the graph corresponds to a private channel of communication between the endpoints. There are k processors
located on distinct nodes of the graph that want to compute a function of their joint inputs. In such a networked
scenario, a very natural question is to understand how much total communication is needed to get the function
computed. The classical 2-party model is just a special case where the graph is an edge connecting two processors.

Among others, this model has also been called the Number-in-hand multiparty point-to-point message passing
model of communication. Apart from distributed computing, this model is used in secure multiparty computation.
The study of the communication cost in the model was most likely introduced by Dolev and Feder [DF92] and
further worked on by Duris and Rolim [DR98]. These early works focused on deterministic communication.
There has been renewed interest in the model because it arguably better captures many of today’s networks that
is studied in various distributed models: models for map-reduce [KSV10, GSZ11], massively parallel model for
computing conjunctive queries [BKS13, KS11], distributed models of learning [BBFM12] and in core distributed
computing [DKO12]. However, there were no known systematic techniques of proving lower bounds on the
cost of randomized communication protocols that exploited the non-broadcast nature of the private channels of
communication in the model. Recently, there has been a flurry of work developing new techniques for proving
lower bounds on communication. Phillips, Verbin and Zhang [PVZ12] introduced the method of symmetrization
to prove strong bounds for a variety of functions. Their technique was further developed in the works of Woodruff
and Zhang [WZ12, WZ13, WZ14].

All these works considered the co-ordinator model, a special case, that was introduced in the early work of
[DF92]. In the co-ordinator model, the underlying graph has the star topology with k + 1 nodes. There are k
leaves, each holding an n-bit input. Each of the k leaf-nodes is connected to the center of the star. The node at
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the center has no input and is called the co-ordinator. The following two simple observations about the model
will be relevant for this work: every function can be trivially computed using O(nk) bits of communication by
having each of the k players send their inputs to the co-ordinator who then outputs the answer. It is also easily
observed that the co-ordinator model can simulate a communication protocol on an arbitrary topology having k
nodes with at most a log k factor blow-up in the total communication cost.

A key lesson learnt from our experience with the classical 2-party model is that an excellent indicator of our
understanding of a model is our ability to prove lower bounds for the widely known Set-Disjointness problem in
the model. Indeed, as surveyed in [CP10], several new and fundamental lower bound techniques have emerged
from efforts to prove lower bounds for this function. Further, the lower bound for Set-Disjointness, is what drives
many of the applications of communication complexity to other domains. While the symmetrization technique of
Phillips et.al and its refinements by Woodruff and Zhang proved several lower bounds, no strong lower bounds
for Set-Disjointness were known until recently in the k-processor co-ordinator model. In this setting, the relevant
definition of Set-Disjointness is the natural generalization of its 2-party definition: view the n-bit inputs of
the k processors as a k × n Boolean matrix where the ith row corresponds to the Processor i’s input. The
Set-Disjointness function outputs 1 iff there exists a column of this matrix that has no zeroes.

In an important development, Braverman et.al. [BEO+13] proved a tight Ω(kn) lower bound for Set-
Disjointness in the co-ordinator model. Their approach is to build up new information complexity tools for this
model that is a significant generalization of the 2-party technique of Bar-Yossef et.al. [BJKS02]. In this work, we
further develop this information complexity method for the co-ordinator model by considering another natural
and important function, known as Tribesm,`. In this function, the n-bit input to each processor is grouped
into m blocks, each of length `. Thus, the overall k × n input matrix splits up into m sub-matrices A1, . . . , Am,
each of dimension k × `. Tribes outputs 1 iff the Set-Disjointness function outputs 1 on each sub-matrix Ai.
This obviously imparts a direct-sum flavor to the problem of determining the complexity of the Tribes function
in the following sense: a naive protocol will solve Tribes by simultaneously running an optimal protocol for
Set-Disjointness on each of the m instances A1, . . . , Am. Is this strategy optimal?

This question was answered in the affirmative for the 2-party model by Jayram, Kumar and Sivakumar [JKS03]
when they proved an Ω(n) lower bound on the randomized communication complexity of the Tribes function.
Their work delicately extended the information theoretic tools of Bar-Yossef et.al [BJKS02]. Interestingly, it also
exhibited the power of the information complexity approach. There was no other known technique to establish a
tight lower bound on the Tribes function1.

In this work, we show that the naive strategy for solving Tribes is optimal also in the co-ordinator model:

Theorem 1. In the k-processor co-ordinator model, every bounded error randomized protocol solving the Tribesm,`
function, has communication cost Ω

(
m`k

)
, for every k ≥ 2.

We prove this by extending and simplifying the information complexity approach of [BEO+13] and the earlier
work of [JKS03]. It is worth noting that our bounds in Theorem 1 hold for all values of k. In particular, this
also yields a lower bound for Set-Disjointness for all values of k. The earlier bound of Braverman et.al. only
worked if k = Ω(log n).

2 Overview & comparison with previous work

We first provide a quick overview of our techniques and contributions. We follow this up with a more detailed
description, elaborating on the main steps of the argument.

Brief Summary: Recall that the Tribesm,` function can be written as an m-fold AND of Disj` instances. One
possible way to show that Tribesm,` is hard in message-passing model is to show that any protocol evaluating
Tribesm,` must evaluate all the the Disj` instances. This suffices to argue that Tribesm,` is m times as hard as
Disj`. By now it is well known that information complexity provides a convenient framework to realize such direct
sum arguments. In order to do so, one needs to define a distribution on inputs that is entirely supported on the
ones of the m Set-Disjointness instances of Tribes. This was the general strategy of Jayram et.al.[JKS03] in the
2-party context. However, the first problem one encounters is to define an appropriate hard distribution and a
right notion of information cost such that Disjointness has high information cost of Ω(k`) under that distribution
in the co-ordinator model. This turns out to be a delicate and involved step. Various natural information costs do
not work as observed by Phillips et.al.[PVZ12]. Here, we are helped by the work of Braverman et.al.[BEO+13].
They come up with an appropriate distribution τ and an information cost measure IC0. However, we face
two problems in using them. The first is that τ happens to be (almost) entirely supported on the zeroes of
Set-Disjointness. Taking ideas from [JKS03], we modify τ to get a distribution µ supported exclusively on the
ones of Set-Disjointness. Roughly speaking, to sample from µ, we first sample from τ and then pick a random

1This is not surprising. Two other successful techniques, the discrepancy and the corruption method, both yield lower bounds
on the non-deterministic complexity. On the other hand, Tribes and its complement, on n-bit inputs, both have only

√
n

non-deterministic complexity.
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column of the sampled input and force it to all ones. Intuitively, the idea is that the all ones column is being
well hidden at a random spot. If τ was hard, µ should also remain hard. The second problem is to appropriately
modify the information cost measure IC0 to IC so that it yields high information complexity under µ. Here, we
use an idea of [JKS03].

