Promise Constraint Satisfaction: Algebraic Structure and a Symmetric Boolean Dichotomy

Joshua Brakensiek*
Venkatesan Guruswami ${ }^{\dagger}$

Abstract

A classic result due to Schaefer (1978) classifies all constraint satisfaction problems (CSPs) over the Boolean domain as being either in P or NP-hard. This paper considers a promise-problem variant of CSPs called PCSPs. A PCSP over a finite set of pairs of constraints Γ consists of a pair $\left(\Psi_{P}, \Psi_{Q}\right)$ of CSPs with the same set of variables such that for every $(P, Q) \in \Gamma, P\left(x_{i_{1}}, \ldots, x_{i_{k}}\right)$ is a clause of Ψ_{P} if and only if $Q\left(x_{i_{1}}, \ldots, x_{i_{k}}\right)$ is a clause of Ψ_{Q}. The promise problem $\operatorname{PCSP}(\Gamma)$ is to distinguish, given (Ψ_{P}, Ψ_{Q}), between the cases Ψ_{P} is satisfiable and Ψ_{Q} is unsatisfiable. Many problems studied in the literature such as approximate graph and hypergraph coloring as well as the $(2+\varepsilon)$-SAT problem due to Austrin, Guruswami, and Håstad [FOCS '14] can be placed in this framework.

This paper is motivated by the pursuit of understanding the computational complexity of Boolean promise CSPs, determining for which Γ the associated PCSP is polynomial-time tractable or NP-hard. As our main result, we show that $\operatorname{PCSP}(\Gamma)$ exhibits a dichotomy (it is either polynomial-time tractable or NP-hard) when the relations in Γ are symmetric and allow for negations of variables. In particular, we show that every such polynomial-time tractable Γ can be solved via either Gaussian elimination over \mathbb{F}_{2} or a linear programming relaxation. We achieve our dichotomy theorem by extending the weak polymorphism framework of AGH which itself is a generalization of the algebraic approach used by polymorphisms to study CSPs. In both the algorithm and hardness portions of our proof, we incorporate new ideas and techniques not utilized in the CSP case.

Furthermore, we show that the computational complexity of any promise CSP (over arbitrary finite domains) is captured entirely by its weak polymorphisms, a feature known as Galois correspondence, as well as give necessary and sufficient conditions for the structure of this set of weak polymorphisms. Such insights call us to question the existence of a general dichotomy for Boolean PCSPs.

[^0]
Contents

1 Introduction 1
1.1 Proof Overview 5
1.2 Must there be a Dichotomy? 6
1.3 Organization 6
2 Promise Constraint Satisfaction Problems 7
2.1 Weak Polymorphisms 7
2.2 Decoding 9
2.3 Idempotence 9
2.4 Symmetric PCSPs 10
3 Efficient Algorithms 11
3.1 Zero, One, AND, OR, Parity 11
3.2 Majority and Alternating-Threshold 12
3.3 Non-idempotent polymorphisms 14
4 Classification of Weak Polymorphisms of Folded, Symmetric Promise Relations 14
4.1 PCSP relaxation 14
4.1.1 Alternating-Threshold-excluding relaxation 16
4.1.2 Majority-excluding relaxation 17
4.2 Idempotent case 18
4.3 Non-idempotent case 22
5 Hardness Arguments 22
A On Idempotence 24
B Properties of the Alternating-Threshold and Majority Weak Polymorphisms 24
C Lack of Repetition Does Not Make Things Harder 26
D Galois Correspondence of Weak Polymorphisms 27
E General Theory of Promise-CSPs 28
E. 1 Polymorphism-only Description of PCSPs 28
E. 2 Analogous characterization for CSPs 30
E. 3 Significance toward establishing complexity of PCSPs 31

1 Introduction

A constraint satisfaction problem (CSP) over domain D is specified by a finite collection Λ of relations over D, and is denoted as $\operatorname{CSP}(\Lambda)$. An instance of $\operatorname{CSP}(\Lambda)$ consists of a set of variables V and a collection of constraints $\{(\tau, P)\}$ where $P \in \Lambda$ and τ is a tuple of k distinct variables where k is the arity of P (i.e., $\left.P \subseteq D^{k}\right)$. The goal is find an assignment $\sigma: V \rightarrow D$ that satisfies all constraints, i.e., $\left(\sigma\left(\tau_{1}\right), \ldots, \sigma\left(\tau_{k}\right)\right) \in P$ for each constraint (τ, P). In the optimization version, we seek an assignment that maximizes the number of satisfied constraints.

Constraint satisfaction problems form a rich class of problems, and have played a crucial role in the development of computational complexity theory, starting from the NP-completeness of 3SAT to the PCP theorem to the Unique Games Conjecture, all of which study the intractability of a certain CSP. Despite the large variety of problems that can formulated as a CSP, it is remarkable that CSPs are a class whose computational complexity one can dream of understanding completely, for either the decision or optimization version (including approximability in the latter case). For Boolean CSPs (those over domain $D=\{0,1\}$), Schaefer [Sch78] proved a dichotomy theorem showing that such CSP is either polynomial time solvable or NP-complete. Further, he gave a characterization of the tractable cases - a $\operatorname{Boolean} \operatorname{CSP}(\Lambda)$ is in P in precisely six cases, when every constraint in Λ is (i) satisfied by all 0 s, (ii) satisfied by all 1 s , (iii) a conjunction of 2CNF clauses, (iv) a conjunction of Horn SAT clauses, (v) a conjunction of dual Horn SAT clauses, and finally (vi) every constraint in Λ is a conjunction of affine constraints over \mathbb{F}_{2}. The Feder-Vardi conjecture [FV98] states that a such a complexity dichotomy holds for every $\operatorname{CSP}(\Lambda)$ over arbitrary finite domains. Besides the Boolean domain, it has been proved for a few other cases, including CSPs over a domain of size 3 [Bul06] and conservative CSPs (which contain all unary relations) [Bul14, Bul11].

For the (exact) optimization version, a complete dichotomy theorem was established in [TZ13] showing that for every collection of relations Λ, the associated optimization problem is tractable if and only if a certain basic linear programming relaxation solves it, and it is NP-complete otherwise. The result in fact holds for a generalization of Max CSP called valued CSP, where each constraint has a finite weight associated with it, and the goal is to find a minimum value solution. When infinite weights are also allowed (so some constraints have to be satisfied), it was shown that, surprisingly, a dichotomy for ordinary CSPs would imply a dichotomy for this more general setting as well [KKR15]. For approximate optimization, a line of work exploring the consequences of Khot's Unique Games Conjecture (UGC) [Kho02] culminated in the striking result [Rag08] (see also [BR15]) that for every CSP, there is a canonical semidefinite programming relaxation which delivers the optimal worst-case approximation ratio, assuming the UGC.

In this work we are interested in a potential complexity dichotomy for promise constraint satisfaction problems (PCSPs). A promise $\operatorname{CSP} \operatorname{PCSP}(\Gamma)$ is specified by a finite collection $\Gamma=\left\{\left(P_{i}, Q_{i}\right)\right\}_{i}$ of pairs of relations with each $P_{i} \subseteq Q_{i}$. Let $\Lambda=\left\{P_{i}\right\}_{i}$ and $\Lambda^{\prime}=\left\{Q_{i}\right\}_{i}$, Suppose we are given a satisfiable instance of $\operatorname{CSP}(\Lambda)$ - while finding a satisfying assignment might be NP-hard, can we find a satisfying assignment when the input is treated as an instance of $\operatorname{CSP}\left(\Lambda^{\prime}\right)$ (in the obvious way, by replacing each constraint P_{i} by the corresponding $\left.Q_{i}\right)$? The decision version $\operatorname{PCSP}(\Gamma)$ is the promise problem where given an instance, we need to output Yes on instances that are satisfiable as a $\operatorname{CSP}(\Lambda)$ instance, and output No on instances that are unsatisfiable even as a $\operatorname{CSP}\left(\Lambda^{\prime}\right)$ instance. The following challenge motivates this work:

Question 1.1. For which Γ is $\operatorname{PCSP}(\Gamma)$ polynomial-time tractable? For which Γ is $\operatorname{PCSP}(\Gamma)$ NP-hard? Must every Γ fall into one of these two categories?

Although the condition that $P_{i} \subseteq Q_{i}$ may seem arbitrary and restrictive, it guarantees that there is a fundamental algebraic reason for the satisfiability of a CSP with clauses in the P_{i} 's to imply the satisfiability of the CSP with the P_{i} 's replaced by the corresponding Q_{i} 's. More generally consider two distinct domains D_{1} and D_{2}, such that $P_{i} \subseteq D_{1}^{k}$ and $Q_{i} \subseteq D_{2}^{k}$ and there is an inclusion map $\sigma: D_{1} \rightarrow D_{2}$ such that $\sigma\left(P_{i}\right) \subseteq Q_{i}$.

This is known as a homomorphism is the CSP and universal algebra literature. As this is a preliminary version, we omit the details of this more general presentation.

To demonstrate the depth and far-reaching nature of this question, we provide some interesting examples which fall under this Promise-CSP framework ${ }^{\text {1 }}$
a) Consider a $\operatorname{PCSP} \Gamma=\left\{\left(P_{i}, Q_{i}\right)\right\}$ such that $P_{i}=Q_{i}$ for all i. Then $\operatorname{PCSP}(\Gamma)$ is equivalent to the CSP decision problem $\operatorname{CSP}(\Gamma)$. Thus the above question in full generality subsumes the CSP dichotomy conjecture as a special case.
b) Let $3 \leq c \leq t$ be positive integers, and consider the relations $P=\left\{(a, b) \in[c]^{2}: a \neq b\right\}$ and $Q=$ $\left\{(a, b) \in[t]^{2}: a \neq b\right\}$ with $D=\left.\{1, \ldots, t\}\right|^{2}$ Then (P, Q)-PCSP is an instance of the approximate graph coloring problem in which one needs to distinguish if the chromatic number of graph is at most c or at least $t+1$. The complexity of $\operatorname{PCSP}(P, Q)$ is a notorious open problem; this problem is strongly believed to be NP-hard for all $3 \leq c \leq t$, but the best NP-hardness in various regimes [KLS00, GK04, Hua13, BG16] fall woefully short of establishing hardness for all c and t, especially when c is small.
c) Generalizations of the coloring problem to the setting of hypergraphs also fall under this framework. The hardness of telling if a 3-uniform hypergraph is 2-colorable or not even t-colorable [DRS05] (for any fixed t) is captured by $\operatorname{PCSP}(P, Q)$ where $P=\{1,2\}^{3} \backslash\{(1,1,1),(2,2,2)\}$ and $Q=[t]^{3} \backslash\{(j, j, j) \mid j \in[t]\}$.
d) The $(2+\varepsilon)$-SAT problem studied by [AGH14] is $\Gamma=\left\{\left(P_{1}, Q_{1}\right),\left(P_{2}, Q_{2}\right)\right\}$ in which $\left(P_{1}, Q_{1}\right)=$ $\left(\left\{x \in\{0,1\}^{2 k+1},|x| \geq k\right\},\{0,1\}^{2 k+1} \backslash\{(0, \ldots, 0)\}\right)$ (where $|x|$ is the Hamming weight of x) and $\left(P_{2}, Q_{2}\right)=$ $(\{(0,1),(1,0)\},\{(0,1),(1,0)\})$. The purpose of $\left(P_{2}, Q_{2}\right)$ is so that we can refer to some variables as negations of others. This specific $\operatorname{PCSP}(\Gamma)$ was shown to be NP-hard. On the other hand, if we replace P_{1} with $\left\{x \in\{0,1\}^{2 k+1},|x| \geq k+1\right\}$, then $\operatorname{PCSP}(\Gamma)$ has a polynomial-time algorithm.
e) Let $\Gamma=\{(P, Q)\}$ where $P=\left\{x \in\{0,1\}^{2 k+1},|x| \in\{k, k+1\}\right\}$ and $Q=\{0,1\}^{2 k+1} \backslash\left\{0^{2 k+1}, 1^{2 k+1}\right\}$. Then $\operatorname{PCSP}(\Gamma)$ was shown to be hard in AGH14], which means that weak 2-coloring of hypergraphs with minimum discrepancy is hard. On the other hand, if the arity r is even and P contains string of equal number of 0 s and 1 s , then $\operatorname{PCSP}(\Gamma)$ is tractable.

Given that PCSPs generalize CSPs and a dichotomy theorem for CSPs over arbitrary domains is itself open, in this work we focus on Question 1.1 for relations over the Boolean domain. Even in this restricted setting, Boolean promise CSPs have radically different structure from that of Boolean CSPs (see Section 1.2), rendering proving a generalization of Schaefer's dichotomy quite difficult, if it is even true. In this work, we build the groundwork for the complexity classification of promise PCPs, and prove a dichotomy for the case of symmetric Boolean promise CSPs allowing negations (Theorem 1.2 below). Negations can be enforced if $(P, Q) \in \Gamma$ where $P=Q=\{(0,1),(1,0)\}$; we say such a Γ allows negations or is folded. A collection of relation pairs $\Gamma=\left\{\left(P_{i}, Q_{i}\right)\right\}_{i}$ is symmetric if each P_{i} and Q_{i} is a symmetric relation. A predicate P is symmetric if $\left(a_{1}, a_{2}, \ldots, a_{l}\right) \in P$ iff $\left(a_{\pi(1)}, \ldots, a_{\pi(l)}\right) \in P$ for every permutation $\pi \in S_{l}$. Note that a symmetric predicate $P \subseteq\{0,1\}^{l}$ can be specified by a set $S \subseteq\{0,1, \ldots, l\}$ such that $P=\left\{x \in\{0,1\}^{l}| | x \mid \in S\right\}$.

Theorem 1.2. Let Γ be a symmetric collection of Boolean relation pairs that allows negations. Then $\operatorname{PCSP}(\Gamma)$ is either in P or $N P$-hard.

While the symmetry requirement is a significant restriction, it is a natural subclass that still captures several fundamental problems, such as k-SAT, Not-All-Equal- k-SAT, t-out-of- k-SAT, Hypergraph Coloring, Bipartiteness, Discrepancy minimization, etc. In all these cases, whether a constraint is satisfied

[^1]only depends on the number of variables set to 1 (negations can be enforced via the symmetric relation $\{(0,1),(1,0)\})$. Note that Horn SAT is an example of a CSP that is not symmetric.

We establish Theorem 1.2 via a characterization of all the tractable cases, and showing that everything else is NP-hard. To describe our results in greater detail, and to highlight the challenges faced in extending Schaefer's theorem to the land of promise CSPs, we now turn to the algebraic approach to study $\operatorname{CSP}(\Lambda)$ via polymorphisms of the underlying relations.

Polymorphisms are operations that preserve membership in a relation. Formally, $f:\{0,1\}^{m} \rightarrow\{0,1\}$ is a polymorphism of $P \subseteq\{0,1\}^{k}$, denoted $f \in \operatorname{poly}(P)$, if for all $\left(a_{1}^{(i)}, \ldots, a_{k}^{(i)}\right) \in P, i=1,2, \ldots, m$,

$$
\left(f\left(a_{1}^{(1)}, a_{1}^{(2)}, \ldots, a_{1}^{(m)}\right), \cdots, f\left(a_{k}^{(1)}, a_{k}^{(2)}, \ldots, a_{k}^{(m)}\right)\right) \in P .
$$

For a collection Λ of relations, $\operatorname{poly}(\Lambda)=\cap_{P \in \Lambda} \operatorname{poly}(P)$. Remarkably, the complexity of $\operatorname{CSP}(\Lambda)$ is completely captured by poly (Λ). The Galois correspondence $\left[\right.$ Jea98] states that $\operatorname{poly}\left(\Lambda^{\prime}\right) \subseteq \operatorname{poly}(\Lambda) \operatorname{iff} \operatorname{CSP}(\Lambda)$ reduces to $\operatorname{CSP}\left(\Lambda^{\prime}\right)$. Note that all dictator functions (called projections in CSP literature), $f\left(x_{1}, \ldots, x_{m}\right)=x_{j}$ for some j, always belong to $\operatorname{poly}(\Lambda)$.

The algebraic dichotomy conjecture states that $\operatorname{CSP}(\Lambda)$ is NP-complete iff poly (Λ) contains only dictator functions [BJK05]. Note that via the Galois correspondence, one direction of the conjecture is true: if poly (Λ) only contains dictators, then one can reduce an NP-hard CSP (such as NAE 3SAT, whose polymorphisms are all dictators) to $\operatorname{CSP}(\Lambda)$ showing that $\operatorname{CSP}(\Lambda)$ is NP-hard. The other direction, namely that a non-dictator polymorphism implies an efficient algorithm, remains open in general.

The algebraic formulation of Schaefer's dichotomy theorem states that a Boolean $\operatorname{CSP}(\Lambda)$ is tractable if poly (Λ) contains one of the six functions: constant 0 , constant 1 , Majority on 3 variables, Boolean AND, Boolean OR, or parity of 3 variables ${ }^{3}$ otherwise $\operatorname{CSP}(\Lambda)$ is NP-complete. We refer the reader to the article by Chen [Che09] for an excellent contemporary treatment of Schaefer's theorem for Boolean domains in the language of polymorphisms. For larger domains, there has been a lot exciting recent progress, including the resolution of the bounded width conjecture by Barto and Kozik [BK09, BK14] proving a precise characterization of when a natural local consistency algorithm works for $\operatorname{CSP}(\Lambda)$ in terms of the structure of poly (Λ).

Generalizing the situation for CSPs, it is natural to hope the complexity of PCSPs will also be captured by some form of polymorphisms. This was suggested in [AGH14] via weak polymorphisms. A function $f:\{0,1\}^{m} \rightarrow\{0,1\}$ is weak polymorphism for a pair of predicates (P, Q), denoted $f \in \operatorname{poly}(P, Q)$, if f maps any m inputs in P to an output in Q. When $P=Q$, this is just the notion of a polymorphism for P.

One of our conceptual contributions in this work is to generalize the Galois correspondence from CSPs to promise CSPs (Appendix (D), establishing that the complexity of a PCSP is captured by its weak polymorphisms. Therefore weak polymorphisms are the right approach to study the complexity of promise CSPs. When studying promise CSPs under the lens of weak polymorphisms, however, several challenges surface that didn't exist in the world of CSPs. From an algebraic point of view, the weak polymorphisms are not closed under composition (because after one application, we no longer have an assignment in P, but rather a different predicate Q). In universal algebra parlance, weak polymorphisms do not form a "clone." The dichotomy theorem for Boolean CSPs can avail of a classification of all Boolean clones which dates back to 1941 [Pos41] (again, see [Che09] for a crisp presentation). In the world of promise CSPs, weak polymorphisms belong to a broader class of universal algebras, and it is a lot more challenging to understand their structure. In Appendix E, we show that this lack of structure is inherent by proving necessary and sufficient conditions for families of weak polymorphisms corresponding to PCSPs.

