
Promise Constraint Satisfaction:
Algebraic Structure and a Symmetric Boolean Dichotomy

Joshua Brakensiek∗ Venkatesan Guruswami†

Abstract

A classic result due to Schaefer (1978) classifies all constraint satisfaction problems (CSPs) over
the Boolean domain as being either in P or NP-hard. This paper considers a promise-problem variant
of CSPs called PCSPs. A PCSP over a finite set of pairs of constraints Γ consists of a pair (ΨP,ΨQ)
of CSPs with the same set of variables such that for every (P,Q) ∈ Γ, P(xi1 , . . . ,xik) is a clause of ΨP
if and only if Q(xi1 , . . . ,xik) is a clause of ΨQ. The promise problem PCSP(Γ) is to distinguish, given
(ΨP,ΨQ), between the cases ΨP is satisfiable and ΨQ is unsatisfiable. Many problems studied in the
literature such as approximate graph and hypergraph coloring as well as the (2+ε)-SAT problem due to
Austrin, Guruswami, and Håstad [FOCS ’14] can be placed in this framework.

This paper is motivated by the pursuit of understanding the computational complexity of Boolean
promise CSPs, determining for which Γ the associated PCSP is polynomial-time tractable or NP-hard.
As our main result, we show that PCSP(Γ) exhibits a dichotomy (it is either polynomial-time tractable
or NP-hard) when the relations in Γ are symmetric and allow for negations of variables. In particular,
we show that every such polynomial-time tractable Γ can be solved via either Gaussian elimination
over F2 or a linear programming relaxation. We achieve our dichotomy theorem by extending the weak
polymorphism framework of AGH which itself is a generalization of the algebraic approach used by
polymorphisms to study CSPs. In both the algorithm and hardness portions of our proof, we incorporate
new ideas and techniques not utilized in the CSP case.

Furthermore, we show that the computational complexity of any promise CSP (over arbitrary finite
domains) is captured entirely by its weak polymorphisms, a feature known as Galois correspondence,
as well as give necessary and sufficient conditions for the structure of this set of weak polymorphisms.
Such insights call us to question the existence of a general dichotomy for Boolean PCSPs.

∗Department of Mathematical Sciences, Carnegie Mellon University, Pittsburgh, PA 15213, USA. Email:
jbrakens@andrew.cmu.edu. Research supported in part by an REU supplement to NSF CCF-1526092.
†Computer Science Department, Carnegie Mellon University, Pittsburgh, PA 15213. Email: guruswami@cmu.edu. Research

supported in part by NSF grant CCF-1526092.

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Report No. 183 (2016)

Contents

1 Introduction 1
1.1 Proof Overview . 5
1.2 Must there be a Dichotomy? . 6
1.3 Organization . 6

2 Promise Constraint Satisfaction Problems 7
2.1 Weak Polymorphisms . 7
2.2 Decoding . 9
2.3 Idempotence . 9
2.4 Symmetric PCSPs . 10

3 Efficient Algorithms 11
3.1 Zero, One, AND, OR, Parity . 11
3.2 Majority and Alternating-Threshold . 12
3.3 Non-idempotent polymorphisms . 14

4 Classification of Weak Polymorphisms of Folded, Symmetric Promise Relations 14
4.1 PCSP relaxation . 14

4.1.1 Alternating-Threshold-excluding relaxation . 16
4.1.2 Majority-excluding relaxation . 17

4.2 Idempotent case . 18
4.3 Non-idempotent case . 22

5 Hardness Arguments 22

A On Idempotence 24

B Properties of the Alternating-Threshold and Majority Weak Polymorphisms 24

C Lack of Repetition Does Not Make Things Harder 26

D Galois Correspondence of Weak Polymorphisms 27

E General Theory of Promise-CSPs 28
E.1 Polymorphism-only Description of PCSPs . 28
E.2 Analogous characterization for CSPs . 30
E.3 Significance toward establishing complexity of PCSPs . 31

1 Introduction

A constraint satisfaction problem (CSP) over domain D is specified by a finite collection Λ of relations
over D, and is denoted as CSP(Λ). An instance of CSP(Λ) consists of a set of variables V and a collection
of constraints {(τ,P)} where P ∈ Λ and τ is a tuple of k distinct variables where k is the arity of P (i.e.,
P⊆ Dk). The goal is find an assignment σ : V → D that satisfies all constraints, i.e., (σ(τ1), . . . ,σ(τk)) ∈ P
for each constraint (τ,P). In the optimization version, we seek an assignment that maximizes the number of
satisfied constraints.

Constraint satisfaction problems form a rich class of problems, and have played a crucial role in the
development of computational complexity theory, starting from the NP-completeness of 3SAT to the PCP
theorem to the Unique Games Conjecture, all of which study the intractability of a certain CSP. Despite the
large variety of problems that can formulated as a CSP, it is remarkable that CSPs are a class whose com-
putational complexity one can dream of understanding completely, for either the decision or optimization
version (including approximability in the latter case). For Boolean CSPs (those over domain D = {0,1}),
Schaefer [Sch78] proved a dichotomy theorem showing that such CSP is either polynomial time solvable
or NP-complete. Further, he gave a characterization of the tractable cases – a Boolean CSP(Λ) is in P in
precisely six cases, when every constraint in Λ is (i) satisfied by all 0s, (ii) satisfied by all 1s, (iii) a conjunc-
tion of 2CNF clauses, (iv) a conjunction of Horn SAT clauses, (v) a conjunction of dual Horn SAT clauses,
and finally (vi) every constraint in Λ is a conjunction of affine constraints over F2. The Feder-Vardi conjec-
ture [FV98] states that a such a complexity dichotomy holds for every CSP(Λ) over arbitrary finite domains.
Besides the Boolean domain, it has been proved for a few other cases, including CSPs over a domain of size
3 [Bul06] and conservative CSPs (which contain all unary relations) [Bul14, Bul11].

For the (exact) optimization version, a complete dichotomy theorem was established in [TZ13] show-
ing that for every collection of relations Λ, the associated optimization problem is tractable if and only if
a certain basic linear programming relaxation solves it, and it is NP-complete otherwise. The result in fact
holds for a generalization of Max CSP called valued CSP, where each constraint has a finite weight associ-
ated with it, and the goal is to find a minimum value solution. When infinite weights are also allowed (so
some constraints have to be satisfied), it was shown that, surprisingly, a dichotomy for ordinary CSPs would
imply a dichotomy for this more general setting as well [KKR15]. For approximate optimization, a line of
work exploring the consequences of Khot’s Unique Games Conjecture (UGC) [Kho02] culminated in the
striking result [Rag08] (see also [BR15]) that for every CSP, there is a canonical semidefinite programming
relaxation which delivers the optimal worst-case approximation ratio, assuming the UGC.

In this work we are interested in a potential complexity dichotomy for promise constraint satisfaction
problems (PCSPs). A promise CSP PCSP(Γ) is specified by a finite collection Γ = {(Pi,Qi)}i of pairs of
relations with each Pi ⊆ Qi. Let Λ = {Pi}i and Λ′ = {Qi}i, Suppose we are given a satisfiable instance of
CSP(Λ) — while finding a satisfying assignment might be NP-hard, can we find a satisfying assignment
when the input is treated as an instance of CSP(Λ′) (in the obvious way, by replacing each constraint Pi by
the corresponding Qi)? The decision version PCSP(Γ) is the promise problem where given an instance, we
need to output Yes on instances that are satisfiable as a CSP(Λ) instance, and output No on instances that
are unsatisfiable even as a CSP(Λ′) instance. The following challenge motivates this work:

Question 1.1. For which Γ is PCSP(Γ) polynomial-time tractable? For which Γ is PCSP(Γ) NP-hard?
Must every Γ fall into one of these two categories?

Although the condition that Pi ⊆ Qi may seem arbitrary and restrictive, it guarantees that there is a
fundamental algebraic reason for the satisfiability of a CSP with clauses in the Pi’s to imply the satisfiability
of the CSP with the Pi’s replaced by the corresponding Qi’s. More generally consider two distinct domains
D1 and D2, such that Pi ⊆ Dk

1 and Qi ⊆ Dk
2 and there is an inclusion map σ : D1→ D2 such that σ(Pi)⊆ Qi.

1

This is known as a homomorphism is the CSP and universal algebra literature. As this is a preliminary
version, we omit the details of this more general presentation.

To demonstrate the depth and far-reaching nature of this question, we provide some interesting exam-
ples which fall under this Promise-CSP framework:1

a) Consider a PCSP Γ = {(Pi,Qi)} such that Pi = Qi for all i. Then PCSP(Γ) is equivalent to the
CSP decision problem CSP(Γ). Thus the above question in full generality subsumes the CSP dichotomy
conjecture as a special case.

b) Let 3 ≤ c ≤ t be positive integers, and consider the relations P = {(a,b) ∈ [c]2 : a 6= b} and Q =
{(a,b) ∈ [t]2 : a 6= b} with D = {1, . . . , t}.2 Then (P,Q)-PCSP is an instance of the approximate graph
coloring problem in which one needs to distinguish if the chromatic number of graph is at most c or at least
t + 1. The complexity of PCSP(P,Q) is a notorious open problem; this problem is strongly believed to be
NP-hard for all 3 ≤ c ≤ t, but the best NP-hardness in various regimes [KLS00, GK04, Hua13, BG16] fall
woefully short of establishing hardness for all c and t, especially when c is small.

c) Generalizations of the coloring problem to the setting of hypergraphs also fall under this framework.
The hardness of telling if a 3-uniform hypergraph is 2-colorable or not even t-colorable [DRS05] (for any
fixed t) is captured by PCSP(P,Q) where P = {1,2}3 \{(1,1,1),(2,2,2)} and Q = [t]3 \{(j, j, j) | j ∈ [t]}.

d) The (2 + ε)-SAT problem studied by [AGH14] is Γ = {(P1,Q1),(P2,Q2)} in which (P1,Q1) =
({x ∈ {0,1}2k+1, |x| ≥ k},{0,1}2k+1 \{(0, . . . ,0)}) (where |x| is the Hamming weight of x) and (P2,Q2) =
({(0,1),(1,0)},{(0,1),(1,0)}). The purpose of (P2,Q2) is so that we can refer to some variables as nega-
tions of others. This specific PCSP(Γ) was shown to be NP-hard. On the other hand, if we replace P1 with
{x ∈ {0,1}2k+1, |x| ≥ k+1}, then PCSP(Γ) has a polynomial-time algorithm.

e) Let Γ = {(P,Q)} where P = {x ∈ {0,1}2k+1, |x| ∈ {k,k+1}} and Q = {0,1}2k+1 \{02k+1,12k+1}.
Then PCSP(Γ) was shown to be hard in [AGH14], which means that weak 2-coloring of hypergraphs with
minimum discrepancy is hard. On the other hand, if the arity r is even and P contains string of equal number
of 0s and 1s, then PCSP(Γ) is tractable.

Given that PCSPs generalize CSPs and a dichotomy theorem for CSPs over arbitrary domains is it-
self open, in this work we focus on Question 1.1 for relations over the Boolean domain. Even in this
restricted setting, Boolean promise CSPs have radically different structure from that of Boolean CSPs (see
Section 1.2), rendering proving a generalization of Schaefer’s dichotomy quite difficult, if it is even true.
In this work, we build the groundwork for the complexity classification of promise PCPs, and prove a di-
chotomy for the case of symmetric Boolean promise CSPs allowing negations (Theorem 1.2 below). Nega-
tions can be enforced if (P,Q) ∈ Γ where P = Q = {(0,1),(1,0)}; we say such a Γ allows negations or
is folded. A collection of relation pairs Γ = {(Pi,Qi)}i is symmetric if each Pi and Qi is a symmetric re-
lation. A predicate P is symmetric if (a1,a2, . . . ,al) ∈ P iff (aπ(1), . . . ,aπ(l)) ∈ P for every permutation
π ∈ Sl . Note that a symmetric predicate P ⊆ {0,1}l can be specified by a set S ⊆ {0,1, . . . , l} such that
P = {x ∈ {0,1}l | |x| ∈ S}.

Theorem 1.2. Let Γ be a symmetric collection of Boolean relation pairs that allows negations. Then
PCSP(Γ) is either in P or NP-hard.

While the symmetry requirement is a significant restriction, it is a natural subclass that still captures
several fundamental problems, such as k-SAT, Not-All-Equal-k-SAT, t-out-of-k-SAT, Hypergraph Color-
ing, Bipartiteness, Discrepancy minimization, etc. In all these cases, whether a constraint is satisfied

1Throughout the paper, we will use [n] = {1, . . . ,n}, |x| to denote the Hamming weight (the number of 1s) of a Boolean vector
x ∈ {0,1}, and ei ∈ {0,1}n to denote the unique vector such that (ei) j = 1 if and only if j = i.

2Instead of having P ignore a portion of the domain, we could present these more naturally in the homomorphism framework
mentioned previously.

2

only depends on the number of variables set to 1 (negations can be enforced via the symmetric relation
{(0,1),(1,0)}). Note that Horn SAT is an example of a CSP that is not symmetric.

We establish Theorem 1.2 via a characterization of all the tractable cases, and showing that everything
else is NP-hard. To describe our results in greater detail, and to highlight the challenges faced in extending
Schaefer’s theorem to the land of promise CSPs, we now turn to the algebraic approach to study CSP(Λ)
via polymorphisms of the underlying relations.

Polymorphisms are operations that preserve membership in a relation. Formally, f : {0,1}m→ {0,1}
is a polymorphism of P⊆ {0,1}k, denoted f ∈ poly(P), if for all (a(i)1 , . . . ,a(i)k) ∈ P, i = 1,2, . . . ,m,(

f (a(1)1 ,a(2)1 , . . . ,a(m)
1), · · · , f (a(1)k ,a(2)k , . . . ,a(m)

k)
)
∈ P .

For a collection Λ of relations, poly(Λ) = ∩P∈Λ poly(P). Remarkably, the complexity of CSP(Λ) is com-
pletely captured by poly(Λ). The Galois correspondence [Jea98] states that poly(Λ′)⊆ poly(Λ) iff CSP(Λ)
reduces to CSP(Λ′). Note that all dictator functions (called projections in CSP literature), f (x1, . . . ,xm) = x j

for some j, always belong to poly(Λ).
The algebraic dichotomy conjecture states that CSP(Λ) is NP-complete iff poly(Λ) contains only dic-

tator functions [BJK05]. Note that via the Galois correspondence, one direction of the conjecture is true:
if poly(Λ) only contains dictators, then one can reduce an NP-hard CSP (such as NAE 3SAT, whose poly-
morphisms are all dictators) to CSP(Λ) showing that CSP(Λ) is NP-hard. The other direction, namely that
a non-dictator polymorphism implies an efficient algorithm, remains open in general.

The algebraic formulation of Schaefer’s dichotomy theorem states that a Boolean CSP(Λ) is tractable
if poly(Λ) contains one of the six functions: constant 0, constant 1, Majority on 3 variables, Boolean
AND, Boolean OR, or parity of 3 variables;3 otherwise CSP(Λ) is NP-complete. We refer the reader to
the article by Chen [Che09] for an excellent contemporary treatment of Schaefer’s theorem for Boolean
domains in the language of polymorphisms. For larger domains, there has been a lot exciting recent progress,
including the resolution of the bounded width conjecture by Barto and Kozik [BK09, BK14] proving a
precise characterization of when a natural local consistency algorithm works for CSP(Λ) in terms of the
structure of poly(Λ).

Generalizing the situation for CSPs, it is natural to hope the complexity of PCSPs will also be captured
by some form of polymorphisms. This was suggested in [AGH14] via weak polymorphisms. A function
f : {0,1}m→{0,1} is weak polymorphism for a pair of predicates (P,Q), denoted f ∈ poly(P,Q), if f maps
any m inputs in P to an output in Q. When P = Q, this is just the notion of a polymorphism for P.

One of our conceptual contributions in this work is to generalize the Galois correspondence from
CSPs to promise CSPs (Appendix D), establishing that the complexity of a PCSP is captured by its weak
polymorphisms. Therefore weak polymorphisms are the right approach to study the complexity of promise
CSPs. When studying promise CSPs under the lens of weak polymorphisms, however, several challenges
surface that didn’t exist in the world of CSPs. From an algebraic point of view, the weak polymorphisms
are not closed under composition (because after one application, we no longer have an assignment in P, but
rather a different predicate Q). In universal algebra parlance, weak polymorphisms do not form a “clone.”
The dichotomy theorem for Boolean CSPs can avail of a classification of all Boolean clones which dates
back to 1941 [Pos41] (again, see [Che09] for a crisp presentation). In the world of promise CSPs, weak
polymorphisms belong to a broader class of universal algebras, and it is a lot more challenging to understand
their structure. In Appendix E, we show that this lack of structure is inherent by proving necessary and
sufficient conditions for families of weak polymorphisms corresponding to PCSPs.

