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Abstract

This note is prepared based on the article titled “Linear Sketch-
ing over F2”(ECCC TR16-174) by Sampath Kannan, Elchanan Mossel
and Grigory Yaroslavtsev. We quantitatively improve the parame-
ters of Theorem 1.4 of the above work. In particular, our result
implies that the one-way communication complexity of any function
f+(x, y) := f(x⊕y) corresponding to the uniform distribution over the
input domain {+1,−1}n × {+1,−1}n and error 1

18 is asymptotically
lower bounded by the linear sketch complexity of f(x) corresponding
to the uniform distribution over the input domain {+1,−1}n and er-
ror 1

3 . Our proof is information theoretic; our improvement is obtained
by studying the mutual information between Alice’s message and the
evaluation of certain parities in the Fourier support of f on her input.

We recall the definition of approximate Fourier dimension by Kannan et al.
(TR16-174).

Definition 1 (δ-approximate Fourier dimension, Kannan et al. 2016)
The δ-approximate Fourier dimension of a Boolean function f(x) =

∑
S f̂(S)χS(x)

is defined to be the smallest dimension of any linear subspace A ∈ Fn2 such

that
∑

S∈A f̂
2(S) ≥ δ.

We will need the following basic fact about the Shannon entropy of ±1
valued random variables, that can be easily proved by Taylor expanding the
binary entropy function H(p) about p = 1

2 .

Fact 2 There is a universal constant k > 0 such that for any random vari-
able X supported on {+1,−1}, H(X) ≤ 1− k(EX)2.

For the rest of the note, fix an arbitrary f : {+1,−1}n → {+1,−1}, and let
f+(x, y) = f(x ⊕ y). We denote the δ-approximate Fourier dimension of f
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by dδ(f). The following theorem is the main technical contribution of this
note. The improvement on Theorem 1.4 in TR16-174 that is indicated in
the abstract is presented in Corollary 5.

Theorem 3 For every δ > 0 the following holds. Let Π be any deterministic
one-way protocol for the function f+(x, y) of cost cΠ that makes error εΠ :=
Px,y∼Un [Π(x, y) 6= f+(x, y)] ≤ 1

4(1− f̂2(∅)− 2δ). Then cΠ ≥ kδdδ(f), where
k is the constant from Fact 2.

Proof: Towards a contradiction assume that cΠ < kδdδ(f). Let M be the
random message sent by Alice to Bob. We will abuse notation and also
denote the distribution of messages by M. Let Dm be the distribution of
Alice’s input x conditioned on the event that M = m. For any fixed input

y of Bob, define ε
(y)
m := Px∼Dm [Π(x, y) 6= f+(x, y)]. Thus,

εΠ = Em∼MEy∼Unε
(y)
m . (1)

Observe that

ε(y)
m ≥ min

b∈{0,1}
Px∼Dm [f+(x, y) = b] ≥ Varx∼Dmf

+(x, y)

4
. (2)

Now,

Varx∼Dmf
+(x, y) = 1−

(
Ex∼Dmf

+(x, y)
)2

= 1−

(∑
S

f̂(S)χS(y)Ex∼Dm
χS(x)

)2

= 1−

(∑
S

f̂2(S) (Ex∼Dm
χS(x))2

+
∑

{S1,S2}:S1 6=S2

2f̂(S1)f̂(S2)χS14S2(y)(Ex∼Dm
χS1(x))(Ex∼Dm

χS2(x))

 .

Hence,

Ey∼UnVarx∼Dmf
+(x, y)

= 1−
∑
S

f̂2(S) (Ex∼Dm
χS(x))2

= 1− f̂2(∅)−
∑
S 6=∅

f̂2(S) (Ex∼Dm
χS(x))2 .
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Taking expectation over messages it follows from (1) and (2) that,

εΠ ≥
1

4

1− f̂2(∅)−
∑
S 6=∅

f̂2(S) · Em∼M (Ex∼Dm
χS(x))2

 (3)

Define T := {S 6= ∅ | Em∼M (Ex∼Dm
χS(x))2 ≥ δ}. For each S ∈ T ,

H(χS(x) |M) = Em∼MH(χS(x) |M = m)

≤ Em∼M (1− k · (Ex∼Dm
χS(x))2) (Fact 2)

≤ 1− kδ.

Let {T1, . . . , Td} ⊆ T be a basis of T . Then,

cΠ ≥ I(χT1(x), . . . , χTd(x);M) = H(χT1(x), . . . , χTd(x))−H(χT1(x), . . . , χTd(x) |M)

≥ d− (
d∑
i=1

H(χTi(x) |M))

≥ d− d(1− kδ) = dkδ.

which implies that d ≤ cΠ/kδ < dδ(f). We conclude that
∑

S∈T f̂
2(S) < δ.

Thus we have,∑
S 6=∅

f̂2(S) · Em∼M (Ex∼Dm
χS(x))2

=
∑
S∈T

f̂2(S) · Em∼M (Ex∼Dm
χS(x))2 +

∑
S/∈{∅}∪T

f̂2(S) · Em∼M (Ex∼Dm
χS(x))2

< δ + δ = 2δ.

From (3) we have

εΠ >
1

4
(1− f̂2(∅)− 2δ).

which is a contradiction. This concludes the proof.

Theorem 4 Let ε ∈ (0, 1
2). Let ∆ := 1 −

√(
1
2 − ε

)
. Let k be the constant

from Fact 2. Then,

D→,Uε (f+) ≥ min

{
1,

(
2

√(
1

2
− ε
)
− 1

)
· k

}
·Dlin,U

∆ (f)

Proof: We split the proof into two cases:
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Case 1: minb∈{0,1} Px∼Un [f(x) = b] ≤ ∆.

In this case Dlin,U
∆ (f) = 0, as the algorithm that just outputs the more

popular value of f errs with probability at most ∆. Thus we have,

D→,Uε (f+) ≥ Dlin,U
∆ (f).

Case 2: minb∈{0,1} Px∼Un [f(x) = b] > ∆.

In this case, 1 − f̂2(∅) > 1 − (1 − 2∆)2 = 4∆ − 4∆2. Applying
Theoem 3 with δ = 2∆− 2∆2− 2ε, we have that D→,Uε (f+) ≥ k(2∆−
2∆2 − 2ε) · d2∆−2∆2−2ε(f). Now, from Theorem 3.4 (Part 1) in the
work of Kannan et al. (TR16-174), we have that d2∆−2∆2−2ε(f) ≥
Dlin,U

(1−2∆+2∆2+2ε)/2
(f). Thus,

D→,Uε (f+) ≥ k(2∆− 2∆2 − 2ε) ·Dlin,U
(1−2∆+2∆2+2ε)/2

(f).

The theorem follows by substituting the value of ∆ and verifying that

(1− 2∆ + 2∆2 + 2ε)/2 = ∆, and 2∆− 2∆2 − 2ε = 2
√(

1
2 − ε

)
− 1.

The following corollary of Theorem 4 is obtained by setting ε = 1
18 .

Corollary 5

D→,U1
18

(f+) = Ω

(
Dlin,U

1
3

(f)

)
.
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