[^2]From a complexity point of view, the distinction between easy and hard is now more nuanced; the existence of a non-dictator polymorphism doesn't itself imply tractability. Indeed, for the $(2+\varepsilon)$-SAT problem mentioned earlier, majority of small arity is a weak polymorphism even though the promise CSP is NP-hard. At an intuitive level, we might expect a PCSP to be easy if there are weak polymorphisms that "genuinely" depend on a lot of variables, and hard if a few variables exert a lot of influence on the function. The precise way to formalize this notion that captures the boundary between tractable and hard is not yet clear. In [AGH14], hardness was shown when the only weak polymorphisms were juntas; in this work we relax this condition to the existence of a small number of coordinates setting all of which to 0 fixes the function.

In addition to establishing the hardness of many natural PCSPs, we also demonstrate the existence of new polynomial-time tractable PCSPs. As an example, consider a hypergraph $H=(V, E)$ such that all of its edges have bounded valence (but not all the valences need to be the same). Furthermore, for each $e=\left\{v_{1}, \ldots, v_{k}\right\} \in E$, we specify a hitting number $h_{e} \in\{1, \ldots, k-1\}$. Then, it is polynomially time tractable to distinguish between the following two cases (1) there exists a two-coloring of the vertices of H such that for all $e \in E$ the number of vertices of the first coloring is exactly h_{e} and (2) every two-coloring of the vertices o H leaves a monochromatic hyperedge. Formally, this is a PCSP with predicates of the form $P=\left\{x \in\{0,1\}^{k}| | x \mid=a\right\}$ for $0<a<k$ and $Q=\left\{x \in\{0,1\}^{k}| | x \mid \in\{1,2, \ldots, k-1\}\right\}$. In essence, this PCSP is a hypergraph generalization of what makes 2-coloring for graphs efficient. The algorithm for solving this problem is based on linear programming. Unlike other CSPs and PCSPs, the proof of correctness uses the Alternating-Threshold polymorphism, a function which takes as input $x_{1}, \ldots, x_{L} \in\{0,1\}$ (L odd) and returns whether $x_{1}-x_{2}+\cdots-x_{L-1}+x_{L}$ is positive. In the Boolean setting for CSPs or PCSPs, this is the first non-symmetric polymorphism known to yield a polynomial time algorithm 4^{4}

We now give informally state the main dichotomy (for a formal statement see Theorem 2.6) in two ways. First, we give an explicit characterization in terms of the structure of the PCSP itself. For simplicity, we only state a subset of the main result in this form.

Theorem 1.3. Let $P \subseteq Q \subset\{0,1\}^{k}$ be symmetric pairs of relations. Let Γ contain the promise relation (P, Q) as well as allow for negation of variables and the setting of constants (e.g. $x_{i}=0$). Let $S=\{|x| \mid x \in P\}$ and $T=\{|x| \mid x \in Q\}$. Furthermore, assume that $S \cap\{1, \ldots, k-1\}$ is nonempty. Then, $\operatorname{PCSP}(\Gamma)$ is polynomialtime tractable if
a) $S \subseteq\{\ell \in[k] \mid \ell$ odd $\} \subseteq T$ or $S \subseteq\{\ell \in\{0\} \cup[k] \mid \ell$ even $\} \subseteq T$
b) $T \supseteq\{0,1, \ldots, k\} \cap\{2 \min S-k+1, \ldots, 2 \max S-1\}$
c) $|S|=1$ and $T \supseteq\{1, \ldots, k-1\}$.

Otherwise, $\operatorname{PCSP}(\Gamma)$ is NP-hard.

Second, we give a more elegant formulation of the dichotomy in terms of the weak polymorphisms of the PCSP instead of the PCSP itself.

Theorem 1.4. Let Γ be a family of pairs of symmetric relations which allows for negations as well as the setting of constants. Then, $\operatorname{PCSP}(\Gamma)$ is polynomial-time tractable if
a) The Parity of L variables is a weak polymorphism of Γ for all odd L.
b) The Majority of L variables is a weak polymorphism of Γ for all odd L.
c) The Alternating-Threshold of L variables is a weak polymorphism of Γ for all odd L. Otherwise, $\operatorname{PCSP}(\Gamma)$ is NP-hard.

[^3]Note that in each of these informal statements, we assumed that we could substitute constants into the clauses, an assumption which we do not make in our main result. Removing this assumption complicates matters as new algorithms and weak polymorphisms appear. To illustrate this, consider $P=\left\{x \in\{0,1\}^{5} \mid\right.$ $|x| \in\{2\}\}$ and $Q=\left\{x \in\{0,1\}^{5}| | x \mid \in\{1,2,3,5\}\right\}$ and allow negations. It is not hard to show that none of a , b , or c in Theorem 1.4 hold, yet $\operatorname{PCSP}(\Gamma)$ is polynomial-time tractable (do you see why?). The reason for this is the existence of an 'anti-Parity' weak polymorphism: that is a function which takes the Parity of a collection of variables but negates the output. Anti-polymorphisms exist also for Majority and AlternatingThreshold. In Section 2.3 , we show how to handle this technical issue and essentially reduce to the setting of Theorem 1.4

1.1 Proof Overview

The proof of the main theorem consists of three major parts. First, in Section 3 we show that any PCSP which has one of these families of functions as a weak polymorphism-Parity, Majority, or Alternating-Threshold, or their anti-polymorphisms-has a polynomial time algorithm. The algorithms we demonstrate are quite general in that the only assumption we make is the existence of polymorphisms, in particular we do not rely on the symmetry assumption. For Parity, we show that the problem can be reduced to an ordinary CSP with Parity as a polymorphism, and thus Schaefer's theorem can be invoked. For Majority and AlternatingThreshold, such a tactic cannot be used. Instead, we show how these problems can be written as linear programming relaxations. Surprisingly, identical algorithms are used in both cases to solve the decision problem. They do diverge, however, if one desires to use the LP relaxation to also find a solution when the PCSP is satisfiable. To deal with anti-polymorphisms, we show in Section 2.3 how these PCSPs with anti-polymorphisms can be reduced in polynomial time to PCSPs with their negations (that is, the normal polymorphisms), which we already know are polynomial time solvable.

Second, in Section 4, for every symmetric PCSP with negations that does not have the entirety of any of the mentioned families of weak polymorphisms, we show that its weak polymorphisms are 'lopsided.' More precisely, we show that there exists a constant C, only dependent on the type of the PCSP, such that for all weak polymorphisms of the PCSP, there are C coordinates such setting all C of those coordinates to the same value fixes the value of the weak polymorphism. We say that such weak polymorphisms are " C-influential." The general philosophy of the argument is as follows. First, since our Γ fails to have Alternating-Threshold on L variables for some odd L as a weak polymorphism, there is some $(P, Q) \in \Gamma$ responsible for this exclusion. Using a nuanced combinatorial argument, we attempt to classify the weak polymorphisms of (P, Q) given that P and Q are symmetric. To simplify the proof, we first show that we may transform (P, Q) into a canonical $\left(P^{\prime}, Q^{\prime}\right)$ without losing any weak polymorphisms (see Lemma 4.4. From this, we show that all weak polymorphisms f of Γ have the property that either $f\left(e_{i}\right)$ differs from $f(0, \ldots, 0)$ for a bounded number of e_{i} or a substantial portion of f is structured like the Parity weak polymorphism. Since we assume that Parity of L^{\prime} variables is not a weak polymorphism of Γ for some odd L^{\prime}, we can show that the latter situation is impossible. Using another $\left(P^{\prime \prime}, Q^{\prime \prime}\right) \in \Gamma$ which fails to have Majority as a weak polymorphism, and after simplifying $\left(P^{\prime \prime}, Q^{\prime \prime}\right)$ to a canonical form, we can use arguments inspired from [AGH14] to obtain additional structural information which yields that all weak-polymorphisms are C-influential. We crucially exploit that (P, Q) and $\left(P^{\prime \prime}, Q^{\prime \prime}\right)$ are symmetric to get these structural properties, but do not assume anything about the other clauses of Γ.

Finally, since we have pinned down the nature of the weak polymorphisms in these believed-to-behard PCSPs, in Section5, we prove the NP-hardness of these PCSPs. We prove this by reducing from Label Cover, a well-known problem to reduce from for hardness of approximation proofs. This part of the proof is based on an argument of [AGH14], but we greatly simplify how projection constraints are handled. With this hardness result established, the main theorem is proved.

1.2 Must there be a Dichotomy?

Extending this dichotomy from the symmetric case to the full Boolean case presents significant challenges, some of which perhaps suggest that a dichotomy does not exist.

The primary major challenge is that in the general case there are a near-limitless variety of weak polymorphisms. In Appendix E, we provide necessary and sufficient conditions for a family of functions \mathscr{F} to satisfy $\mathscr{F}=\operatorname{poly}(\Gamma)$ for some PCSP Γ (not necessarily Boolean). These conditions, known as projectionclosure and finitization, are extremely flexible, allowing for an extremely rich variety of weak polymorphisms. Note that these results liberate us from ever thinking about Γ, and instead we can think entirely in terms of establishing the easiness/hardness of projection-closed, finitized families of functions. There is, however, a caveat: there is a huge amount of freedom in finitizable, projection-closed families of functions! Polymorphisms like Alternating-Threshold, which at first seems like a technicality, instead signifies the rich variety of PCSPs.

In the Boolean setting, many of these families permit polynomial-time algorithms that would be typically unexpected in a Boolean setting. For example, let p be any prime number and let $S \subset\{0, \ldots, p-1\}$ be a non-empty strict subset. Then, for each $L \in \mathbb{N}$ define $f^{(L)}:\{0,1\}^{L} \rightarrow\{0,1\}$ such that $f^{(L)}(x)=0$ if $|x|$ $\bmod p \in S$, and $f^{(L)}(x)=1$ if $|x| \bmod p \notin S$. Then, if a PCSP Γ has $f^{(L)} \in \operatorname{PCSP}(\Gamma)$ for infinitely many L, then $\operatorname{PCSP}(\Gamma)$ can be efficiently solved using Gaussian elimination over \mathbb{F}_{p} ! Thus, the general class of Boolean PCSPs draw algorithms from arbitrarily large arity domains.

Due to this much richer variety of algorithms, the categorization of a 'minimal' hard PCSP performed in Section 4 will be more challenging. We would have to better understand PCSPs which avoid infinitely many families of weak polymorphisms instead of just one at a time.

Attempting to establish a dichotomy is not merely daunting due to the rich variety of PCSPs to consider, there is also a fine granularity in the potential families of weak polymorphisms (see Appendix Efor more details). As a result the hardness argument in Section 5 would need to be modified. We have found examples of non-symmetric PCSPs which we conjecture are not in P , but admit weak polymorphisms which do not fall under the C-influential criteria (but still are skewed toward favoring a small number of coordinates). A modified scheme would need to be constructed to 'decode' these weak polymorphisms into labels. Such challenges are similar to those of establishing the status of the Unique Games problem, which some have suggested might be NP-intermediate (e.g., [ABS10]). It is worth mentioning that we only need one 'rogue' $P C S P$ to be NP-intermediate for the dichotomy to collapse.

That said, the authors do advocate a dichotomy for CSPs. The polymorphisms of CSPs have much less granularity since they must form a clone, a property that acts like a "topological closure" condition. This makes the space of families of polymorphisms much more discrete, rendering a dichotomy theorem far more plausible. From this perspective, it would be remarkable if there were a dichotomy of PCSPs like that of CSPs.

1.3 Organization

In Section 2, we formally define the notion of a PCSP as well as other tools and terminology which we will need in investigate PCSPs. In Section 3, we prove the algorithmic portion of the main theorem. In Section 4, we characterized the weak polymorphisms of PCSPs which do not have certain weak polymorphisms. In Section [5, we use the results of Section 4 to complete the NP-hardness results of the main theorem. In Appendix A, we give proof a lemma which handles the technicalities of anti-polymorphisms. In Appendix B, we prove some claims from 4 on properties of the Alternating-Threshold and Majority weak polymorphisms. In Appendix C, we show that disallowing variable repetition in individual clauses does not meaningfully change the computational complexity. In Appendix D, we demonstrate the Galois correspondence of weak polymorphisms: that they precisely capture the computational complexity of PCSPs. In Appendix E we
give a general classification of the possible families of weak polymorphisms of PCSPs.

2 Promise Constraint Satisfaction Problems

We develop a theory of the complexity of promise constraint satisfaction problems (PCSPs) analogous to that of 'ordinary' CSPs such as found in [Che09]. We need to formally define what we mean by a PCSP.

Definition 2.1. Let D be a finite domain. A relation of arity k is a subset $P \subseteq D^{k}$. A promise relation is a pair of relations (P, Q) of arity k such that $P \subseteq Q$.

We say that a relation is Boolean if $D=\{0,1\}$ (or more generally $|D|=2$). For a given relation P, we will refer to it both as a subset of D^{k} as well as its indicator function $P: D^{k} \rightarrow\{0,1\}(P(x)=1$ iff $x \in P)$. It should be clear from context which notation for P we are using. If (P, Q) is a promise relation then $P(x)=1 \Longrightarrow Q(x)=1$. When $P=Q$, the promise relation (P, Q) is analogous to the relation P in a CSP. In fact, when it is clear that we are referring to promise relations, we let P denoted the promise relation (P, P).
Definition 2.2. Let $(P, Q) \subseteq D^{k} \times D^{k}$ be a promise relation. A (P, Q)-PCSP is a pair of formulae $\left(\Psi_{P}, \Psi_{Q}\right)$, each with m clauses on the variables x_{1}, \ldots, x_{n} along with a variable-choice function $\ell:[m] \times[k] \rightarrow[n]$, such that $\Psi_{P}\left(x_{1}, \ldots, x_{n}\right)=\bigwedge_{i=1}^{m} P\left(x_{\ell(i, 1)}, x_{\ell(i, 2)}, \ldots, x_{\ell(i, k)}\right)$ and $\Psi_{Q}\left(x_{1}, \ldots, x_{n}\right)=\bigwedge_{i=1}^{m} Q\left(x_{\ell(i, 1)}, x_{\ell(i, 2)}, \ldots, x_{\ell(i, k)}\right)$.

We say that $\left(\Psi_{P}, \Psi_{Q}\right)$ is satisfiable if there exists $\left(x_{1}, \ldots, x_{n}\right) \in D^{n}$ such that $\Psi_{P}\left(x_{1}, \ldots, x_{n}\right)=1$. That is, Ψ_{P} is satisfiable in the usual sense. We say that $\left(\Psi_{P}, \Psi_{Q}\right)$ is unsatisfiable if Ψ_{Q} is unsatisfiable, for all $\left(x_{1}, \ldots, x_{n}\right) \in D^{n}, \Psi_{Q}\left(x_{1}, \ldots, x_{n}\right)=0$. Of course, we need not restrict to PCSPs with a single promise relation.

Definition 2.3. Let $\Gamma=\left\{\left(P_{i}, Q_{i}\right) \subseteq D^{k_{i}} \times D^{k_{i}}: i \in[r]\right\}$ be a set of promise relations over D of possibly distinct arities. For $i \in[r]$ let $\left(\Psi_{P_{i}}, \Psi_{Q_{i}}\right)$ be a $\left(P_{i}, Q_{i}\right)$-PCSP so that each PCSP is on the same variable set x_{1}, \ldots, x_{n}. А Γ-PCSP is then a pair of formula $\left(\Psi_{P}, \Psi_{Q}\right)$ such that $\Psi_{P}\left(x_{1}, \ldots, x_{n}\right)=\bigwedge_{i=1}^{r} \Psi_{P_{i}}\left(x_{1}, \ldots, x_{n}\right)$ and $\Psi_{Q}\left(x_{1}, \ldots, x_{n}\right)=\bigwedge_{i=1}^{r} \Psi_{Q_{i}}\left(x_{1}, \ldots, x_{n}\right)$.

As before, we say that $\left(\Psi_{P}, \Psi_{Q}\right)$ is satisfiable if Ψ_{P} is satisfiable, and $\left(\Psi_{P}, \Psi_{Q}\right)$ is unsatisfiable is Ψ_{Q} is unsatisfiable. Since the clauses involve promise relations, any satisfying assignment to Ψ_{P} is necessarily a satisfying assignment to Ψ_{Q}, so no Γ-PCSP can be simultaneously satisfiable and unsatisfiable. Despite that, it is possible for the PCSP to be neither satisfiable nor unsatisfiable. As an extreme case, consider $P=\{ \}$ and $Q=D^{k}$ then every $(P, Q)-\operatorname{PCSP}\left(\Psi_{P}, \Psi_{Q}\right)$ has the property Ψ_{P} is unsatisfiable but Ψ_{Q} is satisfiable, so the PCSP is neither satisfiable or unsatisfiable. As such, the main computational problem we seek to study is a promise decision problem.
Definition 2.4. Let $\Gamma=\left\{\left(P_{i}, Q_{i}\right) \subseteq D^{k_{i}} \times D^{k_{i}}\right\}$ be a set of promise relations. $\operatorname{PCSP}(\Gamma)$ is the following promise decision problem. Given a Γ-PCSP $\Psi=\left(\Psi_{P}, \Psi_{Q}\right)$, output YES if Ψ is satisfiable and output NO if Ψ is unsatisfiable.

Note that $\operatorname{PCSP}(\Gamma)$ is in promiseNP since we can easily check in polynomial time if an assignment satisfies Ψ_{P}. We implicitly allowed repetition of the variables in a specific clause. We show in Appendix C that removing this assumption does not meaningfully change the complexity of the problem.

2.1 Weak Polymorphisms

As it can be quite cumbersome to find a direct NP-hardness reduction for $\operatorname{PCSP}(\Gamma)$, we study the combinatorial properties of a set of functions known as weak polymorphisms, which have served well as a proxy for the computational complexity of PCSPs [AGH14, BG16].

Definition 2.5. Let $(P, Q) \in D^{k} \times D^{k}$ be a promise relation. A weak polymorphism of (P, Q) is a function f : $D^{L} \rightarrow D$ such that for all $\left(x_{1}^{(1)}, \ldots, x_{k}^{(1)}\right), \ldots,\left(x_{1}^{(L)}, \ldots, x_{k}^{(L)}\right) \in P$ then $\left(f\left(x_{1}^{(1)}, \ldots, x_{1}^{(L)}\right), \ldots, f\left(x_{k}^{(1)}, \ldots, x_{k}^{(L)}\right)\right) \in$ Q. Denote this set of weak polymorphisms as poly (P, Q). If $\Gamma=\left\{\left(P_{i}, Q_{i}\right)\right\}$ is a set of promise relations, then $f: D^{L} \rightarrow D$ is a weak polymorphism of Γ iff f is a weak polymorphisms of $\left(P_{i}, Q_{i}\right)$ for all i.