However, proving that IC is high for protocols when inputs are sampled according to µ raises new technical
challenges. The first challenge is to prove a direct sum result on the information complexity of protocols as
measured by IC. Implementing this step is a novelty of this work, where we show roughly that IC

(
Disj`

)
is at

least Ω(` · IC
(
Disj2

)
). For showing this, we introduce a new information measure, PIC(f) which is a lower bound

on IC(f) and will be explained in relevat section. The final challenge is to prove that IC
(
Disj2

)
is Ω(k). We again

do that by first simplifying some of the lemmas of [BEO+13] and extending them using some ideas from the
work of [JKS03].

More Detailed Account: Among the many possible ways to define information cost of a protocol, the
definition we work with stems from the inherent structure of the communication model. As evident from the
previous discussion, in the model of communication we are interested in, the co-ordinator can see the whole
transcript of the protocol but cannot see the inputs. On the other hand, the processors can only see a local view
of the transcript - the message that is passed to them and the message they send - along with their respective
inputs. From the point of view of the co-ordinator, who has no input, the information revealed by the transcript
about the input can be expressed by I[X : Π(X)]. This is small for the protocol where the co-ordinator goes
around probing each player on each coordinate to see whether any player has 0 in it and gives up once she
finds such a player.(We call it Protocol A). It is not hard to see that the information cost can only be as
high as O(n log k) for protocol A. A relevant information cost measure from the point of view of processor i
is I[X−i : Πi(X) | Xi] which measures how much information processor i learns about other inputs from the
transcript. It turns out that this information cost is also very small for the protocol where all the processors
send their respective inputs to the co-ordinator (We call this protocol as protocol B). Here I[X−i : Πi(X) | Xi]
is 0 for all i. What is worth noticing is that in both protocols, if we consider the sum of the two information
costs, i.e., I[X : Π(X)] +

∑
i I[X−i : Πi(X) | Xi], it is Ω(nk) which is the kind of bound we are aiming for.

This cost trade-off was first observed in [PVZ12] but they were unable to prove a lower bound for Disj` in
this model of communication. Braverman et al [BEO+13] solved this problem by coming up with the following
notion of information complexity. Let (X,M,Z) be distributed jointly according to some distribution τ . The
information cost of a protocol Π with respect to τ is defined as,

IC0
τ (Π) =

∑
i∈[k]

[
I
τ
[Xi : Πi(X) | M,Z] + I

τ
[M : Πi(X) | Xi,Z]

]
(1)

Conditioning on the auxiliary random variables M and Z serves the following purpose: Even though the
distribution τ is a non-product distribution, it can be thought of as a convex combination of product distributions,
one for each specific values of M and Z. It is well-known by now that such convex combination facilitates proving
direct-sum like result.

The desired properties of the distribution τ are as follows. First, the distribution should have enough entropy
to make it hard for the players to encode their inputs cheaply and send it across to the co-ordinator. Such an
encoding is attempted in protocol B. Second, the distribution should be supported on inputs which have only a
few 0’s in each column of Disj`. This makes sure that the co-ordinator has to probe Ω(k) processors in each
column before he finds a 0 in that column. This attempt of probing was undertaken by the co-ordinator in
protocol A. The first property can be individually satisfied by setting each processor’s input to be 0 or 1 with
equal probability in each column. The second property can also be individually satisfied by taking a random
processor for each column and giving it a 0 and giving 1 to rest of the processors as their inputs. Let Zj denote
the processor whose bit was fixed to 0 in column j. The hard distribution for Disj` is a convex combination of
these two distributions. The way it is done is by setting a Bernoulli random variable Mj for each of the column j
which acts as a switch, i.e., if Mj = 0 the input to the column j is sampled from the first distribution, otherwise
it is sampled from the second distribution. Mj takes value 0 with probability 2/3. We define M = 〈M1, . . . ,M`〉
and Z = 〈Z1, . . . ,Z`〉.

At this point it is interesting to go back to the definition of IC0 and try to see the implication of each term in
the definition. For the coordinator,

∑
i Iτ[X

i : Πi(X) |M,Z] represents the amount of information revealed about

the inputs of the processors by the transcript. For convenience, we can assume that M is with co-ordinator.
We can do this without loss of generality as the co-ordinator can sample O(log k) inputs from column j and
conclude the value of Mj from it, for any j. This amount of communication is okay for us as we are trying to
show a lower bound of Ω(nk). However note that we cannot assume that the processors have the knowledge
of M. Had that been the situation, the processors would have employed protocol A or protocol B in column j
depending on the value of the Mj . The value of I[Xi : Πi(X) | M,Z], in this protocol, would have been small.
So we need to make sure that we charge the processors for their effort to know the value of M. This is taken
care by the second term in the definition of IC0 i.e., I

µ
[M : Πi(X) | Xi,Z]. Braverman et al [BEO+13] used this

3



notion of information complexity to achieve the Ω(`k) lower bound for the information cost of Disj` with respect
to the hard distribution.

As mentioned before, we, however, need the hard distribution ζ for Tribesm,` to be entirely supported on 1s
of Disj`. But the distribution τ described above is supported on 0s of Disj`. Here we borrow ideas from [JKS03]
and design a distribution µ by selecting a random column for the Disj` instances and planting an all 1 input in
it. We denote the random co-ordinate by W. It is easy to verify that µ is a distribution supported in 1s of Disj`.
We set the hard distribution for Tribesm,` to be an m-fold product distribution ζ = µm denoted by the random
variables 〈X̄, M̄, Z̄,W̄〉. It is to be noted that a correct protocol should work well for all inputs, not necessarily
for the inputs coming from the distribution ζ. This property will be crucially used in later part of the proof.
The modification of the input distribution from τ to µ and subsequently to ζ calls for changing the definition of
the information complexity to suit our purpose. We define information complexity as follows which we will use
in this paper.

Definition 2. Let (X̄, M̄, Z̄,W̄) be distributed jointly according to ζ. The information cost of a protocol Π with
k processors in NIH point-to-point coordinator model with respect to ζ is defined as,

ICζ(Π) =
∑
i∈[k]

[
I
ζ
[X̄i : Πi(X̄) | M̄, Z̄,W̄] + I

ζ
[M̄ : Πi(X̄) | X̄i, Z̄,W̄]

]
. (2)

For a function f : X→ R, the information complexity of the function is defined as,

ICζ,δ(f) = inf
Π

ICµ(Π), (3)

where the infimum is taken over all δ-error protocol Π for f .

By doing this, we are able to bound the information complexity of Tribesm,` as m-times that of Disj`. Although
non-trivial, this step can be accomplished by exploiting the proof techniques used in [BEO+13]. The next step
is to bound the information complexity of Disj`, which turns out to be difficult for two reasons. First, the
distribution µ is no more a 0 distribution for Disj`. We get around this by defining a new information complexity
measure, - which we call as partial information complexity - to show that the partial information complexity of
Disj` on distribution µ is at least (`− 1)-times that of Disj2. This is one of the main technical contributions of
our paper. See Section 4.1 for details. The second hurdle we face is bounding the information complexity of
Disj2. Here we combine ideas from [JKS03, BEO+13] to conclude that the partial information complexity of
Disj2 is Ω(k). This is the second main technical contribution of this paper, which is explained in Section 4.2.
Finally we give a simple argument in Section 5 to show that ICζ(Π) lower bounds the communication cost of Π
where Π is any correct protocol for Tribesm,`.

