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Abstract

A map f : {0, 1}n → {0, 1}n has locality t if every output bit of f depends only on t
input bits. Arora, Steurer, and Wigderson (2009) asked if there exist bounded-degree
expander graphs on 2n nodes such that the neighbors of a node x ∈ {0, 1}n can be
computed by maps of constant locality.

We give an explicit construction of such graphs with locality one. We then give three
applications of this construction: (1) lossless expanders with constant locality, (2) more
efficient error reduction for randomized algorithms, and (3) more efficient hardness
amplification of one-way permutations. We also give, for n of the form n = 4 · 3t, an
explicit construction of bipartite Ramanujan graphs of degree 3 with 2n − 1 nodes in
each side such that the neighbors of a node x ∈ {0, 1}n \ {0n} can be computed either
(1) in constant locality or (2) in constant time using standard operations on words of
length Ω(n).

Our results use in black-box fashion deep explicit constructions of Cayley expander
graphs, by Kassabov (2007) for the symmetric group Sn and by Morgenstern (1994)
for the special linear group SL(2, F2n).

1 Introduction and our results

Expander graphs are important objects in theoretical computer science with myriad of appli-
cations; for background see e.g. the survey [HLW06]. Some of these applications require the
ability to efficiently compute the transition functions, that is, the neighbors of a given n-bit
node. Indeed, many algorithms for this task have been devised under various resource con-
straints, see e.g. [BYGW99], [GV04], [DvM06], and [ASW09]. Still, several natural questions
remain open. Here we affirmatively answer a question by [ASW09] who ask if the neighbors
can be computed by functions with constant locality. A function f : {0, 1}n → {0, 1}n has
locality t if each output bit depends on at most t input bits. The class of functions with
constant locality is also known as NC0.
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First, we give a construction of expander graphs where the transition functions have
locality one.

Theorem 1. For every sufficiently large d, and for every n, there exist explicit one-local
maps C1, C2, . . . , Cd each mapping n bits to n bits, such that the graph on nodes {0, 1}n
where node x has the d neighbors C1(x), C2(x), . . . , Cd(x) is an expander graph with second
largest eigenvalue at most d−Ω(1).

The most interesting setting is when the degree of the graph is d = O(1), but we state
a more general tradeoff between degree and eigenvalue bound. We say that a t-local map
f : {0, 1}n → {0, 1}n is explicit (a.k.a. uniform) if its description can be computed in time
polynomial in n. By description we simply mean its graph of connections, and for each
output bit a truth table of length 2t of the function computed at that bit.

In a nutshell, our graph will be a Schreier graph of the semi-direct product of GF (2)n and
the symmetric group Sn. To analyze the semi-direct product we rely on results in [ALW01]
which provide an algebraic view of the Zig-Zag product [RVW02]. We crucially use the fact
that Sn has a constant number of expanding generators, a result due to Kassabov [Kas07].

Second, we give a construction of bipartite, Ramanujan graphs [LPS88] of degree 3, where
the transitions in one direction have constant locality. Let us fix some terminology about
bipartite graphs. We think of a bipartite graph as a graph whose vertex set is of the form
V ×{0, 1} and where a vertex (v, b) has neighbors of the form (w, 1−b). We call V ×{0} the
zero side of the graph, and V × {1} the one side of the graph. Each side of our Ramanujan
graph consists of 2n− 1 vertices; it can be enlarged to have size 2n with a slight loss in other
parameters.

Theorem 2. For every n of the form n = 4 · 3t there exist three explicit constant-locality
maps C1, C2, and C3, each mapping n bits to n bits, such that the bipartite graph on the
2(2n−1) vertices ({0, 1}n\{0n})×{0, 1} where a node (v, 0) has the three neighbors (C1(x), 1),
(C2(x), 1), and (C3(x), 1) is a Ramanujan expander graph.

This theorem uses the Ramanujan graph construction of Morgenstern [Mor94] for a spe-
cial choice of parameters. Although as we prove the transitions in this graph cannot be
computed with constant locality, we show that if we turn this graph into a bipartite one,
and permute the vertices on one side appropriately, the necessary computations can be car-
ried out with constant locality. Another benefit of our choice of parameters is that the graph
in Theorem 2 ends up having a simple description which does not rely on the structure
theory of finite fields.

1.1 Applications

We now describe some applications of the above results.