We let poly (Γ) denote the set of weak polymorphisms of Γ. Note that the projection maps $\pi_{i}(x)=x_{i}$ are weak polymorphisms of every promise relation. Further note that poly $(\Gamma)=\bigcap_{\left(P_{i}, Q_{i}\right) \in \Gamma} \operatorname{poly}\left(P_{i}, Q_{i}\right)$.

When $P_{i}=Q_{i}$, these weak polymorphisms are the polymorphisms studied in the CSP literature (e.g. [Che09]). Sadly, when $P_{i} \neq Q_{i}$, the weak polymorphisms are no longer easily composable, so we no longer have necessarily that our weak polymorphisms form a clone. We still have one key property of a clone, that the weak polymorphisms are closed under projections.

Definition 2.6. Let $f: D^{L} \rightarrow D$ be a weak polymorphism of a family of promise relations Γ. Let $\pi:[L] \rightarrow$ $[L]$ be a projection map. A projection $f^{\pi}: D^{\pi([L])} \rightarrow D$ is the map. $\left(f^{\pi}\right)(x)=f(y), \forall i, y_{i}=x_{\pi(i)}$. It is straightforward to verify that $f^{\pi} \in \operatorname{poly}(\Gamma)$.

For the remainder of the article, we assume that $D=\{0,1\}$.
Definition 2.7. Let $f:\{0,1\}^{L} \rightarrow\{0,1\}$ be a weak polymorphism of a family of Boolean promise relations Γ. We say that f is folded if $f(x)=\neg f(\bar{x})$ for all $x \in\{0,1\}^{L}$. We say that a family of promise relations Γ is folded if all of its weak polymorphisms are folded.

It is straightforward to show that if Γ contains the NOT relation $(P=Q=\{(0,1),(1,0)\})$ then all polymorphisms are folded. Furthermore, note that projections of folded functions are also folded.

We will also view a weak polymorphism as generating a set of promise relations Γ^{\prime} from a set of relations Γ.

Definition 2.8. Let $f:\{0,1\}^{L} \rightarrow\{0,1\}$ be a weak polymorphism, and let $P \subseteq\{0,1\}^{k}$ be a relation. Define $O_{f}(P)$ to be

$$
O_{f}(P):=\left\{x \in\{0,1\}^{k}: \text { exist } x^{(1)}, \ldots, x^{(L)} \in P \text { such that } x_{i}=f\left(x_{i}^{(1)}, \ldots, x_{i}^{(L)}\right) \text { for all } i \in[k]=\{1, \ldots, k\}\right\}
$$

We often state that $x=f\left(x^{(1)}, \ldots, x^{(L)}\right)$, where $x^{(i)} \in P$, as a shorthand for $x_{i}=f\left(x_{i}^{(1)}, \ldots, x_{i}^{(L)}\right)$ for all $i \in[k]$. Note that $f \in \operatorname{poly}(P, Q)$ if and only if $O_{f}(P) \subseteq Q$.

What is the motivation for studying these weak polymorphisms? Roughly, if Γ has an interesting family of weak polymorphisms, then we expect for that family to 'beget' a polynomial-time algorithm for $\operatorname{PCSP}(\Gamma)$. The following are examples of families of weak polymorphisms will yield algorithms. For all of these functions, we have that our domain is $x \in\{0,1\}^{L}$.

- The zero and one functions: $0_{L}(x)=0,1_{L}(x)=1$.
- The AND and OR functions: $\operatorname{AND}_{L}(x)=\bigwedge_{i=1}^{L} x_{i}, \mathrm{OR}_{L}(x)=\bigvee_{i=1}^{L} x_{i}$.
- The Parity function: $\operatorname{Par}_{L}(x)=\oplus_{i=1}^{L} x_{i}$. $(L$ odd $)$
- The Majority function: $\operatorname{Maj}_{L}(x)=\mathbf{1}\left[\sum_{i=1}^{L} x_{i}>L / 2\right]$ (L odd).
- The Alternating-Threshold function: $\mathrm{AT}_{L}(x)=\mathbf{1}\left[\sum_{i=1}^{L}(-1)^{i-1} x_{i}>0\right]$ (L odd).

Note that except for the Alternating-Threshold operator, all of these polymorphisms appear in the modern treatment of Schaefer's Theorem. Although the Alternating-Threshold operator is a polymorphism of some traditional Boolean CSPs, such as 2-coloring, in those cases it is possible to show that Majority is also
present as a weak polymorphism. We will see later that this is not the case for PCSPs. Note that the arity-3 Alternating-Threshold operator would be considered a Mal'tsev operator in traditional CSPs (e.g. [BD06]).

In addition to these weak polymorphisms, we also use the prefix 'anti-' to refer to the negations of these function. The 'anti-' weak polymorphism will between denoted with a horizontal bar. For example, anti-parity is $\overline{\operatorname{Par}}_{L}(x)=\neg \operatorname{Par}_{L}(x)$. Note that the One function is the 'anti-Zero' function and vice-versa. These weak polymorphisms appear due to technicalities of the nature of promise-CSPs. In Section 2.3, we show that these anti-s can be transformed into normal weak polymorphisms.

In Section 3, we show that if poly (Γ) contains any one of these infinite families of weak polymorphisms, then $\operatorname{PCSP}(\Gamma)$ is tractable.

2.2 Decoding

As mentioned in the introduction, one formulation of the Algebraic Dichotomy Conjecture is that for any finite set of finite (traditional) relations Γ, the decision problem on the satisfiability of CSPs with clauses from Γ is in P if and only if all the polymorphisms of Γ are dictatorial, that is they only truly depend on one coordinate. In the case of Promise-CSPs, the picture is known to be not as clean. For example, [AGH14, BG16] both study NP-hard PCSPs in which some of the weak polymorphisms depend non-trivially on multiple coordinates. In both of those works, the weak polymorphisms depend on a bounded number of coordinates, either literally or after correcting some noise. By utilizing these weak polymorphisms as gadgets in a suitable probabilistically checkable proof, such as Label Cover, hardness was obtained.

In [BG16], we approached understanding these weak polymorphisms of NP-hard PCSPs using a robust decoding framework which identified influential coordinates in these weak polymorphism in a manner amenable to Label Cover. In this paper, to identify influential coordinates we will use the concept of a C-influential junta.

Definition 2.9. Let $f:\{0,1\}^{L} \rightarrow\{0,1\}$ be a folded weak polymorphism. We say that a folded weak polymorphism is C-influential if there exists $S \subseteq\{1, \ldots, L\}$ with $|S| \leq C$ such that if for all $x \in\{0,1\}^{L}$ with $x_{i}=0$ for all $i \in S$, then $f(x)=f(0, \ldots 0)$. We seek to show that every $f \in \operatorname{poly}(\Gamma)$ is C-influential for some $C(\Gamma)$ independent of the arity of f.

In Section 5 , we show that for any folded family of promise relations Γ all of whose weak polymorphisms are C-influential, then $\operatorname{PCSP}(\Gamma)$ is $N P$-hard. In Section 4, we show for a large class of Γ that their weak polymorphisms are C-influential via combinatorial arguments.

2.3 Idempotence

Define a function $f:\{0,1\}^{L} \rightarrow\{0,1\}$ to be idempotent if $f(0, \ldots, 0)=0$ and $f(1, \ldots, 1)=1$. We say that a family of promise relations Γ is idempotent if all weak polymorphisms are idempotent.

Proposition 2.1. For any relation $P \subseteq\{0,1\}^{k}$ and any idempotent function f, we have that $P \subseteq O_{f}(P)$.
Proof. For every $x \in P$ note that $x_{i}=f\left(x_{i}, \ldots, x_{i}\right)$; thus $x \in O_{f}(P)$.
We say that f generates the promise relation $\left(P, O_{f}(P)\right)$ from P. If $\Gamma=\left\{P_{i}\right\}$ is a set of relations, then $O_{f}(\Gamma)=\left\{\left(P_{i}, O_{f}\left(P_{i}\right)\right)\right\}$. Essentially by definition, $O_{f}(\Gamma)$ has f as a weak polymorphism.

We can force the weak polymorphisms of a family of promise relations Γ to be idempotent by adding in the unary promise relations SET-ZERO $=(\{(0)\},\{(0)\})$ and SET-ONE $=(\{(1)\},\{(1)\})$.

Proposition 2.2. For any family of promise relations Γ, the set of idempotent promise relations of Γ is exactly poly $(\Gamma \cup\{$ SET-ZERO, SET-ONE $\}$).

Proof. For any idempotent $f \in \operatorname{poly}(\Gamma)$, we have $f(0, \ldots, 0)=0$ and $f(1, \ldots, 1)=1$, so $f \in \operatorname{poly}($ SET-ZERO) and $f \in \operatorname{poly}($ SET-ONE). Likewise, every weak polymorphism of $\Gamma \cup\{$ SET-ZERO, SET-ONE $\}$ is idempotent.

For a relation Q, define $\neg Q=\{\bar{x}: x \in Q\}$. If (P, Q) is a promise relation, it is not longer clear that $(P, \neg Q)$ is a promise relation, because we might not have that $P \subseteq \neg Q$. If we assume non-degeneracy and that (P, Q) has a non-idempotent weak polymorphism, then this is the case.

Definition 2.10. A function $f:\{0,1\}^{L} \rightarrow\{0,1\}$ is non-degenerate if $f(0, \ldots, 0) \neq f(1, \ldots, 1)$. A family of promise relations Γ is non-degenerate if all of its weak polymorphisms are non-degenerate.

One can verify that Γ is non-degenerate if and only if $\mathrm{Zero}_{1}, \mathrm{One}_{1} \notin \operatorname{poly}(\Gamma)$.
Proposition 2.3. Let (P, Q) be a promise relation with a non-degenerate, non-idempotent polymorphism $f:\{0,1\}^{L} \rightarrow\{0,1\}$. Then, $(P, \neg Q)$ is a promise relation, and $\neg f$ is a idempotent polymorphism of this promise relation.

Proof. Since f is non-idempotent and non-degenerate, we have that $f(0, \ldots, 0)=1$ and $f(1, \ldots, 1)=0$. Thus, for any $x \in\{0,1\}^{L}$, we have that $f(x, \ldots, x)=\bar{x}$. Since $f \in \operatorname{poly}(P, Q)$, we thus have that $\neg P \subseteq$ Q. Thus, $P \subseteq \neg Q$, so $(P, \neg Q)$ is a promise relation. It is easy to then see that for any $x^{1}, \ldots, x^{L} \in P$, since $f\left(x^{1}, \ldots, x^{L}\right) \in Q, \neg f\left(x^{1}, \ldots, x^{L}\right) \in \neg Q$. Thus, $\neg f$, which is idempotent, is a weak polymorphism of $(P, \neg Q)$.

Thus, if a non-degenerate family of promise relations Γ has at least one non-idempotent polymorphism, we may define $\neg \Gamma=\left(\left(P_{i}, \neg Q_{i}\right):\left(P_{i}, Q_{i}\right) \in \Gamma\right)$ as another family of promise relations. Note that since Γ always has idempotent polymorphisms (the projections), $\neg \Gamma$ thus has non-idempotent polymorphisms, so $\neg(\neg \Gamma)$ exists and is equal to Γ. Thus, the idempotent weak polymorphisms of Γ are exactly the nonidempotent weak polymorphisms of $\neg \Gamma$ and vice-versa. We can formally show that the idempotent weak polymorphisms of Γ and $\neg \Gamma$ capture the computational complexity of $\operatorname{PCSP}(\Gamma)$.

Lemma 2.4. Let Γ be a non-degenerate family of promise relations with at least one non-idempotent polymorphism. Let $\Gamma^{\prime}=\Gamma \cup\{$ SET-ZERO, SET-ONE $\}$ and $\Gamma^{\prime \prime}=(\neg \Gamma) \cup\{$ SET-ZERO, SET-ONE $\}$. Then

1. $\operatorname{poly}(\Gamma)=\operatorname{poly}\left(\Gamma^{\prime}\right) \cup\left(\neg \operatorname{poly}\left(\Gamma^{\prime \prime}\right)\right)$, where $\neg \operatorname{poly}(\Delta)=\{\neg f: f \in \operatorname{poly}(\Delta)\}$.
2. If $\operatorname{PCSP}\left(\Gamma^{\prime}\right)$ or $\operatorname{PCSP}\left(\Gamma^{\prime \prime}\right)$ is polynomial-time tractable, then so is $\operatorname{PCSP}(\Gamma)$.

See Appendix Afor the proof. In the proceeding sections, we utilize this lemma repeatedly so that we do not need to separately consider the non-idempotent weak polymorphisms.

2.4 Symmetric PCSPs

The primary focus of this paper is the study of Γ in which every predicate is symmetric.
Definition 2.11. A relation $P \subseteq\{0,1\}^{k}$ is symmetric if for all $x \in P$ and all permutations $\sigma:\{1, \ldots, k\} \rightarrow$ $\{1, \ldots, k\}$, we have that $\left(x_{\sigma(1)}, \ldots, x_{\sigma(k)}\right) \in P$. We say that a family of promise relations $\Gamma=\left\{\left(P_{i}, Q_{i}\right)\right\}$ is symmetric if P_{i} and Q_{i} are symmetric for all i.

For a symmetric family of promise relations $\Gamma=\left\{\left(P_{i}, Q_{i}\right)\right\}$, we have that each P_{i} and Q_{i} is uniquely determines by its arity and the Hamming weights of the elements. We let $\operatorname{Ham}_{k}(S)=\left\{x \in\{0,1\}^{k}:|x| \in\right.$ $S\}$ denote these sets. For example, NOT $=\{(0,1),(1,0)\}=\operatorname{Ham}_{2}(\{1\})$. Furthermore, the idempotence relations SET-ZERO and SET-ONE are also symmetric, so adding these relations to a symmetric family of promise relations preserves that the family is symmetric. The following property of symmetric relations helps us when working with weak polymorphisms.

Proposition 2.5. Let P be a symmetric relation. Let $f:\{0,1\}^{L} \rightarrow\{0,1\}$ be any function. Then, $O_{f}(P)$ is symmetric.

Proof. For any $y \in O_{f}(P)$ and permutation $\sigma:\{1, \ldots, k\} \rightarrow\{1, \ldots, k\}$, consider the $x^{1}, \ldots, x^{L} \in P$ such that $f\left(x^{1}, \ldots, x^{L}\right)=y$. If we apply σ to the coordinates of x^{1}, \ldots, x^{L}, they will stay in P (since P is symmetric). Furthermore, f applies to these permuted variables with be σ applied to the coordinates of y.

In the remainder of the paper, we prove the following result. Note that Theorem 1.4 follows as a corollary.

Theorem 2.6 (Main Result). Let Γ be a folded, symmetric, finite family of promise relations. If at least one of $\operatorname{Par}_{L}, \mathrm{Maj}_{L}, \mathrm{AT}_{L}, \overline{\operatorname{Par}}_{L}, \overline{\operatorname{Maj}}_{L}$, or $\overline{\mathrm{AT}}_{L}$ is a weak polymorphism of Γ for all odd L, then $\operatorname{PCSP}(\Gamma)$ is polynomial-time tractable. Otherwise, $\operatorname{PCSP}(\Gamma)$ is NP-hard.

3 Efficient Algorithms

In this section, we show that if a finite collection of promise relations Γ has a weak polymorphism of a certain kind, then there exists a polynomial-time algorithm for solving $\operatorname{PCSP}(\Gamma)$. Note that we need not assume that the relations of Γ are symmetric. We let k refer to the maximum arity of any predicate of Γ.

3.1 Zero, One, AND, OR, Parity

In each of these cases, we will reduce the PCSP Γ to a traditional CSP Γ^{\prime} with the same polymorphism, which we can then solve in polynomial time by virtue of Schaefer's theorem. See [Che09].

Lemma 3.1. Let $\Gamma=\left\{\left(P_{i}, Q_{i}\right): i \in\{1, \ldots, \ell\}\right\}$ be a finite family of promise relations, each of arity at most k. Suppose that Γ has f as a weak polymorphism, in which $f \in\left\{0_{1}, 1_{1}, \mathrm{AND}_{2^{k}}, \mathrm{OR}_{2^{k}}, \operatorname{Par}_{2^{k}+1}\right\}$. Then, $\operatorname{PCSP}(\Gamma)$ is polynomial-time tractable.

Proof. If for some $\left(P_{i}, Q_{i}\right) \in \Gamma, P_{i}$ is the empty relation, we can check if our Γ-PCSP has a P_{i} clause and reject, otherwise, we run the polynomial time algorithm for the promise relation family $\Gamma \backslash\left\{\left(P_{i}, Q_{i}\right)\right\}$. Thus, we may without loss of generality assume that no P_{i} of Γ is the empty relation.

For each possible f, we reduce the family of promise relations Γ to $\Gamma^{\prime}=\left\{R_{i}=O_{f}\left(P_{i}\right) \cup P_{i}: i \in\right.$ $\{1, \ldots, \ell\}\}$. We must have that $P_{i} \subseteq R_{i} \subseteq Q_{i}$, so the reduction is immediate. We now show that $\operatorname{CSP}\left(\Gamma^{\prime}\right)$ is tractable in each case.

Case 1, $f=0_{1}$. For all $i \in\{1, \ldots, \ell\}$, note that $O_{f}\left(P_{i}\right)=\{(0, \ldots, 0)\}$. Thus, for all $R_{i} \in \Gamma^{\prime}, R_{i}$ is closed under 0_{1}. Thus Γ^{\prime} has 0_{1} as a polymorphism and so $\operatorname{CSP}\left(\Gamma^{\prime}\right)$ it is polynomial-time tractable. The algorithm is trivial: check is setting every variable to 0 satisfies the Γ^{\prime}-CSP.

Case 2, $f=1_{1}$. This is identical to Case 1 , except $O_{f}\left(P_{i}\right)=\{(1, \ldots, 1)\}$.

Case 3, $f=\mathrm{AND}_{2^{k}}$. Since $2^{k} \geq\left|P_{i}\right|$, the bitwise-AND of every subset of P_{i} must be in R_{i}. Thus, we have that R_{i} must be closed under the AND_{2} operator. Thus, Γ^{\prime} has AND_{2} as a polymorphism and is polynomial-time tractable.

Case 4, $f=\mathrm{OR}_{2^{k}}$. Essentially the same as Case 3.
Case 5, $f=\operatorname{Par}_{2^{k}+1}$. Since $2^{k}+1>\left|P_{i}\right|$, the bitwise-XOR of every odd-sized subset of P_{i} is in R_{i}. Thus, R_{i} is closed under the Par_{3} operator (the symmetric difference of 3 odd-sized subsets is an odd-sized subset). Thus, Γ^{\prime} has Par_{3} as a polymorphism and so it is polynomial-time tractable via a Gaussian-elimination algorithm.

Note that the choice of 2^{k} and $2^{k}+1$ for the arities of the polymorphisms was for simplicity of argument, and does not fundamentally change the result.