3 Preliminaries

Communication complexity. In this work, we are mainly interested in multiparty communication
number-in-hand model. In this model of computation, the input is distributed between k players P1, · · · , Pk
who jointly wish to compute a function f on the combined input by communication with each other. It can be
assumed that the players have unlimited computational power. Several variants of this model have been studied
extensively, such as, message passing model, where each pair of players have a dedicated communication channel
and hence the players can send messages to specific players. This is contrasted in the second variant where the
players can only broadcast their communication. The latter model in known as shared blackboard model. In
this work, we consider the message passing model.

As mentioned before, the model which is easier to work with is the coordinator model where, in addition to k
players who hold the input, a coordinator is introduced who does not have any input but all the communication
is channelled via her, i.e., the players can only communicate with the coordinator though the coordinator is
allowed to communication with everybody. It is easy to observe that this coordinator model can simulate the
message passing model with only a log k overhead in the total communication cost.

We work with randomized protocol where the players have access to private coins. (Though it might seem like
that the public coin protocol can yield better upper bound, it can be noted that all the proofs can be modified
to give the same result for public coin model.) The standard notion of private coin randomized communication
complexity is adopted here, where we look at the worst-case communication of the protocol when the protocol is
allowed to make only δ error (bounded away from 1/2) on each input. Here the probability is taken over the
private coin tosses of the players. For more details, readers are referred to [KN97].

Information theory. We will quickly go through the information theoretic definitions and facts we need.
For a random variable X taking value in the sample space Ω according to the distribution p()̇, the entropy of X,
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denoted as H(X), is defined as follows.

H(X) =
∑
x∈Ω

Pr[X = x] log
1

Pr[X = x]
= Ex

[
log

1

p(x)

]
. (4)

For two random variables X and Y , the conditional entropy of X given Y is defined as follows.

H(X|Y ) = Ex,y

[
log

1

p(x|y)

]
. (5)

Informally, the entropy of a random variable measures the uncertainty associated with it. Conditioning on
another random variable, i.e., knowing the value that another random variable takes can only decrease the
uncertainty of the former one. This notion is captured in the following fact that H(X|Y ) ≤ H(X) where the
equality is achieved when X is independent of Y . Given two random variables X and Y with joint distribution
p(x, y) we can talk about how much information one random variable reveals about the other random variable.
The mutual information, as it is called, between X and Y is defined as follows.

I[X : Y ] = H(X)−H(X|Y ). (6)

It is to be noted that the mutual information is a symmetric quantity, though it might not be obvious from the
definition itself. From the previous discussion, it is easy to see that the mutual information is a non-negative
quantity. As before, we can also define conditional mutual information as below.

I[X : Y |Z] = H(X|Z)−H(X|Y,Z). (7)

The following chain rule of mutual information will be crucially used in our proof.

I[X1, . . . , Xn : Y ] =
∑
i∈[n]

I[Xi : Y |Xi−1, . . . , X1]. (8)

It is to be noted that the chain rule of mutual information will also work when conditioned on random variable
Z.

Remark 1. Consider a permutation σ : [n]→ [n]. The following observation will be useful in our proof.

I[X1, . . . , Xn : Y ] =
∑
i∈[n]

I[Xσ(i) : Y |Xσ(i−1), . . . , Xσ(1)]. (9)

We will use the following lemmas regarding mutual information.

Lemma 3. Consider random variables A,B,C and D. If A is independent of B given D then,

I[A : B,C | D] = I[A : C | B,D], (10)

and
I[A : C | B,D] ≥ I[A : C | D]. (11)

Proof. By chain rule of mutual information,

I[A : B,C | D] = I[A : B | D] + I[A : C | B,D]

= I[A : C | B,D] [As A ⊥ B|D ⇒ I[A : B | D] = 0].

For the second expression, we know I[A : B|D] = 0 which means H(A|D) = H(A|B,D). Hence,

I[A : C | B,D] = H(A|B,D)−H(A|B,C,D)
= H(A|D)−H(A|B,C,D)
≥ H(A|D)−H(A|C,D)
= I[A : C | D].
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4 Lower bound for Tribesm,` in message-passing model

Here, in the first subsection, we will show two direct-sum results. In the first step we bound the information
complexity of Tribesm,` in terms of that of Disj`. It is to be noted that the proof technique of [BJKS02] falls
short of proving any lower bound on the information complexity measure we have defined - mainly because
of the fact the information complexity measure consists of sum two different mutual information terms for
each processor, and it is not clear that one can come up with lower bounds for both the terms simultaneously.
This problem has already been attended to in [BEO+13] and the proof we present here resembles the proof
technique used by them. For completeness we include the proof in this paper. In the second step, we will
bound the information complexity of Disj` in terms of Disj2. This step is more difficult and a straight-forward
application of the direct-sum argument of [BEO+13] will not work. First we use ideas from [JKS03] to define
partial information complexity measure which is more convenient to work with. Then we come up with a novel
direct-sum argument for partial information complexity measure.

In Section 4.2, we show that the information complexity of Disj2 is Ω(k). We manage to show this by
combining ideas from [BEO+13, JKS03].

4.1 Direct sum

In this section we prove that the information cost of computing Tribesm,` is m times the information cost of
computing Disj`. The proof is almost the same proof as in [BEO+13] where the authors have used a direct sum
theorem to show that the information cost of computing Disj` is ` times the information cost of computing k-bit
ANDk. Before going into details we need the following definitions

Consider f : Dm → R can be written as f(X) = g(h(X1), . . . , h(Xm)) where X = 〈X1, . . . , Xm〉, Xi ∈ D
and h : D → R. In other words, f is g-decomposable with primitive h.

Definition 4 (Collapsing distribution). We call X ∈ Dm be a collapsing input for f if for any i ∈ [m] and
y ∈ D, we have f(X(i, y)) = h(y). Any distribution ζ supported entirely on collapsing inputs on f is called a
collapsing distribution of f .

Definition 5 (Projection). Given a distribution ν specified by random variable (D1, . . . , Dk) and a subset S of
[k], we call the projection of ν on (Di)i∈S, denoted as ν ↓(Di)i∈S , the marginal distribution of (Di)i∈S induced
by ν.

The proof is by reduction: we will show that given a protocol Π for Tribesm,` and a collapsing distribution
µ = ζml , we can construct a protocol Π′ for Disj` such that it computes Disj` with the same error probability as
that of Π and the information complexity of Π is m times that of Disj`.

Theorem 6. Let µ = ζm` be a collapsing distribution for Tribesm,` partitioned by M,Z and W as described
before. Then

ICµ(Tribesm,`) ≥ m.ICζ`(Disj`). (12)

As mentioned before, the proof of Theorem 6 works out nicely by adapting the proof techniques of [BEO+13]
and is given below. We will describe how to construct protocol Π′ for Disj` given protocol Π for Tribesm,`. On
an input u for Disj`, the processors and the coordinator sample a random k ×m` matrix X̄ in the following way.