Error-reduction for free. It is easy to reduce the error of an RP algorithm while in-
creasing the number of random bits used: run the algorithm several times using independent
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random bits, and take the AND of the results. For BPP algorithms one can take instead
the MAJORITY, but we focus here on the RP setting for simplicity. Obtaining similar
results without increasing the number of random bits has received attention since the 80’s
[RKS85, CW89]. One approach is to replace the independent choices for the random bits with
correlated copies, obtained for example by computing the neighbors in an expander graph.
Due to the complexity of previous expander constructions, this approach had a non-trivial
cost which in particular could not be afforded in restricted computational models.

Using Theorem 1 we eliminate completely the cost of computing the correlated copies in
several natural scenarios. We state a result for the computational model of circuits.

Theorem 3. Given a circuit C and a parameter p ≤ 1/2, we can construct in polynomial
time another circuit D such that:

1. D is the AND of poly(1/p) copies of C, where in each copy of C the input variables
may be negated or permuted;

2. If C accepts all inputs then so does D;
3. If C accepts at most a 0.5 fraction of inputs then D accepts at most a p fraction.

We note that if C is an unbounded fan-in circuit whose output gate is AND then D has
the same depth as C, whereas in previous error-reduction results the depth of D increased.

Proof. Let n be the number of input bits of C. Pick a graph from Theorem 1 with vertices
{0, 1}n, second largest eigenvalue λ ≤ p, and degree d = poly(1/p). We identify inputs to C
with the vertices {0, 1}n. The circuit D on input x ∈ {0, 1}n consists of the AND of d copies
of the circuit C, where copy i gets the i neighbor of x. Items 1. and 2. are immediate. Item
3. follows from the expander mixing lemma. Specifically, let A be the set of inputs which C
accepts and let X be the set of inputs which D accepts. Note that X is the set of vertices
with all neighbors in A. Suppose X has density q. The probability that a uniformly chosen
edge of the expander lands in X × A is at least q. By the expander mixing lemma, see e.g.
[HLW06], q ≤ q/2 + λ

√
q/2 and so

√
q/2 ≤ λ, implying q ≤ p.

Local loss-less expanders. Plugging our expanders in Theorem 7.1 in [CRVW02] we
obtain local, bipartite loss-less expanders. A bipartite loss-less expander is a bipartite graph
where any small set K of vertices on the zero side has nearly disjoint neighborhoods. Many
applications of such graphs are described in [CRVW02]. For simplicity we only state our
result for bipartite graphs with two equal sides. (The construction in [CRVW02] allows for
the zero side to be smaller than the one side.)

Theorem 4. For any ε > 0 there exists d = O(1) such that for every n there are d explicit
local maps C1, C2, . . . , Cd, each mapping n bits to n bits, such that the bipartite graph on
vertices {0, 1}n × {0, 1} where a node (v, 0) has neighbors (Ci(x), 1), for i = 1, 2, . . . , d, has
the following property: any set K of up to Ω(2n) vertices on the zero-side has ≥ (1− ε)d|K|
neighbors.
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Proof. (Sketch) We follow the proof of Theorem 7.1 in [CRVW02]. The graph constructed
there is the zig-zag product [RVW02] of three conductors (an object defined in [CRVW02]).
Two of these are of constant size. The other one is an expander graph with degree depending
only on ε, and hence constant. For this graph we can use Theorem 1. Inspection of the zig-zag
product reveals that it preserves constant locality.

Efficient expanders in the RAM model. Computing neighbors in the graph in Theo-
rem 2 is also efficient in the RAM model and in the C programming language. Specifically,
we show how to compute the neighbors of a w-bit node with only a small, constant number of
bit-wise AND, SHIFT, and XOR of w-bit words. To our knowledge, the only construction of
expander graphs with a comparable efficiency is the one by Margulis [Mar73, GG81, JM87]
(which is also not bipartite). A transition in the latter graphs involves only a constant num-
ber of w-bit additions. Our construction has the advantage of being Ramanujan of degree
three. The constructions in [Mar73, GG81, JM87] would need larger degree to achieve the
same eigenvalue bound, and seem to give nothing for degree three.