3.2 Majority and Alternating-Threshold

The algorithms in the previous section used the fact that $\operatorname{PCSP}(\Gamma)$ has a tractable $\operatorname{CSP} \Gamma^{\prime}$ that is 'sandwiched' by Γ. If Γ has the Maj_{L} or AT_{L} polymorphism for all odd L, it is no longer always the case that Γ reduces to a normal tractable CSP. Instead, we demonstrate tractability by writing any Γ-PCSP $\Psi=\left(\Psi_{P}, \Psi_{Q}\right)$ as a linear programming relaxation. This approach generalizes that of [AGH14]. The following is the pseudocode for establishing the existence of a solution.

- Construct the LP relaxation:
- For each variable x_{j} of Ψ_{P}, stipulate that $0 \leq v_{j} \leq 1$.
- For each clause $P_{i}\left(x_{j_{1}}, \ldots, x_{j_{k_{i}}}\right)$ in Ψ_{P}, stipulate that $\left(v_{j_{1}}, \ldots, v_{j_{k_{i}}}\right)$ is in the convex hull of the elements of P_{i}. (Since Γ is fixed, this step takes constant time per clause.)
- For each variable x_{j} of Ψ_{P}.
- Fix $v_{j}=0$ (fix no other variables) and re-solve the LP.
- If no solutions, fix $v_{j}=1$ and re-solve the LP.
- If still no solutions, output 'unsatisfiable.'
- Output 'satisfiable.'

Remark. This only checks whether $\Psi=\left(\Psi_{P}, \Psi_{Q}\right)$ is satisfiable, but does not find a solution when satisfiable. The proof of correctness gives insight into how satisfying assignments may be efficiently constructed.
Remark. It is worth noting that a different algorithm also exists for the Alternating-Threshold polymorphism. For each $P_{i}\left(x_{j_{1}}, \ldots, x_{j_{k_{i}}}\right)$ in Ψ_{P}, write minimal system of linear equations over \mathbb{Z} such that every element of P_{i} is a solution (this is known as the affine hull of P_{i}). Then, solve this system of linear equations using Gaussian elimination over $\mathbb{Z} \sqrt{5}$ Clearly if the system is infeasible, then Ψ_{P} is unsatisfiable. For any solutions $\left(v_{1}, \ldots, v_{n}\right)$ to this system, then $\left(w_{1}, \ldots, w_{n}\right)$ where

$$
w_{i}= \begin{cases}1 & v_{i} \geq 1 \\ 0 & v_{i} \leq 0\end{cases}
$$

is a solution to Ψ_{Q}. We omit further details of this algorithm or its analysis.

[^4]Proof. Note that algorithm did not distinguish whether the family $\left\{\operatorname{Maj}_{L}\right\}$ or $\left\{\mathrm{AT}_{L}\right\}$ were the weak polymorphisms. The reason the algorithm works, however, differs for these two cases.

First, assume that Ψ_{P} is satisfiable. Then, there must exist an integer solution to the linear program. Thus, for each variable x_{j}, there must the LP must be feasible for at least one of $v_{j}=0$ or $v_{j}=1$. Therefore, the algorithm always correctly reports satisfiable in this case.

Now, consider the case that Ψ_{Q} is unsatisfiable. Assume for sake of contradiction, that our algorithm incorrectly reports satisfiable on input Ψ. Thus, from our checks, we have that there exists a matrix $M \in$ $[0,1]^{n \times n}$ of solutions (on the columns) such that $M_{i, i} \in\{0,1\}$ for all $i \in[n]$. Note that we may assume that the entries of M are rational. Furthermore, any convex combination of these n solutions will yield a new solution to the original LP. In other words, for any column vector $v \in[0,1]^{n}$, the sum of whose weights is 1 , we have that $M v$ is also a solution to the LP. Now, we split into cases.

Case 1, Maj_{L} is a weak polymorphism of Γ for all odd L.
We claim that there is $v \in[0,1]^{n}$ with sum of coordinates 1 such that $(M v)_{i} \neq 1 / 2$ for all $i \in[n]$. Consider w with the right properties such that $M w$ has a minimal number of coordinates equal to $1 / 2$. If the number of such coordinates is 0 , we are done. Otherwise, consider a coordinate j such that $(M w)_{j}=1 / 2$. Let $\varepsilon=\min \left\{\left|(M w)_{i}-1 / 2\right|,(M w)_{i} \neq 1 / 2\right\} / n$. Consider $w^{\prime}=(1-\varepsilon / 2) w+(\varepsilon / 2) e_{j}$, where $e_{j} \in\{0,1\}^{n}$ has value 1 in the j th coordinate and 0 everywhere else. Note, then that $\left|(M w)_{i}-\left(M w^{\prime}\right)_{i}\right| \leq \varepsilon / 2$ for all i, so $M w^{\prime}$ will not have any new coordinates equal to $1 / 2$. Furthermore, since $\left(M e_{j}\right)_{j}$ is an integer (by construction of M), we have that the $\left(M w^{\prime}\right)_{j}=1 / 2 \pm \varepsilon / 4 \neq 1 / 2$ also. Thus, $M w^{\prime}$ has fewer coordinates equal to $1 / 2$, violating the minimality of w. Thus, we can find a v such that $(M v)_{i} \neq 1 / 2$ for all $i \in[n]$.

Thus, now we know that such a v exists, we may consider $\varepsilon=\min \left\{\left|(M v)_{j}-1 / 2\right|\right\}>0$. We may perturb v slightly to v^{\prime} with all of its coordinates rational so that $\left(M v^{\prime}\right)_{j} \neq 1 / 2$ for all j. Since the coefficients of M are rational, we have that $w=M v$ has rational entries all not equal to $1 / 2$. We claim that $x_{i}^{*}=\left\lfloor w_{i}\right\rceil$ (w_{i} rounded to the nearest integer) is a satisfying assignment to Ψ_{Q}. Now, consider any clause $P_{i}\left(x_{j_{1}}^{*}, \ldots, x_{j_{k_{i}}}^{*}\right)$ of Ψ_{P}, and enumerate the potential marginal solutions $x^{1}, \ldots, x^{|P|} \in P$. Since w is a rational solution to the LP, we have that there exists $\alpha_{1}, \ldots, \alpha_{|P|} \in \mathbb{Q} \cap[0,1]$ which sum to 1 such that $\left(w_{j_{1}}, \ldots, w_{j_{k_{i}}}\right)=\alpha_{1} x^{1}+\cdots+\alpha_{|P|} x^{|P|}$. Pick an integer $N \in \mathbb{N}$ which is a common denominator of $\alpha_{1}, \ldots, \alpha_{|P|}$. Consider $L=2 N+1$. Since Maj ${ }_{L}$ is a weak polymorphism of (P, Q). We have that that the majority of $2 \alpha_{1} N$ copies of x^{1}, up to $2 \alpha_{|P|} N$ copies of x^{N} and an extra copy of x^{1} (which has no effect) is in Q . It is easy to verify that this majority is the rounding of the entries of $\left(w_{j_{1}}, \ldots, w_{j_{k_{i}}}\right)$ to the nearest integer. Thus, a satisfying assignment to Ψ_{Q} exists, a contradiction.

Case 2, AT_{L} is a weak polymorphism of Γ for all odd L.
Let \hat{w} be any rational solution to the LP. Using an argument similar to that in Case 1 , we may find $v, w \in[0,1]^{n} \cap \mathbb{Q}^{n}$ with $\sum_{i} v_{i}=1$ such that $w=M v$ and $w_{i} \neq \hat{w}_{i}$ for all $i \in[n]$ such that $\hat{w}_{i} \notin\{0,1\}$ (otherwise, it may be the case that $w_{i}=\hat{w}_{i}$ for all possible w_{i}). We now claim that the following is a satisfying assignment to Ψ_{Q}.

$$
\forall i \in[n], x_{i}^{*}= \begin{cases}0 & w_{i}<\hat{w}_{i} \text { or } w_{i}=\hat{w}_{i}=0 \\ 1 & w_{i}>\hat{w}_{i} \text { or } w_{i}=\hat{w}_{i}=1\end{cases}
$$

Consider any clause $P_{i}\left(x_{j_{1}}^{*}, \ldots, x_{j_{k_{i}}}^{*}\right)$ of Ψ_{P} and enumerate the potential marginal solutions $x^{1}, \ldots, x^{|P|} \in P$. Let $\alpha_{1}, \ldots, \alpha_{|P|}, \hat{\alpha}_{1}, \ldots, \hat{\alpha}_{|P|} \in[0,1] \cap \mathbb{Q}$ be the weights such that $\left(w_{j_{1}}, \ldots, w_{j_{k_{i}}}\right)=\alpha_{1} x^{1}+\cdots+\left.\alpha_{|P|}\right|^{|P|}$ and $\left(\hat{w}_{j_{1}}, \ldots, \hat{w}_{j_{k_{i}}}\right)=\hat{\alpha}_{1} x^{1}+\cdots+\hat{\alpha}_{|P|} X^{|P|}$. Let N be a common denominator of the α_{i} 's and $\hat{\alpha}_{i}$'s. For $L=4 N+1$, plug into the odd-indexed entries of $\mathrm{AT}_{L}, 2 N \alpha_{i}$ copies of x^{i} for all $i \in\{1, \ldots,|P|\}$ and one extra copy of x^{1} (which will not affect the output of the weak polymorphism). Into the even-indexed entries plug in $2 N \hat{\alpha}_{i}$ copies of x^{i} for all $i \in\{1, \ldots,|P|\}$. For each coordinate $\ell \in\{1, \ldots, k\}$, if $w_{j_{\ell}}=\hat{w}_{j_{\ell}} \in\{0,1\}$, then when computing the ℓ th coordinate, AT_{L} will have every input equal to $x_{j_{\ell}}^{*}$ and thus will output that same value, as
desired. If $w_{j_{\ell}}<\hat{w}_{j_{\ell}}$, then there will be strictly more 1 s in the even coordinates than in the odd coordinates, so AT_{L} will output 0 which agrees with our solution $x_{j_{\ell}}^{*}$. Finally, if $w_{j_{\ell}}>\hat{w}_{j_{\ell}}$, then there will be strictly more 1 s in the odd coordinates than in the even coordinates, so AT_{L} will output 1 which agrees with our solution $x_{j_{e}}^{*}$. Therefore Ψ_{Q} is indeed satisfiable, contradiction.

End Cases.

Although we strictly only proved existence of satisfying assignments to Ψ_{Q} when the algorithm outputs 'satisfiable,' the proofs may be modified with some work to achieve polynomial-time algorithms for finding a satisfying assignment.

3.3 Non-idempotent polymorphisms

Consider a family of promise relations Γ. If Zero $_{1}$ or One_{1} is a polymorphism of Γ, as previously mentioned, it is polynomial-time tractable. Thus, now consider Γ non-degenerate. What if poly (Γ) has none of the idempotent families of weak polymorphisms mentioned in this section, but it has one of the non-idempotent families (such as $\overline{\mathrm{Maj}}_{L}$ for all odd L)? Then, by Proposition 2.3 , the non-idempotent version of this family yields the corresponding idempotent family of weak polymorphisms of $\Gamma^{\prime \prime}=(\neg \Gamma) \cup\{$ SET-ZERO, SET-ONE $\}$. From the previous sections, we then have that $\Gamma^{\prime \prime}$ is polynomial-time tractable. Therefore, by Lemma 2.4 , that Γ itself is polynomial-time tractable. Hence, we have proved the following.

Theorem 3.2. Let Γ be a finite family of promise relations. If at least one of $\mathrm{Zero}_{L}, \mathrm{One}_{L}, \mathrm{AND}_{L}, \mathrm{OR}_{L}$, $\overline{\mathrm{AND}}_{L}$, or $\overline{\mathrm{OR}}_{L}$ is a weak polymorphism of Γ for all L, or $\operatorname{Par}_{L}, \mathrm{Maj}_{L}, \mathrm{AT}_{L}, \overline{\operatorname{Par}}_{L}, \overline{\mathrm{Maj}}_{L}$, or $\overline{\mathrm{AT}}_{L}$ is a weak polymorphism of Γ for all odd L, then $\operatorname{PCSP}(\Gamma)$ is polynomial-time tractable.

Note that we did not assume that Γ is symmetric for our algorithms. That assumption will be incorporated into the NP-hardness arguments.

4 Classification of Weak Polymorphisms of Folded, Symmetric Promise Relations

Consider any family Γ of finitely many symmetric promise relations which contains the NOT relation. We showed in Section 3]if the weak polymorphisms of Γ contain any of $\operatorname{Par}_{L}, \mathrm{Maj}_{L}, \mathrm{AT}_{L}, \overline{\operatorname{Par}}_{L}, \overline{\operatorname{Maj}}_{L}$, or $\overline{\mathrm{AT}}_{L}$ for all odd L, then Γ is polynomial-time tractable. We show in this section that if Γ does not have any of these as polymorphisms for all odd L, then Γ is NP-hard. Explicitly, we show that every weak polymorphism $f \in \operatorname{poly}(\Gamma)$ is 'junta-like’.

For $S \subseteq\{1, \ldots, L\}$, we let $e_{S} \subseteq\{0,1\}^{L}$ be such that $\left(e_{S}\right)_{i}=1$ if and only if $i \in S$. If $S=\{i\}$ is a single element, we let $e_{i}=e_{S}$.

4.1 PCSP relaxation

In order to simplify our proof as well as to illuminate the crucial role of the promise predicates, we introduce the notion of relaxing a promise relation.

Definition 4.1. Let $\Gamma=\left\{\left(P_{i}, Q_{i}\right)\right\}$ be a family of promise relations. We say that another family of promise relations Γ^{\prime} is a relaxation of Γ if $\operatorname{poly}(\Gamma) \subseteq \operatorname{poly}\left(\Gamma^{\prime}\right)$.

Intuitively, a larger set of polymorphisms should make the PCSP easier. In Appendix D, we confirm this by showing that if poly $(\Gamma) \subseteq \operatorname{poly}\left(\Gamma^{\prime}\right)$, then there is a polynomial time reduction from $\operatorname{PCSP}\left(\Gamma^{\prime}\right)$ to
$\operatorname{PCSP}(\Gamma)$. This fact is known as the Galois correspondence of weak polymorphisms. Therefore, since our aim is to demonstrate the NP-hardness of $\operatorname{PCSP}(\Gamma)$, it suffices to show that $\operatorname{PCSP}\left(\Gamma^{\prime}\right)$ is NP-hard for some suitable choice of Γ^{\prime} that is a relaxation of Γ. Our arguments though will be a little more nuanced, as it turns out our choices of Γ^{\prime} will often be polynomial-time tractable. Even so, we can still yield useful information about the weak polymorphisms of Γ^{\prime} which we can then apply to the weak polymorphisms of Γ.

The main insight leading to our choice of Γ^{\prime} is our over-arching philosophy that weak polymorphisms beget algorithms. Thus, if we ensure Γ^{\prime} fails to have the weak polymorphisms which we showed led to polynomial-time algorithms, $\operatorname{Par}_{L}, \mathrm{AT}_{L}, \mathrm{Maj}_{L}$, then $\operatorname{PCSP}\left(\Gamma^{\prime}\right)$ should be NP-hard. In the coming subsections, we show exactly which promise relations need to be added to Γ^{\prime} in order to exclude Parity, AlternatingThreshold, and Majority, while still including all of the idempotent weak polymorphisms of Γ.

To warm up, here is a claim about such relaxations in the symmetric case. Intuitively, this relation says we can reduce the arity of any symmetric relation in a way which respects the symmetric structure.

Claim 4.1. Let (P, Q) be a symmetric promise relation of arity k. Let $P=\operatorname{Ham}_{k}(S), Q=\operatorname{Ham}_{k}(T)$, where $S \subseteq T \subseteq\{0, \ldots, k\}$. Then, the idempotent weak polymorphisms of (P, Q) are weak polymorphisms of $\left(\operatorname{Ham}_{k-1}(S \backslash\{k\}), \operatorname{Ham}_{k-1}(T \backslash\{k\})\right.$.

Proof. Let $f \in \operatorname{poly}(P, Q)$ be any idempotent weak polymorphism of arity L. Consider $x^{1}, \ldots, x^{k-1} \in\{0,1\}^{L}$ such that for all $i \in\{1, \ldots, L\},\left|\left(x_{i}^{1}, \ldots, x_{i}^{k-1}\right)\right| \in S \backslash\{k\}$. This implies that $\left|\left(x_{i}^{1}, \ldots, x_{i}^{k-1}, 0\right)\right| \in S$ for all i, so since $f \in \operatorname{poly}(P, Q)$.

$$
\left|\left(f\left(x^{1}\right), \ldots, f\left(x^{k-1}\right), f(0 \ldots 0)\right)\right| \in T
$$

Thus, since f is idempotent, $\left|\left(f\left(x^{1}\right), \ldots, f\left(x^{k-1}\right)\right)\right| \in T \backslash\{k\}$. Thus, $f \in \operatorname{poly}\left(\operatorname{Ham}_{k-1}(S \backslash\{k\}), \operatorname{Ham}_{k-1}(T \backslash\right.$ $\{k\}$).

Let P be any relation of arity k, and let $S \subseteq\{1, \ldots, k\}$ be any subset. Then, define

$$
\operatorname{flip}_{S}(P)=\left\{y \in\{0,1\}^{k}: y \oplus e_{S} \in P\right\}
$$

Note that $\neg P=\operatorname{flip}_{[k]} P$.
Claim 4.2. Let (P, Q) be a promise relation of arity k, and let $S \subseteq\{1, \ldots, k\}$. Then, (P, Q) and $\left(f l i p_{S} P, \operatorname{flip}_{S} Q\right)$ have identical folded weak polymorphisms.

Proof. Consider any $f \in \operatorname{poly}(P, Q)$ of arity L which is folded. Pick $x^{1}, \ldots, x^{k} \in\{0,1\}^{L}$ such that $\left(x_{j}^{1}, \ldots, x_{j}^{k}\right) \in$ $\operatorname{flip}_{S} P$ for all $j \in\{1, \ldots, L\}$. Then, consider y^{1}, \ldots, y^{k} such that $y^{i}=\neg x^{i}$ if $i \in S$ and $y^{i}=x^{i}$ otherwise. Then, for all $j \in\{1, \ldots, L\},\left(y_{j}^{1}, \ldots, y_{j}^{k}\right) \in P$. Thus, $\left(f\left(y^{1}\right), \ldots, f\left(y^{k}\right)\right) \in Q$. Due to folding, we have that $\left(f\left(x^{1}\right), \ldots, f\left(x^{k}\right)\right) \in \operatorname{flip}_{S} Q$. Thus, the folded weak polymorphisms of (P, Q) are weak polymorphisms of $\left(\right.$ flip $_{S} P$, flip $\left._{S} Q\right)$. By a symmetric argument, we may deduce that the folded weak polymorphisms of (P, Q) and $\left(\operatorname{flip}_{S} P\right.$, flip $\left._{S} Q\right)$ are identical.

