One-way Communication and Linear Sketch for Uniform Distribution

Swagato Sanyal

November 25, 2016

Abstract

This note is prepared based on the article titled "Linear Sketching over \mathbb{F}_{2} " (ECCC TR16-174) by Sampath Kannan, Elchanan Mossel and Grigory Yaroslavtsev. We quantitatively improve the parameters of Theorem 1.4 of the above work. In particular, our result implies that the one-way communication complexity of any function $f^{+}(x, y):=f(x \oplus y)$ corresponding to the uniform distribution over the input domain $\{+1,-1\}^{n} \times\{+1,-1\}^{n}$ and error $\frac{1}{18}$ is asymptotically lower bounded by the linear sketch complexity of $f(x)$ corresponding to the uniform distribution over the input domain $\{+1,-1\}^{n}$ and error $\frac{1}{3}$. Our proof is information theoretic; our improvement is obtained by studying the mutual information between Alice's message and the evaluation of certain parities in the Fourier support of f on her input.

We recall the definition of approximate Fourier dimension by Kannan et al. (TR16-174).

Definition 1 (δ-approximate Fourier dimension, Kannan et al. 2016) The δ-approximate Fourier dimension of a Boolean function $f(x)=\sum_{S} \widehat{f}(S) \chi_{S}(x)$ is defined to be the smallest dimension of any linear subspace $\mathcal{A} \in \mathbb{F}_{2}^{n}$ such that $\sum_{S \in \mathcal{A}} \widehat{f}^{2}(S) \geq \delta$.

We will need the following basic fact about the Shannon entropy of ± 1 valued random variables, that can be easily proved by Taylor expanding the binary entropy function $H(p)$ about $p=\frac{1}{2}$.

Fact 2 There is a universal constant $k>0$ such that for any random variable X supported on $\{+1,-1\}, H(X) \leq 1-k(\mathbb{E} X)^{2}$.

For the rest of the note, fix an arbitrary $f:\{+1,-1\}^{n} \rightarrow\{+1,-1\}$, and let $f^{+}(x, y)=f(x \oplus y)$. We denote the δ-approximate Fourier dimension of f
by $d_{\delta}(f)$. The following theorem is the main technical contribution of this note. The improvement on Theorem 1.4 in TR16-174 that is indicated in the abstract is presented in Corollary 5.

Theorem 3 For every $\delta>0$ the following holds. Let Π be any deterministic one-way protocol for the function $f^{+}(x, y)$ of cost c_{Π} that makes error $\epsilon_{\Pi}:=$ $\mathbb{P}_{x, y \sim U_{n}}\left[\Pi(x, y) \neq f^{+}(x, y)\right] \leq \frac{1}{4}\left(1-\widehat{f}^{2}(\emptyset)-2 \delta\right)$. Then $c_{\Pi} \geq k \delta d_{\delta}(f)$, where k is the constant from Fact 2.

Proof: Towards a contradiction assume that $c_{\Pi}<k \delta d_{\delta}(f)$. Let M be the random message sent by Alice to Bob. We will abuse notation and also denote the distribution of messages by M . Let \mathcal{D}_{m} be the distribution of Alice's input x conditioned on the event that $M=m$. For any fixed input y of Bob, define $\epsilon_{m}^{(y)}:=\mathbb{P}_{x \sim \mathcal{D}_{m}}\left[\Pi(x, y) \neq f^{+}(x, y)\right]$. Thus,

$$
\begin{equation*}
\epsilon_{\Pi}=\mathbb{E}_{m \sim M} \mathbb{E}_{y \sim U_{n}} \epsilon_{m}^{(y)} \tag{1}
\end{equation*}
$$

Observe that

$$
\begin{equation*}
\epsilon_{m}^{(y)} \geq \min _{b \in\{0,1\}} \mathbb{P}_{x \sim \mathcal{D}_{m}}\left[f^{+}(x, y)=b\right] \geq \frac{\operatorname{Var}_{x \sim \mathcal{D}_{m}} f^{+}(x, y)}{4} \tag{2}
\end{equation*}
$$