Hardness amplification of one-way permutations. Call a function f : {0, 1}n →
{0, 1}m α-one-way for time t if every algorithm running in time t fails to invert f on at least
an α fraction of inputs. One-way functions are essential building blocks for cryptography,
see e.g. [Gol01]. A problem that has received attention since the 80’s is how to “amplify”
an α-one-way function f to a new function f ′ that is α′-one-way for α′ > α. Yao’s classic
approach [Yao82] of computing f on k disjoint inputs does achieve this, but has the drawback
of blowing up the input length of f by a factor k. This blow-up is unsatisfactory, and one
can argue that it makes the new function impractical, see e.g. the discussion in [GIL+90].
The question of whether it can be avoided remains open. However, for the special case of
one-way permutations, a better approach is known. [GIL+90] essentially show how to get the
same improvement on α while only incurring an additive overhead in the input length. Their
approach is based on expanders and so, with the expanders provided by this paper, we can
afford it even in very restricted computational models. We state one representative result for
one-way permutations with constant hardness and computable with constant locality. We
note that [AIK06] gives strong evidence that such permutations exist even for hardness α
close to 1. However their techniques blow up the input length by a large factor.

Theorem 5. For any constants α, α′ ∈ (0, 1) the following holds. Suppose that there exists
an α-one-way permutation f : {0, 1}n → {0, 1}n computable with constant locality. Then

there exists an α′-one-way permutation f ′ : {0, 1}n
′
→ {0, 1}n

′
computable with constant

locality and with n′ = n+O(1).

Proof. (Sketch) We use Proposition 1 in [GIL+90]. The input to f ′ consists of an input
x ∈ {0, 1}n for f and k = O(1) edge labels in an expander on vertices {0, 1}n. The evaluation
of f alternates evaluating f and moving to a neighbor in the expander. This is done for k
times. Using the expander in Theorem 1, the new function still has constant locality.
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We note that to compute f ′ we have to examine the edge labels, but this is just O(1)
bits. Another minor detail is that the expander may have a degree which is not a power of
two. But if so we can encode an edge label in a bit string that is longer, but still of constant
length, so that the resulting distribution on edge labels is sufficiently close to uniform.

1.2 Related work and open questions

The study of small locality has received a lot of attention in theoretical computer science.
For many tasks that at first sight seem to require large locality, researchers have been able
to give implementations in constant locality, and our work makes another contribution in
this direction. In the area of pseudorandomness, [Gol00] gives a candidate cryptographic
generator computable with constant locality. [MST06] construct a small-bias generator with
constant locality, refuting a conjecture in [CM01]. In a phenomenal work, [AIK06] show
the existence of cryptographic pseudorandom generators computable with constant locality,
assuming the existence of cryptographic generators computable in, say, logarithmic space
(for which many candidates are available). Each of these works has been extended and
applied in various settings.

Turning to classical reductions, [JMV15] recently show that 3SAT remains NP-complete
even if we require that the clauses are computable by a local map of the index, a requirement
stronger than what looked “hard (perhaps impossible)” [Wil14]. Our work should be relevant
to extending [JMV15] to PCP reductions. The current best result in this direction is [BV14]
which achieves locality one but reduces to kSAT for growing k (as opposed to constant k).

The above constructions perhaps explain the difficulty of proving lower bounds for sam-
pling in constant locality. Starting with [Vio12], several papers study such lower bounds,
but the whole area is largely uncharted. Closer to the setting of this paper, we can ask if
there is a graph property that cannot be realized with constant locality. Rather than making
“graph property” precise we mention two specific open questions.

One application of Ramanujan graphs is the construction of unique-neighbor expanders,
which in turn have several applications, see [AC02]. However we do not know of local unique-
neighbor expanders. The difficulty is that the approach in [AC02] requires Ramanujan graphs
with degrees for which we do not know of a local construction.

It is also an open problem to prove a result like Theorem 2 for non-bipartite graphs. For
context we note that there are several other cases in the literature where certain good bipar-
tite graphs are constructed, but a corresponding non-bipartite construction is not known.
These include the recent construction of bipartite Ramanujan graphs of any degree [MSS15]
and the 15-year old construction of bipartite lossless expanders [CRVW02].

Related to expander graphs, another question that remains open is: Can we compute in
NC1 the endpoint of an n-step walk on a constant-degree expander graph with n-bit nodes?

Organization. We begin in Section 2 with some preliminaries on expanders and groups.
Then in Section 3 we prove Theorem 1 and in Section 4 we prove Theorem 2.
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2 Preliminaries

All the graphs in this paper are connected, undirected, and regular. We allow self loops
and multiple edges. We can thus think of a graph as a symmetric non-negative integer
adjacency matrix with a fixed row-sum (and, by symmetry, column-sum) called the degree.
Alternatively we can think of a graph with degree d on vertices V as a map f : V ×
{1, 2, . . . , d} → V such that for any v and w in V we have |{i : f(v, i) = w}| = |{i : f(w, i) =
v}|. We also write fi for f(., i).