We can combine these two claims to get a natural corollary. This result tells us that we can shift down the Hamming weights of a symmetric, folded promise relation.

Claim 4.3. Let (P, Q) be a symmetric promise relation of arity k. Let $P=\operatorname{Ham}_{k}(S), Q=\operatorname{Ham}_{k}(T)$, where $S \subseteq T \subseteq\{0, \ldots, k\}$. Then, the idempotent, folded weak polymorphisms of (P, Q) are weak polymorphisms of $\left(\operatorname{Ham}_{k-1}(\{\ell-1 \geq 0: \ell \in S\}), \operatorname{Ham}_{k-1}(\ell-1 \geq 0: \ell \in T)\right)$.

Proof. Apply Claim 4.2 to reduce the idempotent, weak polymorphisms of (P, Q) to $\left(\operatorname{Ham}_{k}(\{k-\ell: \ell \in\right.$ $S\}, \operatorname{Ham}_{k}(\{k-\ell: \ell \in T\})$. Then, we apply Claim 4.1 to reduce further to $\left(\operatorname{Ham}_{k-1}(\{k-\ell: \ell \in S\} \cap\right.$
$\left.\{0, \ldots, k-1\}), \operatorname{Ham}_{k-1}(\{k-\ell: \ell \in T\} \cap\{0, \ldots, k-1\})\right)$. Finally, we use Claim 4.2 again to reduce the idempotent, folded weak polymorphisms of (P, Q) to $\left(\operatorname{Ham}_{k-1}(\{\ell-1 \geq 0: \ell \in S\}), \operatorname{Ham}_{k-1}(\{\ell-1 \geq 0: \ell \in T\})\right)$, as desired.

In the following sections, we will repeatedly use the claims to the reduce the (P, Q) of our Γ to some simpler promise relations for which we can analyze the folded, idempotent weak polymorphisms.

4.1.1 Alternating-Threshold-excluding relaxation

Lemma 4.4. Let Γ be a symmetric, folded, idempotent family of promise relations such that $\mathrm{AT}_{L} \notin \operatorname{poly}(\Gamma)$ for some odd positive integer L, then $\Gamma^{\prime}=\{(P, Q)\}$ is a relaxation of Γ, in which either

$$
\begin{array}{ll}
P=\operatorname{Ham}_{k}(\{1\}), & Q=\operatorname{Ham}_{k}(\{0,1, \ldots, k-2, k\}), k \geq 3, \text { or } \\
P=\operatorname{Ham}_{k}(\{0, b\}), & Q=\operatorname{Ham}_{k}(\{0, \ldots, k-1\}), k \geq 2, b \in\{1, \ldots, k-1\}
\end{array}
$$

Proof. As $\mathrm{AT}_{L} \notin \operatorname{poly}(\Gamma)$, there is $(P, Q) \in \Gamma$ such that $\mathrm{AT}_{L} \notin \operatorname{poly}(P, Q)$. Define $O_{\mathrm{AT}}(P)=\bigcup_{L \in \mathbb{N}, \text { odd }} O_{\mathrm{AT}_{L}}(P)$. Since $\mathrm{AT}_{L} \notin \operatorname{poly}(P, Q)$ for some odd L, we have that $O_{\mathrm{AT}}(P) \nsubseteq Q$ We claim the following. The proof is in Appendix B.

Claim 4.5. Consider $k \geq 1$, then

1. $O_{\mathrm{AT}}\left(\operatorname{Ham}_{k}(\{0\})\right)=\operatorname{Ham}_{k}(\{0\})$
2. $O_{\mathrm{AT}}\left(\operatorname{Ham}_{k}(\{k\})\right)=\operatorname{Ham}_{k}(\{k\})$
3. $O_{\mathrm{AT}}\left(\operatorname{Ham}_{k}(\{0, k\})\right)=\operatorname{Ham}_{k}(\{0, k\})$
4. $O_{\mathrm{AT}}\left(\operatorname{Ham}_{k}(\{\ell\})\right)=\operatorname{Ham}_{k}(\{1, \ldots, k-1\}), k \geq 2, \ell \in\{1, \ldots, k-1\}$
5. $O_{\mathrm{AT}}\left(\operatorname{Ham}_{k}\left(\left\{\ell_{1}, \ell_{2}\right\}\right)\right)=\{0,1\}^{k}, k \geq 2,\left\{\ell_{1}, \ell_{2}\right\} \neq\{0, k\}$

Now, let $a \in\{0, \ldots, k\}$ be such that $\operatorname{Ham}_{k}(\{a\}) \subseteq O_{\mathrm{AT}}(P)$ but $\operatorname{Ham}_{k}(\{a\}) \nsubseteq Q$. Such an a must exist by Proposition 2.5. Note that since $P \subseteq Q$, we must have that $\operatorname{Ham}_{k}(\{a\}) \notin P$. We divide the remaining analysis into two cases.

Case 1, $a \in\{1, \ldots, k-1\}$.
Then, by Fact 3 of the claim, there must exists $\ell \in\{1, \ldots, k-1\}$ such that $\operatorname{Ham}_{k}(\{\ell\}) \subseteq P$. Let $P^{\prime}=\operatorname{Ham}_{k}(\{\ell\})$ and let $Q^{\prime}=\operatorname{Ham}_{k}(\{0, \ldots, k\}-\{a\})$. Since $P^{\prime} \subseteq P \subseteq Q \subseteq Q^{\prime}$, every weak polymorphism of (P, Q) is a weak polymorphism of $\left(P^{\prime}, Q^{\prime}\right)$. Furthermore, by Fact 4 of the claim, $\left(P^{\prime}, Q^{\prime}\right)$ does not admit $\mathrm{AT}_{L^{\prime}}$ as a weak polymorphism for some L^{\prime}. Let $k^{\prime}=\max (\ell, a)+1$. From Claim4.1, applied $k-k^{\prime}$ times, we have that all of the idempotent weak polymorphisms of $\left(P^{\prime}, Q^{\prime}\right)$ are idempotent weak polymorphisms of

$$
P^{(2)}=\operatorname{Ham}_{k^{\prime}}(\{\ell\}), Q^{(2)}=\operatorname{Ham}_{k^{\prime}}\left(\left\{0, \ldots, k^{\prime}\right\}-\{a\}\right)
$$

Likewise, applying Claim $4.3 \min (\ell, a)-1$ times, all of the folded weak polymorphisms of $P^{(2)}, Q^{(2)}$ are weak polymorphisms of

$$
P^{(3)}=\operatorname{Ham}_{k^{\prime \prime}}\left(\left\{\ell^{\prime}\right\}\right), Q^{(3)}=\operatorname{Ham}_{k^{\prime \prime}}\left(\left\{0, \ldots, k^{\prime \prime}\right\}-\left\{a^{\prime}\right\}\right)
$$

where $k^{\prime \prime}=|a-\ell|+2 \geq 3$. If $\ell<a$, then $\ell^{\prime}=1$ and $a^{\prime}=k^{\prime \prime}-1$, in which case we are done. Otherwise, if $\ell>a$, then $\ell^{\prime}=k^{\prime \prime}-1$ and $a^{\prime}=1$. Applying Claim 4.2 in this case, we have that the idempotent, folded weak polymorphisms of Γ are weak polymorphisms of

$$
P^{(4)}=\operatorname{Ham}_{k^{\prime \prime}}(\{1\}), Q^{(4)}=\operatorname{Ham}_{k^{\prime \prime}}\left(\left\{0, \ldots, k^{\prime \prime}-2, k^{\prime \prime}\right\}\right)
$$

Case 2, $a \in\{0, k\}$.
Without loss of generality, we may assume that $a=0$. Otherwise, we may replace (P, Q) with $\left(\right.$ flip $_{[k]} P$, flip $\left.{ }_{[k]} Q\right)$, which preserves the folded, idempotent weak polymorphisms of Γ. Since $\operatorname{Ham}_{k}(\{0\}) \subseteq$ $O_{\mathrm{AT}}(P)$ but $\operatorname{Ham}_{k}(\{0\}) \nsubseteq P \subseteq Q$, we must be in Fact 5 of the claim. That is, there must be $\ell_{1}, \ell_{2} \in$ $\{0, \ldots, k\}$ distinct and not equal to $\{0, k\}$ such that $\operatorname{Ham}_{k}\left(\left\{\ell_{1}, \ell_{2}\right\}\right) \subseteq P$. Like in Case 1, relax (P, Q) to $P^{\prime}=\operatorname{Ham}_{k}\left(\left\{\ell_{1}, \ell_{2}\right\}\right)$ and $Q^{\prime}=\operatorname{Ham}_{k}(\{1, \ldots, k\})$. Let $k^{\prime}=\max \left(\ell_{1}, \ell_{2}\right)$, and apply Claim 4.1 $k-k^{\prime}$ times to yield

$$
P^{(2)}=\operatorname{Ham}_{k^{\prime}}\left(\left\{\min \left(\ell_{1}, \ell_{2}\right), k^{\prime}\right\}\right), Q^{(2)}=\operatorname{Ham}_{k^{\prime}}\left(\left\{1, \ldots, k^{\prime}\right\}\right) .
$$

Then, applying Claim 4.2, we get that

$$
P^{(3)}=\operatorname{Ham}_{k^{\prime}}(\{0, b\}), Q^{(3)}=\operatorname{Ham}_{k^{\prime}}\left(\left\{0, \ldots, k^{\prime}-1\right\}\right), b \in\left\{1, \ldots, k^{\prime}-1\right\}, k^{\prime} \geq 2
$$

has as weak polymorphisms the folded, idempotent weak polymorphisms of Γ, as desired.

End Cases.

4.1.2 Majority-excluding relaxation

Lemma 4.6. Let Γ be a symmetric, folded, idempotent family of promise relations such that $\operatorname{Maj}_{L} \notin \operatorname{poly}(\Gamma)$ for some odd positive integer L, then $\Gamma^{\prime}=\{(P, Q)\}$ is a relaxation of Γ, in which either

$$
\begin{array}{ll}
P=\operatorname{Ham}_{k}(\{(k+1) / 2\}), & Q=\operatorname{Ham}_{k}(\{0,1, \ldots, k-1\}),(k \geq 3 \text { odd }), \text { or } \\
P=\operatorname{Ham}_{k}(\{1, k\}), & Q=\operatorname{Ham}_{k}(\{0,1, \ldots, k\}-\{b\}), k \geq 3, b \in\{2, \ldots, k-1\} .
\end{array}
$$

Proof. The proof proceeds in a similar manner to Lemma 4.4. Define $O_{\mathrm{Maj}}(P)=\bigcup_{L \in \mathbb{N}, \text { odd }} O_{\text {Maj }_{L}}(P)$. We being with the analogue of Claim 4.5 for the Majority operation. The proof is also in Appendix B
Claim 4.7. Consider $k \geq 1$. If $P \subseteq \operatorname{Ham}_{k}(\{0, k\})$, then $O_{\text {Maj }}(P)=P$. Otherwise, if $P=\operatorname{Ham}_{k}(S)$ is symmetric but $S \backslash\{0, k\}$ is nonempty, then

$$
O_{\text {Maj }}(P)=\operatorname{Ham}_{k}(\{0, \ldots, k\} \cap\{2 \min S-k+1, \ldots, 2 \max S-1\}) .
$$

Consider $b \in\{0, \ldots, k\}$ such that $\operatorname{Ham}_{k}(\{b\}) \subseteq O_{\text {Maj }}(P)$ but $\operatorname{Ham}_{k}(\{b\}) \nsubseteq Q, P$. It is easy to then see that $P \backslash \operatorname{Ham}_{k}(\{0, k\})$ must be nonempty. Thus, there is $\ell \in\{1, \ldots, k-1\}$ such that $\operatorname{Ham}_{k}(\{\ell\}) \subseteq P$. We may assume without loss of generality that $\ell<b$ as $\ell \neq b$ and we can apply Claim 4.2 to (P, Q) to get (flip $[k]$, flip ${ }_{[k]} Q$), which does not change the folded, idempotent weak polymorphisms.

Let $S \subseteq\{0, \ldots, k\}$ be such that $P=\operatorname{Ham}_{k}(S)$. Since $\operatorname{Ham}_{k}(\{b\}) \subseteq O_{\text {Maj }}(P)$ and $\ell<b$, we have by the claim that $\operatorname{Ham}_{k}(\{b\}) \subseteq O_{\text {Maj }}\left(\operatorname{Ham}_{k}(\{\ell, \max S\})\right)$. Thus, we can relax to $P^{\prime}=\operatorname{Ham}_{k}(\{\ell, \max S\})$ and $Q^{\prime}=\operatorname{Ham}_{k}(\{0, \ldots, k\}-\{b\})$ while still preserving the idempotent, folded weak polymorphisms of Γ. We again diverge into two cases.

Case 1, $b>\max S$.
We may relax to

$$
P^{(2)}=\operatorname{Ham}_{k}(\{\max S\}), Q^{(2)}=\operatorname{Ham}_{k}(\{0, \ldots, k\}-\{b\}) .
$$

Let $k^{\prime}=b$, and apply Claim $4.1 k-k^{\prime}$ times to relax the folded, idempotent weak polymorphisms to

$$
P^{(3)}=\operatorname{Ham}_{k^{\prime}}(\{\max S\}), Q^{(3)}=\operatorname{Ham}_{k^{\prime}}\left(\left\{0, \ldots, k^{\prime}-1\right\}\right) .
$$

Recall that $\max S<k^{\prime}=b \leq 2 \max S-1$. Thus, $k^{\prime \prime}=2\left(k^{\prime}-\max S\right)+1 \leq k^{\prime}$. Applying Claim $4.3 k^{\prime}-k^{\prime \prime}$ times, we then get that the folded, idempotent weak polymorphisms of Γ are also weak polymorphisms of

$$
P^{(4)}=\operatorname{Ham}_{k^{\prime \prime}}\left(\left\{\left(k^{\prime \prime}+1\right) / 2\right\}\right), Q^{(4)}=\operatorname{Ham}_{k^{\prime \prime}}\left(\left\{0, \ldots, k^{\prime \prime}-1\right\}\right), k^{\prime \prime} \geq 3 .
$$

This establishes the first case of the lemma.
Case 2, $\ell<b<\max S$.
First, we may relax to

$$
P^{(2)}=\operatorname{Ham}_{k}(\{\ell, \max S\}), Q^{(2)}=\operatorname{Ham}_{k}(\{0, \ldots, k\}-\{b\}) .
$$

Letting $k^{\prime}=\max S$ and applying Claim $4.1 k-k^{\prime}$ times, we get that the idempotent, folded weak polymorphisms of Γ are preserved by

$$
P^{(3)}=\operatorname{Ham}_{k^{\prime}}\left(\left\{\ell, k^{\prime}\right\}\right), Q^{(3)}=\operatorname{Ham}_{k^{\prime}}\left(\left\{0, \ldots, k^{\prime}\right\}-\{b\}\right) .
$$

Now, consider $k^{\prime \prime}=k^{\prime}-\ell+1$, and apply Claim $4.3 k^{\prime}-k^{\prime \prime}$ times to get that the idempotent, folded, weak polymorphisms of Γ are preserved by

$$
P^{(4)}=\operatorname{Ham}_{k^{\prime \prime}}\left(\left\{1, k^{\prime \prime}\right\}\right), Q^{(4)}=\operatorname{Ham}_{k^{\prime \prime}}\left(\left\{0, \ldots, k^{\prime \prime}\right\}-\left\{b^{\prime}\right\}\right), b^{\prime} \in\left\{2, \ldots, k^{\prime \prime}-1\right\} .
$$

Note that $k^{\prime \prime} \geq 3$; therefore the second case of the lemma is also fully established.

End Cases.

4.2 Idempotent case

We now seek to establish that if a symmetric, idempotent, folded family of promise relations Γ avoids $\mathrm{Par}_{L_{1}}, \mathrm{AT}_{L_{2}}, \mathrm{Maj}_{L_{3}}$ as weak polymorphisms for some odd L_{1}, L_{2}, L_{3}, then the weak polymorphisms are C influential for some suitable constant $C(\Gamma)$. Note that this C may depend on L_{1}, L_{2}, L_{3}, but if we pick L_{1}, L_{2}, L_{3} to be minimal, then these also depend only on Γ. Our first step is to establish the following lemma in additive combinatorics.

Lemma 4.8. Let $S_{0}, S_{1} \subseteq \mathbb{Z}_{\geq 0}$ such that $0 \in S_{0}$ and $1 \in S_{1}$. Assume that there exists a positive integer n such that for all $a \in S_{0}$ and $b_{1}, \ldots, b_{n} \in S_{1}$ (not necessarily distinct)

$$
\begin{array}{r}
b_{1}+\cdots+b_{n} \in S_{0} \\
a+b_{1}+\cdots+b_{n-1} \in S_{1} . \tag{2}
\end{array}
$$

If n is odd, then there is $A(n) \in \mathbb{Z}_{\geq 0}$ such that $A(n) \in S_{0} \cap S_{1}$. Otherwise, if n is even, there is $d(n) \in \mathbb{Z}_{\geq 0}$ such that S_{0} contains all even integers at least $d(n)$ and S_{1} contains all odd integers at least $d(n)$.

Proof. If $n=1$, then by (2), we have that $0 \in S_{1}$. Thus, we can set $A(1)=0$. Now assume $n \geq 2$. We can easily deduce the following facts

$$
\begin{array}{lr}
\forall x \in S_{0} \Longrightarrow x+n-1 \in S_{1} & \left(a=x \text { and } b_{1}, \ldots, b_{n-1}=1 \text { in (2) }\right) \\
\forall y \in S_{1} \Longrightarrow y+n-1 \in S_{0} & \left(b_{1}=y \text { and } b_{2}, \ldots, b_{n-1}=1\right. \text { in (11) } \\
\forall y \in S_{1} \Longrightarrow y+n-2 \in S_{1} & \left(a=0, b_{1}=y, \text { and } b_{2}, \ldots, b_{n-1}=1\right. \text { in (22) } \tag{5}
\end{array}
$$

In particular, we may deduce that

$$
\begin{align*}
& \forall x \in S_{0} \Longrightarrow x+2 n-2 \in S_{0} \tag{6}\\
& \text { (3) and (4) } \\
& \forall x \in S_{0} \Longrightarrow x+3 n-4 \in S_{0} \tag{7}\\
& \forall y \in S_{1} \Longrightarrow y+n-2 \in S_{0} \\
& \forall y \in S_{1} \Longrightarrow y+2 n-2 \in S_{1} \tag{8}\\
& \begin{array}{r}
\text { (3, 5, and (4) } \\
\text { (4) } \begin{array}{r}
\text { and } \\
\text { (3) }
\end{array}
\end{array}
\end{align*}
$$

Note that if $n \geq 3$ is odd, then $\operatorname{gcd}(2 n-2,3 n-4)=1$. Therefore, by (6) and (7) and that $0 \in S_{0}$, we may deduce by Schur's theorem (also known as the Chicken McNugget Theorem) that S_{0} contains all sufficiently large positive integers. Likewise, since $\operatorname{gcd}(n-2,2 n-2)=1$ and (5) and (8) hold, we have that S_{1} contains all sufficiently large positive integers. Hence, there must exist $A(n) \in \mathbb{N}$ such that $A(n) \in S_{0} \cap S_{1}$.