3The first two cases are CSPs satisfied trivially by the all 0s or all 1s assignment; Majority corresponds to 2SAT; AND and OR
to Horn SAT and dual Horn SAT; and Parity to linear equations mod 2.

3

From a complexity point of view, the distinction between easy and hard is now more nuanced; the
existence of a non-dictator polymorphism doesn’t itself imply tractability. Indeed, for the (2 + ε)-SAT
problem mentioned earlier, majority of small arity is a weak polymorphism even though the promise CSP
is NP-hard. At an intuitive level, we might expect a PCSP to be easy if there are weak polymorphisms that
“genuinely” depend on a lot of variables, and hard if a few variables exert a lot of influence on the function.
The precise way to formalize this notion that captures the boundary between tractable and hard is not yet
clear. In [AGH14], hardness was shown when the only weak polymorphisms were juntas; in this work we
relax this condition to the existence of a small number of coordinates setting all of which to 0 fixes the
function.

In addition to establishing the hardness of many natural PCSPs, we also demonstrate the existence
of new polynomial-time tractable PCSPs. As an example, consider a hypergraph H = (V,E) such that all
of its edges have bounded valence (but not all the valences need to be the same). Furthermore, for each
e = {v1, . . . ,vk} ∈ E, we specify a hitting number he ∈ {1, . . . ,k−1}. Then, it is polynomially time tractable
to distinguish between the following two cases (1) there exists a two-coloring of the vertices of H such
that for all e ∈ E the number of vertices of the first coloring is exactly he and (2) every two-coloring of
the vertices o H leaves a monochromatic hyperedge. Formally, this is a PCSP with predicates of the form
P = {x∈ {0,1}k | |x|= a} for 0 < a < k and Q = {x∈ {0,1}k | |x| ∈ {1,2, . . . ,k−1}}. In essence, this PCSP
is a hypergraph generalization of what makes 2-coloring for graphs efficient. The algorithm for solving this
problem is based on linear programming. Unlike other CSPs and PCSPs, the proof of correctness uses the
Alternating-Threshold polymorphism, a function which takes as input x1, . . . ,xL ∈ {0,1} (L odd) and returns
whether x1− x2 + · · · − xL−1 + xL is positive. In the Boolean setting for CSPs or PCSPs, this is the first
non-symmetric polymorphism known to yield a polynomial time algorithm.4

We now give informally state the main dichotomy (for a formal statement see Theorem 2.6) in two
ways. First, we give an explicit characterization in terms of the structure of the PCSP itself. For simplicity,
we only state a subset of the main result in this form.

Theorem 1.3. Let P⊆Q⊂{0,1}k be symmetric pairs of relations. Let Γ contain the promise relation (P,Q)
as well as allow for negation of variables and the setting of constants (e.g. xi = 0). Let S = {|x| | x ∈ P} and
T = {|x| | x ∈ Q}. Furthermore, assume that S∩{1, . . . ,k−1} is nonempty. Then, PCSP(Γ) is polynomial-
time tractable if

a) S⊆ {` ∈ [k] | ` odd} ⊆ T or S⊆ {` ∈ {0}∪ [k] | ` even} ⊆ T
b) T ⊇ {0,1, . . . ,k}∩{2minS− k+1, . . . ,2maxS−1}
c) |S|= 1 and T ⊇ {1, . . . ,k−1}.
Otherwise, PCSP(Γ) is NP-hard.

Second, we give a more elegant formulation of the dichotomy in terms of the weak polymorphisms of
the PCSP instead of the PCSP itself.

Theorem 1.4. Let Γ be a family of pairs of symmetric relations which allows for negations as well as the
setting of constants. Then, PCSP(Γ) is polynomial-time tractable if

a) The Parity of L variables is a weak polymorphism of Γ for all odd L.
b) The Majority of L variables is a weak polymorphism of Γ for all odd L.
c) The Alternating-Threshold of L variables is a weak polymorphism of Γ for all odd L.
Otherwise, PCSP(Γ) is NP-hard.

4If we remove the symmetric condition on the relations, it turns our that non-symmetric polymorphisms are the norm, even in
the Boolean case, see Appendix E.

4

Note that in each of these informal statements, we assumed that we could substitute constants into the
clauses, an assumption which we do not make in our main result. Removing this assumption complicates
matters as new algorithms and weak polymorphisms appear. To illustrate this, consider P = {x ∈ {0,1}5 |
|x| ∈ {2}} and Q = {x ∈ {0,1}5 | |x| ∈ {1,2,3,5}} and allow negations. It is not hard to show that none of
a, b, or c in Theorem 1.4 hold, yet PCSP(Γ) is polynomial-time tractable (do you see why?). The reason for
this is the existence of an ‘anti-Parity’ weak polymorphism: that is a function which takes the Parity of a
collection of variables but negates the output. Anti-polymorphisms exist also for Majority and Alternating-
Threshold. In Section 2.3, we show how to handle this technical issue and essentially reduce to the setting
of Theorem 1.4.

1.1 Proof Overview
The proof of the main theorem consists of three major parts. First, in Section 3 we show that any PCSP which
has one of these families of functions as a weak polymorphism–Parity, Majority, or Alternating-Threshold,
or their anti-polymorphisms–has a polynomial time algorithm. The algorithms we demonstrate are quite
general in that the only assumption we make is the existence of polymorphisms, in particular we do not
rely on the symmetry assumption. For Parity, we show that the problem can be reduced to an ordinary CSP
with Parity as a polymorphism, and thus Schaefer’s theorem can be invoked. For Majority and Alternating-
Threshold, such a tactic cannot be used. Instead, we show how these problems can be written as linear
programming relaxations. Surprisingly, identical algorithms are used in both cases to solve the decision
problem. They do diverge, however, if one desires to use the LP relaxation to also find a solution when
the PCSP is satisfiable. To deal with anti-polymorphisms, we show in Section 2.3 how these PCSPs with
anti-polymorphisms can be reduced in polynomial time to PCSPs with their negations (that is, the normal
polymorphisms), which we already know are polynomial time solvable.

Second, in Section 4, for every symmetric PCSP with negations that does not have the entirety of any of
the mentioned families of weak polymorphisms, we show that its weak polymorphisms are ‘lopsided.’ More
precisely, we show that there exists a constant C, only dependent on the type of the PCSP, such that for all
weak polymorphisms of the PCSP, there are C coordinates such setting all C of those coordinates to the same
value fixes the value of the weak polymorphism. We say that such weak polymorphisms are “C-influential.”
The general philosophy of the argument is as follows. First, since our Γ fails to have Alternating-Threshold
on L variables for some odd L as a weak polymorphism, there is some (P,Q) ∈ Γ responsible for this
exclusion. Using a nuanced combinatorial argument, we attempt to classify the weak polymorphisms of
(P,Q) given that P and Q are symmetric. To simplify the proof, we first show that we may transform (P,Q)
into a canonical (P′,Q′) without losing any weak polymorphisms (see Lemma 4.4). From this, we show that
all weak polymorphisms f of Γ have the property that either f (ei) differs from f (0, . . . ,0) for a bounded
number of ei or a substantial portion of f is structured like the Parity weak polymorphism. Since we assume
that Parity of L′ variables is not a weak polymorphism of Γ for some odd L′, we can show that the latter
situation is impossible. Using another (P′′,Q′′) ∈ Γ which fails to have Majority as a weak polymorphism,
and after simplifying (P′′,Q′′) to a canonical form, we can use arguments inspired from [AGH14] to obtain
additional structural information which yields that all weak-polymorphisms are C-influential. We crucially
exploit that (P,Q) and (P′′,Q′′) are symmetric to get these structural properties, but do not assume anything
about the other clauses of Γ.

Finally, since we have pinned down the nature of the weak polymorphisms in these believed-to-be-
hard PCSPs, in Section 5, we prove the NP-hardness of these PCSPs. We prove this by reducing from Label
Cover, a well-known problem to reduce from for hardness of approximation proofs. This part of the proof
is based on an argument of [AGH14], but we greatly simplify how projection constraints are handled. With
this hardness result established, the main theorem is proved.

5

1.2 Must there be a Dichotomy?
Extending this dichotomy from the symmetric case to the full Boolean case presents significant challenges,
some of which perhaps suggest that a dichotomy does not exist.

The primary major challenge is that in the general case there are a near-limitless variety of weak poly-
morphisms. In Appendix E, we provide necessary and sufficient conditions for a family of functions F to
satisfy F = poly(Γ) for some PCSP Γ (not necessarily Boolean). These conditions, known as projection-
closure and finitization, are extremely flexible, allowing for an extremely rich variety of weak polymor-
phisms. Note that these results liberate us from ever thinking about Γ, and instead we can think entirely
in terms of establishing the easiness/hardness of projection-closed, finitized families of functions. There is,
however, a caveat: there is a huge amount of freedom in finitizable, projection-closed families of functions!
Polymorphisms like Alternating-Threshold, which at first seems like a technicality, instead signifies the rich
variety of PCSPs.

In the Boolean setting, many of these families permit polynomial-time algorithms that would be typi-
cally unexpected in a Boolean setting. For example, let p be any prime number and let S ⊂ {0, . . . , p− 1}
be a non-empty strict subset. Then, for each L ∈ N define f (L) : {0,1}L→{0,1} such that f (L)(x) = 0 if |x|
mod p ∈ S, and f (L)(x) = 1 if |x| mod p 6∈ S. Then, if a PCSP Γ has f (L) ∈ PCSP(Γ) for infinitely many
L, then PCSP(Γ) can be efficiently solved using Gaussian elimination over Fp! Thus, the general class of
Boolean PCSPs draw algorithms from arbitrarily large arity domains.

Due to this much richer variety of algorithms, the categorization of a ‘minimal’ hard PCSP performed
in Section 4 will be more challenging. We would have to better understand PCSPs which avoid infinitely
many families of weak polymorphisms instead of just one at a time.

Attempting to establish a dichotomy is not merely daunting due to the rich variety of PCSPs to consider,
there is also a fine granularity in the potential families of weak polymorphisms (see Appendix E for more
details). As a result the hardness argument in Section 5 would need to be modified. We have found examples
of non-symmetric PCSPs which we conjecture are not in P, but admit weak polymorphisms which do not
fall under the C-influential criteria (but still are skewed toward favoring a small number of coordinates). A
modified scheme would need to be constructed to ‘decode’ these weak polymorphisms into labels. Such
challenges are similar to those of establishing the status of the Unique Games problem, which some have
suggested might be NP-intermediate (e.g., [ABS10]). It is worth mentioning that we only need one ‘rogue’
PCSP to be NP-intermediate for the dichotomy to collapse.

That said, the authors do advocate a dichotomy for CSPs. The polymorphisms of CSPs have much
less granularity since they must form a clone, a property that acts like a “topological closure” condition.
This makes the space of families of polymorphisms much more discrete, rendering a dichotomy theorem far
more plausible. From this perspective, it would be remarkable if there were a dichotomy of PCSPs like that
of CSPs.

1.3 Organization
In Section 2, we formally define the notion of a PCSP as well as other tools and terminology which we will
need in investigate PCSPs. In Section 3, we prove the algorithmic portion of the main theorem. In Section
4, we characterized the weak polymorphisms of PCSPs which do not have certain weak polymorphisms.
In Section 5, we use the results of Section 4 to complete the NP-hardness results of the main theorem. In
Appendix A, we give proof a lemma which handles the technicalities of anti-polymorphisms. In Appendix B,
we prove some claims from 4 on properties of the Alternating-Threshold and Majority weak polymorphisms.
In Appendix C, we show that disallowing variable repetition in individual clauses does not meaningfully
change the computational complexity. In Appendix D, we demonstrate the Galois correspondence of weak
polymorphisms: that they precisely capture the computational complexity of PCSPs. In Appendix E, we

6

give a general classification of the possible families of weak polymorphisms of PCSPs.

2 Promise Constraint Satisfaction Problems

We develop a theory of the complexity of promise constraint satisfaction problems (PCSPs) analogous to
that of ‘ordinary’ CSPs such as found in [Che09]. We need to formally define what we mean by a PCSP.

Definition 2.1. Let D be a finite domain. A relation of arity k is a subset P ⊆ Dk. A promise relation is a
pair of relations (P,Q) of arity k such that P⊆ Q.

We say that a relation is Boolean if D = {0,1} (or more generally |D| = 2). For a given relation P,
we will refer to it both as a subset of Dk as well as its indicator function P : Dk → {0,1} (P(x) = 1 iff
x ∈ P). It should be clear from context which notation for P we are using. If (P,Q) is a promise relation then
P(x) = 1 =⇒ Q(x) = 1. When P = Q, the promise relation (P,Q) is analogous to the relation P in a CSP. In
fact, when it is clear that we are referring to promise relations, we let P denoted the promise relation (P,P).

Definition 2.2. Let (P,Q)⊆ Dk×Dk be a promise relation. A (P,Q)-PCSP is a pair of formulae (ΨP,ΨQ),
each with m clauses on the variables x1, . . . ,xn along with a variable-choice function ` : [m]× [k]→ [n], such
that ΨP(x1, . . . ,xn) =

∧m
i=1 P(x`(i,1),x`(i,2), . . . ,x`(i,k)) and ΨQ(x1, . . . ,xn) =

∧m
i=1 Q(x`(i,1),x`(i,2), . . . ,x`(i,k)).

We say that (ΨP,ΨQ) is satisfiable if there exists (x1, . . . ,xn) ∈ Dn such that ΨP(x1, . . . ,xn) = 1. That
is, ΨP is satisfiable in the usual sense. We say that (ΨP,ΨQ) is unsatisfiable if ΨQ is unsatisfiable, for
all (x1, . . . ,xn) ∈ Dn, ΨQ(x1, . . . ,xn) = 0. Of course, we need not restrict to PCSPs with a single promise
relation.

Definition 2.3. Let Γ = {(Pi,Qi) ⊆ Dki ×Dki : i ∈ [r]} be a set of promise relations over D of possibly
distinct arities. For i ∈ [r] let (ΨPi ,ΨQi) be a (Pi,Qi)-PCSP so that each PCSP is on the same variable set
x1, . . . ,xn. A Γ-PCSP is then a pair of formula (ΨP,ΨQ) such that ΨP(x1, . . . ,xn) =

∧r
i=1 ΨPi(x1, . . . ,xn) and

ΨQ(x1, . . . ,xn) =
∧r

i=1 ΨQi(x1, . . . ,xn).

As before, we say that (ΨP,ΨQ) is satisfiable if ΨP is satisfiable, and (ΨP,ΨQ) is unsatisfiable is ΨQ

is unsatisfiable. Since the clauses involve promise relations, any satisfying assignment to ΨP is necessarily a
satisfying assignment to ΨQ, so no Γ-PCSP can be simultaneously satisfiable and unsatisfiable. Despite that,
it is possible for the PCSP to be neither satisfiable nor unsatisfiable. As an extreme case, consider P = {}
and Q = Dk then every (P,Q)-PCSP (ΨP,ΨQ) has the property ΨP is unsatisfiable but ΨQ is satisfiable, so
the PCSP is neither satisfiable or unsatisfiable. As such, the main computational problem we seek to study
is a promise decision problem.

Definition 2.4. Let Γ = {(Pi,Qi) ⊆ Dki ×Dki} be a set of promise relations. PCSP(Γ) is the following
promise decision problem. Given a Γ-PCSP Ψ = (ΨP,ΨQ), output YES if Ψ is satisfiable and output NO if
Ψ is unsatisfiable.

Note that PCSP(Γ) is in promiseNP since we can easily check in polynomial time if an assignment
satisfies ΨP. We implicitly allowed repetition of the variables in a specific clause. We show in Appendix C
that removing this assumption does not meaningfully change the complexity of the problem.

2.1 Weak Polymorphisms

As it can be quite cumbersome to find a direct NP-hardness reduction for PCSP(Γ), we study the combina-
torial properties of a set of functions known as weak polymorphisms, which have served well as a proxy for
the computational complexity of PCSPs [AGH14, BG16].