Let G be a d-regular graph with adjacency matrix M ′, and let M := M ′/d be its normal-
ized adjacency matrix. We recall basic facts from spectral graph theory which can be found
e.g. in Problem 2.9 in [Vad12]. All eigenvalues are at most 1 in absolute value. The number
1 is an eigenvalue of M , and it has multiplicity one if and only if the graph is connected.
The graph is bipartite if and only if −1 is an eigenvalue.

Definition 6. A family of connected graphs is called an expander if all the eigenvalues
except 1 and −1 are in absolute value at most λ < 1 where λ is a universal constant. It is
called a Ramanujan expander if λ =2d−1

√
d− 1.

We note that this definition of expander graphs allows for the degree to be non-constant.
We shall use this flexibility in Section 3.

2.1 Cayley and Schreier graphs

Let H be a group. Given a multiset S of elements from H we form the Cayley graph
Cay(H,S) whose vertices are H and where vertex h ∈ H has neighbors sh for every element
s ∈ S. We shall only consider symmetric multisets, that is multisets where the occurrences
of s and s−1 are the same. These give symmetric graphs.

Further suppose that H is a group acting on a set V , namely there is a homomorphism
fromH to the group of permutations of V . Then we can form the Schreier graph Sch(H,S, V )
whose vertices are V and where v ∈ V has neighbors sv for every s ∈ S, where S ⊆ H and
we wrote sv for the permutation corresponding to s applied to v.

The following lemma – Claim 7.2 in [RSW06] – shows that the expansion of Sch(H,S, V )
is at least as good as that of Cay(H,S). For completeness we also include a proof (in a
language that is slightly different from [RSW06]).

Lemma 7. Let λ be an eigenvalue of Sch(H,S, V ). Then λ is also an eigenvalue of
Cay(H,S).

Proof. Let e : V → C be an eigenvector of Sch(H,S, V ) with eigenvalue λ. That is, for
any v ∈ V we have Es∈Se(sv) = λe(v). Pick any vertex v0 ∈ V , and define e′ : H → C as
e′(h) = e(hv0). We claim that e′ is an eigenvector of Cay(H,S) with eigenvalue λ. Indeed,
Es∈Se

′(sh) = Es∈Se(shv0) = λe(hv0) = λe′(h).
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2.2 Bipartite graphs

Let G be a graph on vertex set V where vertex v has neighbors fi(v). The double-cover of
G is the bipartite graph V × {0, 1} where vertex (v, b) has neighbors (fi(v), 1− b).

Fact 8. Let G′ be the double cover of a graph G. If G′ has eigenvalue λ then G has eigenvalue
λ or −λ. In particular, the double cover of a Ramanujan graph is a bipartite Ramanujan
graph.

Proof. Let e′ : V × {0, 1} → C be an eigenvector of G′ with eigenvalue λ. Assume that the
vectors e′(., 0) and e′(., 1) are different. Then define e(v) := e′(v, 0) − e′(v, 1) which is not
zero. We have Eie(fiv) = Ei(e

′(fiv, 0)− e′(fiv, 1)) = λe′(v, 1)− λe′(v, 0) = −λe(v).
Otherwise, if e′(., 0) and e′(., 1) are equal (and non-zero) define e(v) := e′(v, 0) + e′(v, 1).

We now have Eie(fiv) = +λe(v).

3 One-local expander

In this section we prove Theorem 1. First we note that the composition of two one-local maps
is still one-local. So it suffices to prove the theorem for some d = O(1) with an eigenvalue
bound of 1 − Ω(1). To obtain the general theorem one can take the t power of this graph,
which has degree dt and eigenvalue bound (1− Ω(1))t = d−Ω(1).

Background on [ALW01]. By reinterpreting (a variant of) the zig-zag product [RVW02]
in group-theoretic terms, [ALW01] give a way to prove that the semi-direct product C
of two groups A and B is, with respect to certain generators, a Cayley expander graph.
Specifically, assume that B acts on A, namely we can view homeomorphically the elements
of B as automorphisms of A. Recall that the semi-direct product C of groups A and B has
elements A×B and multiplication defined as follows:

(â, b̂)(a, b) = (âb̂−1(a), b̂b),

where b(a) is the image of a under the action b.
Let S and T be sets of generators for A and B, respectively. Further suppose that S is a

(disjoint) union of c orbits under B, i.e., S =
⋃c

i=1B(ai), where B(a) is the orbit of a ∈ A
under B. Then consider the following set U of generators for C:

U = {(1A, b)(ai, 1)(1A, b
′) : b, b′ ∈ T, i ∈ [c]}.