If $n \geq 2$ is even, then $\operatorname{gcd}(2 n-2,3 n-4)=\operatorname{gcd}(n-2,2 n-2)=2$. Since $0 \in S_{0}$, and $1 \in S_{1}$, we may then deduce by the same theorem that S_{0} will contain all sufficiently large even numbers and that S_{1} will contain all sufficiently large odd numbers. Thus, we may select $d(n)$ accordingly.

Remark. Consider the modification that there is some positive integer N such that max $S_{0}, \max S_{1} \leq N$ with the stipulation that (1) and (2) only apply when the sums are out most N. The theorem still holds as long as we make the caveat that $N \geq A(n)$, which makes sense since $A(n)$ is independent of N.

With this established, we can now deduce significant structural properties of the weak polymorphisms of Alternating-Threshold and Parity-avoiding families of promise relations. These arguments are have connections to those in [AGH14], but differ significantly in details.

Lemma 4.9. Let Γ be a symmetric, folded, idempotent family of promise relations such that $\mathrm{Par}_{L_{1}}, \mathrm{AT}_{L_{2}} \notin$ poly (Γ) for some odd positive integers L_{1}, L_{2}. Then, there exists $c(\Gamma) \in \mathbb{N}$ such that for all $L \in \mathbb{N}$ and for all $f:\{0,1\}^{L} \rightarrow\{0,1\} \in \operatorname{poly}(\Gamma)$,

$$
\left|\left\{i \in\{1, \ldots, L\}: f\left(e_{i}\right)=1\right\}\right| \leq c(\Gamma) .
$$

Proof. Fix $f \in \operatorname{poly}(\Gamma)$ of arity L, and let $A=\left\{i \in\{1, \ldots, L\}: f\left(e_{i}\right)=1\right\}$. Assume for sake of contradiction that $|A|$ may be grow arbitrarily large. Define $S_{0}, S_{1} \subseteq\{0,1, \ldots,|A|\}$ as follows.

$$
S_{i}=\left\{j: \text { for all } T \subseteq A \text { of size } j, f\left(e_{T}\right)=i\right\}, i \in\{0,1\}
$$

It is clear from the definition that S_{0} and S_{1} are disjoint but their union may not contain all of $\{0, \ldots,|A|\}$ because f need not be symmetric. From the idempotence of f, we have that $f(0, \ldots, 0)=0$, so $0 \in S_{0}$. Furthermore, by definition of $A, f\left(e_{T}\right)=1$ for all 1-element subsets T of A. Thus, $1 \in S_{1}$. We seek to show that there exists $n(\Gamma)$ for which (1) and $\sqrt{2}$ hold, so that that we may invoke Lemma 4.8 on S_{0} and S_{1}. Since we are assuming that $|A|$ grows arbitrarily large, there are two possibilities. The first possibility is that we have some f such that $S_{0} \cap S_{1}$ is nonempty, which is an immediate contradiction. The other possibility is that for all f with $|A| \geq d(n), S_{0}$ contains all even integers between $d(n)$ and $|A|$ and S_{1} contains all odd integers between $d(n)$ and $|A|$. Crucially, we have that $n(\Gamma)$ is independent of f (and thus $|A|$). To achieve a contradiction in this case, we utilize the fact that $\operatorname{Par}_{L_{1}} \notin \operatorname{poly}(\Gamma)$, as the f with very large $|A|$ will be 'parity-like.'

To achieve the first goal, which is to show that $n(\Gamma)$ exists which satisfies (1) and (2), we utilize Lemma 4.4 to deduce a symmetric (P, Q), independent of L, such that $f \in \operatorname{poly}(P, Q)$. The proof now proceeds into two cases.

Case 1, $k \geq 3, P=\operatorname{Ham}_{k}(\{1\}), Q=\operatorname{Ham}_{k}(\{0, \ldots, k-2, k\})$.

Let $n=k-1$. For any $b_{1}, \ldots, b_{k-1} \in S_{1}$ such that $b_{1}+\cdots+b_{k-1} \leq|A|$. Consider any $T \subseteq A$ of size $b_{1}+\ldots+b_{k-1}$. Partition $T=T_{1} \cup T_{2} \cup \cdots \cup T_{k-1}$ such that $\left|T_{i}\right|=b_{i}$ for all i. Consider the k-tuple

$$
\left(e_{T_{1}}, e_{T_{2}}, \ldots, e_{T_{k-1}}, e_{\{1, \ldots, L\} \backslash T}\right)
$$

For every coordinate $i \in\{1, \ldots, L\}$, exactly one element has its i th coordinate equal to 1 . Thus, since $f \in \operatorname{poly}(P, Q)$, we have that

$$
\left(f\left(e_{T_{1}}\right), f\left(e_{T_{2}}\right), \ldots, f\left(e_{T_{k-1}}\right), f\left(e_{\{1, \ldots, L\} \backslash T}\right)\right)
$$

has Hamming weight not equal to $k-1$. Since $f\left(e_{T_{i}}\right)=1$ for all i, we must then have that $f\left(e_{\{1, \ldots, L\} \backslash T}\right)=1$. Since f is folded, we can thus deduce that $f\left(e_{T}\right)=0$, as desired. Since the choice of $T \subseteq A$ was arbitrary except for size, we have that $b_{1}+\cdots+b_{k-1} \in S_{0}$, so (1) holds.

Now, consider any $a \in S_{0}$ and $b_{1}, \ldots, b_{k-2} \in S_{1}$ such that $a+b_{1}+\cdots+b_{k-2} \leq|A|$. Again, consider any $T \subseteq A$ of size $a+b_{1}+\cdots+b_{k-2}$. Partition $T=T_{0} \cup T_{1} \cup \cdots \cup T_{k-2}$ such that $\left|T_{0}\right|=a$ and $\left|T_{i}\right|=b_{i}$ for all other i. Note again that the k-tuple

$$
\left(e_{T_{0}}, \ldots, e_{T_{k-1}}, e_{\{1, \ldots, L\} \backslash T}\right)
$$

has for every $i \in\{1, \ldots, L\}$ has exactly one element such that the i th coordinate is 1 . Thus, we may again deduce that since $f \in \operatorname{poly}(P, Q)$,

$$
\left(f\left(e_{T_{0}}\right), \ldots, f\left(e_{T_{k-1}}\right), f\left(e_{\{1, \ldots, L\} \backslash T}\right)\right)
$$

has Hamming weight not equal to $k-1$. Since exactly $k-2$ of the first $k-1$ entries are equal to 1 , we must have $f\left(e_{\{1, \ldots, L\}} \backslash T\right)=0$. Thus, $f\left(e_{T}\right)=1$. By the same logic, $a+b_{1}+\cdots+b_{k-2} \in S_{1}$, so (2) also holds, as desired.

Case 2, $k \geq 2 P=\operatorname{Ham}_{k}(\{0, b\}), Q=\operatorname{Ham}_{k}(\{0, \ldots, k-1\}), b \in\{1, \ldots, k-1\}$.
Let $n=k-b+1$. For any $b_{1}, \ldots, b_{n} \in S_{1}$ such that $b_{1}+\cdots+b_{n} \leq|A|$. Consider any $T \subseteq A$ of size $b_{1}+\ldots+b_{n}$. Partition $T=T_{1} \cup T_{2} \cup \cdots \cup T_{n}$ such that $\left|T_{i}\right|=b_{i}$ for all i. Consider the k-tuple

$$
\left(e_{T_{1}}, e_{T_{2}}, \ldots, e_{T_{n}}, e_{T}, \ldots, e_{T}\right)
$$

where e_{T} appears $b-1 \geq 0$ times. We can verify that for each $i \in T$, there are exactly b tuples with 1 in the i th coordinate. For any $i \notin T$, there are 0 tuples with 1 in the i th coordinate. Thus,

$$
\left(f\left(e_{T_{1}}\right), \ldots, f\left(e_{T_{n}}\right), f\left(e_{T}\right), \ldots, f\left(e_{T}\right)\right) \in Q
$$

Since $f\left(e_{T_{1}}\right)=\cdots=f\left(e_{T_{n}}\right)=1$, to avoid a contradiction, we must have that $f\left(e_{T}\right)=0$, so $b_{1}+\cdots+b_{n} \in S_{0}$.
For any $a \in S_{0}$ and $b_{1}, \ldots, b_{n-1} \in S_{1}$ such that $a+b_{1}+\cdots+b_{n-1} \leq|A|$, consider $T \subseteq A$ of size $a+$ $b_{1}+\cdots+b_{n-1}$. Partition $T=T_{0} \cup T_{1} \cup \cdots \cup T_{n-1}$ such that $\left|T_{0}\right|=a$ and $\left|T_{i}\right|=b_{i}$ for all other i. It is easy to check that the following is a valid k-tuple

$$
\left(e_{T_{1}}, \ldots, e_{T_{n-1}}, \neg e_{T_{0}}, \ldots, \neg e_{T_{0}}, \neg e_{T}\right),
$$

where the are $k-n=b-1$ copies of $\neg e_{T_{0}}$. Thus, since f applies to the first $k-1$ tuples is equal to 1 , $f\left(\neg e_{T}\right)=0$, which implies by folding that $f\left(e_{T}\right)=1$. Therefore, $a+b_{1}+\cdots+b_{n-1} \in S_{1}$, as desired.

End Cases

Thus, we have established that the conditions of Lemma 4.8 hold for some $n(\Gamma)$. As stated at the beginning of the proof, we may apply the lemma to see that if $|A|$ grows arbitrarily large, then either $S_{0} \cap S_{1}$
is nonempty for some f, which is an immediate contradiction, or S_{0} contains all even integers between $d(n)$ and $|A|$ and S_{1} contains all odd integers between $d(n)$ and $|A|$. To obtain a contradiction in this second case, since $\operatorname{Par}_{L_{1}} \notin \operatorname{poly}(\Gamma)$ we have that there is $\left(P^{\prime}, Q^{\prime}\right) \in \Gamma$ such that $\operatorname{Par}_{L_{1}} \notin \operatorname{poly}\left(P^{\prime}, Q^{\prime}\right)$. By negating suitable coordinates, by Claim 4.2 , we may obtain that $(0, \ldots, 0) \in P^{\prime}$. In particular, there are $x^{1}, \ldots, x^{L_{1}} \in P^{\prime}$ (possibly with repetition) such that $y=\operatorname{Par}_{L_{1}}\left(x^{1}, \ldots, x^{L_{1}}\right) \notin Q^{\prime}$. Imagine for sake of contradiction that $|A| \geq$ $L_{1}(2 d(n)+1)$ and also assume without loss of generality that $\left\{1, \ldots, L_{1}(2 d(n)+1)\right\} \subseteq A$. Then, consider the following L-tuple of k-tuple in P^{\prime}.

$$
\left(x^{1}, \ldots, x^{L_{1}}\right)^{2 d(n)+1} \times((0, \ldots, 0))^{L-L_{1}(2 d(n)+1)} .
$$

Thus, $f\left(\left(x^{1}, \ldots, x^{L_{1}}\right)^{2 d(n)+1} \times((0, \ldots, 0))^{L-L_{1}(2 d(n)+1)}\right) \in Q^{\prime}$. For each row $j \in\{1, \ldots, k\}$ we have that $x_{j}=1$ for some multiple of $2 d(n)+1$ many times. If this multiple is 0 , then the value of f is 0 by idempotence. Otherwise, the multiple is at least $d(n)$, so f will return the parity of the number of 1 s . Thus,

$$
\left.\left.f\left(x^{1}, \ldots, x^{L_{1}}\right)^{2 d(n)+1} \times((0, \ldots, 0))^{L-L_{1}(2 d(n)+1)}\right)\right)=\operatorname{Par}_{L_{1}}\left(x^{1}, \ldots, x^{L_{1}}\right) \notin Q^{\prime}
$$

contradiction. Thus, $|A|$ is bounded, as desired.
From this lemma, we can make an even stronger conclusion.
Corollary 4.10. Let Γ have the same properties as in Lemma 4.9 Let $f:\{0,1\}^{L} \rightarrow\{0,1\} \in \operatorname{poly}(\Gamma)$ be any weak polymorphism and let S_{1}, \ldots, S_{ℓ} be disjoint subsets of $\{1, \ldots, L\}$ such that $f\left(e_{S_{i}}\right)=1$ for all $i \in\{1, \ldots, \ell\}$. Then, $\ell \leq c(\Gamma)$, where $c(\Gamma)$ is the same as in Lemma 4.9.

Proof. Choose projection $\pi:\{1, \ldots, L\} \rightarrow\{1, \ldots, L\}$ such that for all $i \in\{1, \ldots, \ell\}$ and all $j \in S_{i}, \pi(j)=$ $\min \left(S_{i}\right)$ and otherwise is the identity map. Consider $g=f^{\pi}$ which must also be a weak polymorphism of Γ. It is easy then to see that for all $i \in\{1, \ldots, \ell\}, g\left(e_{\min \left(S_{i}\right)}\right)=f\left(e_{S_{i}}\right)$. Thus, $\ell \leq c(\Gamma)$ by applying Lemma 4.9 to g.

Lemma 4.11. Let Γ be a symmetric, folded, idempotent family of promise relations such that
$\operatorname{Par}_{L_{1}}, \mathrm{AT}_{L_{2}}, \operatorname{Maj}_{L_{3}} \notin \operatorname{poly}(\Gamma)$ for some odd positive integers L_{1}, L_{2}, L_{3}. Then, there exists $C(\Gamma) \in \mathbb{N}$ such that for all $f \in \operatorname{poly}(\Gamma), f$ is $C(\Gamma)$-influential.

Proof. Fix $f \in \operatorname{poly}(\Gamma)$ of arity L. Let $B \subseteq\{1, \ldots, L\}$ be the set of coordinates for which f is somewhereincreasing. That is, $B=\left\{i \in\{1, \ldots, L\}: \exists S \subseteq\{1, \ldots, L\}, f\left(e_{S \backslash i}\right)=0, f\left(e_{S}\right)=1\right\}$. By definition of B, $f(x)=0$ for all x such that $x_{i}=0$ for all $i \in B$, so f is $|B|$-influential. Thus, if we deduce that $|B|$ is bounded by some C for all f, then we know that all weak polymorphisms of Γ are C-influential.

Pick a promise relation (P, Q) of arity k as guaranteed by Lemma 4.6 such that $f \in \operatorname{poly}(P, Q)$ for all $f \in \operatorname{poly}(\Gamma)$.

Case 1, $k \geq 3$ odd, $P=\operatorname{Ham}_{k}(\{(k+1) / 2\}), Q=\operatorname{Ham}_{k}(\{0, \ldots, k-1\})$.
This case builds on techniques from Lemmas 4.2 and 5.4 of [AGH14]. Let $a=(k-1) / 2 \geq 1$. If $|B|<a$ then we are done. We claim that for every subset $S \subseteq B$ of size a, we have that $f\left(e_{S}\right)=1$. Let $S=\left\{i_{1}, \ldots, i_{a}\right\}$, and let $x^{1}, y^{1}, \ldots, x^{a}, y^{a}$ be witnesses for $i_{1}, \ldots, i_{a} \in B$. That is, $f\left(x^{j}\right)=0, f\left(y^{j}\right)=1, x_{i_{j}}^{j}=0$, $y_{i_{j}}^{j}=1$, and x^{j} and y^{j} are identical in all other coordinates. Consider now the k tuples

$$
\left(\neg x^{1}, y^{1}, \ldots, \neg x^{a}, y^{a}, \neg e_{S}\right)
$$

It is easy to verify that in each coordinate $i \in\{1, \ldots, L\}$, exactly $a+1=(k+1) / 2$ of these tuples have their i th coordinate equal to 1 . Thus, by since $f \in \operatorname{poly}(P, Q)$, we have that not all of $f\left(\neg x^{1}\right), f\left(y^{1}\right), \ldots, f(\neq$
$\left.x^{a}\right), f\left(y^{a}\right), f\left(\neg e_{S}\right)$ are equal to 1 . Thus, since the first $2 a$ are equal to 1 , we have that $f\left(\neg e_{S}\right)=0$, so $f\left(e_{S}\right)=1$, as desired.

It is easy now to see that $|B|<(c(\Gamma)+1) a$, else we may construct disjoint $S_{1}, \ldots, S_{c(\Gamma)+1} \subseteq B$ of size equal to a, so $f\left(e_{S_{1}}\right), \ldots, f\left(e_{S_{c(\mathrm{~T})+1}}\right)$, violating Corollary 4.10 . Thus, $|B|$ is bounded, so all f are C-influential for some $C(\Gamma)$ independent of f.

Case 2, $k \geq 3, P=\operatorname{Ham}_{k}(\{1, k\}), Q=\operatorname{Ham}_{k}(\{0, \ldots, k\} \backslash\{b\}), b \in\{2, \ldots, k-1\}$.
Call $S \subseteq\{1, \ldots, L\}$ minimal if $f\left(e_{S}\right)=1$ but $f\left(e_{S^{\prime}}\right)=0$ for all $S^{\prime} \subset S$. We claim that if S is minimal, then $|S|<b$. Assume for contradiction that S is minimal but $|S| \geq b$. Thus, we may find nonempty disjoint $S_{1} \cup \cdots \cup S_{b}=S$. For each i, note that $f\left(e_{S \backslash S_{i}}\right)=0$, so $f\left(e_{\left([L \backslash \backslash S) \cup S_{i}\right.}\right)=1$ by folding. Furthermore, $f\left(e_{[L] \backslash S}\right)=$ 0 . Thus, consider the k-tuple

$$
\left(e_{([L] \backslash S) \cup S_{1}}, \ldots, e_{([L] \backslash S) \cup S_{b}}, e_{[L] \backslash S}, \ldots, e_{[L] \backslash S}\right) .
$$

where $e_{[L] \backslash S}$ appears $k-b$ times. It is easy to see that if $i \in S$, then the i th coordinate is equal to 1 in exactly one element of this k-tuple, otherwise the i th coordinate is equal to 1 in every k-tuple. Thus, the i th coordinates belong to P for all $i \in[L]$. Since, $f \in \operatorname{poly}(P, Q)$, we then have that

$$
\left(f\left(e_{([L] \backslash S) \cup S_{1}}\right), \ldots, f\left(e_{([L] \backslash S) \cup S_{b}}\right), f\left(e_{[L] \backslash S}\right), \ldots, f\left(e_{[L] \backslash S}\right)\right) \in Q .
$$

But, the k-tuple has Hamming weight b, a contradiction. Thus, every minimal set has size strictly less than b. For every $i \in B$, we know that there is $S_{i} \subseteq\{1, \ldots, L\}$ with $i \in S_{i}$ and $f\left(e_{S_{i}}\right)=1$. By the nature of minimality, we may find $T_{i} \subseteq S_{i}$ with $i \in T_{i}$ and $f\left(e_{T_{i}}\right)=1$, but T_{i} is minimal. Since $\left|T_{i}\right|<b$, if $|B| \geq(c(\Gamma)+1)(b-1)$, we can use a greedy algorithm to construct $T_{i_{1}}, \ldots, T_{i_{c(\Gamma)+1}}$ disjoint and $f\left(e_{T_{i_{j}}}\right)=1$ for all j. This clearly violates Corollary 4.10, so $|B| \leq(c(\Gamma)+1)(b-1)$, as desired.