1. The coordinator samples J uniformly at random from [m]. This is the place where the processors embed
the input u.

2. The coordinator samples Z̄−J ∈ [k]`(m−1) and sends it to all the processors.

3. The coordinator samples W̄−J ∈ [`]m−1 and sends it to all the processors.

4. The coordinator samples Mt ∈ {0, 1}`,Mt ∼ Bin(1/3) for all t less that J and sends it to all the processors.
The processors use their private randomness to sample the inputs for those Disj` instances in the following
way: For the ith Disj` instance, the processors sample X by sampling each of the columns independently
- For column j the input of the Zjth processor is fixed to 0 and the other processors get 1 if Mj = 1,
otherwise, they get 0 or 1 uniformly at random

5. For the rest of Disj` instances, the coordinator herself samples the inputs in the same way and sends the
requisite inputs to respective processors.

Observation 7. Consider the tuple (U,N,V,S) distributed according to ζl. If U is given as input to protocol
Π′, then (X̄, M̄, Z̄,W̄) is distributed according to µ.

6



As µ is a collapsing distribution for Tribesm,`, it is easy to see that the protocol Π′ computes Disj`. We need
to show the connection between information cost of this protocol and the information cost of Tribesm,` which is
shown next.

We will prove the following lemma.

Lemma 8. [BEO+13]

I
(U,N,V,S)∼ζ`

[Ui : Π′i(U) | N,V,S] ≤ 1

m
I

(X̄,M̄,W̄,Z̄)∼µ
[X̄i : Πi(X̄) | M̄,W̄, Z̄], (13)

and

I
(U,N,V,S)∼ζ`

[N : Π′i(U) | Ui,V,S] ≤ 1

m
I

(X̄,M̄,W̄,Z̄)∼µ
[M̄ : Πi(X̄) | X̄i,W̄, Z̄]. (14)

Lemma 8 implies Theorem 6.

Proof of Lemma 8. The proof is exactly same as the proof of Lemma 4.1 of [BEO+13].
We will prove Equation (14) first. Equation (13) can be proved similarly. Let’s look at the view of processor

i on the transcript Π′, which we are calling as Π′i. We have

Π′i(U) = 〈J, Z̄−J, M̄[1,J−1], X̄
i
[J+1,m],W̄−J,Π(X̄(J,U))〉.

As 〈J, Z̄−J, M̄[1,J−1], X̄
i
[J+1,m],W̄−J〉 is independent of N, we can write what follows.

I(U,N,V,S)∼ζ` [N : Π′i(U) | Ui,V,S]

= I
(U,N,V,S)∼ζ`

(Z̄−J,M̄−J,X̄−J,W−J)∼ζm−1
`

[N : 〈J, Z̄−J, M̄[1,J−1], X̄
i
[J+1,m],W̄−J,Π(X̄(J,U))〉 | Ui,V,S]

= I
(U,N,V,S)∼ζ`

(Z̄−J,M̄−J,X̄−J,W−J)∼ζm−1
`

[N : Π(X̄(J,U)) | J, Z̄−J, M̄[1,J−1], X̄
i
[J+1,m],W̄−J,U

i,V,S]

= I
(X̄,M̄,W̄,Z̄)∼µ

[M̄J : Πi(X̄) | J, M̄[1,J−1, X̄
i
[J,m], Z̄,W̄]

≤ I
(X̄,M̄,W̄,Z̄)∼µ

[M̄J : Πi(X̄) | J, M̄[1,J−1, X̄
i, Z̄,W̄]

=
1

m

m∑
j=1

I
(X̄,M̄,W̄,Z̄)∼µ

[M̄j : Πi(X̄) | M̄[1,j−1, X̄
i, Z̄,W̄]

=
1

m
I

(X̄,M̄,W̄,Z̄)∼µ
[M̄ : Πi(X̄) | X̄i, Z̄,W̄].

Equation (13) can be proved in the same way.

Now our goal is to connect the information cost of Disj` under ζ` to information cost of ANDk. So a natural
attempt is to prove a theorem like Theorem 6 for reduction from Disj` to ANDk. Unfortunately this is not

possible. Recall that Disj`(X) =
∨`
i=1

∧k
j=1X

j
i . Hence for a collapsing distribution each of the ANDks should

evaluate to 0, which is not the case for the distribution ζ`.
Inspired by [JKS03], we define the following measure of information cost, namely, partial information cost.

Let Π be a protocol for Disj`. The partial information cost of Π is defined as,

PIC(Π) =

k∑
i=1

(
I
[
M−W : Πi(X) | Xi,Z,W

]
+ I
[
Xi
−W : Πi(X) | M,Z,W

])
. (15)

The random variable M−W denotes M with its W-th coordinate removed. Similarly, Xi
−W denotes Xi with its

W-th coordinate removed. The partial information complexity of Disj` is the partial information cost of the
best protocol computing Disj`. It is easy to see that the partial information complexity of any function f lower
bounds the information complexity of f .

We prove the following theorem.

Theorem 9. Let ζ` be the distribution over the inputs of Disj` partitioned by M,Z,W as described before. Then

PICζ`(Disj`) ≥ (`− 1).PICζ2(Disj2). (16)
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Here we will show the following reduction analogous to our previous reduction from Tribesm,` to Disj`. Given
a protocol Π′ for Disj` and distribution ζ` (as described in Section 2, we will come up with a protocol Π′′ for
Disj2 such that the partial information cost of Π′′ w.r.t. ζ` is 1/(`− 1) times the partial information cost of Π′

w.r.t ζ2.
Let us describe the construction of the protocol Π′′. On an input u = 〈u1, u2〉 for Disj2, the processors and

the coordinator sample a k × ` random matrix X(u) in the following way.

1. The coordinator samples P and Q uniformly at random from [`] such that P < Q.

2. The coordinator samples Z−{P,Q} = (Zi)i∈[`]\P,Q, where each Zi ∈
R

[k], and sends it to all the processors.

3. The coordinator samples a number R uniformly at random from {0, ..., `− 2} and then samples a subset
T ⊆ [`]\{P,Q} uniformly at random from all sets of size R that do not contain P,Q. Then the coordinator
samples Mt ∼ Bin(1/3) for all t ∈ T and sends them to all the processors. The processors use their private
randomness to sample Xt for each column t in T in the following way: The input of the Zt-th processor is
fixed to 0 in Xt and the other processors get 1 if Mt = 1, otherwise, if Mt = 0, they get 0 or 1 uniformly
at random. We will call this input sampling procedure as IpSample.

4. For the rest of the columns, the coordinator samples the inputs according to IpSample and sends the
requisite inputs to the respective processors.

5. The processors form the input X ≡ X(u,P,Q) (i.e., XP = u1 and XQ = u2) and run the protocol Π′ for
Disj` with X as input.

Observation 10. Consider the tuple (U,N,V,S) distributed according to ζ2. If U is given as input to protocol
Π′′, then (X,M,Z,W) is distributed according to ζ`, where W is the unique all 1’s coordinate in X. Here
W = P if V = 1 and W = Q if V = 2.