The key property is that the size of U is only c|T |2, which can be a constant even if |S|
is not. (We note that even if the orbits have different sizes – as will happen to us – they are
each picked with the same probability in the random walk induced by this zigzag operation.)

Theorem 9. [[ALW01]] Cay(C,U) is an expander graph if both Cay(A, S) and Cay(B, T )
are.
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Our construction. For the group A we simply pick GF (2)n equipped with bit-wise xor
(namely, addition). For B we take the permutation group Sn on n elements. We let B act
on A by permuting coordinates.

Theorem 10. [[Kas07]] There exists an explicit, constant-size set T of generators such that
Cay(Sn, T ) is an expander.

For generators for A we pick the union S of the orbits under B of the following three
vectors: 0n, 10n−1, 1k0n−k where k is the ceiling of n/2.

Lemma 11. Cay(A, S) is an expander graph.

Proof. It is a standard fact that it suffices to show that for every non-zero v ∈ {0, 1}n the
probability that 〈v, x〉 = 1 over x picked uniformly from the multiset S is bounded away
from 0 and from 1 (essentially following from the fact that the eigenvalues of the adjacency
matrix are the Fourier coefficients of the distribution on generators); see for example the
proof of Theorem 3.1 in [ALW01]. (〈v, x〉 is the inner product modulo 2 of v and x.) To
verify this, note that for any v, the probability that 〈v, x〉 = 0 is Ω(1) thanks to the vector
0n. So we just need to show that the probability that 〈v, x〉 = 1 is Ω(1) as well. If the
weight of v is larger than, say, n/3 this is true thanks to the vector 10n−1. Now consider a
vector v of weight less than n/3, and let x be a uniform permutation of 1k0n−k. Let us think
instead of taking a random permutation of v and computing the inner product with the fixed
vector y = 1k0n−k. After all but one of the non-zero entries of v have been permuted, we
have covered no more than n/3 of the coordinates of y. So the last non-zero entry of v has
a constant probability of being mapped to a one in y, and a constant probability of being
mapped to a zero in y.

By Theorem 9, the semi-direct product C of A and B with the generators

U = {(1, b)(a, 1)(1, b′) : b, b′ ∈ T, a ∈ {0n, 10n−1, 1k0n−k}}

is an expander graph. Note that |U | = O(1).
Finally, we view C as a group of permutations on {0, 1}n as follows. Element (a, b)

first permutes the coordinates by b and then xor’s by a. To verify that this is a proper
definition we need to check that the permutation of (â, b̂)(a, b) = (âb̂−1(a), b̂b) is the same
as the composition of the permutation of (â, b̂) and the permutation of (a, b), which is true.
This gives the Schreier graph Sch(C,U, {0, 1}n). This graph is connected and by Lemma
7 is an expander. The transition functions only xor and permute bits, and so they can be
implemented by one-local maps.

4 Local Ramanujan

In this section we prove Theorem 2. We make use of the following Ramanujan graph con-
struction of Morgenstern.
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Theorem 12. [Theorem 5.13 in [Mor94]] Let g(x) ∈ F2[x] be an irreducible polynomial of
even degree n, and represent F2n as F2[x]/g(x). Then the Cayley graph of SL(2, F2n) with
the three generators zM1, zM2, zM3 is a Ramanujan expander graph, where L ∈ F2n satisfies

L2 + L = 1 and we define z = 1/
√

1 + x, M1 =

(
1 L

(L+ 1)x 1

)
, M2 =

(
1 1
x 1

)
, and

M3 =

(
1 L+ 1
Lx 1

)
.