End Cases

4.3 Non-idempotent case

Now, assume that our folded, symmetric family Γ of promise relations has non-idempotent polymorphisms. If any weak polymorphism f has the property that $f(0, \ldots, 0)=f(1, \ldots, 1)$, then folding is violated. Thus, Γ is non-degenerate, so we may apply Lemma 2.4 to yield that every weak polymorphism of Γ is a weak polymorphism of the idempotent family Γ^{\prime} or it is the negation of a weak polymorphism of the idempotent family $\Gamma^{\prime \prime}$. Thus, if Γ avoids Parity, Majority, Alternating-Threshold, as well as their antis, then Γ^{\prime} and $\Gamma^{\prime \prime}$ both avoid Parity, Majority, and Alternating-Threshold. By the previous section, the weak polymorphisms of Γ^{\prime} and $\Gamma^{\prime \prime}$ are C-influential for some sufficiently large C. Since negating a folded weak polymorphism does not change that it is C-influential, we have shown the following.

Theorem 4.12. Let Γ be a finite, folded, symmetric family of promise relations. Assume there exist odd L_{1}, \ldots, L_{6} such that $\operatorname{Par}_{L_{1}}, \mathrm{AT}_{L_{2}}, \mathrm{Maj}_{L_{3}}, \overline{\operatorname{Par}}_{L_{4}}, \overline{\mathrm{AT}}_{L_{5}}$, and $\overline{\mathrm{Maj}}_{L_{6}}$ are not weak polymorphisms of Γ. Then there exists $C(\Gamma)$ such that all weak polymorphisms of Γ are C-influential.

5 Hardness Arguments

Now that we have a rather strong classification of weak polymorphisms for folded, symmetric PCSPs, we are in a good position to interface it with a reduction from Label Cover to actually demonstrate NP-hardness.
Definition 5.1. An instance of Label Cover is based on a bipartite graph $G=(U, V, E)$. Each edge $e=(u, v)$ is associated with a projection $\pi_{e}:[R] \rightarrow[L]$ for some positive integers R and L. A labeling is a pair of maps $\sigma_{V}: V \rightarrow[R], \sigma_{U}: U \rightarrow[L]$. A labeling satisfies if for all $(u, v) \in E, \pi_{(u, v)}\left(\sigma_{V}(v)\right)=\sigma_{U}(u)$.

The PCP theorem combined with parallel repetition gives the following well-known hardness of Label Cover which is the starting point for most inapproximability results.

Proposition 5.1. For any $\eta>0$, given an instance of Label Cover it is NP-hard to distinguish between the two cases:

- Completeness: There exists a labeling σ_{V}, σ_{U} that satisfies every edge.
- Soundness: No labeling σ_{V}, σ_{U} can satisfy a fraction η of the edges.

Theorem 5.2. Let Γ be a folded, finite family of promise relations. Suppose that there exists a universal constant $C=C(\Gamma)<\infty$ such that every weak polymorphism of Γ is $C(\Gamma)$-influential. Then $\operatorname{PCSP}(\Gamma)$ is NP-hard.

Proof. The proof is via reduction from the hardness of Label Cover as stated in Proposition 5.1, for the parameter $\eta=1 / C^{2}$. The proof is a simplification of the proof of Theorem 1.1 of [AGH14].

Let $G=(U, V, E)$ be our instance with projection maps $\pi_{e}:[R] \rightarrow[L]$. As noted in Remark 4.7 of AGH14], L and R are functions of η and thus are independent of the size of G. We now create a Γ-PCSP $\Psi=\left(\Psi_{P}, \Psi_{Q}\right)$. For each $u \in U$, identify the vertex with 2^{L} variables which we denote by $f_{u}(x)$ where $x \in\{0,1\}^{L}$ and $f_{u}:\{0,1\}^{L} \rightarrow\{0,1\}$. For all $(P, Q) \in \Gamma$ and $x^{1}, \ldots, x^{L} \in P$ (possibly with repetition) we enforce the constraint

$$
P\left(f_{u}\left(x_{1}^{1}, \ldots, x_{1}^{L}\right), \ldots, f_{u}\left(x_{k}^{1}, \ldots, x_{k}^{L}\right)\right)
$$

in Ψ_{P}, with the corresponding constraint in Ψ_{Q}. From the perspective of Ψ_{Q}, f_{u} is a weak polymorphism of Γ. Likewise, for each $v \in V$, identify 2^{R} variables which we denote by $f_{v}(y)$ where $y \in\{0,1\}^{R}$ and $f_{v}:\{0,1\}^{R} \rightarrow\{0,1\}$. Again, using the constraints of Γ, we may specify that f_{v} is a weak polymorphism from the perspective of Ψ_{Q}.

Next, we specify the edge constraints, which we do in a manner greatly simplifying that of [AGH14]. For each $e=(u, v) \in E$ and for any $x \in\{0,1\}^{L}$ and $y \in\{0,1\}^{R}$ such that $x_{\pi_{e}(i)}=y_{i}$ for all $i \in[R]$, we specify that $f_{u}(x)=f_{v}(y)$. Note that Γ might not have an equality constraint, but we can implicitly introduce one by using the same variable for $f_{u}(x)$ and $f_{v}(y)$ when constructing Ψ. For a specific $(u, v) \in E$, these constraints maintain that $f_{v}^{\pi_{(u, v)}}=f_{u}$ (in both Ψ_{P} and Ψ_{Q}).

To show that this is a valid reduction, we need to show that both completeness and soundness hold (see Lemmas 4.5 and 4.6 of [AGH14]).

- Completeness: If there exists a labeling σ_{U}, σ_{V} satisfying every edge of the Label Cover instance, let $f_{u}(x)=x_{\sigma_{U}(u)}$ and $f_{v}(x)=x_{\sigma_{V}(v)}$. These satisfy the constraints for Ψ_{P} since dictators are weak polymorphisms of (P, P) (as well as (P, Q)) for all $(P, Q) \in \Gamma$. The equal constraints are also satisfied since if $x_{\pi_{e}(i)}=y_{i}$ for some $e=(u, v) \in E$, then $f_{u}(x)=x_{\sigma_{U}(u)}=y_{\sigma_{V}(v)}=f_{v}(y)$, as desired. Thus, Ψ_{P} is satisfiable when our Label Cover instance is satisfiable.
- Soundness: Assume for sake of contradiction, that a satisfying assignment to Ψ_{Q} exists. For each $u \in U, v \in V, f_{u}$ and f_{v} are C-influential. Thus, we may define $S_{u} \subseteq[L], S_{v} \subseteq[R]$ such that $f_{u}(x)=$ $f_{u}(1, \ldots, 1)$ and $f_{v}(y)=f_{v}(1, \ldots, 1)$ if $x_{i}=1$ for $i \in S_{u}$ and $y_{j}=1$ for $j \in S_{v}$. Since S_{u} is C-influential, we can let $\left|S_{u}\right| \leq C$. For each $v \in V$, we can defined S_{v} analogously and have $\left|S_{v}\right| \leq C$.
We claim that for every edge $e=(u, v) \in E, S_{u} \cap \pi_{e}\left[S_{v}\right]$ is nonempty (where $\pi_{e}\left[S_{v}\right]=\left\{\pi(s): s \in S_{v}\right\}$). By virtue of the equality constraints, $f_{u}=f_{v}^{\pi_{e}}$; thus we have that $f_{u}\left(e_{\pi\left[S_{v}\right]}\right)=f_{v}\left(e_{S_{v}}\right)=f_{v}(1, \ldots, 1)=$ $f_{u}(1, \ldots, 1)$. Thus, as Γ is folded, f_{u} must be folded, so $f_{u}\left(e_{[L] \backslash \pi_{e}\left[S_{v}\right]}\right)=\neg f_{u}(1, \ldots, 1)$. If S_{u} and $\pi_{e}\left[S_{v}\right]$ were disjoint, then $S_{u} \subseteq[L] \backslash \pi_{e}\left[S_{v}\right]$, so by the definition of $S_{u}, f_{u}\left(e_{[L] \backslash \pi_{e}\left[S_{v}\right]}\right)=f_{u}(1, \ldots, 1)$, contradiction. Thus, S_{u} and $\pi_{e}\left[S_{v}\right]$ intersect non-trivially.

Due to this fact, we can show a η-approximate labeling exists for our label cover instance as in [AGH14] and typical for Label Cover reductions. For each $u \in U$, select $\sigma_{U}(u)$ uniformly at random from S_{u}. Likewise, for each $v \in V$, select $\sigma_{V}(v)$ uniformly at random from S_{v}. Since for any given $e=(u, v) \in E$ we have that S_{u} and $\pi_{e}\left[S_{v}\right]$ have a common intersection and both sets have size at most $C, \sigma_{U}(u)=\pi_{e}\left(\sigma_{V}(v)\right)$ with probability at least η. Thus, the expect number of constraints satisfied by a random labeling is at least η. Hence, there exists a labeling which satisfies at least η-fraction of the constraints, as desired.

Thus, we have completed our reduction, so $\operatorname{PCSP}(\Gamma)$ is NP-hard.
Hence, we have completed the proof of Theorem 2.6 by combining Theorems 3.2, 4.12, and 5.2.

A On Idempotence

Proof of Lemma 2.4 1. In Proposition 2.2, we have that the weak polymorphisms of $\operatorname{poly}\left(\Gamma^{\prime}\right)$ are exactly the idempotent weak polymorphisms of poly (Γ). From Proposition 2.3 and the subsequent discussion, we have that the non-idempotent weak polymorphisms of Γ are exactly the negations of the idempotent weak polymorphisms of $\neg \Gamma$ which are the weak polymorphisms of $\Gamma^{\prime \prime}$. Thus, $\operatorname{poly}(\Gamma)=\operatorname{poly}\left(\Gamma^{\prime}\right) \cup\left(\neg \operatorname{poly}\left(\Gamma^{\prime \prime}\right)\right)$ since every weak polymorphism of Γ is either idempotent or non-idempotent and every weak polymorphism of Γ^{\prime} and $\Gamma^{\prime \prime}$ is idempotent.
2. Since $\Gamma \subseteq \Gamma^{\prime}$, we have that if $\operatorname{PCSP}\left(\Gamma^{\prime}\right)$ is polynomial-time tractable, then $\operatorname{PCSP}(\Gamma)$ is polynomialtractable by applying the exact same algorithm. Now, assume that $\operatorname{PCSP}\left(\Gamma^{\prime \prime}\right)$ is polynomial-time tractable. Since $\Gamma^{\prime \prime} \subseteq \neg \Gamma$, we have that $\operatorname{PCSP}(\neg \Gamma)$ is polynomial-time tractable. Consider an instance $\Psi=\left(\Psi_{P}, \Psi_{Q}\right)$ of $\operatorname{PCSP}(\Gamma)$. Let $\Psi\urcorner=\left(\Psi_{P}, \Psi_{\neg Q}\right)$ be an instance of $\operatorname{PCSP}(\Gamma)$ in which every Q_{i} clause of Ψ_{Q} is replaced with a $\neg Q_{i}$ clause. Clearly Ψ_{P} is satisfiable if and only if Ψ_{P} is satisfiable and Ψ_{Q} is satisfiable if and only if $\Psi_{\neg Q}$ is satisfiable (a satisfying assignment to one is the negation of a satisfying assignment to the other). Thus, Ψ is satisfiable if and only if $\Psi\urcorner$ is satisfiable, and Ψ is unsatisfiable if and only if $\Psi\urcorner$ is unsatisfiable. Thus, if we run the algorithm for $\operatorname{PCSP}(\neg \Gamma)$ which decides $\Psi\urcorner$, we have also solved the problem in polynomial time for Ψ.

B Properties of the Alternating-Threshold and Majority Weak Polymorphisms

Proof of Claim 4.5 Facts 1-3 are easy to verify since AT_{L} is idempotent for all odd L.
For Fact 4, consider $\ell, \ell^{\prime} \in\{1, \ldots, k-1\}$. We claim that $\operatorname{Ham}_{k}\left(\left\{\ell^{\prime}\right\}\right) \subseteq O_{\mathrm{AT}}\left(\operatorname{Ham}_{k}(\{\ell\})\right)$. Pick $L=$ $2 \ell^{\prime}\left(k-\ell^{\prime}\right)+1$. It suffices to pick $x^{1}, \ldots, x^{L} \in \operatorname{Ham}_{k}(\{\ell\})$ such that $\operatorname{AT}_{L}\left(x^{1}, \ldots, x^{L}\right)=(1, \ldots, 1,0, \ldots, 0)$, where the output has Hamming weight ℓ^{\prime}. Let $x^{1}=(1, \ldots, 1,0, \ldots, 0)$, of Hamming weight ℓ, and let $x^{2}=$ $(0, \ldots, 0,1, \ldots, 1)$, of Hamming weight ℓ. Let $x^{1}, x^{3}, \ldots, x^{L-2}$ be all possible permutations of x^{1} in which the first ℓ^{\prime} coordinates are cyclically shifted and the last $k-\ell^{\prime}$ coordinates are cyclically shifted. There may be repetition, but each repetition should appear an equal number of times. Likewise, let $x^{2}, x^{4}, \ldots, x^{L-1}$ be the
same kind of permutations but of x^{2}. Let $x^{L}=1$. It is easy to verify that

$$
\begin{gathered}
j \in\left\{1, \ldots, \ell^{\prime}\right\}, \sum_{i=1, \text { odd }}^{L-2} x_{j}^{i}=\left(k-\ell^{\prime}\right) \min \left(\ell, \ell^{\prime}\right) \\
j \in\left\{\ell^{\prime}+1, \ldots, k\right\}, \sum_{i=1, \text { odd }}^{L-2} x_{j}^{i}=\ell^{\prime} \max \left(0, \ell-\ell^{\prime}\right) \\
j \in\left\{1, \ldots, \ell^{\prime}\right\}, \sum_{i=1, \text { even }}^{L-1} x_{j}^{i}=\left(k-\ell^{\prime}\right) \max \left(0, \ell+\ell^{\prime}-k\right) \\
j \in\left\{\ell^{\prime}+1, \ldots, k\right\}, \sum_{i=1, \text { even }}^{L-1} x_{j}^{i}=\ell^{\prime} \min \left(\ell, k-\ell^{\prime}\right)
\end{gathered}
$$

Thus,

$$
\begin{aligned}
& j \in\left\{1, \ldots, \ell^{\prime}\right\}, \sum_{i=1}^{L}(-1)^{i-1} x_{j}^{i}=\left(k-\ell^{\prime}\right)\left(\min \left(\ell, \ell^{\prime}\right)-\max \left(0, \ell+\ell^{\prime}-k\right)\right)+x_{j}^{L} \geq\left(k-\ell^{\prime}\right)+x^{L}>0 \\
& j \in\left\{\ell^{\prime}+1 \ldots, k\right\}, \sum_{i=1}^{L}(-1)^{i-1} x_{j}^{i}=\ell^{\prime}\left(\max \left(0, \ell-\ell^{\prime}\right)-\max \left(\ell, k-\ell^{\prime}\right)\right)+x_{j}^{L}<-\ell^{\prime}+x_{j}^{L} \leq 0 .
\end{aligned}
$$

Therefore, $\operatorname{AT}_{L}\left(x^{1}, \ldots, x^{L}\right) \in \operatorname{Ham}_{k}\left(\left\{\ell^{\prime}\right\}\right)$, as desired. By Proposition 2.5, $\operatorname{Ham}_{k}\left(\left\{\ell^{\prime}\right\}\right) \subseteq O_{\mathrm{AT}}\left(\operatorname{Ham}_{k}(\{\ell\})\right)$, for all $\ell, \ell^{\prime} \in\{1, \ldots, k-1\}$, as desired.

Now, to finish Fact 4, we seek to show that $\operatorname{Ham}_{k}(\{0\})=\{(0, \ldots, 0)\} \nsubseteq \operatorname{Ham}_{k}(\{\ell\})$. Assume for sake of contradiction, there exists L odd and $x^{1}, \ldots, x^{L} \in \operatorname{Ham}_{k}(\{\ell\})$ such that $\mathrm{AT}_{L}\left(x^{1}, \ldots, x^{L}\right)=(0, \ldots, 0)$. Then, we have that for all $i \in\{1, \ldots, k\}, \sum_{j=1}^{L}(-1)^{j-1} x_{i}^{j} \leq 0$. Summing over all i, we have that $0 \geq$ $\sum_{j=1}^{L}(-1)^{j-1} \sum_{i=1}^{k} x_{i}^{j}=\sum_{j=1}^{L}(-1)^{j-1} \ell=\ell$, a contradiction. Likewise, if $\mathrm{AT}_{L}\left(x^{1}, \ldots, x^{L}\right)=(1, \ldots 1)$. We would have that $k \leq \sum_{j=1}^{L}(-1)^{j-1} \sum_{i=1}^{L} x_{i}^{j}=\sum_{j=1}^{L}(-1)^{j-1} \ell=\ell$, which is also a contradiction. Thus, we have shown fact 4.

For Fact 5 , since we know that $\left\{\ell_{1}, \ell_{2}\right\} \neq\{0, k\}$, we know that at least one of ℓ_{1} and ℓ_{2} is strictly between 1 and $k-1$. Thus, by fact $4, \operatorname{Ham}_{k}(\{1, \ldots, k-1\}) \subseteq O_{\mathrm{AT}}\left(\operatorname{Ham}_{k}\left(\left\{\ell_{1}, \ell_{2}\right\}\right)\right)$. Therefore, it suffices to prove that $(0, \ldots, 0),(1, \ldots, 1) \in O_{\mathrm{AT}}\left(\operatorname{Ham}_{k}\left(\left\{\ell_{1}, \ell_{2}\right\}\right)\right)$. Assume that $\ell_{1}<\ell_{2}$ and consider $L=4 k+1$. To show $(0, \ldots, 0) \in O_{\text {AT }}\left(\operatorname{Ham}_{k}\left(\left\{\ell_{1}, \ell_{2}\right)\right\}\right)$, pick $x^{1}, \ldots, x^{4 k+1}$ such that x^{j} has Hamming weight ℓ_{1} when j is odd and Hamming weight ℓ_{2} when j is even. Let $x^{1}=(1, \ldots, 1,0, \ldots, 0)$, and let x^{3}, x^{5}, \ldots be successive cyclic shifts. Likewise, let $x^{2}=(1, \ldots, 1,0, \ldots, 0)$ (with the appropriate number of 1 s), and let x^{4}, \ldots be successive cyclic shifts. Then, it is easy to see that for all $i \in\{1, \ldots, k\}$, we have that $\sum_{j=1}^{4 k+1}(-1)^{i-1} x_{i}^{j}$ is $2 \ell_{1}-2 \ell_{2}<0$ or $2 \ell_{1}-2 \ell_{2}+1<0$ (because we have $2 k+1$ odd-indexed terms but $2 k$ even-indexed terms). Thus, $\mathrm{AT}_{4 k+1}\left(x^{1}, \ldots, x^{4 k+1}\right)=(0, \ldots, 0)$. If we do the same construction but swap ℓ_{1} and ℓ_{2}, we would then have that $2 \ell_{1}-2 \ell_{2}, 2 \ell_{1}-2 \ell_{2}+1>0$, so $\mathrm{AT}_{4 k+1}\left(x^{1}, \ldots, x^{4 k+1}\right)=(1, \ldots, 1)$. Thus, Fact 5 is shown.