Now,

$$
\begin{aligned}
& \operatorname{Var}_{x \sim \mathcal{D}_{m}} f^{+}(x, y)=1-\left(\mathbb{E}_{x \sim \mathcal{D}_{m}} f^{+}(x, y)\right)^{2} \\
& =1-\left(\sum_{S} \widehat{f}(S) \chi_{S}(y) \mathbb{E}_{x \sim \mathcal{D}_{m}} \chi_{S}(x)\right)^{2} \\
& =1-\left(\sum_{S} \widehat{f}^{2}(S)\left(\mathbb{E}_{x \sim \mathcal{D}_{m}} \chi_{S}(x)\right)^{2}\right. \\
& \left.\quad+\sum_{\left\{S_{1}, S_{2}\right\}: S_{1} \neq S_{2}} 2 \widehat{f}\left(S_{1}\right) \widehat{f}\left(S_{2}\right) \chi_{S_{1} \triangle S_{2}}(y)\left(\mathbb{E}_{x \sim \mathcal{D}_{m}} \chi_{S_{1}}(x)\right)\left(\mathbb{E}_{x \sim \mathcal{D}_{m}} \chi_{S_{2}}(x)\right)\right)
\end{aligned}
$$

Hence,

$$
\begin{aligned}
& \mathbb{E}_{y \sim U_{n}} \operatorname{Var}_{x \sim \mathcal{D}_{m}} f^{+}(x, y) \\
& =1-\sum_{S} \widehat{f}^{2}(S)\left(\mathbb{E}_{x \sim \mathcal{D}_{m}} \chi_{S}(x)\right)^{2} \\
& =1-\widehat{f}^{2}(\emptyset)-\sum_{S \neq \emptyset} \widehat{f}^{2}(S)\left(\mathbb{E}_{x \sim \mathcal{D}_{m}} \chi_{S}(x)\right)^{2}
\end{aligned}
$$

Taking expectation over messages it follows from (1) and (2) that,

$$
\begin{equation*}
\epsilon_{\Pi} \geq \frac{1}{4}\left(1-\widehat{f}^{2}(\emptyset)-\sum_{S \neq \emptyset} \widehat{f}^{2}(S) \cdot \mathbb{E}_{m \sim M}\left(\mathbb{E}_{x \sim \mathcal{D}_{m}} \chi_{S}(x)\right)^{2}\right) \tag{3}
\end{equation*}
$$

Define $\mathcal{T}:=\left\{S \neq \emptyset \mid \mathbb{E}_{m \sim M}\left(\mathbb{E}_{x \sim \mathcal{D}_{m}} \chi_{S}(x)\right)^{2} \geq \delta\right\}$. For each $S \in \mathcal{T}$,

$$
\begin{aligned}
H\left(\chi_{S}(x) \mid M\right) & =\mathbb{E}_{m \sim M} H\left(\chi_{S}(x) \mid M=m\right) \\
& \leq \mathbb{E}_{m \sim M}\left(1-k \cdot\left(\mathbb{E}_{x \sim \mathcal{D}_{m}} \chi_{S}(x)\right)^{2}\right) \quad(\text { Fact 2) } \\
& \leq 1-k \delta
\end{aligned}
$$

Let $\left\{T_{1}, \ldots, T_{d}\right\} \subseteq \mathcal{T}$ be a basis of \mathcal{T}. Then,

$$
\begin{aligned}
& c_{\Pi} \geq I\left(\chi_{T_{1}}(x), \ldots, \chi_{T_{d}}(x) ; M\right)=H\left(\chi_{T_{1}}(x), \ldots, \chi_{T_{d}}(x)\right)-H\left(\chi_{T_{1}}(x), \ldots, \chi_{T_{d}}(x) \mid M\right) \\
& \geq d-\left(\sum_{i=1}^{d} H\left(\chi_{T_{i}}(x) \mid M\right)\right) \\
& \geq d-d(1-k \delta)=d k \delta
\end{aligned}
$$

which implies that $d \leq c_{\Pi} / k \delta<d_{\delta}(f)$. We conclude that $\sum_{S \in \mathcal{T}} \widehat{f}^{2}(S)<\delta$.
Thus we have,