7

Definition 2.5. Let (P,Q) ∈Dk×Dk be a promise relation. A weak polymorphism of (P,Q) is a function f :
DL→D such that for all (x(1)1 , . . . ,x(1)k), . . . ,(x(L)1 , . . . ,x(L)k) ∈ P then (f (x(1)1 , . . . ,x(L)1), . . . , f (x(1)k , . . . ,x(L)k)) ∈
Q. Denote this set of weak polymorphisms as poly(P,Q). If Γ = {(Pi,Qi)} is a set of promise relations, then
f : DL→ D is a weak polymorphism of Γ iff f is a weak polymorphisms of (Pi,Qi) for all i.

We let poly(Γ) denote the set of weak polymorphisms of Γ. Note that the projection maps πi(x) = xi

are weak polymorphisms of every promise relation. Further note that poly(Γ) =
⋂

(Pi,Qi)∈Γ poly(Pi,Qi).

When Pi = Qi, these weak polymorphisms are the polymorphisms studied in the CSP literature (e.g.
[Che09]). Sadly, when Pi 6= Qi, the weak polymorphisms are no longer easily composable, so we no longer
have necessarily that our weak polymorphisms form a clone. We still have one key property of a clone, that
the weak polymorphisms are closed under projections.

Definition 2.6. Let f : DL→ D be a weak polymorphism of a family of promise relations Γ. Let π : [L]→
[L] be a projection map. A projection f π : Dπ([L]) → D is the map. (f π)(x) = f (y),∀i,yi = xπ(i). It is
straightforward to verify that f π ∈ poly(Γ).

For the remainder of the article, we assume that D = {0,1}.

Definition 2.7. Let f : {0,1}L→ {0,1} be a weak polymorphism of a family of Boolean promise relations
Γ. We say that f is folded if f (x) = ¬ f (x̄) for all x ∈ {0,1}L. We say that a family of promise relations Γ is
folded if all of its weak polymorphisms are folded.

It is straightforward to show that if Γ contains the NOT relation (P = Q = {(0,1),(1,0)}) then all
polymorphisms are folded. Furthermore, note that projections of folded functions are also folded.

We will also view a weak polymorphism as generating a set of promise relations Γ′ from a set of
relations Γ.

Definition 2.8. Let f : {0,1}L→ {0,1} be a weak polymorphism, and let P⊆ {0,1}k be a relation. Define
O f (P) to be

O f (P) := {x ∈ {0,1}k : exist x(1), . . . ,x(L) ∈ P such that xi = f (x(1)i , . . . ,x(L)i) for all i ∈ [k] = {1, . . . ,k}}

We often state that x = f (x(1), . . . ,x(L)), where x(i) ∈ P, as a shorthand for xi = f (x(1)i , . . . ,x(L)i) for all
i ∈ [k]. Note that f ∈ poly(P,Q) if and only if O f (P)⊆ Q.

What is the motivation for studying these weak polymorphisms? Roughly, if Γ has an interesting
family of weak polymorphisms, then we expect for that family to ‘beget’ a polynomial-time algorithm for
PCSP(Γ). The following are examples of families of weak polymorphisms will yield algorithms. For all of
these functions, we have that our domain is x ∈ {0,1}L.

• The zero and one functions: 0L(x) = 0, 1L(x) = 1.

• The AND and OR functions: ANDL(x) =
∧L

i=1 xi, ORL(x) =
∨L

i=1 xi.

• The Parity function: ParL(x) =
⊕L

i=1 xi. (L odd)

• The Majority function: MajL(x) = 1[∑L
i=1 xi > L/2] (L odd).

• The Alternating-Threshold function: ATL(x) = 1[∑L
i=1(−1)i−1xi > 0] (L odd).

Note that except for the Alternating-Threshold operator, all of these polymorphisms appear in the modern
treatment of Schaefer’s Theorem. Although the Alternating-Threshold operator is a polymorphism of some
traditional Boolean CSPs, such as 2-coloring, in those cases it is possible to show that Majority is also

8

present as a weak polymorphism. We will see later that this is not the case for PCSPs. Note that the arity-3
Alternating-Threshold operator would be considered a Mal’tsev operator in traditional CSPs (e.g. [BD06]).

In addition to these weak polymorphisms, we also use the prefix ‘anti-’ to refer to the negations of
these function. The ‘anti-’ weak polymorphism will between denoted with a horizontal bar. For example,
anti-parity is ParL(x) = ¬ParL(x). Note that the One function is the ‘anti-Zero’ function and vice-versa.
These weak polymorphisms appear due to technicalities of the nature of promise-CSPs. In Section 2.3, we
show that these anti-s can be transformed into normal weak polymorphisms.

In Section 3, we show that if poly(Γ) contains any one of these infinite families of weak polymor-
phisms, then PCSP(Γ) is tractable.

2.2 Decoding

As mentioned in the introduction, one formulation of the Algebraic Dichotomy Conjecture is that for any
finite set of finite (traditional) relations Γ, the decision problem on the satisfiability of CSPs with clauses
from Γ is in P if and only if all the polymorphisms of Γ are dictatorial, that is they only truly depend
on one coordinate. In the case of Promise-CSPs, the picture is known to be not as clean. For example,
[AGH14, BG16] both study NP-hard PCSPs in which some of the weak polymorphisms depend non-trivially
on multiple coordinates. In both of those works, the weak polymorphisms depend on a bounded number
of coordinates, either literally or after correcting some noise. By utilizing these weak polymorphisms as
gadgets in a suitable probabilistically checkable proof, such as Label Cover, hardness was obtained.

In [BG16], we approached understanding these weak polymorphisms of NP-hard PCSPs using a ro-
bust decoding framework which identified influential coordinates in these weak polymorphism in a manner
amenable to Label Cover. In this paper, to identify influential coordinates we will use the concept of a
C-influential junta.

Definition 2.9. Let f : {0,1}L→ {0,1} be a folded weak polymorphism. We say that a folded weak poly-
morphism is C-influential if there exists S⊆{1, . . . ,L}with |S| ≤C such that if for all x∈ {0,1}L with xi = 0
for all i ∈ S, then f (x) = f (0, . . .0). We seek to show that every f ∈ poly(Γ) is C-influential for some C(Γ)
independent of the arity of f .

In Section 5, we show that for any folded family of promise relations Γ all of whose weak polymor-
phisms are C-influential, then PCSP(Γ) is NP-hard. In Section 4, we show for a large class of Γ that their
weak polymorphisms are C-influential via combinatorial arguments.

2.3 Idempotence

Define a function f : {0,1}L→{0,1} to be idempotent if f (0, . . . ,0) = 0 and f (1, . . . ,1) = 1. We say that a
family of promise relations Γ is idempotent if all weak polymorphisms are idempotent.

Proposition 2.1. For any relation P⊆ {0,1}k and any idempotent function f , we have that P⊆ O f (P).

Proof. For every x ∈ P note that xi = f (xi, . . . ,xi); thus x ∈ O f (P).

We say that f generates the promise relation (P,O f (P)) from P. If Γ = {Pi} is a set of relations, then
O f (Γ) = {(Pi,O f (Pi))}. Essentially by definition, O f (Γ) has f as a weak polymorphism.

We can force the weak polymorphisms of a family of promise relations Γ to be idempotent by adding
in the unary promise relations SET-ZERO = ({(0)},{(0)}) and SET-ONE = ({(1)},{(1)}).

9

Proposition 2.2. For any family of promise relations Γ, the set of idempotent promise relations of Γ is
exactly poly(Γ∪{SET-ZERO,SET-ONE}).

Proof. For any idempotent f ∈ poly(Γ), we have f (0, . . . ,0)= 0 and f (1, . . . ,1)= 1, so f ∈ poly(SET-ZERO)
and f ∈ poly(SET-ONE). Likewise, every weak polymorphism of Γ∪{SET-ZERO,SET-ONE} is idempo-
tent.

For a relation Q, define ¬Q = {x̄ : x ∈ Q}. If (P,Q) is a promise relation, it is not longer clear that
(P,¬Q) is a promise relation, because we might not have that P ⊆ ¬Q. If we assume non-degeneracy and
that (P,Q) has a non-idempotent weak polymorphism, then this is the case.

Definition 2.10. A function f : {0,1}L→{0,1} is non-degenerate if f (0, . . . ,0) 6= f (1, . . . ,1). A family of
promise relations Γ is non-degenerate if all of its weak polymorphisms are non-degenerate.

One can verify that Γ is non-degenerate if and only if Zero1,One1 6∈ poly(Γ).

Proposition 2.3. Let (P,Q) be a promise relation with a non-degenerate, non-idempotent polymorphism
f : {0,1}L → {0,1}. Then, (P,¬Q) is a promise relation, and ¬ f is a idempotent polymorphism of this
promise relation.

Proof. Since f is non-idempotent and non-degenerate, we have that f (0, . . . ,0) = 1 and f (1, . . . ,1) = 0.
Thus, for any x ∈ {0,1}L, we have that f (x, . . . ,x) = x̄. Since f ∈ poly(P,Q), we thus have that ¬P ⊆
Q. Thus, P ⊆ ¬Q, so (P,¬Q) is a promise relation. It is easy to then see that for any x1, . . . ,xL ∈ P,
since f (x1, . . . ,xL) ∈ Q, ¬ f (x1, . . . ,xL) ∈ ¬Q. Thus, ¬ f , which is idempotent, is a weak polymorphism of
(P,¬Q).

Thus, if a non-degenerate family of promise relations Γ has at least one non-idempotent polymorphism,
we may define ¬Γ = ((Pi,¬Qi) : (Pi,Qi) ∈ Γ) as another family of promise relations. Note that since Γ

always has idempotent polymorphisms (the projections), ¬Γ thus has non-idempotent polymorphisms, so
¬(¬Γ) exists and is equal to Γ. Thus, the idempotent weak polymorphisms of Γ are exactly the non-
idempotent weak polymorphisms of ¬Γ and vice-versa. We can formally show that the idempotent weak
polymorphisms of Γ and ¬Γ capture the computational complexity of PCSP(Γ).

Lemma 2.4. Let Γ be a non-degenerate family of promise relations with at least one non-idempotent poly-
morphism. Let Γ′ = Γ∪{SET-ZERO,SET-ONE} and Γ′′ = (¬Γ)∪{SET-ZERO,SET-ONE}. Then

1. poly(Γ) = poly(Γ′)∪ (¬poly(Γ′′)), where ¬poly(∆) = {¬ f : f ∈ poly(∆)}.

2. If PCSP(Γ′) or PCSP(Γ′′) is polynomial-time tractable, then so is PCSP(Γ).

See Appendix A for the proof. In the proceeding sections, we utilize this lemma repeatedly so that we
do not need to separately consider the non-idempotent weak polymorphisms.

2.4 Symmetric PCSPs

The primary focus of this paper is the study of Γ in which every predicate is symmetric.

Definition 2.11. A relation P ⊆ {0,1}k is symmetric if for all x ∈ P and all permutations σ : {1, . . . ,k} →
{1, . . . ,k}, we have that (xσ(1), . . . ,xσ(k)) ∈ P. We say that a family of promise relations Γ = {(Pi,Qi)} is
symmetric if Pi and Qi are symmetric for all i.

10

For a symmetric family of promise relations Γ = {(Pi,Qi)}, we have that each Pi and Qi is uniquely
determines by its arity and the Hamming weights of the elements. We let Hamk(S) = {x ∈ {0,1}k : |x| ∈
S} denote these sets. For example, NOT = {(0,1),(1,0)} = Ham2({1}). Furthermore, the idempotence
relations SET-ZERO and SET-ONE are also symmetric, so adding these relations to a symmetric family of
promise relations preserves that the family is symmetric. The following property of symmetric relations
helps us when working with weak polymorphisms.

Proposition 2.5. Let P be a symmetric relation. Let f : {0,1}L→ {0,1} be any function. Then, O f (P) is
symmetric.

Proof. For any y ∈ O f (P) and permutation σ : {1, . . . ,k}→ {1, . . . ,k}, consider the x1, . . . ,xL ∈ P such that
f (x1, . . . ,xL) = y. If we apply σ to the coordinates of x1, . . . ,xL, they will stay in P (since P is symmetric).
Furthermore, f applies to these permuted variables with be σ applied to the coordinates of y.

In the remainder of the paper, we prove the following result. Note that Theorem 1.4 follows as a
corollary.

Theorem 2.6 (Main Result). Let Γ be a folded, symmetric, finite family of promise relations. If at least
one of ParL, MajL, ATL, ParL, MajL, or ATL is a weak polymorphism of Γ for all odd L, then PCSP(Γ) is
polynomial-time tractable. Otherwise, PCSP(Γ) is NP-hard.

3 Efficient Algorithms

In this section, we show that if a finite collection of promise relations Γ has a weak polymorphism of a
certain kind, then there exists a polynomial-time algorithm for solving PCSP(Γ). Note that we need not
assume that the relations of Γ are symmetric. We let k refer to the maximum arity of any predicate of Γ.

3.1 Zero, One, AND, OR, Parity

In each of these cases, we will reduce the PCSP Γ to a traditional CSP Γ′ with the same polymorphism,
which we can then solve in polynomial time by virtue of Schaefer’s theorem. See [Che09].

Lemma 3.1. Let Γ = {(Pi,Qi) : i∈ {1, . . . , `}} be a finite family of promise relations, each of arity at most k.
Suppose that Γ has f as a weak polymorphism, in which f ∈ {01,11,AND2k ,OR2k ,Par2k+1}. Then, PCSP(Γ)
is polynomial-time tractable.

Proof. If for some (Pi,Qi) ∈ Γ, Pi is the empty relation, we can check if our Γ-PCSP has a Pi clause and
reject, otherwise, we run the polynomial time algorithm for the promise relation family Γ\{(Pi,Qi)}. Thus,
we may without loss of generality assume that no Pi of Γ is the empty relation.

For each possible f , we reduce the family of promise relations Γ to Γ′ = {Ri = O f (Pi)∪ Pi : i ∈
{1, . . . , `}}. We must have that Pi ⊆ Ri ⊆ Qi, so the reduction is immediate. We now show that CSP(Γ′) is
tractable in each case.

Case 1, f = 01. For all i ∈ {1, . . . , `}, note that O f (Pi) = {(0, . . . ,0)}. Thus, for all Ri ∈ Γ′, Ri is closed
under 01. Thus Γ′ has 01 as a polymorphism and so CSP(Γ′) it is polynomial-time tractable. The algorithm
is trivial: check is setting every variable to 0 satisfies the Γ′-CSP.

Case 2, f = 11. This is identical to Case 1, except O f (Pi) = {(1, . . . ,1)}.

11

Case 3, f = AND2k . Since 2k ≥ |Pi|, the bitwise-AND of every subset of Pi must be in Ri. Thus,
we have that Ri must be closed under the AND2 operator. Thus, Γ′ has AND2 as a polymorphism and is
polynomial-time tractable.

Case 4, f = OR2k . Essentially the same as Case 3.
Case 5, f = Par2k+1. Since 2k+1> |Pi|, the bitwise-XOR of every odd-sized subset of Pi is in Ri. Thus,

Ri is closed under the Par3 operator (the symmetric difference of 3 odd-sized subsets is an odd-sized subset).
Thus, Γ′ has Par3 as a polymorphism and so it is polynomial-time tractable via a Gaussian-elimination
algorithm.

Note that the choice of 2k and 2k + 1 for the arities of the polymorphisms was for simplicity of argu-
ment, and does not fundamentally change the result.

3.2 Majority and Alternating-Threshold

The algorithms in the previous section used the fact that PCSP(Γ) has a tractable CSP Γ′ that is ‘sandwiched’
by Γ. If Γ has the MajL or ATL polymorphism for all odd L, it is no longer always the case that Γ reduces to a
normal tractable CSP. Instead, we demonstrate tractability by writing any Γ-PCSP Ψ = (ΨP,ΨQ) as a linear
programming relaxation. This approach generalizes that of [AGH14]. The following is the pseudocode for
establishing the existence of a solution.

• Construct the LP relaxation:

– For each variable x j of ΨP, stipulate that 0≤ v j ≤ 1.

– For each clause Pi(x j1 , . . . ,x jki
) in ΨP, stipulate that (v j1 , . . . ,v jki

) is in the convex hull of the
elements of Pi. (Since Γ is fixed, this step takes constant time per clause.)