An explicit choice for g and L is made below in Section 4.2.
Before continuing with our proof let us explain how Theorem 12 follows from Theorem

5.13 in [Mor94]. Using the notation in the latter, we pick q = 2 and ε = 1, and note that
x2 + x + 1 is irreducible in F2[x]. Note that the determinants of M1, M2, and M3 are all
1 + x because 1 + (L2 + L)x = 1 + x. With the normalization 1/

√
1 + x, the determinants

become 1. (The square root of 1+x exists because every element is a square in characteristic
2.) Morgenstern does not include this normalization, but we prefer to identify the group
SL(2, F2n) with the 2 × 2 matrices of determinant 1 over the field F2n . Finally note that
M2

i = det(Mi)I and so each of our three generators is its own inverse.
The graph in Theorem 12 is problematic for us: In section 4.3 below we show that

multiplication by z (or by zM2) is not locally computable.
Our first step is to build the Schreier graph on vertex set V := (F2n)2 − (0, 0), which we

view as column vectors, with respect to the generators in Theorem 12. (The permutation
on V associated to h ∈ SL(2, F2n) is simply the matrix-vector multiplication.) We note
that this graph is connected: every (a, b)T ∈ V equals h(1, 0)T for some h ∈ SL(2, F2n).

Indeed, if a 6= 0 we have (a, b)T =

(
a 0
b 1/a

)
(1, 0)T , and similarly if b 6= 0 we have (a, b)T =(

a 1/b
b 0

)
(1, 0)T . By Lemma 7 this Schreier graph is also Ramanujan.

The next step is to take the double cover of this graph. We thus obtain a graph G on
2(22n − 1) vertices which is also Ramanujan by Fact 8. Later we show that we can pick any
n of the form n = 2 · 3t, thus obtaining graphs on 2(24·3t − 1) nodes as in Theorem 2.

We still have not fixed the problem mentioned earlier, that multiplication by z (or by
zM2) is not locally computable. The last step is aimed to fix that, and is perhaps the least
obvious. We argue that the normalization factor z can be removed from this last graph, and
that doing so allows us to compute locally the neighbors of a vertex on the zero side.

4.1 Twisting the graph

Let G be a bipartite graph with vertices V ×{0, 1}, where node (v, b) has neighbors (fi(v), 1−
b). Let π be a permutation of V . We define the π−twist G′ of G as follows. The vertices of
G′ are again V × {0, 1}. However vertex (v, 0) ∈ G′ has neighbors (πfiv, 1) (and so vertex
(v, 1) ∈ G′ has neighbors (fiπ

−1v, 0)). We claim that twisting a graph does not affect its
spectral expansion.

Lemma 13. The eigenvalues of G and G′ are the same.
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Proof. We show that if λ is an eigenvalue of G′ then λ is also an eigenvalue of G. Let
e′ : V ×{0, 1} → C be an eigenvector of the twisted graph G′ with eigenvalue λ. This means
that

e′(v, 0) = λ−1Eie
′(πfiv, 1)

and
e′(v, 1) = λ−1Eie

′(fiπ
−1v, 0).

Define e(v, 0) := e′(v, 0) and e(v, 1) := e′(πv, 1). Note that e is non-zero if and only if e′

is non-zero. We claim that e is an eigenvector of G with eigenvalue λ. Indeed,

e(v, 0) = e′(v, 0) = λ−1Eie
′(πfiv, 1) = λ−1Eie(fiv, 1).

Similarly,
e(v, 1) = e′(πv, 1) = λ−1Eie

′(fiπ
−1πv, 0) = λ−1Eie(fiv, 0).

We twist the graph by multiplying a node by
√

1 + x. This means that the neighbors of
a zero-side vertex (v, 0) are simply (Miv, 1) where the Mi are as in Theorem 12.

4.2 Local computation

We now argue that multiplication by Mi can be done with constant locality. Inspection of
the Mi reveals that the only non-trivial steps are multiplication of an arbitrary element of
F2n by x and L, where L is the field element in Theorem 12. Multiplication by x is again
simple and works for any irreducible polynomial we choose to define the field. On the other
hand, multiplication by L relies on the specific irreducible polynomial g(x) := xn + xn/2 + 1
when n = 2 · 3t.

Lemma 14. [Theorem 1.1.28 in [vL99]] The polynomial g(x) is irreducible.

Earlier, [HV06] shows that the order of x modulo g(x) is small, and exploits this to
compute efficiently the exponentiation of an n-bit field element to an n-bit exponent, for
example in space O(log n).

In this work the critical observations are that L is sparse – in fact, L = xn/2 – and that
modulo g(x) multiplication by any fixed sparse element can be carried out with constant
locality.

Claim 15. The field element L := xn/2 satisfies L2 + L = 1.

Proof. We have L2 = xn = xn/2 + 1 = L+ 1.