Next we prove the following lemma connecting the information cost of Π′ for Disj` and that of Π′′ for Disj2.
This lemma implies the Theorem 9.

Lemma 11.

I
(U,N,V,S)∼ζ2

[Ui
−V,Π

′′i(U) | N,V,S] ≤ 1

`− 1
I

(X,M,W,Z)∼ζ`
[Xi
−W,Π′i(X) | M,W,Z], (17)

and

I
(U,N,V,S)∼ζ2

[N−V,Π
′′i(U) | Ui,V,S] ≤ 1

`− 1
I

(X,M,W,Z)∼ζ`
[M−W,Π′i(X) | Xi,W,Z]. (18)

Proof. We consider the LHS of Equation (18). The view of processor i of the transcript of protocol Π′′, denoted
as Π′′i(U), is given as follows.

Π′′i(U) = 〈P,Q,Z−P,Q,R,T,MT,X
i
T̄\{P,Q},Π

′(X(P,Q,U)))〉. (19)

So the LHS of Equation (18) can be written as

I
(U,N,V,S)∼ζ2

[N−V : Π′′i(U) | Ui,V,S]

= I
(U,N,V,S)∼ζ2

(X,M,Z)∼ζ`↓X,M,Z

[N−V : P,Q,Z−P,Q,T,MT,R,X
i
T̄\{P,Q},Π

′i(X(P,Q,U))|Ui,V,S]

= I
(U,N,V,S)∼ζ2

(X,M,Z)∼ζ`↓X,M,Z

[N−V : Π′i(X(P,Q,U))|P,Q,Z−P,Q,T,MT,R,X
i
T̄\{P,Q},U

i,V,S] [Lemma 3 eqn. (10)]

= I
(U,N,V,S)∼ζ2

(X,M,Z)∼ζ`↓X,M,Z

[N−V : Π′i(X) | P,Q,R,T,MT,Z,V,X
i
T̄] [Combining (Ui,Xi

T̄\{P,Q}) and (Z−P,Q,S)]

≤ I
(U,N,V,S)∼ζ2

(X,M,Z)∼ζ`↓X,M,Z

[N−V : Π′i(X) | P,Q,R,T,MT,Z,V,X
i] [Lemma 3 eqn. (11), Xi

S ind. of N−V]

[V takes value in 1 and 2 uniformly at random. Hence we can write it as follows.]

=
1

2
I

(X,M,Z)∼ζ`↓X,M,Z

[MP : Π′i(X) | P,Q,R,T,MT,Z,V = 2,Xi]

+
1

2
I

(X,M,Z)∼ζ`↓X,M,Z

[MQ : Π′i(X) | P,Q,R,T,MT,Z,V = 1,Xi]. (20)
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Consider the first mutual information term.

I[MP : Π′i(X) | P,Q,R,T,MT,Z,V = 2,Xi]

=
2

`(`− 1)

∑
p<q

I[Mp : Π′i(X) | P = p,Q = q,R,T,MT,Z,V = 2,Xi]

=
2

`(`− 1)2

∑
p<q

`−2∑
r=0

∑
t:|t|=r

Pr[T = t]I[Mp : Π′i(X) | p, q, r, t,Mt,Z,V = 2,Xi]

=
2

`(`− 1)2

∑
p<q

`−2∑
r=0

∑
t:|t|=r

(`− r − 2)!r!

(`− 2)!
I[Mp : Π′i(X) | p, q, r, t,Mt,Z,V = 2,Xi].

We can safely drop the conditioning P = p,R = r,T = t and V = 2 in the following way. It is easy to see
R = r,T = t is implied by Mt. Mp implies P = p. Moreover, given (p, q), V = 2 is equivalent to W = p. So we
can write,

I[MP : Π′i(X) | P,Q,R,T,MT,Z,V = 2,Xi]

=
2

(`− 1)!`(`− 1)

∑
q

∑
p:p<q

`−2∑
r=0

∑
t:|t|=r

((`− r − 2)!r!)I[Mp : Π′i(X) | W = q,Mt,Z,X
i]. (21)

Similarly, the second mutual information term of Equation (20) term can be written in the following way.

I[MQ : Π′i(X) | P,Q,R,T,MT,Z,V = 1,Xi]

=
2

(`− 1)!`(`− 1)

∑
q

∑
p:p<q

`−2∑
r=0

∑
t:|t|=r

((`− r − 2)!r!)I[Mq : Π′i(X) | W = p,Mt,Z,X
i]. (22)

Combining Equation (20), (21), (22), we get,

I(U,N,V,S)∼ζ2 [N−V,Π
′i(U) | Ui,V,S]

≤ 1

(`− 1)!`(`− 1)

∑
q′

∑
p′:p′ 6=q′

`−2∑
r=0

∑
t:|t|=r

((`− r − 2)!r!)I[Mp′ : Π′i(X)|W = q′,Mt,Z,X
i]

The number of permutations of [`]\q where the r + 1th element is p′ and the first r elements constitute the set t
is (`− r − 2)!r!. Hence we can write the previous summation as follows,

=
1

(`− 1)!`(`− 1)

∑
q′

∑
σ∈S[`]\q′

∑
i∈[`]\q′

I[Mσ(i) : Π′i(X) | M{σ(1),...,σ(i−1)},Z,W = q′,Xi]

=
1

(`− 1)!`(`− 1)

∑
q′

∑
σ∈S[`]\q′

I[M−q′ : Π′i(X) | Z,W = q′,Xi] [Using chain rule of information, Eq. (9)]

=
1

`− 1

∑
q′

1

`
I

(X,M,Z)∼ζ`↓X,M,Z

[M−q′ : Π′i(X) | Z,W = q′,Xi]

=
1

`− 1
I

(X,M,Z,W)∼ζ`
[M−W : Π′i(X) | Z,W,Xi]. (23)
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Equation (17) can be proved almost similarly. Let’s look at the LHS.

I
(U,N,V,S)∼ζ2

[Ui
−V : Π′′i(U) | N,V,S]

= I
(U,N,V,S)∼ζ2

(X,M,Z)∼ζ`↓X,M,Z

[Ui
−V : 〈P,Q,Z−P,Q,MT,R,T,X

i
T̄\{P,Q},Π

′i(X(P,Q,U))〉 | N,V,S]

= I
(U,N,V,S)∼ζ2

(X,M,Z)∼ζ`↓X,M,Z

[Ui
−V : Π′i(X(P,Q,U)) | P,Q,Z,MT,R,T,X

i
T̄\{P,Q},N,V,S] [Lemma 3 Equation (10)]

= I
(U,N,V,S)∼ζ2

(X,M,Z)∼ζ`↓X,M,Z

[Ui
−V : Π′i(X) | P,Q,R,T,MT∪{p,q},Z,V,X

i
T̄\{P,Q}]

≤ I
(U,N,V,S)∼ζ2

(X,M,Z)∼ζ`↓X,M,Z

[Ui
−V : Π′i(X) | P,Q,R,T,M,Z,V,Xi

T̄\{P,Q}] [Lemma 3 Equation (11)]

=
1

2
I

(X,M,Z)∼ζ`↓X,M,Z

[Xi
P : Π′i(X) | P,Q,R,T,M,Z,V = 2,Xi

T̄\{P,Q}]

+
1

2
I

(X,M,Z)∼ζ`↓X,M,Z

[Xi
Q : Π′i(X) | P,Q,R,T,M,Z,V = 1,Xi

T̄\{P,Q}]. (24)

Consider T′ = T̄\{P,Q} which is distributed in the same way as T. Here the auxiliary variable for size of T′ is
R′ = (`− 2) −R instead of R. R′ is distributed in the same way as R. We will analyze, as before, the first
term of (24).