• For each variable x j of ΨP.

– Fix v j = 0 (fix no other variables) and re-solve the LP.

– If no solutions, fix v j = 1 and re-solve the LP.

– If still no solutions, output ‘unsatisfiable.’

• Output ‘satisfiable.’

Remark. This only checks whether Ψ= (ΨP,ΨQ) is satisfiable, but does not find a solution when satisfiable.
The proof of correctness gives insight into how satisfying assignments may be efficiently constructed.

Remark. It is worth noting that a different algorithm also exists for the Alternating-Threshold polymorphism.
For each Pi(x j1 , . . . ,x jki

) in ΨP, write minimal system of linear equations over Z such that every element of
Pi is a solution (this is known as the affine hull of Pi). Then, solve this system of linear equations using
Gaussian elimination over Z.5 Clearly if the system is infeasible, then ΨP is unsatisfiable. For any solutions
(v1, . . . ,vn) to this system, then (w1, . . . ,wn) where

wi =

{
1 vi ≥ 1
0 vi ≤ 0

is a solution to ΨQ. We omit further details of this algorithm or its analysis.
5For example, Algorithm 1 in http://www.math.rutgers.edu/~sk1233/courses/ANT-F14/lec4.pdf.

12

http://www.math.rutgers.edu/~sk1233/courses/ANT-F14/lec4.pdf

Proof. Note that algorithm did not distinguish whether the family {MajL} or {ATL} were the weak poly-
morphisms. The reason the algorithm works, however, differs for these two cases.

First, assume that ΨP is satisfiable. Then, there must exist an integer solution to the linear program.
Thus, for each variable x j, there must the LP must be feasible for at least one of v j = 0 or v j = 1. Therefore,
the algorithm always correctly reports satisfiable in this case.

Now, consider the case that ΨQ is unsatisfiable. Assume for sake of contradiction, that our algorithm
incorrectly reports satisfiable on input Ψ. Thus, from our checks, we have that there exists a matrix M ∈
[0,1]n×n of solutions (on the columns) such that Mi,i ∈ {0,1} for all i ∈ [n]. Note that we may assume that
the entries of M are rational. Furthermore, any convex combination of these n solutions will yield a new
solution to the original LP. In other words, for any column vector v ∈ [0,1]n, the sum of whose weights is 1,
we have that Mv is also a solution to the LP. Now, we split into cases.

Case 1, MajL is a weak polymorphism of Γ for all odd L.
We claim that there is v ∈ [0,1]n with sum of coordinates 1 such that (Mv)i 6= 1/2 for all i ∈ [n].

Consider w with the right properties such that Mw has a minimal number of coordinates equal to 1/2. If the
number of such coordinates is 0, we are done. Otherwise, consider a coordinate j such that (Mw) j = 1/2.
Let ε = min{|(Mw)i−1/2|,(Mw)i 6= 1/2}/n. Consider w′ = (1− ε/2)w+(ε/2)e j, where e j ∈ {0,1}n has
value 1 in the jth coordinate and 0 everywhere else. Note, then that |(Mw)i−(Mw′)i| ≤ ε/2 for all i, so Mw′

will not have any new coordinates equal to 1/2. Furthermore, since (Me j) j is an integer (by construction
of M), we have that the (Mw′) j = 1/2± ε/4 6= 1/2 also. Thus, Mw′ has fewer coordinates equal to 1/2,
violating the minimality of w. Thus, we can find a v such that (Mv)i 6= 1/2 for all i ∈ [n].

Thus, now we know that such a v exists, we may consider ε =min{|(Mv) j−1/2|}> 0. We may perturb
v slightly to v′ with all of its coordinates rational so that (Mv′) j 6= 1/2 for all j. Since the coefficients of M are
rational, we have that w = Mv has rational entries all not equal to 1/2. We claim that x∗i = bwie (wi rounded
to the nearest integer) is a satisfying assignment to ΨQ. Now, consider any clause Pi(x∗j1 , . . . ,x

∗
jki
) of ΨP,

and enumerate the potential marginal solutions x1, . . . ,x|P| ∈ P. Since w is a rational solution to the LP, we
have that there exists α1, . . . ,α|P| ∈Q∩ [0,1] which sum to 1 such that (w j1 , . . . ,w jki

) = α1x1+ · · ·+α|P|x|P|.
Pick an integer N ∈ N which is a common denominator of α1, . . . ,α|P|. Consider L = 2N +1. Since MajL is
a weak polymorphism of (P,Q). We have that that the majority of 2α1N copies of x1, up to 2α|P|N copies
of xN and an extra copy of x1 (which has no effect) is in Q. It is easy to verify that this majority is the
rounding of the entries of (w j1 , . . . ,w jki

) to the nearest integer. Thus, a satisfying assignment to ΨQ exists, a
contradiction.

Case 2, ATL is a weak polymorphism of Γ for all odd L.
Let ŵ be any rational solution to the LP. Using an argument similar to that in Case 1, we may find

v,w∈ [0,1]n∩Qn with ∑i vi = 1 such that w = Mv and wi 6= ŵi for all i∈ [n] such that ŵi 6∈ {0,1} (otherwise,
it may be the case that wi = ŵi for all possible wi). We now claim that the following is a satisfying assignment
to ΨQ.

∀i ∈ [n], x∗i =

{
0 wi < ŵi or wi = ŵi = 0
1 wi > ŵi or wi = ŵi = 1

.

Consider any clause Pi(x∗j1 , . . . ,x
∗
jki
) of ΨP and enumerate the potential marginal solutions x1, . . . ,x|P| ∈ P.

Let α1, . . . ,α|P|, α̂1, . . . , α̂|P| ∈ [0,1]∩Q be the weights such that (w j1 , . . . ,w jki
) = α1x1 + · · ·+α|P|x|P| and

(ŵ j1 , . . . , ŵ jki
) = α̂1x1+ · · ·+ α̂|P|x|P|. Let N be a common denominator of the αi’s and α̂i’s. For L = 4N+1,

plug into the odd-indexed entries of ATL, 2Nαi copies of xi for all i ∈ {1, . . . , |P|} and one extra copy of x1

(which will not affect the output of the weak polymorphism). Into the even-indexed entries plug in 2Nα̂i

copies of xi for all i ∈ {1, . . . , |P|}. For each coordinate ` ∈ {1, . . . ,k}, if w j` = ŵ j` ∈ {0,1}, then when
computing the `th coordinate, ATL will have every input equal to x∗j` and thus will output that same value, as

13

desired. If w j` < ŵ j` , then there will be strictly more 1s in the even coordinates than in the odd coordinates,
so ATL will output 0 which agrees with our solution x∗j` . Finally, if w j` > ŵ j` , then there will be strictly more
1s in the odd coordinates than in the even coordinates, so ATL will output 1 which agrees with our solution
x∗j` . Therefore ΨQ is indeed satisfiable, contradiction.

End Cases.

Although we strictly only proved existence of satisfying assignments to ΨQ when the algorithm outputs
‘satisfiable,’ the proofs may be modified with some work to achieve polynomial-time algorithms for finding
a satisfying assignment.

3.3 Non-idempotent polymorphisms

Consider a family of promise relations Γ. If Zero1 or One1 is a polymorphism of Γ, as previously mentioned,
it is polynomial-time tractable. Thus, now consider Γ non-degenerate. What if poly(Γ) has none of the idem-
potent families of weak polymorphisms mentioned in this section, but it has one of the non-idempotent fami-
lies (such as MajL for all odd L)? Then, by Proposition 2.3, the non-idempotent version of this family yields
the corresponding idempotent family of weak polymorphisms of Γ′′ = (¬Γ)∪ {SET-ZERO,SET-ONE}.
From the previous sections, we then have that Γ′′ is polynomial-time tractable. Therefore, by Lemma 2.4,
that Γ itself is polynomial-time tractable. Hence, we have proved the following.

Theorem 3.2. Let Γ be a finite family of promise relations. If at least one of ZeroL, OneL, ANDL, ORL,
ANDL, or ORL is a weak polymorphism of Γ for all L, or ParL, MajL, ATL, ParL, MajL, or ATL is a weak
polymorphism of Γ for all odd L, then PCSP(Γ) is polynomial-time tractable.

Note that we did not assume that Γ is symmetric for our algorithms. That assumption will be incorpo-
rated into the NP-hardness arguments.

4 Classification of Weak Polymorphisms of Folded, Symmetric Promise Re-
lations

Consider any family Γ of finitely many symmetric promise relations which contains the NOT relation. We
showed in Section 3 if the weak polymorphisms of Γ contain any of ParL,MajL,ATL,ParL,MajL, or ATL for
all odd L, then Γ is polynomial-time tractable. We show in this section that if Γ does not have any of these
as polymorphisms for all odd L, then Γ is NP-hard. Explicitly, we show that every weak polymorphism
f ∈ poly(Γ) is ‘junta-like’.

For S⊆ {1, . . . ,L}, we let eS ⊆ {0,1}L be such that (eS)i = 1 if and only if i ∈ S. If S = {i} is a single
element, we let ei = eS.

4.1 PCSP relaxation

In order to simplify our proof as well as to illuminate the crucial role of the promise predicates, we introduce
the notion of relaxing a promise relation.

Definition 4.1. Let Γ = {(Pi,Qi)} be a family of promise relations. We say that another family of promise
relations Γ′ is a relaxation of Γ if poly(Γ)⊆ poly(Γ′).

Intuitively, a larger set of polymorphisms should make the PCSP easier. In Appendix D, we confirm
this by showing that if poly(Γ) ⊆ poly(Γ′), then there is a polynomial time reduction from PCSP(Γ′) to

14

PCSP(Γ). This fact is known as the Galois correspondence of weak polymorphisms. Therefore, since our
aim is to demonstrate the NP-hardness of PCSP(Γ), it suffices to show that PCSP(Γ′) is NP-hard for some
suitable choice of Γ′ that is a relaxation of Γ. Our arguments though will be a little more nuanced, as it turns
out our choices of Γ′ will often be polynomial-time tractable. Even so, we can still yield useful information
about the weak polymorphisms of Γ′ which we can then apply to the weak polymorphisms of Γ.

The main insight leading to our choice of Γ′ is our over-arching philosophy that weak polymorphisms
beget algorithms. Thus, if we ensure Γ′ fails to have the weak polymorphisms which we showed led to
polynomial-time algorithms, ParL,AT L,MajL, then PCSP(Γ′) should be NP-hard. In the coming subsec-
tions, we show exactly which promise relations need to be added to Γ′ in order to exclude Parity, Alternating-
Threshold, and Majority, while still including all of the idempotent weak polymorphisms of Γ.

To warm up, here is a claim about such relaxations in the symmetric case. Intuitively, this relation says
we can reduce the arity of any symmetric relation in a way which respects the symmetric structure.

Claim 4.1. Let (P,Q) be a symmetric promise relation of arity k. Let P = Hamk(S),Q = Hamk(T), where
S ⊆ T ⊆ {0, . . . ,k}. Then, the idempotent weak polymorphisms of (P,Q) are weak polymorphisms of
(Hamk−1(S\{k}),Hamk−1(T \{k}).

Proof. Let f ∈ poly(P,Q) be any idempotent weak polymorphism of arity L. Consider x1, . . . ,xk−1 ∈ {0,1}L

such that for all i ∈ {1, . . . ,L}, |(x1
i , . . . ,x

k−1
i)| ∈ S \{k}. This implies that |(x1

i , . . . ,x
k−1
i ,0)| ∈ S for all i, so

since f ∈ poly(P,Q).
|(f (x1), . . . , f (xk−1), f (0 . . .0))| ∈ T

Thus, since f is idempotent, |(f (x1), . . . , f (xk−1))| ∈ T \{k}. Thus, f ∈ poly(Hamk−1(S\{k}),Hamk−1(T \
{k}).

Let P be any relation of arity k, and let S⊆ {1, . . . ,k} be any subset. Then, define

flipS(P) = {y ∈ {0,1}k : y⊕ eS ∈ P}.

Note that ¬P = flip[k] P.

Claim 4.2. Let (P,Q) be a promise relation of arity k, and let S⊆{1, . . . ,k}. Then, (P,Q) and (flipS P,flipS Q)
have identical folded weak polymorphisms.

Proof. Consider any f ∈ poly(P,Q) of arity L which is folded. Pick x1, . . . ,xk ∈{0,1}L such that (x1
j , . . . ,x

k
j)∈

flipS P for all j ∈ {1, . . . ,L}. Then, consider y1, . . . ,yk such that yi = ¬xi if i ∈ S and yi = xi otherwise.
Then, for all j ∈ {1, . . . ,L}, (y1

j , . . . ,y
k
j) ∈ P. Thus, (f (y1), . . . , f (yk)) ∈ Q. Due to folding, we have that

(f (x1), . . . , f (xk)) ∈ flipS Q. Thus, the folded weak polymorphisms of (P,Q) are weak polymorphisms of
(flipS P,flipS Q). By a symmetric argument, we may deduce that the folded weak polymorphisms of (P,Q)
and (flipS P,flipS Q) are identical.

We can combine these two claims to get a natural corollary. This result tells us that we can shift down
the Hamming weights of a symmetric, folded promise relation.

Claim 4.3. Let (P,Q) be a symmetric promise relation of arity k. Let P = Hamk(S),Q = Hamk(T), where
S⊆ T ⊆ {0, . . . ,k}. Then, the idempotent, folded weak polymorphisms of (P,Q) are weak polymorphisms of
(Hamk−1({`−1≥ 0 : ` ∈ S}),Hamk−1(`−1≥ 0 : ` ∈ T)).

Proof. Apply Claim 4.2 to reduce the idempotent, weak polymorphisms of (P,Q) to (Hamk({k− ` : ` ∈
S},Hamk({k− ` : ` ∈ T}). Then, we apply Claim 4.1 to reduce further to (Hamk−1({k− ` : ` ∈ S} ∩

15

{0, . . . ,k−1}),Hamk−1({k−` : `∈T}∩{0, . . . ,k−1})). Finally, we use Claim 4.2 again to reduce the idem-
potent, folded weak polymorphisms of (P,Q) to (Hamk−1({`−1≥ 0 : `∈ S}),Hamk−1({`−1≥ 0 : `∈ T})),
as desired.

In the following sections, we will repeatedly use the claims to the reduce the (P,Q) of our Γ to some
simpler promise relations for which we can analyze the folded, idempotent weak polymorphisms.

4.1.1 Alternating-Threshold-excluding relaxation

Lemma 4.4. Let Γ be a symmetric, folded, idempotent family of promise relations such that ATL 6∈ poly(Γ)
for some odd positive integer L, then Γ′ = {(P,Q)} is a relaxation of Γ, in which either

P = Hamk({1}), Q = Hamk({0,1, . . . ,k−2,k}),k ≥ 3, or

P = Hamk({0,b}), Q = Hamk({0, . . . ,k−1}),k ≥ 2,b ∈ {1, . . . ,k−1}.

Proof. As ATL 6∈ poly(Γ), there is (P,Q)∈Γ such that ATL 6∈ poly(P,Q). Define OAT(P)=
⋃

L∈N,odd OATL(P).
Since ATL 6∈ poly(P,Q) for some odd L, we have that OAT(P) 6⊆ Q We claim the following. The proof is in
Appendix B.

Claim 4.5. Consider k ≥ 1, then

1. OAT(Hamk({0})) = Hamk({0})

2. OAT(Hamk({k})) = Hamk({k})

3. OAT(Hamk({0,k})) = Hamk({0,k})

4. OAT(Hamk({`})) = Hamk({1, . . . ,k−1}), k ≥ 2, ` ∈ {1, . . . ,k−1}

5. OAT(Hamk({`1, `2})) = {0,1}k, k ≥ 2,{`1, `2} 6= {0,k}

Now, let a ∈ {0, . . . ,k} be such that Hamk({a})⊆ OAT(P) but Hamk({a}) 6⊆ Q. Such an a must exist
by Proposition 2.5. Note that since P ⊆ Q, we must have that Hamk({a}) 6∈ P. We divide the remaining
analysis into two cases.