Claim 16. Let n = 2 · 3t and represent F2n as F2[x]/g(x) where g(x) is the irreducible
polynomial x2·3t

+ x3t
+ 1. For any sparse (i.e., with O(1) monomials) element a ∈ F2d there

is an explicit local map C : {0, 1}n → {0, 1}n such that C(b) = ab for every b ∈ F2n .
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Proof. It is enough to consider the case where a consists of a single monomial xs. Hence,
given as input

∑
j<n cjx

j we have to output the coefficients of the polynomial
∑

j<n cjx
j+s.

For simplicity of notation we only consider the case s = 3t, i.e., multiplication by L, which
is all that is needed for the application.

Write an element y ∈ F2n as a pair (y2, y1) where |y2| = |y1| = n/2 and y1 consists of the
least significant n/2 bits. If y =

∑
j<n cjx

j then we have

ay =
∑
j<n

cjx
j+n/2 =

∑
0≤j<n/2

cjx
j+n/2 +

∑
0≤j<n/2

cj+n/2x
j+n

= xn/2
∑

0≤j<n/2

cjx
j + (1 + xn/2)

∑
0≤j<n/2

cj+n/2x
j

= xn/2
∑

0≤j<n/2

(cj+n/2 + cj)x
j +

∑
0≤j<n/2

cj+n/2x
j.

= (y2 + y1, y2).

Finally, we show that the expander in Theorem 2 is efficiently computable in the RAM
model. Bit-wise XOR is clearly efficient. Multiplication by x is simply a cyclic shift plus
possibly a bit-wise XOR depending on the most significant bit of x. It only remains to verify
that multiplication by L = xn/2 is efficient too. Indeed, as already seen, this multiplication
has the following simple format. Write an element y ∈ F2n as a pair (y2, y1) where |y2| =
|y1| = n/2 and y1 consists of the least significant n/2 bits. Then L · (y2, y1) = (y2 + y1, y2).

4.3 Negative results for local computation

In this section we make two remarks that aim to give some context for the results in Section
4.2. First, we note that the sparsity of g(x) alone is not sufficient for Claim 16. Specifically
we show that the Parity function on n bits can be reduced to multiplication modulo the
polynomial h(x) := xn + xn−1. Since Parity requires locality n, the result follows. To see
the reduction, first note that for any j ≥ n, xj = xn−1 modulo h. So if we multiply an n-bit
element

∑n−1
j=0 cjx

j by xn−1 we obtain xn−1
∑n−1

j=0 cj. Thus, the parity of the input bits is in
the most significant bit of the output. In our result we use the stronger property that in the
binary representation of g the ones are spaced away by Ω(n) zeros.

Second, we show that the transitions in Morgenstern’s expander in Theorem 12 are not
locally computable, for our choice of the underlying field. This justifies twisting the graph.
Note that multiplication of an arbitrary vector by zM2 requires multiplication of an arbitrary
field element by the normalization factor z = 1/

√
1 + x. We show that parity on Ω(n) bits

reduces to the latter. This also has consequences for the RAM model, because there is no
known way to compute parity very efficiently there.

Claim 17. z = 1 + x+ x2 + . . .+ xb−1 where b = (3n/2 + 1)/2.

11



Proof. First we note that
√

1 + x = 1 + xb. Indeed, (1 + xb)2 = 1 + x3n/2+1 = 1 + x,
because x3n/2 = 1, a fact also pointed out and used in [HV06]. It remains to prove that
1/(1 + xb) = 1 + x + x2 + . . . + xb−1, which is equivalent to 1 = 1 + x + . . . + x2b−1. Note

that 2b− 1 = 3n/2, and so we want to show that
∑3n/2

i=0 xi = 1. Indeed,

3n/2∑
i=0

xi =
n−1∑
i=0

xi +

n/2−1∑
i=0

(xi + xi+n/2) + x3n/2 = x3n/2 = 1.

Claim 18. Parity on Ω(n) bits reduces to multiplying by z.

Proof. Note that b < 3n/4 + 1 in Claim 17. So, if you multiply z = 1/
√

1 + x = 1 + x +
x2 + . . .+ xb−1 by an input y that is zero in all but the least significant 0.2n bits, there will
be no wrapping around, and what you are doing is plain convolution. Thus, the parity of y
will be one of the bits in zy.

Acknowledgments. We thank the anonymous referees for their useful comments.
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