I[Xi
P : Π′i(X) | P,Q,R′,T′,M,Z,V = 2,Xi

T′ ]

=
2

`(`− 1)

∑
p<q

I[Xi
p : Π′i(X) | P = p,Q = q,R′,T′M,Z,V = 2,Xi

T′ ]

=
2

`(`− 1)2

∑
p<q

`−2∑
r′=0

∑
t′:|t′|=r′

Pr[T′ = t′]I[Xi
p : Π′i(X) | p, q, r′, t′,M,Z,V = 2,Xi

t′ ]

=
2

`(`− 1)2

∑
q

∑
p:p<q

`−2∑
r′=0

∑
t:|t|=r′

(`− r′ − 2)!r′!

(`− 2)!
I[Xi

p : Π′i(X) | W = q,M,Z,Xi
t′ ].

The last equality follows by dropping the implied conditioning and introducing random variable W to denote
the all 1 coordinate. As before we combine the second term of the Equation (24) to get the following.

I(U,N,V,S)∼ζ2 [Ui
−V : Π′′i(U) | N,V,S]

≤ 1

(`− 1)!`(`− 1)

∑
(p.q):
p 6=q

`−2∑
r′=0

∑
t:|t|=r′

((`− r′ − 2)!r′!)I[Xi
p : Π′i(X) | W = q,M,Z,Xi

t′ ]

=
1

(`− 1)!`(`− 1)

∑
q

∑
σ∈S[`]\q

∑
i∈[`]\q

I[Xi
σ(i) : Π′i(X) | Xi

{σ(1),...,σ(i−1)},W = q,Z,M]

=
1

(`− 1)!`(`− 1)

∑
q

∑
σ∈S`−1

I[Xi
−W : Π′i(X) | Z,W = q,M]

=
1

`− 1

∑
q

1

`
I

(X,M,Z)∼ζ`↓X,M,Z

[Xi
−W : Π′i(X) | Z,W = q,M]

=
1

`− 1
I

(X,M,Z,W)∼ζ`
[Xi
−W : Π′i(X) | Z,W,M]. (25)

Equation (23) and Equation (25) prove the lemma.

Lemma 11 implies the Theorem 9.

4.2 Lower bounding Disj2

In this section we prove the following lower bound for the partial information complexity of Disj2.

Theorem 12. PICζ2 = Ω(k).
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This, combined with Theorem 9 and Theorem 6 will imply a Ω(m`k) lower bound on the switched information
complexity of Tribesm,` which is the lower bound on Rδ(Tribesm,`) we aimed for.

Notation. By ē we mean the all 1 vector of size k. By ēi,j , we mean the boolean vector of size k where all
entries are 1 except the entries in index i and j. Similarly, ēi is the boolean vector the all entries are 1 except
that of index i. Π[i, x,m, z; ēi] implies the transcript of the protocol Π on the following Disj2 instance: the input
of the first column comes from the distribution specified by M = m, Z = z and Xi = x and the input of the
second column is ēi. Abusing notation slightly, Πi[x,m, z; ēi] represents processor-i’s view of the transcript of
the protocol Π when the input of the first column comes from the distribution specified by Xi = x,M = m and
Z = z and the input of the second column is ēi.

Hellinger distance. For probability distributions P and Q supported on a sample space Ω, the Hellinger
distance between P and Q, denoted as h(P,Q), is defined as,

h(P,Q) =
1√
2
||
√
P −

√
Q||2. (26)

Hellinger distance can also be written as follows,

h(P,Q)2 = 1− F (P,Q), (27)

where F (P,Q) =
∑
ω∈Ω

√
P (ω)Q(ω) is also known as Bhattacharya coefficient. From the definition it is clear to

see that the Hellinger distance is a metric satisfying triangle inequality. Below we will state some facts (without
proof) about Hellinger distance. Interested readers can refer to [BJKS02] for the proofs.

We will denote the statistical distance between two distributions P and Q as ∆(P,Q) and the Hellinger
distance between P and Q as h(P,Q).

Fact 13 (Hellinger vs. statistical distance).

h(P,Q) ≤ ∆(P,Q) ≤
√

2h(P,Q). (28)

This essentially means that the Hellinger distance is good approximation of statistical distance. The following
facts gives us the necessary connection between mutual information and Hellinger distance.

Fact 14 (Hellinger vs information [Lin91]). Let X be a random variable taking value in {x1, x2} equally likely
and let Π be a randomized protocol which takes X as input. Then,

I[X : Π(X)] ≥ h2(Π(x1),Π(x2)). (29)

Fact 15. Let Π be a δ-error protocol for function f . For inputs x and y such that f(x) 6= f(y), we have,

h(Π(x),Π(y)) =
1− δ√

2
. (30)

The following lemmas will be helpful in our proof. These lemmas are straight-forward generalization of their
two-party analogues.

Lemma 16. For any randomized protocol Π computing f : Xk → {0, 1} and for any x, y ∈ Xk and for some i
and j,

h(Π(xixjx−i,j , yiyjy−i,j)) = h(Π(xiyjx−i,j , yixjy−i,j)). (31)

Proof. We will think of the randomized protocol Π on input (x, y) as a deterministic protocol Π′ working
on (x, y, {Ri}i) where Ri is the private random coins of player i. The first observation is that for k-party
deterministic protocol, the inputs which gives rise to the same transcript π form a combinatorial rectangle
Rπ = S1

π × · · · × Skπ. So we have the following.

Pr
{Ri}i

[Π′[x, {Ri}i] = π] = Pr
{Ri}i

[(x, {Ri}i) ∈ Rπ]

= Pr
{Ri}i

[∧
i

(xi, Ri) ∈ Siπ

]
=

∧
i

Pr
Ri

[(xi, Ri) ∈ Siπ]. (32)
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Hence it immediately follows that

1− h2(Π(xixjx−i,j , yiyjy−i,j))

=
∑
π

√
Pr
{Ri}i

[Π(xixjx−i,j = π]. Pr
{Ri}i

[yiyjy−i,j = π]

=
∑
π

[√
Pr
{Ri}i

[(x−i,j , R−i,j ∈ R−i,jπ ] Pr
Ri

[(xi, Ri) ∈ Siπ] Pr
Rj

[(xj , Rj) ∈ Sjπ]×√
Pr
{Ri}i

[(x−i,j , R−i,j ∈ R−i,jπ ] Pr
Ri

[(yi, Ri) ∈ Siπ] Pr
Rj

[(yj , Rj) ∈ Sjπ]

]
=
∑
π

√
Pr
{Ri}i

[Π(xiyjx−i,j = π]. Pr
{Ri}i

[yixjy−i,j = π]

= 1− h2(Π(xiyjx−i,j , yixjy−i,j)). (33)

This property of Hellinger distance is called the k-party cut-paste property. Another property of Hellinger
distance which is required is the following.