Case 1, a ∈ {1, . . . ,k−1}.
Then, by Fact 3 of the claim, there must exists ` ∈ {1, . . . ,k− 1} such that Hamk({`}) ⊆ P. Let

P′ = Hamk({`}) and let Q′ = Hamk({0, . . . ,k}−{a}). Since P′ ⊆ P ⊆ Q ⊆ Q′, every weak polymorphism
of (P,Q) is a weak polymorphism of (P′,Q′). Furthermore, by Fact 4 of the claim, (P′,Q′) does not admit
ATL′ as a weak polymorphism for some L′. Let k′ = max(`,a)+1. From Claim 4.1, applied k−k′ times, we
have that all of the idempotent weak polymorphisms of (P′,Q′) are idempotent weak polymorphisms of

P(2) = Hamk′({`}),Q(2) = Hamk′({0, . . . ,k′}−{a}).

Likewise, applying Claim 4.3 min(`,a)− 1 times, all of the folded weak polymorphisms of P(2),Q(2) are
weak polymorphisms of

P(3) = Hamk′′({`′}),Q(3) = Hamk′′({0, . . . ,k′′}−{a′})

where k′′ = |a− `|+ 2 ≥ 3. If ` < a, then `′ = 1 and a′ = k′′− 1, in which case we are done. Otherwise,
if ` > a, then `′ = k′′−1 and a′ = 1. Applying Claim 4.2 in this case, we have that the idempotent, folded
weak polymorphisms of Γ are weak polymorphisms of

P(4) = Hamk′′({1}),Q(4) = Hamk′′({0, . . . ,k′′−2,k′′}).

16

Case 2, a ∈ {0,k}.
Without loss of generality, we may assume that a = 0. Otherwise, we may replace (P,Q) with

(flip[k] P,flip[k] Q), which preserves the folded, idempotent weak polymorphisms of Γ. Since Hamk({0}) ⊆
OAT(P) but Hamk({0}) 6⊆ P ⊆ Q, we must be in Fact 5 of the claim. That is, there must be `1, `2 ∈
{0, . . . ,k} distinct and not equal to {0,k} such that Hamk({`1, `2}) ⊆ P. Like in Case 1, relax (P,Q) to
P′ = Hamk({`1, `2}) and Q′ = Hamk({1, . . . ,k}). Let k′ = max(`1, `2), and apply Claim 4.1 k− k′ times to
yield

P(2) = Hamk′({min(`1, `2),k′}),Q(2) = Hamk′({1, . . . ,k′}).

Then, applying Claim 4.2, we get that

P(3) = Hamk′({0,b}),Q(3) = Hamk′({0, . . . ,k′−1}),b ∈ {1, . . . ,k′−1},k′ ≥ 2

has as weak polymorphisms the folded, idempotent weak polymorphisms of Γ, as desired.
End Cases.

4.1.2 Majority-excluding relaxation

Lemma 4.6. Let Γ be a symmetric, folded, idempotent family of promise relations such that MajL 6∈ poly(Γ)
for some odd positive integer L, then Γ′ = {(P,Q)} is a relaxation of Γ, in which either

P = Hamk({(k+1)/2}), Q = Hamk({0,1, . . . ,k−1}), (k ≥ 3 odd), or

P = Hamk({1,k}), Q = Hamk({0,1, . . . ,k}−{b}),k ≥ 3,b ∈ {2, . . . ,k−1}.

Proof. The proof proceeds in a similar manner to Lemma 4.4. Define OMaj(P) =
⋃

L∈N,odd OMajL(P). We
being with the analogue of Claim 4.5 for the Majority operation. The proof is also in Appendix B

Claim 4.7. Consider k≥ 1. If P⊆Hamk({0,k}), then OMaj(P)=P. Otherwise, if P=Hamk(S) is symmetric
but S\{0,k} is nonempty, then

OMaj(P) = Hamk({0, . . . ,k}∩{2minS− k+1, . . . ,2maxS−1}).

Consider b ∈ {0, . . . ,k} such that Hamk({b}) ⊆ OMaj(P) but Hamk({b}) 6⊆ Q,P. It is easy to then
see that P \Hamk({0,k}) must be nonempty. Thus, there is ` ∈ {1, . . . ,k− 1} such that Hamk({`}) ⊆ P.
We may assume without loss of generality that ` < b as ` 6= b and we can apply Claim 4.2 to (P,Q) to get
(flip[k] P,flip[k] Q), which does not change the folded, idempotent weak polymorphisms.

Let S ⊆ {0, . . . ,k} be such that P = Hamk(S). Since Hamk({b}) ⊆ OMaj(P) and ` < b, we have by
the claim that Hamk({b}) ⊆ OMaj(Hamk({`,maxS})). Thus, we can relax to P′ = Hamk({`,maxS}) and
Q′ = Hamk({0, . . . ,k}−{b}) while still preserving the idempotent, folded weak polymorphisms of Γ. We
again diverge into two cases.

Case 1, b > maxS.
We may relax to

P(2) = Hamk({maxS}),Q(2) = Hamk({0, . . . ,k}−{b}).

Let k′ = b, and apply Claim 4.1 k− k′ times to relax the folded, idempotent weak polymorphisms to

P(3) = Hamk′({maxS}),Q(3) = Hamk′({0, . . . ,k′−1}).

17

Recall that maxS < k′ = b ≤ 2maxS− 1. Thus, k′′ = 2(k′−maxS)+ 1 ≤ k′. Applying Claim 4.3 k′− k′′

times, we then get that the folded, idempotent weak polymorphisms of Γ are also weak polymorphisms of

P(4) = Hamk′′({(k′′+1)/2}),Q(4) = Hamk′′({0, . . . ,k′′−1}),k′′ ≥ 3.

This establishes the first case of the lemma.
Case 2, ` < b < maxS.
First, we may relax to

P(2) = Hamk({`,maxS}),Q(2) = Hamk({0, . . . ,k}−{b}).

Letting k′ = maxS and applying Claim 4.1 k− k′ times, we get that the idempotent, folded weak
polymorphisms of Γ are preserved by

P(3) = Hamk′({`,k′}),Q(3) = Hamk′({0, . . . ,k′}−{b}).

Now, consider k′′ = k′− `+ 1, and apply Claim 4.3 k′− k′′ times to get that the idempotent, folded, weak
polymorphisms of Γ are preserved by

P(4) = Hamk′′({1,k′′}),Q(4) = Hamk′′({0, . . . ,k′′}−{b′}),b′ ∈ {2, . . . ,k′′−1}.

Note that k′′ ≥ 3; therefore the second case of the lemma is also fully established.
End Cases.

4.2 Idempotent case

We now seek to establish that if a symmetric, idempotent, folded family of promise relations Γ avoids
ParL1 ,ATL2 ,MajL3

as weak polymorphisms for some odd L1,L2,L3, then the weak polymorphisms are C-
influential for some suitable constant C(Γ). Note that this C may depend on L1,L2,L3, but if we pick
L1,L2,L3 to be minimal, then these also depend only on Γ. Our first step is to establish the following lemma
in additive combinatorics.

Lemma 4.8. Let S0,S1 ⊆ Z≥0 such that 0 ∈ S0 and 1 ∈ S1. Assume that there exists a positive integer n such
that for all a ∈ S0 and b1, . . . ,bn ∈ S1 (not necessarily distinct)

b1 + · · ·+bn ∈ S0 (1)

a+b1 + · · ·+bn−1 ∈ S1. (2)

If n is odd, then there is A(n) ∈ Z≥0 such that A(n) ∈ S0∩ S1. Otherwise, if n is even, there is d(n) ∈ Z≥0
such that S0 contains all even integers at least d(n) and S1 contains all odd integers at least d(n).

Proof. If n = 1, then by (2), we have that 0 ∈ S1. Thus, we can set A(1) = 0. Now assume n ≥ 2. We can
easily deduce the following facts

∀x ∈ S0 =⇒ x+n−1 ∈ S1 (a = x and b1, . . . ,bn−1 = 1 in (2)) (3)

∀y ∈ S1 =⇒ y+n−1 ∈ S0 (b1 = y and b2, . . . ,bn−1 = 1 in (1)) (4)

∀y ∈ S1 =⇒ y+n−2 ∈ S1 (a = 0, b1 = y, and b2, . . . ,bn−1 = 1 in (2)) (5)

18

In particular, we may deduce that

∀x ∈ S0 =⇒ x+2n−2 ∈ S0 (3 and 4) (6)

∀x ∈ S0 =⇒ x+3n−4 ∈ S0 (3, 5, and 4) (7)

∀y ∈ S1 =⇒ y+n−2 ∈ S0 (5)

∀y ∈ S1 =⇒ y+2n−2 ∈ S1 (4 and 3) (8)

Note that if n ≥ 3 is odd, then gcd(2n− 2,3n− 4) = 1. Therefore, by (6) and (7) and that 0 ∈ S0,
we may deduce by Schur’s theorem (also known as the Chicken McNugget Theorem) that S0 contains all
sufficiently large positive integers. Likewise, since gcd(n−2,2n−2) = 1 and (5) and (8) hold, we have that
S1 contains all sufficiently large positive integers. Hence, there must exist A(n)∈N such that A(n)∈ S0∩S1.

If n≥ 2 is even, then gcd(2n−2,3n−4) = gcd(n−2,2n−2) = 2. Since 0 ∈ S0, and 1 ∈ S1, we may
then deduce by the same theorem that S0 will contain all sufficiently large even numbers and that S1 will
contain all sufficiently large odd numbers. Thus, we may select d(n) accordingly.

Remark. Consider the modification that there is some positive integer N such that maxS0,maxS1 ≤ N with
the stipulation that (1) and (2) only apply when the sums are out most N. The theorem still holds as long as
we make the caveat that N ≥ A(n), which makes sense since A(n) is independent of N.

With this established, we can now deduce significant structural properties of the weak polymorphisms
of Alternating-Threshold and Parity-avoiding families of promise relations. These arguments are have con-
nections to those in [AGH14], but differ significantly in details.

Lemma 4.9. Let Γ be a symmetric, folded, idempotent family of promise relations such that ParL1 ,ATL2 6∈
poly(Γ) for some odd positive integers L1,L2. Then, there exists c(Γ) ∈N such that for all L ∈N and for all
f : {0,1}L→{0,1} ∈ poly(Γ),

|{i ∈ {1, . . . ,L} : f (ei) = 1}| ≤ c(Γ).

Proof. Fix f ∈ poly(Γ) of arity L, and let A = {i∈ {1, . . . ,L} : f (ei) = 1}. Assume for sake of contradiction
that |A| may be grow arbitrarily large. Define S0,S1 ⊆ {0,1, . . . , |A|} as follows.

Si = { j : for all T ⊆ A of size j, f (eT) = i}, i ∈ {0,1}.

It is clear from the definition that S0 and S1 are disjoint but their union may not contain all of {0, . . . , |A|}
because f need not be symmetric. From the idempotence of f , we have that f (0, . . . ,0) = 0, so 0 ∈ S0.
Furthermore, by definition of A, f (eT) = 1 for all 1-element subsets T of A. Thus, 1 ∈ S1. We seek to show
that there exists n(Γ) for which (1) and (2) hold, so that that we may invoke Lemma 4.8 on S0 and S1. Since
we are assuming that |A| grows arbitrarily large, there are two possibilities. The first possibility is that we
have some f such that S0 ∩ S1 is nonempty, which is an immediate contradiction. The other possibility is
that for all f with |A| ≥ d(n), S0 contains all even integers between d(n) and |A| and S1 contains all odd
integers between d(n) and |A|. Crucially, we have that n(Γ) is independent of f (and thus |A|). To achieve
a contradiction in this case, we utilize the fact that ParL1 6∈ poly(Γ), as the f with very large |A| will be
‘parity-like.’

To achieve the first goal, which is to show that n(Γ) exists which satisfies (1) and (2), we utilize Lemma
4.4 to deduce a symmetric (P,Q), independent of L, such that f ∈ poly(P,Q). The proof now proceeds into
two cases.

Case 1, k ≥ 3, P = Hamk({1}),Q = Hamk({0, . . . ,k−2,k}).

19

Let n = k− 1. For any b1, . . . ,bk−1 ∈ S1 such that b1 + · · ·+ bk−1 ≤ |A|. Consider any T ⊆ A of size
b1 + . . .+bk−1. Partition T = T1∪T2∪·· ·∪Tk−1 such that |Ti|= bi for all i. Consider the k-tuple

(eT1 ,eT2 , . . . ,eTk−1 ,e{1,...,L}\T)

For every coordinate i ∈ {1, . . . ,L}, exactly one element has its ith coordinate equal to 1. Thus, since
f ∈ poly(P,Q), we have that

(f (eT1), f (eT2), . . . , f (eTk−1), f (e{1,...,L}\T))

has Hamming weight not equal to k−1. Since f (eTi) = 1 for all i, we must then have that f (e{1,...,L}\T) = 1.
Since f is folded, we can thus deduce that f (eT) = 0, as desired. Since the choice of T ⊆ A was arbitrary
except for size, we have that b1 + · · ·+bk−1 ∈ S0, so (1) holds.

Now, consider any a ∈ S0 and b1, . . . ,bk−2 ∈ S1 such that a+ b1 + · · ·+ bk−2 ≤ |A|. Again, consider
any T ⊆ A of size a+b1 + · · ·+bk−2. Partition T = T0∪T1∪ ·· · ∪Tk−2 such that |T0| = a and |Ti| = bi for
all other i. Note again that the k-tuple

(eT0 , . . . ,eTk−1 ,e{1,...,L}\T).

has for every i ∈ {1, . . . ,L} has exactly one element such that the ith coordinate is 1. Thus, we may again
deduce that since f ∈ poly(P,Q),

(f (eT0), . . . , f (eTk−1), f (e{1,...,L}\T))

has Hamming weight not equal to k−1. Since exactly k−2 of the first k−1 entries are equal to 1, we must
have f (e{1,...,L} \T) = 0. Thus, f (eT) = 1. By the same logic, a+b1 + · · ·+bk−2 ∈ S1, so (2) also holds, as
desired.

Case 2, k ≥ 2 P = Hamk({0,b}),Q = Hamk({0, . . . ,k−1}), b ∈ {1, . . . ,k−1}.
Let n = k− b+ 1. For any b1, . . . ,bn ∈ S1 such that b1 + · · ·+ bn ≤ |A|. Consider any T ⊆ A of size

b1 + . . .+bn. Partition T = T1∪T2∪·· ·∪Tn such that |Ti|= bi for all i. Consider the k-tuple

(eT1 ,eT2 , . . . ,eTn ,eT , . . . ,eT),

where eT appears b−1≥ 0 times. We can verify that for each i ∈ T , there are exactly b tuples with 1 in the
ith coordinate. For any i 6∈ T , there are 0 tuples with 1 in the ith coordinate. Thus,

(f (eT1), . . . , f (eTn), f (eT), . . . , f (eT)) ∈ Q.

Since f (eT1) = · · ·= f (eTn) = 1, to avoid a contradiction, we must have that f (eT) = 0, so b1+ · · ·+bn ∈ S0.
For any a ∈ S0 and b1, . . . ,bn−1 ∈ S1 such that a+ b1 + · · ·+ bn−1 ≤ |A|, consider T ⊆ A of size a+

b1 + · · ·+bn−1. Partition T = T0∪T1∪ ·· ·∪Tn−1 such that |T0|= a and |Ti|= bi for all other i. It is easy to
check that the following is a valid k-tuple

(eT1 , . . . ,eTn−1 ,¬eT0 , . . . ,¬eT0 ,¬eT),

where the are k− n = b− 1 copies of ¬eT0 . Thus, since f applies to the first k− 1 tuples is equal to 1,
f (¬eT) = 0, which implies by folding that f (eT) = 1. Therefore, a+b1 + · · ·+bn−1 ∈ S1, as desired.

End Cases
Thus, we have established that the conditions of Lemma 4.8 hold for some n(Γ). As stated at the

beginning of the proof, we may apply the lemma to see that if |A| grows arbitrarily large, then either S0∩S1

20

is nonempty for some f , which is an immediate contradiction, or S0 contains all even integers between d(n)
and |A| and S1 contains all odd integers between d(n) and |A|. To obtain a contradiction in this second
case, since ParL1 6∈ poly(Γ) we have that there is (P′,Q′) ∈ Γ such that ParL1 6∈ poly(P′,Q′). By negating
suitable coordinates, by Claim 4.2, we may obtain that (0, . . . ,0)∈ P′. In particular, there are x1, . . . ,xL1 ∈ P′

(possibly with repetition) such that y = ParL1(x
1, . . . ,xL1) 6∈ Q′. Imagine for sake of contradiction that |A| ≥

L1(2d(n)+ 1) and also assume without loss of generality that {1, . . . ,L1(2d(n)+ 1)} ⊆ A. Then, consider
the following L-tuple of k-tuple in P′.