$$
\begin{aligned}
& \sum_{S \neq \emptyset} \widehat{f}^{2}(S) \cdot \mathbb{E}_{m \sim M}\left(\mathbb{E}_{x \sim \mathcal{D}_{m}} \chi_{S}(x)\right)^{2} \\
& =\sum_{S \in \mathcal{T}} \widehat{f}^{2}(S) \cdot \mathbb{E}_{m \sim M}\left(\mathbb{E}_{x \sim \mathcal{D}_{m}} \chi_{S}(x)\right)^{2}+\sum_{S \notin\{\emptyset\} \cup \mathcal{T}} \widehat{f}^{2}(S) \cdot \mathbb{E}_{m \sim M}\left(\mathbb{E}_{x \sim \mathcal{D}_{m}} \chi_{S}(x)\right)^{2} \\
& <\delta+\delta=2 \delta
\end{aligned}
$$

From (3) we have

$$
\epsilon_{\Pi}>\frac{1}{4}\left(1-\widehat{f}^{2}(\emptyset)-2 \delta\right)
$$

which is a contradiction. This concludes the proof.
Theorem 4 Let $\epsilon \in\left(0, \frac{1}{2}\right)$. Let $\Delta:=1-\sqrt{\left(\frac{1}{2}-\epsilon\right)}$. Let k be the constant from Fact 2. Then,

$$
D_{\epsilon}^{\rightarrow, U}\left(f^{+}\right) \geq \min \left\{1,\left(2 \sqrt{\left(\frac{1}{2}-\epsilon\right)}-1\right) \cdot k\right\} \cdot D_{\Delta}^{l i n, U}(f)
$$

Proof: We split the proof into two cases:

Case 1: $\min _{b \in\{0,1\}} \mathbb{P}_{x \sim U_{n}}[f(x)=b] \leq \Delta$.
In this case $D_{\Delta}^{l i n, U}(f)=0$, as the algorithm that just outputs the more popular value of f errs with probability at most Δ. Thus we have,

$$
D_{\epsilon}^{\rightarrow, U}\left(f^{+}\right) \geq D_{\Delta}^{l i n, U}(f) .
$$

Case 2: $\min _{b \in\{0,1\}} \mathbb{P}_{x \sim U_{n}}[f(x)=b]>\Delta$.
In this case, $1-\hat{f}^{2}(\emptyset)>1-(1-2 \Delta)^{2}=4 \Delta-4 \Delta^{2}$. Applying Theoem 3 with $\delta=2 \Delta-2 \Delta^{2}-2 \epsilon$, we have that $D_{\epsilon}^{\rightarrow, U}\left(f^{+}\right) \geq k(2 \Delta-$ $\left.2 \Delta^{2}-2 \epsilon\right) \cdot d_{2 \Delta-2 \Delta^{2}-2 \epsilon}(f)$. Now, from Theorem 3.4 (Part 1) in the work of Kannan et al. (TR16-174), we have that $d_{2 \Delta-2 \Delta^{2}-2 \epsilon}(f) \geq$ $D_{\left(1-2 \Delta+2 \Delta^{2}+2 \epsilon\right) / 2}^{l i n, U}(f)$. Thus,

$$
D_{\epsilon}^{\rightarrow, U}\left(f^{+}\right) \geq k\left(2 \Delta-2 \Delta^{2}-2 \epsilon\right) \cdot D_{\left(1-2 \Delta+2 \Delta^{2}+2 \epsilon\right) / 2}^{l i n, U}(f) .
$$

The theorem follows by substituting the value of Δ and verifying that $\left(1-2 \Delta+2 \Delta^{2}+2 \epsilon\right) / 2=\Delta$, and $2 \Delta-2 \Delta^{2}-2 \epsilon=2 \sqrt{\left(\frac{1}{2}-\epsilon\right)}-1$.

The following corollary of Theorem 4 is obtained by setting $\epsilon=\frac{1}{18}$.

Corollary 5

$$
D_{\frac{1}{18}}^{\rightarrow, U}\left(f^{+}\right)=\Omega\left(D_{\frac{1}{3}}^{l i n, U}(f)\right) .
$$

Acknowledgement: I thank Nikhil Mande for useful comments and proofreading the manuscript.