Lemma 17. For any randomized protocol Π and for any input x, y ∈ Xk and for some i and j,

2h2(Π(xixjx−i,j , yiyjy−i,j)) ≥ h2(Π(xixjx−i,j , xiyjy−i,j)) + h2(Π(yixjx−i,j , yiyjy−i,j)). (34)

Proof. As before,

(1− h2(Π(xixjx−i,j , xiyjy−i,j))) + (1− h2(Π(yixjx−i,j , yiyjy−i,j)))

=
∑
π

[√
Pr
{Ri}i

[Π(xixjx−i,j = π]. Pr
{Ri}i

[xiyjy−i,j = π]+

√
Pr
{Ri}i

[Π(yixjx−i,j = π]. Pr
{Ri}i

[yiyjy−i,j = π]

]
=
∑
π

[√
Pr
{Ri}i

[(y−i,j , Ri,j ∈ R−i,jπ ] Pr
{Ri}i

[(x−i,j , Ri,j ∈ R−i,jπ ]×√
Pr
Rj

[(xj , Rj) ∈ Sjπ] Pr
Rj

[(yj , Rj) ∈ Sjπ]

(
Pr
Ri

[(xi, Ri) ∈ Siπ] + Pr
Ri

[(yi, Ri) ∈ Siπ]

)]
≥ 2

∑
π

[√
Pr
{Ri}i

[(y−i,j , Ri,j ∈ R−i,jπ ] Pr
{Ri}i

[(x−i,j , Ri,j ∈ R−i,jπ ]×√
Pr
Rj

[(xj , Rj) ∈ Sjπ] Pr
Rj

[(yj , Rj) ∈ Sjπ]
√

Pr
Ri

[(xi, Ri) ∈ Siπ] Pr
Ri

[(yi, Ri) ∈ Siπ]

]
= 2(1− h2(Π(xixjx−i,j , yiyjy−i,j))). (35)

Now we show some structural properties of coordinator model described in terms of Hellinger distance. These
are generalizations of analogous properties shown in [BEO+13]. We believe, the proofs are simpler than the ones
in [BEO+13]. We will make use of these structural properties later in the proof.

4.2.1 Structural properties

First we state a version of diagonal lemma for M and Xi which will be useful in our proof. Note that Πi(ēi,j , ē)
is equivalent to Πi[1, 1, j; ē].

Lemma 18. For i 6= j

h2(Πi[0, 0, j; ē],Πi[1, 1, z; ē]) ≥ 1

2
h2(Πi(ēi,j ; ē),Π

i(ēj ; ē)). (36)

The next lemma is, as mentioned in [BEO+13], a version of global-to-local property of Hellinger distance in
the following setting.

12



Lemma 19. For i 6= j

h2(Π[i, 0, 0, z; ē],Π[i, 1, 0, z; ē]) = h(Πi[0, 0, z; ē],Πi[1, 0, z; ē]), (37)

and
h(Π(ēi,j ; ē),Π(ēi; ē) = h(Πi(ēi,j ; ē),Π

i(ēi; ē)). (38)

The proofs of Lemma 18 and Lemma 19 are straightforward from the analogous lemmas in [BEO+13]. We
will give a simplified version of the proofs here.

Proof of Lemma 18. We have to measure the Hellinger distance of the distribution of Πi where the inputs in the
first coordinate are coming from the distribution switched by M and Z. The first observation that we do is
the following. In the protocol Π the input of the ith player is fixed. The protocol can be thought of as a two
party protocol, where the first player is the i-th player and the second player consists of all the k − 1 players
and the coordinator. The second player, given M and Z, can randomly sample the inputs of all other players
participating in Π. The input of the first player, as in the case of ith player in the protocol Π is fixed. Let us
call this new protocol as Π̂. It is clear that the Hellinger distance in the Equation (36) remains the same if we
consider Π̂ instead of Π.

Now, given a two party protocol Π̂, we can invoke Pythagorean lemma (two party version of Lemma 17) to
imply the following.

2h2(Π[0, 0, j; ē],Π[1, 1, j; ē]) = 2h2(Π̂[0, (0, j); ē], Π̂[1, (1, j); ē])

≥ h2(Π̂[0, (0, j); ē], Π̂[1, (0, j); ē])

+ h2(Π̂[0, (1, j); ē], Π̂[1, (1, j); ē])

≥ h2(Π̂[0, (1, j); ē], Π̂[1, (1, j); ē])

= h2(Π[ēi,j ; ē], Π̂[ēj ; ē]).

Proof of Lemma 19. We will make the following observations. Firstly, given any transcript τ for Π and a player
i we can divide τ in three parts: τi← which is the part of the transcript where the coordinator sends message to
player i, τi→ which is the part of the transcript where the player i sends message to the coordinator and τ−i
where the other players and the coordinator sends message to each other.

Secondly, the following is easy to see. When the input of the player i is fixed (say to (01)) as in the case of
the distribution we are interested in Eq. (37),

Pr
R,X

[Π = τ ] = Pr
Ri

[Πi→ = τi→ | Xi = (01),Πi← = τi←]. Pr
X−i
R−i

[Πi← = τi←,Π−i = τ−i | Πi→ = τi→]. (39)

Similarly,

Pr
R,X

[Πi = τ i] = Pr
Ri

[Πi
i→ = τ ii→ | Xi = (01),Πi

i← = τ ii←]. Pr
R−i,X−i

[Πi
i← = τ ii← | Πi

i→ = τ ii→]. (40)

So,

1− h2(Πi[0, 0, z; ē],Πi[1, 0, z; ē])

=
∑
τ i

[√
Pr
Ri

[Πi
i→ = τ ii→ | Xi = (01),Πi

i← = τ ii←] Pr
Ri

[Πi
i→ = τ ii→ | Xi = (11),Πi

i← = τ ii←]

Pr
R−i,X−i

[Πi
i← = τ ii← | Πi

i→ = τ ii→]

]
=
∑
τ i

[√
Pr
Ri

[Πi
i→ = τ ii→ | Xi = (01),Πi

i← = τ ii←] Pr
Ri

[Πi
i→ = τ ii→ | Xi = (11),Πi

i← = τ ii←]

∑
τ :τ |i=τ i

Pr
R−i,X−i

[Πi← = τi←,Π−i = τ−i | Πi→ = τi→]

]

=
∑
τ

[√
Pr
Ri

[Πi→ = τi→ | Xi = (01),Πi← = τi←] Pr
Ri

[Πi→ = τi→ | Xi = (11),Πi← = τi←]

Pr
R−i,X−i

[Πi← = τi←,Π−i = τ−i | Πi→ = τi→]

]
= 1− h2(Π[i, 0, 0, z; ē],Π[i, 1, 0, z; ē]).