(x1, . . . ,xL1)2d(n)+1× ((0, . . . ,0))L−L1(2d(n)+1).

Thus, f ((x1, . . . ,xL1)2d(n)+1×((0, . . . ,0))L−L1(2d(n)+1))∈Q′. For each row j ∈ {1, . . . ,k}we have that x j = 1
for some multiple of 2d(n)+ 1 many times. If this multiple is 0, then the value of f is 0 by idempotence.
Otherwise, the multiple is at least d(n), so f will return the parity of the number of 1s. Thus,

f (x1, . . . ,xL1)2d(n)+1× ((0, . . . ,0))L−L1(2d(n)+1))) = ParL1(x
1, . . . ,xL1) 6∈ Q′,

contradiction. Thus, |A| is bounded, as desired.

From this lemma, we can make an even stronger conclusion.

Corollary 4.10. Let Γ have the same properties as in Lemma 4.9. Let f : {0,1}L → {0,1} ∈ poly(Γ)
be any weak polymorphism and let S1, . . . ,S` be disjoint subsets of {1, . . . ,L} such that f (eSi) = 1 for all
i ∈ {1, . . . , `}. Then, `≤ c(Γ), where c(Γ) is the same as in Lemma 4.9.

Proof. Choose projection π : {1, . . . ,L} → {1, . . . ,L} such that for all i ∈ {1, . . . , `} and all j ∈ Si, π(j) =
min(Si) and otherwise is the identity map. Consider g = f π which must also be a weak polymorphism of Γ.
It is easy then to see that for all i ∈ {1, . . . , `}, g(emin(Si)) = f (eSi). Thus, `≤ c(Γ) by applying Lemma 4.9
to g.

Lemma 4.11. Let Γ be a symmetric, folded, idempotent family of promise relations such that
ParL1 ,ATL2 ,MajL3

6∈ poly(Γ) for some odd positive integers L1,L2,L3. Then, there exists C(Γ) ∈N such that
for all f ∈ poly(Γ), f is C(Γ)-influential.

Proof. Fix f ∈ poly(Γ) of arity L. Let B ⊆ {1, . . . ,L} be the set of coordinates for which f is somewhere-
increasing. That is, B = {i ∈ {1, . . . ,L} : ∃S ⊆ {1, . . . ,L}, f (eS\i) = 0, f (eS) = 1}. By definition of B,
f (x) = 0 for all x such that xi = 0 for all i ∈ B, so f is |B|-influential. Thus, if we deduce that |B| is bounded
by some C for all f , then we know that all weak polymorphisms of Γ are C-influential.

Pick a promise relation (P,Q) of arity k as guaranteed by Lemma 4.6 such that f ∈ poly(P,Q) for all
f ∈ poly(Γ).

Case 1, k ≥ 3 odd, P = Hamk({(k+1)/2}),Q = Hamk({0, . . . ,k−1}).
This case builds on techniques from Lemmas 4.2 and 5.4 of [AGH14]. Let a = (k− 1)/2 ≥ 1. If

|B| < a then we are done. We claim that for every subset S ⊆ B of size a, we have that f (eS) = 1. Let
S = {i1, . . . , ia}, and let x1,y1, . . . ,xa,ya be witnesses for i1, . . . , ia ∈ B. That is, f (x j) = 0, f (y j) = 1, x j

i j
= 0,

y j
i j
= 1, and x j and y j are identical in all other coordinates. Consider now the k tuples

(¬x1,y1, . . . ,¬xa,ya,¬eS)

It is easy to verify that in each coordinate i ∈ {1, . . . ,L}, exactly a+ 1 = (k + 1)/2 of these tuples have
their ith coordinate equal to 1. Thus, by since f ∈ poly(P,Q), we have that not all of f (¬x1), f (y1), . . . , f (6=

21

xa), f (ya), f (¬eS) are equal to 1. Thus, since the first 2a are equal to 1, we have that f (¬eS) = 0, so
f (eS) = 1, as desired.

It is easy now to see that |B| < (c(Γ)+1)a, else we may construct disjoint S1, . . . ,Sc(Γ)+1 ⊆ B of size
equal to a, so f (eS1), . . . , f (eSc(Γ)+1), violating Corollary 4.10. Thus, |B| is bounded, so all f are C-influential
for some C(Γ) independent of f .

Case 2, k ≥ 3, P = Hamk({1,k}),Q = Hamk({0, . . . ,k}\{b}), b ∈ {2, . . . ,k−1}.
Call S ⊆ {1, . . . ,L} minimal if f (eS) = 1 but f (eS′) = 0 for all S′ ⊂ S. We claim that if S is minimal,

then |S|< b. Assume for contradiction that S is minimal but |S| ≥ b. Thus, we may find nonempty disjoint
S1∪·· ·∪Sb = S. For each i, note that f (eS\Si) = 0, so f (e([L]\S)∪Si) = 1 by folding. Furthermore, f (e[L]\S) =
0. Thus, consider the k-tuple

(e([L]\S)∪S1 , . . . ,e([L]\S)∪Sb
,e[L]\S, . . . ,e[L]\S).

where e[L]\S appears k− b times. It is easy to see that if i ∈ S, then the ith coordinate is equal to 1 in
exactly one element of this k-tuple, otherwise the ith coordinate is equal to 1 in every k-tuple. Thus, the ith
coordinates belong to P for all i ∈ [L]. Since, f ∈ poly(P,Q), we then have that

(f (e([L]\S)∪S1), . . . , f (e([L]\S)∪Sb
), f (e[L]\S), . . . , f (e[L]\S)) ∈ Q.

But, the k-tuple has Hamming weight b, a contradiction. Thus, every minimal set has size strictly less than b.
For every i∈ B, we know that there is Si ⊆ {1, . . . ,L} with i∈ Si and f (eSi) = 1. By the nature of minimality,
we may find Ti ⊆ Si with i ∈ Ti and f (eTi) = 1, but Ti is minimal. Since |Ti|< b, if |B| ≥ (c(Γ)+1)(b−1),
we can use a greedy algorithm to construct Ti1 , . . . ,Tic(Γ)+1 disjoint and f (eTi j

) = 1 for all j. This clearly
violates Corollary 4.10, so |B| ≤ (c(Γ)+1)(b−1), as desired.

End Cases

4.3 Non-idempotent case

Now, assume that our folded, symmetric family Γ of promise relations has non-idempotent polymorphisms.
If any weak polymorphism f has the property that f (0, . . . ,0) = f (1, . . . ,1), then folding is violated. Thus,
Γ is non-degenerate, so we may apply Lemma 2.4 to yield that every weak polymorphism of Γ is a weak
polymorphism of the idempotent family Γ′ or it is the negation of a weak polymorphism of the idempotent
family Γ′′. Thus, if Γ avoids Parity, Majority, Alternating-Threshold, as well as their antis, then Γ′ and Γ′′

both avoid Parity, Majority, and Alternating-Threshold. By the previous section, the weak polymorphisms
of Γ′ and Γ′′ are C-influential for some sufficiently large C. Since negating a folded weak polymorphism
does not change that it is C-influential, we have shown the following.

Theorem 4.12. Let Γ be a finite, folded, symmetric family of promise relations. Assume there exist odd
L1, . . . ,L6 such that ParL1 , ATL2 , MajL3

, ParL4 , ATL5 , and MajL6
are not weak polymorphisms of Γ. Then

there exists C(Γ) such that all weak polymorphisms of Γ are C-influential.

5 Hardness Arguments

Now that we have a rather strong classification of weak polymorphisms for folded, symmetric PCSPs, we
are in a good position to interface it with a reduction from Label Cover to actually demonstrate NP-hardness.

Definition 5.1. An instance of Label Cover is based on a bipartite graph G = (U,V,E). Each edge e = (u,v)
is associated with a projection πe : [R]→ [L] for some positive integers R and L. A labeling is a pair of maps
σV : V → [R], σU : U → [L]. A labeling satisfies if for all (u,v) ∈ E, π(u,v)(σV (v)) = σU(u).

22

The PCP theorem combined with parallel repetition gives the following well-known hardness of Label
Cover which is the starting point for most inapproximability results.

Proposition 5.1. For any η > 0, given an instance of Label Cover it is NP-hard to distinguish between the
two cases:

• Completeness: There exists a labeling σV ,σU that satisfies every edge.

• Soundness: No labeling σV ,σU can satisfy a fraction η of the edges.

Theorem 5.2. Let Γ be a folded, finite family of promise relations. Suppose that there exists a universal
constant C = C(Γ) < ∞ such that every weak polymorphism of Γ is C(Γ)-influential. Then PCSP(Γ) is
NP-hard.

Proof. The proof is via reduction from the hardness of Label Cover as stated in Proposition 5.1, for the
parameter η = 1/C2. The proof is a simplification of the proof of Theorem 1.1 of [AGH14].

Let G = (U,V,E) be our instance with projection maps πe : [R]→ [L]. As noted in Remark 4.7 of
[AGH14], L and R are functions of η and thus are independent of the size of G. We now create a Γ-PCSP
Ψ = (ΨP,ΨQ). For each u ∈ U , identify the vertex with 2L variables which we denote by fu(x) where
x ∈ {0,1}L and fu : {0,1}L → {0,1}. For all (P,Q) ∈ Γ and x1, . . . ,xL ∈ P (possibly with repetition) we
enforce the constraint

P(fu(x1
1, . . . ,x

L
1), . . . , fu(x1

k , . . . ,x
L
k))

in ΨP, with the corresponding constraint in ΨQ. From the perspective of ΨQ, fu is a weak polymorphism
of Γ. Likewise, for each v ∈ V , identify 2R variables which we denote by fv(y) where y ∈ {0,1}R and
fv : {0,1}R → {0,1}. Again, using the constraints of Γ, we may specify that fv is a weak polymorphism
from the perspective of ΨQ.

Next, we specify the edge constraints, which we do in a manner greatly simplifying that of [AGH14].
For each e = (u,v) ∈ E and for any x ∈ {0,1}L and y ∈ {0,1}R such that xπe(i) = yi for all i ∈ [R], we specify
that fu(x) = fv(y). Note that Γ might not have an equality constraint, but we can implicitly introduce one by
using the same variable for fu(x) and fv(y) when constructing Ψ. For a specific (u,v) ∈ E, these constraints
maintain that f

π(u,v)
v = fu (in both ΨP and ΨQ).

To show that this is a valid reduction, we need to show that both completeness and soundness hold (see
Lemmas 4.5 and 4.6 of [AGH14]).

• Completeness: If there exists a labeling σU ,σV satisfying every edge of the Label Cover instance,
let fu(x) = xσU (u) and fv(x) = xσV (v). These satisfy the constraints for ΨP since dictators are weak
polymorphisms of (P,P) (as well as (P,Q)) for all (P,Q) ∈ Γ. The equal constraints are also satisfied
since if xπe(i) = yi for some e = (u,v) ∈ E, then fu(x) = xσU (u) = yσV (v) = fv(y), as desired. Thus, ΨP

is satisfiable when our Label Cover instance is satisfiable.

• Soundness: Assume for sake of contradiction, that a satisfying assignment to ΨQ exists. For each
u ∈U , v ∈ V , fu and fv are C-influential. Thus, we may define Su ⊆ [L],Sv ⊆ [R] such that fu(x) =
fu(1, . . . ,1) and fv(y) = fv(1, . . . ,1) if xi = 1 for i ∈ Su and y j = 1 for j ∈ Sv. Since Su is C-influential,
we can let |Su| ≤C. For each v ∈V , we can defined Sv analogously and have |Sv| ≤C.

We claim that for every edge e = (u,v) ∈ E, Su∩πe[Sv] is nonempty (where πe[Sv] = {π(s) : s ∈ Sv}).
By virtue of the equality constraints, fu = f πe

v ; thus we have that fu(eπ[Sv]) = fv(eSv) = fv(1, . . . ,1) =
fu(1, . . . ,1). Thus, as Γ is folded, fu must be folded, so fu(e[L]\πe[Sv]) = ¬ fu(1, . . . ,1). If Su and
πe[Sv] were disjoint, then Su ⊆ [L] \ πe[Sv], so by the definition of Su, fu(e[L]\πe[Sv]) = fu(1, . . . ,1),
contradiction. Thus, Su and πe[Sv] intersect non-trivially.

23

Due to this fact, we can show a η-approximate labeling exists for our label cover instance as in
[AGH14] and typical for Label Cover reductions. For each u ∈U , select σU(u) uniformly at random
from Su. Likewise, for each v ∈ V , select σV (v) uniformly at random from Sv. Since for any given
e = (u,v) ∈ E we have that Su and πe[Sv] have a common intersection and both sets have size at most
C, σU(u) = πe(σV (v)) with probability at least η . Thus, the expect number of constraints satisfied by
a random labeling is at least η . Hence, there exists a labeling which satisfies at least η-fraction of the
constraints, as desired.

Thus, we have completed our reduction, so PCSP(Γ) is NP-hard.

Hence, we have completed the proof of Theorem 2.6 by combining Theorems 3.2, 4.12, and 5.2.

A On Idempotence

Proof of Lemma 2.4. 1. In Proposition 2.2, we have that the weak polymorphisms of poly(Γ′) are exactly
the idempotent weak polymorphisms of poly(Γ). From Proposition 2.3 and the subsequent discussion, we
have that the non-idempotent weak polymorphisms of Γ are exactly the negations of the idempotent weak
polymorphisms of ¬Γ which are the weak polymorphisms of Γ′′. Thus, poly(Γ) = poly(Γ′)∪ (¬poly(Γ′′))
since every weak polymorphism of Γ is either idempotent or non-idempotent and every weak polymorphism
of Γ′ and Γ′′ is idempotent.

2. Since Γ⊆ Γ′, we have that if PCSP(Γ′) is polynomial-time tractable, then PCSP(Γ) is polynomial-
tractable by applying the exact same algorithm. Now, assume that PCSP(Γ′′) is polynomial-time tractable.
Since Γ′′ ⊆ ¬Γ, we have that PCSP(¬Γ) is polynomial-time tractable. Consider an instance Ψ = (ΨP,ΨQ)
of PCSP(Γ). Let Ψ¬ = (ΨP,Ψ¬Q) be an instance of PCSP(Γ) in which every Qi clause of ΨQ is replaced
with a ¬Qi clause. Clearly ΨP is satisfiable if and only if ΨP is satisfiable and ΨQ is satisfiable if and
only if Ψ¬Q is satisfiable (a satisfying assignment to one is the negation of a satisfying assignment to the
other). Thus, Ψ is satisfiable if and only if Ψ¬ is satisfiable, and Ψ is unsatisfiable if and only if Ψ¬ is
unsatisfiable. Thus, if we run the algorithm for PCSP(¬Γ) which decides Ψ¬, we have also solved the
problem in polynomial time for Ψ.

B Properties of the Alternating-Threshold and Majority Weak Polymor-
phisms

Proof of Claim 4.5. Facts 1-3 are easy to verify since ATL is idempotent for all odd L.
For Fact 4, consider `,`′ ∈ {1, . . . ,k− 1}. We claim that Hamk({`′}) ⊆ OAT(Hamk({`})). Pick L =

2`′(k− `′) + 1. It suffices to pick x1, . . . ,xL ∈ Hamk({`}) such that ATL(x1, . . . ,xL) = (1, . . . ,1,0, . . . ,0),
where the output has Hamming weight `′. Let x1 = (1, . . . ,1,0, . . . ,0), of Hamming weight `, and let x2 =
(0, . . . ,0,1, . . . ,1), of Hamming weight `. Let x1,x3, . . . ,xL−2 be all possible permutations of x1 in which the
first `′ coordinates are cyclically shifted and the last k− `′ coordinates are cyclically shifted. There may be
repetition, but each repetition should appear an equal number of times. Likewise, let x2,x4, . . . ,xL−1 be the

24

same kind of permutations but of x2. Let xL = 1. It is easy to verify that

j ∈ {1, . . . , `′},
L−2

∑
i=1,odd

xi
j = (k− `′)min(`,`′)

j ∈ {`′+1, . . . ,k},
L−2

∑
i=1,odd

xi
j = `′max(0, `− `′)

j ∈ {1, . . . , `′},
L−1

∑
i=1,even

xi
j = (k− `′)max(0, `+ `′− k)

j ∈ {`′+1, . . . ,k},
L−1

∑
i=1,even

xi
j = `′min(`,k− `′)

Thus,

j ∈ {1, . . . , `′},
L

∑
i=1

(−1)i−1xi
j = (k− `′)(min(`,`′)−max(0, `+ `′− k))+ xL

j ≥ (k− `′)+ xL > 0

j ∈ {`′+1 . . . ,k},
L

∑
i=1

(−1)i−1xi
j = `′(max(0, `− `′)−max(`,k− `′))+ xL

j <−`′+ xL
j ≤ 0.

Therefore, ATL(x1, . . . ,xL) ∈ Hamk({`′}), as desired. By Proposition 2.5, Hamk({`′})⊆ OAT(Hamk({`})),
for all `,`′ ∈ {1, . . . ,k−1}, as desired.

Now, to finish Fact 4, we seek to show that Hamk({0}) = {(0, . . . ,0)} 6⊆ Hamk({`}). Assume for
sake of contradiction, there exists L odd and x1, . . . ,xL ∈ Hamk({`}) such that ATL(x1, . . . ,xL) = (0, . . . ,0).
Then, we have that for all i ∈ {1, . . . ,k}, ∑

L
j=1(−1) j−1x j

i ≤ 0. Summing over all i, we have that 0 ≥
∑

L
j=1(−1) j−1

∑
k
i=1 x j

i = ∑
L
j=1(−1) j−1` = `, a contradiction. Likewise, if ATL(x1, . . . ,xL) = (1, . . .1). We

would have that k ≤ ∑
L
j=1(−1) j−1

∑
L
i=1 x j

i = ∑
L
j=1(−1) j−1` = `, which is also a contradiction. Thus, we

have shown fact 4.
For Fact 5, since we know that {`1, `2} 6= {0,k}, we know that at least one of `1 and `2 is strictly

between 1 and k− 1. Thus, by fact 4, Hamk({1, . . . ,k− 1}) ⊆ OAT(Hamk({`1, `2})). Therefore, it suffices
to prove that (0, . . . ,0),(1, . . . ,1) ∈ OAT(Hamk({`1, `2})). Assume that `1 < `2 and consider L = 4k+1. To
show (0, . . . ,0) ∈ OAT(Hamk({`1, `2)}), pick x1, . . . ,x4k+1 such that x j has Hamming weight `1 when j is
odd and Hamming weight `2 when j is even. Let x1 = (1, . . . ,1,0, . . . ,0), and let x3,x5, . . . be successive
cyclic shifts. Likewise, let x2 = (1, . . . ,1,0, . . . ,0) (with the appropriate number of 1s), and let x4, . . . be
successive cyclic shifts. Then, it is easy to see that for all i ∈ {1, . . . ,k}, we have that ∑

4k+1
j=1 (−1)i−1x j

i is
2`1−2`2 < 0 or 2`1−2`2 +1 < 0 (because we have 2k+1 odd-indexed terms but 2k even-indexed terms).
Thus, AT4k+1(x1, . . . ,x4k+1) = (0, . . . ,0). If we do the same construction but swap `1 and `2, we would then
have that 2`1−2`2,2`1−2`2 +1 > 0, so AT4k+1(x1, . . . ,x4k+1) = (1, . . . ,1). Thus, Fact 5 is shown.

Proof of Claim 4.7. As before, the case S⊆ {0,k} is easy.
We first, show that OMaj(P) ⊆ Hamk({0, . . . ,k} ∩ {2minS− k + 1, . . . ,2maxS− 1}). For any b ∈

{0, . . . ,k}, such that Hamk({b}) ⊆ OMaj(P), there is L odd and x1, . . . ,xL ∈ P such that MajL(x
1, . . . ,xL)

has Hamming weight b. Assume without loss of generality the coordinates equal to 1 are the first b ones.
Thus, we have that for all i ∈ {1, . . . ,b}, ∑

L
j=1 x j

i ≥ (L+1)/2.. Thus,

k

∑
i=1

L

∑
j=1

x j
i ≥ b(L+1)/2.

25

Thus, by the pigeonhole principle, there is some x j such that its Hamming weight is at least b(L+1)/(2L)≤
maxS. Thus, b ≤ 2LmaxS/(L + 1) < 2maxS. Therefore, b ≤ 2maxS− 1, as desired. Using the fact
that ∑

L
j=1 x j

i ≤ (L− 1)/2 for all i ∈ {b + 1, . . . ,k}, we have that some x j has Hamming weight at most
b + (k− b)(L− 1)/(2L) ≥ minS (we add b since all of the first b coordinates may be 1s). Thus, b ≥
2LmaxS/(L− 1)− k(L− 1)/(L + 1) > 2maxS− k. Therefore, b ≥ 2maxS + 1− k, as desired. Thus,
OMaj(P)⊆ Hamk({0, . . . ,k}∩{2minS− k+1, . . . ,2maxS−1}).

Now, we show the reverse direction, that every b ∈ {0, . . . ,k}∩{2minS− k+ 1, . . . ,2maxS−1} can
be obtained as a Hamming weight. Assume that there is ` ∈ S∩ {1, . . . ,k− 1} (so k ≥ 2). For ease of
notation, let s = minS, t = maxS, so s≤ `≤ t. To start, we show if b∈ {0, . . . ,k}∩{`, . . . ,2maxS−1}, then
Hamk({b})⊆ OMaj(P).

First, if b≥maxS, consider L = 2b+1. We now seek to pick x1, . . . ,xL of Hamming weight maxS such
that MajL(x

1, . . . ,xL) has Hamming weight b. Let x1 = (1, . . . ,1,0, . . . ,0) of the suitable Hamming weight,
and for all j≥ 2, let x j be the cyclic shift of x j−1 in the first b≥maxS coordinates. For all i∈ {b+1, . . . ,k},
∑ j x j

i = 0, so MajL(x
1
i , . . . ,x

L
i) = 0. For all i ∈ {1, . . . ,b}, ∑ j x j

i = 2maxS+ xL
j ≥ b+ 1+ xL

j > L/2. Thus,
MajL(x

1
j , . . . ,x

L
j) = 1, so MajL(x

1, . . . ,xL) has Hamming weight b.

Otherwise, if b ∈ {`,`+ 1, . . . ,maxS− 1}, consider now L = 2b− 1 ≥ 1. Let x1 = · · · = xb−1 =
(1, . . . ,1,0, . . . ,0), with Hamming weight maxS. Let xb = (1, . . . ,1,0, . . . ,0) of Hamming weight `, and
let xb+1, . . . ,x2b−1 be xb except that the first b coordinates are cyclically shifted. If i ∈ {1, . . . ,b} then
∑i x j

i = b−1+`≥ b> L/2 since `≥ 1. If i∈ {b+1, . . . ,k}, then ∑i x j
i ≤ b−1< L/2. Thus, MajL(x

1, . . . ,xL)
has Hamming weight b, as desired. Thus, Hamk({0, . . . ,k}∩{`, . . . ,2maxS−1})⊆ OMaj(P).

By an analogous argument, we may show that Hamk({0, . . . ,k}∩{2minS− k+1, . . . , `})⊆ OMaj(P).
A simple route to this is reversing the notions of 0 and 1 in our previous construction.

C Lack of Repetition Does Not Make Things Harder

For a set Γ of promise relations, let PCSPR(Γ) be the promise decision problem analogous to PCSP(Γ)
except that each clause has at most one copy of each variable. In this section we show that the two problems
are polynomial-time equivalent using a simple combinatorial argument, simplifying the argument used in
[AGH14] for establishing the NP-hardness of “balanced 2-coloring” versus “weak 2-coloring” of 2k+ 1-
uniform hypergraphs.

Theorem C.1. For all finite Γ= {(Pi,Qi)∈Dki×Dki}, PCSPR(Γ) is polynomial-time equivalent to PCSP(Γ)

Proof. PCSPR(Γ) trivially reduces to PCSP(Γ) since any instance of PCSPR(Γ) is an instance of PCSP(Γ).
Thus, we now consider the harder case. Let Ψ = (ΨP,ΨQ) be a Γ−PCSP with m clauses on the variable set
x1, . . . ,xn. Let k be the maximum arity of any promise relation of Γ (this is a constant). For our reduction,
replace each variable xi with |D|k ‘copies’ x(1)i , . . . ,x(|D|k)i . Replace each clause Pi(x j1 , . . . ,x jki

) of ΨP with a

conjunction of at most (|D|k)ki clauses, Pi(x
(a1)
j1 , . . . ,x

(aki)

jki
) in which we remove the clauses with a repeated

variable. Call this new formula ΨR
P. Perform an identical reduction of ΨQ to ΨR

Q. We can see that ΨR =

(ΨR
P,Ψ

R
Q) is a valid Γ-PCSP without repetition and the size of this PCSP is only a constant factor larger than

the size of Ψ.
Now we show that this is a valid reduction. First, if Ψ is satisfiable, there is an assignment to the

variables x1, . . . ,xn which satisfies ΨP. If we let each copy x(j)
i have the same value of xi, then we yield a

satisfying assignment of ΨR
P. It suffices then to show that if Ψ is unsatisfiable, then ΨR is unsatisfiable. This

is equivalent to showing that if ΨR
Q is satisfiable, then ΨQ is also satisfiable. Assume we have a satisfying

26

assignment of ΨR
Q. For each of the variables xi of ΨQ, set xi to be the most frequently occurring value

in the multiset {x(j)
i : j ∈ {1, . . . , |D|k}} (break ties arbitrarily). Crucially note that this most frequently

occurring value occurs at least k times. We claim that this choice of the xi satisfies ΨQ. For each clause

Qi(x j1 , . . . ,x jki
), we can find a corresponding clause Qi(x

(a1)
j1 , . . . ,x

(aki)

jki
) in ΨR

Qsuch that xa`
j` = x j for all j (this

is possible without repetition since there are at least k distinct choices for a`). Since ΨR
Q is satisfied, this

particular repetition-free clause is satisfied, so the corresponding clause in ΨQ is satisfied. Thus, we have
found a satisfying assignment for ΨQ. Thus, PCSPR(Γ) and PCSP(Γ) are polynomial-time equivalent.

D Galois Correspondence of Weak Polymorphisms

In this Appendix, we show that for any finite family Γ of promise relations of any finite arity, we have that
poly(Γ) captures the computational complexity of PCSP(Γ) is the following precise sense. This is analogous
to Theorem 3.16 of [Che09], originally established by [Jea98], which holds for traditional CSPs. Our proof
will have similar structure to that of [Che09].

Theorem D.1. Let Γ and Γ′ be families of promise relations such that poly(Γ)⊆ poly(Γ′). Then, there is a
polynomial-time reduction from PCSP(Γ′) to PCSP(Γ).

In fact, we show the polynomial-time reduction is of a very local form. Let EQUAL = {(i, i) :∈D} be
the relation which specifies that two variables are equal. Since we have been allowing repetition of variables,
this relation has been essentially implicit.

Definition D.1. Let Γ be a finite family of promise relations. We say that a promise relation (P′,Q′) ∈
Dk×Dk is positive primitive promise definable (shortened to ppp-definable) from Γ if there exists a Γ∪
{EQUAL}-PCSP Ψ = (ΨP,ΨQ) on k+ ` variables such that

• For all (x1, . . . ,xk) ∈ P′, there exists (y1, . . . ,y`) such that (x1, . . . ,xk,y1, . . . ,y`) is a satisfying assign-
ment to ΨP.

• For all satisfying assignments (z1, . . . ,zk+`) to ΨQ, (z1, . . . ,zk) ∈ Q′.

We say that a finite family of promise relations Γ′ is ppp-definable from Γ if every (P′,Q′) ∈ Γ′ is ppp-
definable from Γ.

In particular, note that if (P,Q) and (P′,Q′) have the same arity and P′ ⊆ P ⊆ Q ⊆ Q′ then (P′,Q′) is
ppp-definable from (P,Q) by letting (ΨP,ΨQ) = (P,Q). We also note that ppp-definability is reflexive (Γ is
ppp-definable from Γ) and transitive: if Γ′ is ppp-definable from Γ and Γ′′ is ppp-definable from Γ′ then Γ′′

is ppp-definable from Γ. We have that ppp-definability is a formalization the notion of a gadget reduction in
[AGH14] (see Proposition 3.1).

Our notion of ppp-definability is a direct generalization of notion of pp-definability for normal CSP re-
lations defined in [Che09]. If Γ′ is ppp-definable from Γ, there is a corresponding polynomial-time reduction
from PCSP(Γ′) to PCSP(Γ) by replacing each (P′,Q′) ∈ Γ′ clause with a corresponding (ΨP,ΨQ) clause
(adding in any auxiliary variables), which can can be implemented with clauses from Γ and yields only a
constant-factor blowup. It is straightforward to verify that this reduction is valid. As noted in [Che09], this
reduction can be done in logarithmic space.

In establishing Galois correspondence, one important ppp-definition from Γ is to the promise relation
of weak polymorphisms of Γ.

27

Proposition D.2. Let L be a positive integer. The following promise relation SL ⊆ TL ⊆DDL
is ppp-definable

from Γ:

SL = { f : DL→ D : f ∈ poly(P,P) for all (P,Q) ∈ Γ}
TL = { f : DL→ D : f ∈ poly(P,Q) for all (P,Q) ∈ Γ},

where we identify a function f ∈ DL→ D as a vector of |D|L variables.

Proof. Using the definition of a weak polymorphism, one can specify that f is a weak polymorphism of
poly(P,Q) of specific arity in terms of a fixed number of Q-clauses. Replacing those Q-clauses with P-
clauses exactly characterizes that f ∈ poly(P,P).

With these facts established, we may now prove the theorem. The proof is quite similar to and was
inspired by the second half of Theorem 3.13 of [Che09].

Proof of Theorem D.1. It suffices to show that every promise relation (P′,Q′) ∈ Γ′ is ppp-definable from Γ.
Let k be the arity of (P′,Q′) and let m = |P′|. Let x1, . . . ,xm be some ordering of the elements of P′. Define
y1, . . . ,yk ∈ Dm such that yi

j = x j
i for all i ∈ [k], j ∈ [m]. Now from Proposition D.2, we have that (Sm,Tm) is

ppp-definable from Γ. Now, consider the following promise relation (S′m,T
′

m) of arity k.

S′m = {(f (y1), . . . , f (yk)) : f ∈ Sm}
T ′m = {(f (y1), . . . , f (yk)) : f ∈ Tm}.

We have that (S′m,T
′

m) is ppp-definable from (Sm,Tm) since every x ∈ S′m can be built up into a corresponding
element of Sm and every y ∈ Tm can be stripped down to an element of T ′m. Note that this is the case even if
yi = y j for some distinct i, j ∈ [k] by using the EQUAL relation.

We claim that P′ ⊆ S′m ⊆ T ′m ⊆Q′. First, for all i∈ [m], consider the unique projection map πi : Dm→D
given by πi(y) = yi. Clearly πi ∈ Sm. Thus, (πi(y1), . . . ,πi(yk)) = (y1

i , . . . ,y
k
i) = xi ∈ S′m. Thus, P′ ⊆ S′m.

Second, we can see that S′m ⊆ T ′m since Sm ⊆ Tm. Third, note that T ′m ⊆ OTm(P
′) ⊆ Opoly(Γ)(P′). Since

poly(P′,Q′)⊇ poly(Γ), we have that Q′ ⊇ Opoly(Γ)(P′). Thus, T ′m ⊆ Q′.
Thus, therefore (P′,Q′) is ppp-definable from (S′m,T

′
m). By transitivity, we have that (P′,Q′) is ppp-

definable from Γ, so Γ′ is ppp-definable from Γ.

E General Theory of Promise-CSPs

In Appendix D, we established the Galois correspondence of weak polymorphisms. That is, if Γ1 and Γ2
are finite families of promise relations such that poly(Γ1) ⊆ poly(Γ2), then there is a log-space reduction
from PCSP(Γ2) to PCSP(Γ1). Thus, in a strong sense, the family of weak polymorphisms exactly captures
the computational complexity of our PCSP. In this section, we establish a necessary and sufficient set of
conditions on a set F of functions over domain D such that there exists some Γ such that F = poly(Γ).

E.1 Polymorphism-only Description of PCSPs

Recall the definition of a projection of a weak polymorphism.