(38) can be proved in the similar way.
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4.2.2 Information complexity of Disj2

Now we are ready to prove the partial information cost of Disj2 is Ω(k). We consider processor i and fix a value
j 6= i.

Claim 20 ([BEO+13]).

(1)I[M−W : Πi | Xi,Z = j,W = 2] ≥ 2

3
h2(Πi[1, 0, j; ē],Πi[1, 1, j; ē]), (41)

(2)I[Xi
−W : Πi | M,Z = j,W = 2] ≥ 2

3
h2(Πi[0, 0, j; ē],Πi[1, 0, j; ē]), (42)

(3)I[M−W : Πi | Xi,Z = j,W = 1] ≥ 2

3
h2(Πi[ē; 1, 0, j],Πi[ē; 1, 1, j]), (43)

(4)I[Xi
−W : Πi | M,Z = j,W = 1] ≥ 2

3
h2(Πi[ē; 0, 0, j],Πi[ē; 1, 0, j]). (44)

Proof sketch. Note that M takes value 0 with probability 2/3 and 1 with probability 1/3. This makes M−W a
completely unbiased random variable given Xi = (11) and Z = j. This lets us make the following assertion from
the property of Hellinger distance (c.f. Fact 14).

I[M−W : Πi | Xi = (11),Z = j,W = 2] ≥ h2(Πi[1, 0, j; ē],Πi[1, 1, j; ē]). (45)

Also, given M = 0 and Z = j, Xi, for any i 6= j, is a random variable taking value between (01) and (11)
uniformly. This lets us conclude the following using Fact 14.

I[Xi
−W : Πi | M = 0,Z = j,W = 2] ≥ h2(Πi[1, 0, j; ē],Πi[0, 0, j; ē]). (46)

Now, it can be checked that Pr[Xi
−W = (11) | Z = j,W = 2] = 2/3 and by our construction Pr[M = 0 | Z =

j,W = 2] = 2/3. Combining these facts with Equation (45) and (46) we can prove the claim. Other two cases
can be proved similarly.

Using Cauchy-Schwarz and triangle inequality, we can write the following.

I[M−W : Πi | Xi,Z = j,W] + I[Xi
−W; Πi | M,Z = j,W]

≥ 1

3

[
h2(Πi[1, 1, j; ē],Πi[0, 0, j; ē]) + h2(Πi[ē; 1, 1, j],Πi[ē; 0, 0, j])

]
Using Lemma 18,

≥ 1

6

[
h2(Πi(ēi,j .ē),Π

i(ēj .ē)) + h2(Πi(ēēi,j),Π
i(ēēj)

]
.

Using Lemma 19 we get,∑
i

I[M−W : Πi | Xi,Z,W] + I[Xi
−W; Πi | M,Z,W]

≥ 1

6k

∑
i

∑
j:i 6=j

[
h2(Π(ēi,j .ē),Π(ēj .ē)) + h2(Π(ēēi,j),Π(ēēj))

]
By recounting the double summation,

=
1

12k

∑
i 6=j

[
[h2(Π(ēi,j .ē),Π(ēj .ē)) + h2(Π(ēi,j .ē),Π(ēi.ē))]

+ [h2(Π(ēēi,j),Π(ēēj)) + h2(Π(ēēi,j),Π(ēēi))]
]

14



Using Cauchy-Schwarz & triangle inequality,

≥ 1

24k

∑
i 6=j

[
[h2(Π(ēi.ē),Π(ēj .ē))] + [h2(Π(ēēi),Π(ēēj))]

]
=

1

24k

∑
i 6=j

[
[h2(Π(ē.ē),Π(ēi,j .ē))] + [h2(Π(ēē),Π(ēēi,j))]

]
[Lemma 16]

≥ 1

48k

∑
i 6=j

[h2(Π(ē.ēi,j),Π(ēi,j .ē))] [Cauchy-Schwarz & triangle inequality]

≥ 1

96k

∑
i 6=j

[
[h2(Π(ē.ēi,j),Π(ēj .ēi)) + h2(Π(ēi,j ē),Π(ēi.ēj))]

]
[Lemma 17]

=
k − 1

384
(1− δ)2 [Fact 15]

= Ω(k). (47)

We can write the penultimate equality because ē.ēi,j and ēi,j ē gives output 1 in Disj2 but ēj .ēi and ēi.ēj
gives 0.

5 Information cost & communication

In this section we will show the information complexity is right measure to lower bound by showing that
the randomized communication complexity of any function f is lower bounded by the switched information
complexity of f .

Theorem 21. For any distribution µ over the inputs,

Rε(Tribesm,`) = Ω(ICµ(Tribesm,`)). (48)

Proof. Let us assume the random variables (X,Z) is distributed according to µ and the marginal distribution
on X is ν. Note that Iµ[X; Y | Z] ≤ Hµ(X | Z) ≤ Hν(X). Now consider any ε-error protocol Π for Tribesm,`.
We can write the following.

I[Xi : Πi(X) | M,Z] ≤ H(Πi | M,Z) ≤ H(Πi), (49)

and

I[M : Πi(X) | Xi,Z] ≤ H(Πi | Xi,Z) ≤ H(Πi). (50)

Now trivially H(Πi) upper bounded by the biggest size of Πi (Note that, Πi is function of the random variable
X) and thus the Equation (49) can be upper bounded by the biggest size of Πi. But for each player the biggest
size of his view of transcript can occur for different X. Hence we cannot upper bound the switched information
complexity by the |Π|.

Instead, we use the following fact from information theory.

Lemma 22 (Theorem 5.3.1 in [CT06]). The expected length L of any instantaneous q-ary code for a random
variable X satisfies the following inequality.

L ≥ 1

log q
H(X). (51)

We can make the transcript instantaneous by introducing a special delimiter . That still keeps the alphabet
size constant. Hence we can write the following.

I[Xi : Πi(X) | M,Z] ≤ H(Πi | M,Z) ≤ H(Πi) ≤ log 3.E(|Πi|)), (52)

and

I[M : Πi(X) | Xi,Z] ≤ H(Πi | Xi,Z) ≤ H(Πi) ≤ log 3.E(|Πi|). (53)

Now we are in good shape. We will complete the proof of the lemma by the following set of equations.
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∑
i∈[k]

(I[Xi : Πi(X) | M,Z] + I[M; Πi(X) | Xi,Z]) ≤ 2 log 3
∑
i∈[k]

E(|Πi|)

= 2 log 3Ex(
∑
i∈[k]

|Πi|) [Linearity of expectation]

= 2 log 3Ex(|Π|)
= O(max

x
{|Π(x)|}). (54)

The worst case transcript size upper bounded by the randomized communication complexity of Tribesm,`.
This proves the theorem.

Combining Theorem 21, 6, 9 and 12, we can prove Theorem 1.
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