Definition E.1. Let f : DL→ D be a function, and let π : [L]→ [R] be any map which we call a projection.
The projection of f with respect to π is the function f π : DR → D such that for all y ∈ DR, f π(y) = f (x),
where x ∈ DL is the unique L-tuple such that

xi = yπ(i), for all i ∈ [L].

28

Note that in a projection it might be the case that R ≥ L. We say that a family F of functions over
domain D is projection-closed if for all L,R ∈ N, all f ∈F of arity L, and all projections π : [L]→ [R],
f π ∈F .

Another technical property we require of F is that it is finitizable. This means there exists some
finite arity R ∈ N, called the finitized arity such that f : DL → D is an element of F if and only if for all
π : [L]→ [R], the projection f π is an element of F . Intuitively, this finitization property says that some
finite arity of F captures all of the meaningful information about what is contained in F . This is directly
analogous to the property that our set Γ of promise relations is finite.

Surprisingly, these two properties–that F is projection-closed and finitizable–perfectly capture the
families of the form poly(Γ) for some Γ as long as we stipulate that F contains the identity function:
idD : D→ D such that idD(x) = x for all x ∈ D.6

Theorem E.1. Let F be a family of functions over domain D. Then, there exists a finite family Γ of promise
relations such that F = poly(Γ) if and only if F is both projection-closed and finitizable and idD ∈F .

We start by showing that these two properties are necessary.

Claim E.2. Let Γ = {(Pi,Qi) : Pi ⊆ Qi ⊆ Dki} be a finite family of promise relations with domain D. Then,
poly(Γ) is both projection-closed and finitizable.

Proof. projection-closed: Let f : DL→D be a weak polymorphism of Γ and let π : [L]→ [R] be a projection.
We claim that f π : DR→ D is also a weak polymorphism of Γ. Consider all (Pi,Qi) and y(1), . . . ,y(R) ∈ Pi.
We need to show that f π(y(1), . . . ,y(R))∈Qi. Consider x(1), . . . ,x(L) ∈ Pi such that x(j) = y(π(j)) for all j ∈ [L].
From the definition of f π it is then easy to see that

f π(y(1), . . . ,y(R)) = f (x(1), . . . ,x(L)) ∈ Qi,

as desired.
finitizable: Let R = max(Pi,Qi)∈Γ |Pi|. Crucially, this maximum exists since Γ is finite. Since poly(Γ) is

projection-closed, for all f ∈ poly(Γ) of arity L and all π : [L]→ [R], we have that f π ∈ poly(Γ).
Now, consider any f 6∈ poly(Γ) of arity L, we would like to show that there exists π : [L]→ [R] such that

f π 6∈ poly(Γ). Since f 6∈ poly(Γ), there exists (Pi,Qi) ∈ Γ and x(1), . . . ,x(L) ∈ Pi such that f (x(1), . . . ,x(L)) 6∈
Qi. Since R≥ |Pi|, there exists an injective map σ : Pi→ [R]. Let π : [L]→ [R] be π(i) = σ(x(i)). By nature
of π , we can select y(1), . . . ,y(R) ∈ Pi such that y(r) = x(π

−1(r)) for all r ∈ ℑ(π) and y(r) = 1 otherwise. (If
r ∈ R is not in the image of π , then we may make an arbitrary choice.) Note that if π(j1) = π(j2) then
x(j1) = x(j2) so this choice of y(j)’s is well-defined. From the definition of a projection,

f π(y(1), . . . ,y(R)) = f (x(1), . . . ,x(L)) 6∈ Qi,

as desired. Therefore poly(Γ) is finitizable.

Note that since we stipulate that P ⊆ Q for all (P,Q) ∈ Γ, we immediately have that idD is a weak
polymorphism of Γ. Much more difficultly, we show that these two properties are sufficient.

Lemma E.3. Let F be a domain-D family of functions which is both projection-closed and finitizable as
well as has idD as an element. Then, there exists a family Γ of finitely many promise relations such that
poly(Γ) = F .

6If we broaden our definition of PCSPs (as mentioned in the introduction) so that instead of P ⊆ Q, there is some unary map
σ : D1→ D2 such that σ(P)⊆ Q, then the condition idD ∈F can be replaced with σ ∈F for some unary function σ .

29

Proof. Let R ∈ N be the finitized arity of F . Identify the integers of [|D|R] with elements of DR. Our
choice of Γ will consist of a single promise relation P⊆Q⊆D|D|

R
, where each f ∈D[|D|R] will be identified

with a function f : DR→ D in the canonical way. We let f ∈ P if and only if there exists j ∈ [R] such that
f (x) = x j for all x ∈ DR. We let Q = { f ∈F | f has arity R}. Since F has the identity function and is
projection-closed, we have that P⊆ Q. Thus, Γ is a finite promise relation.

Now that we have constructed Γ, we need to show poly(Γ) = F . Enumerate the elements of P as
y(1), . . . ,y(R), where y(j)(x) = x j for all j ∈ [R] and x ∈DR. With this enumeration, we have the property that
for all g ∈ poly(P,Q) of arity R, g(y(1), . . . ,y(R)) = g. This is because for all x ∈ DR,

g(y(1)(x), . . . ,y(R)(x)) = g(x1, . . . ,xR) = g(x).

(Thus the y(i)’s are like a long code test.)
First, we show that poly(P,Q)⊆F . Consider any f ∈ poly(P,Q) of arity L as well as any π : [L]→ [R].

Pick x(1), . . . ,x(L) ∈ P such that x(j) = y(π(j)) for all j ∈ [L]. Thus,

Q 3 f (x(1), . . . ,x(L)) = f π(y(1), . . . ,y(R)) = f π .

Thus, f π ∈ Q⊆F for all π : [L]→ [R]. Thus, f ∈F since F is finitizable, as desired.
Last, we show that F ⊆ poly(P,Q). For every f ∈F , we need to show that for all x(1), . . . ,x(L) ∈ P, we

have that f (x(1), . . . ,x(L)) ∈ Q. Since y(1), . . . ,y(R) is an enumeration of the elements of P, there is a unique
π : [L]→ [R] such that x(j) = y(π(j)) for all j ∈ [L]. Then, we have that

f (x(1), . . . ,x(L)) = f π(y(1), . . . ,y(R)) = f π .

Since F is projection closed, f π ⊆F . Therefore, f π ∈Q because f π has arity R. Thus, f (x(1), . . . ,x(L))∈Q,
as desired.

Hence, F = poly(P,Q).

Claim E.2 and Lemma E.3 together establish Theorem E.1.

E.2 Analogous characterization for CSPs

We now extend Theorem E.1 to show that the same characterization holds for CSPs as long as we add the
condition that our set of functions form a clone (defined below). For our purposes, a CSP is a PCSP Γ in
which P = Q for all (P,Q) ∈ Γ.

As known in the CSP literature [e.g., [Che09]], the family of polymorphisms (which are the same as
weak polymorphisms) of a CSP Λ have the additional property that Λ is a clone. That is, for all f ∈ poly(Λ)
of arity L1, and all g1, . . . ,gL1 ∈ poly(Λ) of arity L2, we have that h(x(1), . . . ,x(L1))= f (g1(x(1)), . . . ,gL1(x

(L1)))
is a polymorphism of Λ of arity L1L2. It turns out this property is necessary and sufficient for characterizing
CSPs from their polymorphisms.

Lemma E.4. Let F be a family of functions over the domain D. Then, there exists a CSP Λ such that
F = poly(Λ) if and only if F is projection-closed, finitizable, a clone, and contains the identity.

Proof. As stated previously, poly(Λ) is projection-closed, finitizable, a clone, and contains the identity.
Thus, it suffices to show the converse.

Assume that F finitizes at arity R. As shown in Lemma E.3, F = poly(P,Q), where P⊆Q⊆DDR
. In

this case, P are the R projection functions from DR to D and Q is the set of arity-R functions of F . Since,
we now have that F is a clone, we claim that F = poly(Q,Q).

30

First, we have that poly(Q,Q)⊆ poly(P,Q) = F since P⊆Q, so membership in poly(Q,Q) is a more
strict condition. To show the reverse inclusion F ⊆ poly(Q,Q), consider any f ∈F of arity L. We need to
show for all g1, . . . ,gL ∈ Q, we have that f (g1, . . . ,gL) ∈ Q. Since F is a clone, we immediately have that
f (g1, . . . ,gL) ∈F . Furthermore, f (g1, . . . ,gL) has arity R so f (g1, . . . ,gL) ∈ Q.

E.3 Significance toward establishing complexity of PCSPs

Note that these results liberate us from ever thinking about Γ, and instead we can think entirely in terms of
establishing the easiness/hardness of projection-closed, finitized families of functions. This liberation comes
with a caveat: there is a huge amount of freedom in finitizable, projection-closed families of functions.
Polymorphisms like Alternating-Threshold, which at first seems like a technicality, instead signifies the rich
variety of PCSPs. Fix a domain D and a finitization arity L. For any subset S ⊆ { f : DL→ D} we can add
all projections of S and all functions whose arity-L projections are elements of S to get a projection-closed,
finitizable family FS. It is not hard to see that if there are f ∈ S and g ∈ T such that f is not a projection
of g and g is not a projection of f then FS 6= FT . Thus, there is much granularity in the polymorphisms of
PCSPs. On the other hand, CSPs have much less granularity since the property of being a clone acts like a
“topological closure” condition which makes the space of functions much more discrete. [One could argue
the finitization condition is also like a combinatorial closure condition, but its effects are far less drastic on
the space of families.] Thus, from this perspective, it would be remarkable if there were a dichotomy of
PCSPs like that of CSPs.7

Another point of consideration is the case in which there are infinitely many relations in our (P)CSPs
(although keeping a finite domain). As a computational problem, one can define the (non-uniform) com-
putational complexity of a PCSP Γ, in the style of the compactness theorem, to be the supremum of the
computational complexities of all finite subsets Γ′ ⊆ Γ. Another common (uniform) definition is that the
relations used in any particular CSP are encoded as part of the input (using some canonical encoding). The
local-global conjecture (e.g., [BG08]) states that these two notions of complexity should be identical for
infinite case. Such a conjecture could also be made for PCSPs, although we doubt the veracity of such a
claim for the following reason. Once we allow infinitely many relations into our PCSPs, the possible char-
acterizations of polymorphisms expand to all projection-closed families (that is, the finitization condition
can be dropped). As a result, it seems quite tempting that an NP-intermediate PCSP could be constructed
by adapting the techniques used to prove Ladner’s theorem [Lad75].

References

[Aar03] Scott Aaronson. Is P versus NP formally independent? Bulletin of the EATCS, 81:109–136, 2003.

[ABS10] Sanjeev Arora, Boaz Barak, and David Steurer. Subexponential Algorithms for Unique Games
and Related Problems. In 2010 51st Annual IEEE Symposium on Foundations of Computer Sci-
ence (FOCS), pages 563–572, October 2010.

[AGH14] Per Austrin, Venkatesan Guruswami, and Johan Håstad. (2+ ε)-SAT is NP-hard. In Proceed-
ings of the 55th Annual Symposium on Foundations of Computer Science (FOCS), pages 1–10,
October 2014.

7For an analogy in set theory, consider the possible cardinalities of a subset X ⊆ R. The famed Continuum Hypothesis (known
to be independent of ZFC) asserts that either |X | ≤ |N| or |X |= |R|. On the other hand, by the Cantor-Bendixson theorem, if X is
topologically closed (in the traditional topology of R) then this dichotomy is indeed exhibited. This analogy is not to advocate that
the PCSP dichotomy is independent of ZFC [c.f. [Aar03]], but that the structure of being a clone is crucial to the plausibility of the
CSP dichotomy.

31

[BD06] Andrei Bulatov and Vı́ctor Dalmau. A simple algorithm for Mal’tsev constraints. SIAM J. Com-
put., 36(1):16–27, July 2006.

[BG08] Manuel Bodirsky and Martin Grohe. Non-dichotomies in Constraint Satisfaction Complexity,
pages 184–196. Springer Berlin Heidelberg, Berlin, Heidelberg, 2008.

[BG16] Joshua Brakensiek and Venkatesan Guruswami. New Hardness Results for Graph and Hyper-
graph Colorings. In Ran Raz, editor, 31st Conference on Computational Complexity (CCC
2016), volume 50 of Leibniz International Proceedings in Informatics (LIPIcs), pages 14:1–
14:27, Dagstuhl, Germany, 2016. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik.

[BJK05] Andrei A. Bulatov, Peter Jeavons, and Andrei A. Krokhin. Classifying the complexity of con-
straints using finite algebras. SIAM J. Comput., 34(3):720–742, 2005.

[BK09] Libor Barto and Marcin Kozik. Constraint satisfaction problems of bounded width. In Proceed-
ings of the 50th IEEE Symposium on Foundations of Computer Science, pages 595–603, Oct
2009.

[BK14] Libor Barto and Marcin Kozik. Constraint satisfaction problems solvable by local consistency
methods. J. ACM, 61(1):3:1–3:19, January 2014.

[BR15] Jonah Brown-Cohen and Prasad Raghavendra. Combinatorial optimization algorithms via poly-
morphisms. CoRR, abs/1501.01598, 2015.

[Bul06] Andrei A. Bulatov. A dichotomy theorem for constraint satisfaction problems on a 3-element set.
J. ACM, 53(1):66–120, 2006.

[Bul11] Andrei A. Bulatov. Complexity of conservative constraint satisfaction problems. ACM Trans.
Comput. Log., 12(4):24, 2011.

[Bul14] Andrei A. Bulatov. Conservative constraint satisfaction re-revisited. CoRR, abs/1408.3690, 2014.

[Che09] Hubie Chen. A rendezvous of logic, complexity, and algebra. ACM Comput. Surv., 42(1):2:1–
2:32, December 2009.

[DRS05] Irit Dinur, Oded Regev, and Clifford D. Smyth. The hardness of 3-uniform hypergraph coloring.
Combinatorica, 25(5):519–535, 2005.

[FV98] Tomás Feder and Moshe Y. Vardi. The computational structure of monotone monadic SNP and
constraint satisfaction: A study through datalog and group theory. SIAM J. Comput., 28(1):57–
104, 1998.

[GK04] Venkatesan Guruswami and Sanjeev Khanna. On the hardness of 4-coloring a 3-colorable graph.
SIAM J. Discrete Math., 18(1):30–40, 2004.

[Hua13] Sangxia Huang. Improved hardness of approximating chromatic number. In Prasad Raghaven-
dra, Sofya Raskhodnikova, Klaus Jansen, and JoséD.P. Rolim, editors, Approximation, Random-
ization, and Combinatorial Optimization. Algorithms and Techniques, volume 8096 of Lecture
Notes in Computer Science, pages 233–243. Springer Berlin Heidelberg, 2013.

[Jea98] Peter Jeavons. On the algebraic structure of combinatorial problems. Theoretical Computer
Science, 200(1–2):185 – 204, 1998.

32

[Kho02] Subhash Khot. On the power of unique 2-prover 1-round games. In Proceedings on 34th Annual
ACM Symposium on Theory of Computing, pages 767–775, 2002.

[KKR15] Vladimir Kolmogorov, Andrei Krokhin, and Michal Rolı́nek. The complexity of general-valued
CSPs. In Proceedings of the 56th IEEE Symposium on Foundations of Computer Science, pages
1246–1258, Oct 2015.

[KLS00] Sanjeev Khanna, Nathan Linial, and Shmuel Safra. On the hardness of approximating the chro-
matic number. Combinatorica, 20(3):393–415, 2000.

[Lad75] Richard E. Ladner. On the Structure of Polynomial Time Reducibility. J. ACM, 22(1):155–171,
January 1975.

[Pos41] Emil L Post. The two-valued iterative systems of mathematical logic. Number 5 in Annals of
Mathematics Studies. Princeton University Press, 1941.

[Rag08] Prasad Raghavendra. Optimal algorithms and inapproximability results for every CSP? In Pro-
ceedings of the 40th Annual ACM Symposium on Theory of Computing, pages 245–254, 2008.

[Sch78] Thomas J. Schaefer. The complexity of satisfiability problems. In Proceedings of the Tenth
Annual ACM Symposium on Theory of Computing, STOC ’78, pages 216–226, New York, NY,
USA, 1978. ACM.

[TZ13] Johan Thapper and Stanislav Zivny. The complexity of finite-valued CSPs. In Proceedings of the
ACM Symposium on Theory of Computing, pages 695–704, 2013.

33

ECCC ISSN 1433-8092

http://eccc.hpi-web.de