Proof of Claim 4.7 As before, the case $S \subseteq\{0, k\}$ is easy.
We first, show that $O_{\text {Maj }}(P) \subseteq \operatorname{Ham}_{k}(\{0, \ldots, k\} \cap\{2 \min S-k+1, \ldots, 2 \max S-1\})$. For any $b \in$ $\{0, \ldots, k\}$, such that $\operatorname{Ham}_{k}(\{b\}) \subseteq O_{\text {Maj }}(P)$, there is L odd and $x^{1}, \ldots, x^{L} \in P$ such that $\operatorname{Maj}_{L}\left(x^{1}, \ldots, x^{L}\right)$ has Hamming weight b. Assume without loss of generality the coordinates equal to 1 are the first b ones. Thus, we have that for all $i \in\{1, \ldots, b\}, \sum_{j=1}^{L} x_{i}^{j} \geq(L+1) / 2$.. Thus,

$$
\sum_{i=1}^{k} \sum_{j=1}^{L} x_{i}^{j} \geq b(L+1) / 2
$$

Thus, by the pigeonhole principle, there is some x^{j} such that its Hamming weight is at least $b(L+1) /(2 L) \leq$ $\max S$. Thus, $b \leq 2 L \max S /(L+1)<2 \max S$. Therefore, $b \leq 2 \max S-1$, as desired. Using the fact that $\sum_{j=1}^{L} x_{i}^{j} \leq(L-1) / 2$ for all $i \in\{b+1, \ldots, k\}$, we have that some x^{j} has Hamming weight at most $b+(k-b)(L-1) /(2 L) \geq \min S$ (we add b since all of the first b coordinates may be 1 s). Thus, $b \geq$ $2 L \max S /(L-1)-k(L-1) /(L+1)>2 \max S-k$. Therefore, $b \geq 2 \max S+1-k$, as desired. Thus, $O_{\text {Maj }}(P) \subseteq \operatorname{Ham}_{k}(\{0, \ldots, k\} \cap\{2 \min S-k+1, \ldots, 2 \max S-1\})$.

Now, we show the reverse direction, that every $b \in\{0, \ldots, k\} \cap\{2 \min S-k+1, \ldots, 2 \max S-1\}$ can be obtained as a Hamming weight. Assume that there is $\ell \in S \cap\{1, \ldots, k-1\}$ (so $k \geq 2$). For ease of notation, let $s=\min S, t=\max S$, so $s \leq \ell \leq t$. To start, we show if $b \in\{0, \ldots, k\} \cap\{\ell, \ldots, 2 \max S-1\}$, then $\operatorname{Ham}_{k}(\{b\}) \subseteq O_{\text {Maj }}(P)$.

First, if $b \geq \max S$, consider $L=2 b+1$. We now seek to pick x^{1}, \ldots, x^{L} of Hamming weight max S such that $\operatorname{Maj}_{L}\left(x^{1}, \ldots, x^{L}\right)$ has Hamming weight b. Let $x^{1}=(1, \ldots, 1,0, \ldots, 0)$ of the suitable Hamming weight, and for all $j \geq 2$, let x^{j} be the cyclic shift of x^{j-1} in the first $b \geq \max S$ coordinates. For all $i \in\{b+1, \ldots, k\}$, $\sum_{j} x_{i}^{j}=0$, ${\operatorname{so~} \operatorname{Maj}_{L}\left(x_{i}^{1}, \ldots, x_{i}^{L}\right)=0 \text {. For all } i \in\{1, \ldots, b\}, \sum_{j} x_{i}^{j}=2 \max S+x_{j}^{L} \geq b+1+x_{j}^{L}>L / 2 \text {. Thus, }}^{2}$ $\operatorname{Maj}_{L}\left(x_{j}^{1}, \ldots, x_{j}^{L}\right)=1, \operatorname{so~}_{\operatorname{Maj}}^{L}\left(x^{1}, \ldots, x^{L}\right)$ has Hamming weight b.

Otherwise, if $b \in\{\ell, \ell+1, \ldots, \max S-1\}$, consider now $L=2 b-1 \geq 1$. Let $x^{1}=\cdots=x^{b-1}=$ $(1, \ldots, 1,0, \ldots, 0)$, with Hamming weight $\max S$. Let $x^{b}=(1, \ldots, 1,0, \ldots, 0)$ of Hamming weight ℓ, and let $x^{b+1}, \ldots, x^{2 b-1}$ be x^{b} except that the first b coordinates are cyclically shifted. If $i \in\{1, \ldots, b\}$ then $\sum_{i} x_{i}^{j}=b-1+\ell \geq b>L / 2$ since $\ell \geq 1$. If $i \in\{b+1, \ldots, k\}$, then $\sum_{i} x_{i}^{j} \leq b-1<L / 2$. Thus, $\operatorname{Maj}_{L}\left(x^{1}, \ldots, x^{L}\right)$ has Hamming weight b, as desired. Thus, $\operatorname{Ham}_{k}(\{0, \ldots, k\} \cap\{\ell, \ldots, 2 \max S-1\}) \subseteq O_{\text {Maj }}(P)$.

By an analogous argument, we may show that $\operatorname{Ham}_{k}(\{0, \ldots, k\} \cap\{2 \min S-k+1, \ldots, \ell\}) \subseteq O_{\text {Maj }}(P)$. A simple route to this is reversing the notions of 0 and 1 in our previous construction.

C Lack of Repetition Does Not Make Things Harder

For a set Γ of promise relations, let $\operatorname{PCSP}_{R}(\Gamma)$ be the promise decision problem analogous to $\operatorname{PCSP}(\Gamma)$ except that each clause has at most one copy of each variable. In this section we show that the two problems are polynomial-time equivalent using a simple combinatorial argument, simplifying the argument used in [AGH14] for establishing the NP-hardness of "balanced 2-coloring" versus "weak 2-coloring" of $2 k+1$ uniform hypergraphs.

Theorem C.1. For all finite $\Gamma=\left\{\left(P_{i}, Q_{i}\right) \in D^{k_{i}} \times D^{k_{i}}\right\}, \operatorname{PCSP}_{R}(\Gamma)$ is polynomial-time equivalent to $\operatorname{PCSP}(\Gamma)$
Proof. $\operatorname{PCSP}_{R}(\Gamma)$ trivially reduces to $\operatorname{PCSP}(\Gamma)$ since any instance of $\operatorname{PCSP}_{R}(\Gamma)$ is an instance of $\operatorname{PCSP}(\Gamma)$. Thus, we now consider the harder case. Let $\Psi=\left(\Psi_{P}, \Psi_{Q}\right)$ be a Γ - PCSP with m clauses on the variable set x_{1}, \ldots, x_{n}. Let k be the maximum arity of any promise relation of Γ (this is a constant). For our reduction, replace each variable x_{i} with $|D| k$ 'copies' $x_{i}^{(1)}, \ldots, x_{i}^{(|D| k)}$. Replace each clause $P_{i}\left(x_{j_{1}}, \ldots, x_{j_{k_{i}}}\right)$ of Ψ_{P} with a conjunction of at most $(|D| k)^{k_{i}}$ clauses, $P_{i}\left(x_{j_{1}}^{\left(a_{1}\right)}, \ldots, x_{j_{k_{i}}}^{\left(a_{k^{\prime}}\right)}\right)$ in which we remove the clauses with a repeated variable. Call this new formula Ψ_{P}^{R}. Perform an identical reduction of Ψ_{Q} to Ψ_{Q}^{R}. We can see that $\Psi^{R}=$ $\left(\Psi_{P}^{R}, \Psi_{Q}^{R}\right)$ is a valid Γ-PCSP without repetition and the size of this PCSP is only a constant factor larger than the size of Ψ.

Now we show that this is a valid reduction. First, if Ψ is satisfiable, there is an assignment to the variables x_{1}, \ldots, x_{n} which satisfies Ψ_{P}. If we let each copy $x_{i}^{(j)}$ have the same value of x_{i}, then we yield a satisfying assignment of Ψ_{P}^{R}. It suffices then to show that if Ψ is unsatisfiable, then Ψ^{R} is unsatisfiable. This is equivalent to showing that if Ψ_{Q}^{R} is satisfiable, then Ψ_{Q} is also satisfiable. Assume we have a satisfying
assignment of Ψ_{Q}^{R}. For each of the variables x_{i} of Ψ_{Q}, set x_{i} to be the most frequently occurring value in the multiset $\left\{x_{i}^{(j)}: j \in\{1, \ldots,|D| k\}\right\}$ (break ties arbitrarily). Crucially note that this most frequently occurring value occurs at least k times. We claim that this choice of the x_{i} satisfies Ψ_{Q}. For each clause $Q_{i}\left(x_{j_{1}}, \ldots, x_{j_{k_{i}}}\right)$, we can find a corresponding clause $Q_{i}\left(x_{j_{1}}^{\left(a_{1}\right)}, \ldots, x_{j_{k_{i}}}^{\left(a_{k_{i}}\right)}\right)$ in Ψ_{Q}^{R} such that $x_{j_{\ell}}^{a_{\ell}}=x_{j}$ for all j (this is possible without repetition since there are at least k distinct choices for a_{ℓ}). Since Ψ_{Q}^{R} is satisfied, this particular repetition-free clause is satisfied, so the corresponding clause in Ψ_{Q} is satisfied. Thus, we have found a satisfying assignment for Ψ_{Q}. Thus, $\operatorname{PCSP}_{R}(\Gamma)$ and $\operatorname{PCSP}(\Gamma)$ are polynomial-time equivalent.

D Galois Correspondence of Weak Polymorphisms

In this Appendix, we show that for any finite family Γ of promise relations of any finite arity, we have that poly (Γ) captures the computational complexity of $\operatorname{PCSP}(\Gamma)$ is the following precise sense. This is analogous to Theorem 3.16 of [Che09], originally established by [Jea98], which holds for traditional CSPs. Our proof will have similar structure to that of [Che09].

Theorem D.1. Let Γ and Γ^{\prime} be families of promise relations such that $\operatorname{poly}(\Gamma) \subseteq \operatorname{poly}\left(\Gamma^{\prime}\right)$. Then, there is a polynomial-time reduction from $\operatorname{PCSP}\left(\Gamma^{\prime}\right)$ to $\operatorname{PCSP}(\Gamma)$.

In fact, we show the polynomial-time reduction is of a very local form. Let $\mathrm{EQUAL}=\{(i, i): \in D\}$ be the relation which specifies that two variables are equal. Since we have been allowing repetition of variables, this relation has been essentially implicit.

Definition D.1. Let Γ be a finite family of promise relations. We say that a promise relation $\left(P^{\prime}, Q^{\prime}\right) \in$ $D^{k} \times D^{k}$ is positive primitive promise definable (shortened to ppp-definable) from Γ if there exists a $\Gamma \cup$ $\{\operatorname{EQUAL}\}-\operatorname{PCSP} \Psi=\left(\Psi_{P}, \Psi_{Q}\right)$ on $k+\ell$ variables such that

- For all $\left(x_{1}, \ldots, x_{k}\right) \in P^{\prime}$, there exists $\left(y_{1}, \ldots, y_{\ell}\right)$ such that $\left(x_{1}, \ldots, x_{k}, y_{1}, \ldots, y_{\ell}\right)$ is a satisfying assignment to Ψ_{P}.
- For all satisfying assignments $\left(z_{1}, \ldots, z_{k+\ell}\right)$ to $\Psi_{Q},\left(z_{1}, \ldots, z_{k}\right) \in Q^{\prime}$.

We say that a finite family of promise relations Γ^{\prime} is ppp-definable from Γ if every $\left(P^{\prime}, Q^{\prime}\right) \in \Gamma^{\prime}$ is pppdefinable from Γ.

In particular, note that if (P, Q) and $\left(P^{\prime}, Q^{\prime}\right)$ have the same arity and $P^{\prime} \subseteq P \subseteq Q \subseteq Q^{\prime}$ then $\left(P^{\prime}, Q^{\prime}\right)$ is ppp-definable from (P, Q) by letting $\left(\Psi_{P}, \Psi_{Q}\right)=(P, Q)$. We also note that ppp-definability is reflexive (Γ is ppp-definable from Γ) and transitive: if Γ^{\prime} is ppp-definable from Γ and $\Gamma^{\prime \prime}$ is ppp-definable from Γ^{\prime} then $\Gamma^{\prime \prime}$ is ppp-definable from Γ. We have that ppp-definability is a formalization the notion of a gadget reduction in [AGH14] (see Proposition 3.1).

Our notion of ppp-definability is a direct generalization of notion of pp-definability for normal CSP relations defined in [Che09]. If Γ^{\prime} is ppp-definable from Γ, there is a corresponding polynomial-time reduction from $\operatorname{PCSP}\left(\Gamma^{\prime}\right)$ to $\operatorname{PCSP}(\Gamma)$ by replacing each $\left(P^{\prime}, Q^{\prime}\right) \in \Gamma^{\prime}$ clause with a corresponding $\left(\Psi_{P}, \Psi_{Q}\right)$ clause (adding in any auxiliary variables), which can can be implemented with clauses from Γ and yields only a constant-factor blowup. It is straightforward to verify that this reduction is valid. As noted in [Che09], this reduction can be done in logarithmic space.

In establishing Galois correspondence, one important ppp-definition from Γ is to the promise relation of weak polymorphisms of Γ.

Proposition D.2. Let L be a positive integer. The following promise relation $S_{L} \subseteq T_{L} \subseteq D^{D^{L}}$ is ppp-definable from Γ :

$$
\begin{aligned}
& S_{L}=\left\{f: D^{L} \rightarrow D: f \in \operatorname{poly}(P, P) \text { for all }(P, Q) \in \Gamma\right\} \\
& T_{L}=\left\{f: D^{L} \rightarrow D: f \in \operatorname{poly}(P, Q) \text { for all }(P, Q) \in \Gamma\right\},
\end{aligned}
$$

where we identify a function $f \in D^{L} \rightarrow D$ as a vector of $|D|^{L}$ variables.
Proof. Using the definition of a weak polymorphism, one can specify that f is a weak polymorphism of $\operatorname{poly}(P, Q)$ of specific arity in terms of a fixed number of Q-clauses. Replacing those Q-clauses with P clauses exactly characterizes that $f \in \operatorname{poly}(P, P)$.

With these facts established, we may now prove the theorem. The proof is quite similar to and was inspired by the second half of Theorem 3.13 of [Che09].

Proof of Theorem D.1 It suffices to show that every promise relation $\left(P^{\prime}, Q^{\prime}\right) \in \Gamma^{\prime}$ is ppp-definable from Γ. Let k be the arity of $\left(P^{\prime}, Q^{\prime}\right)$ and let $m=\left|P^{\prime}\right|$. Let x^{1}, \ldots, x^{m} be some ordering of the elements of P^{\prime}. Define $y^{1}, \ldots, y^{k} \in D^{m}$ such that $y_{j}^{i}=x_{i}^{j}$ for all $i \in[k], j \in[m]$. Now from Proposition D.2, we have that $\left(S_{m}, T_{m}\right)$ is ppp-definable from Γ. Now, consider the following promise relation $\left(S_{m}^{\prime}, T_{m}^{\prime}\right)$ of arity k.

$$
\begin{aligned}
S_{m}^{\prime} & =\left\{\left(f\left(y^{1}\right), \ldots, f\left(y^{k}\right)\right): f \in S_{m}\right\} \\
T_{m}^{\prime} & =\left\{\left(f\left(y^{1}\right), \ldots, f\left(y^{k}\right)\right): f \in T_{m}\right\} .
\end{aligned}
$$

We have that $\left(S_{m}^{\prime}, T_{m}^{\prime}\right)$ is ppp-definable from $\left(S_{m}, T_{m}\right)$ since every $x \in S_{m}^{\prime}$ can be built up into a corresponding element of S_{m} and every $y \in T_{m}$ can be stripped down to an element of T_{m}^{\prime}. Note that this is the case even if $y^{i}=y^{j}$ for some distinct $i, j \in[k]$ by using the EQUAL relation.

We claim that $P^{\prime} \subseteq S_{m}^{\prime} \subseteq T_{m}^{\prime} \subseteq Q^{\prime}$. First, for all $i \in[m]$, consider the unique projection map $\pi_{i}: D^{m} \rightarrow D$ given by $\pi_{i}(y)=y_{i}$. Clearly $\pi_{i} \in S_{m}$. Thus, $\left(\pi_{i}\left(y^{1}\right), \ldots, \pi_{i}\left(y^{k}\right)\right)=\left(y_{i}^{1}, \ldots, y_{i}^{k}\right)=x^{i} \in S_{m}^{\prime}$. Thus, $P^{\prime} \subseteq S_{m}^{\prime}$. Second, we can see that $S_{m}^{\prime} \subseteq T_{m}^{\prime}$ since $S_{m} \subseteq T_{m}$. Third, note that $T_{m}^{\prime} \subseteq O_{T_{m}}\left(P^{\prime}\right) \subseteq O_{\text {poly }(\Gamma)}\left(P^{\prime}\right)$. Since $\operatorname{poly}\left(P^{\prime}, Q^{\prime}\right) \supseteq \operatorname{poly}(\Gamma)$, we have that $Q^{\prime} \supseteq O_{\text {poly }(\Gamma)}\left(P^{\prime}\right)$. Thus, $T_{m}^{\prime} \subseteq Q^{\prime}$.

Thus, therefore $\left(P^{\prime}, Q^{\prime}\right)$ is ppp-definable from $\left(S_{m}^{\prime}, T_{m}^{\prime}\right)$. By transitivity, we have that $\left(P^{\prime}, Q^{\prime}\right)$ is pppdefinable from Γ, so Γ^{\prime} is ppp-definable from Γ.

E General Theory of Promise-CSPs

In Appendix D, we established the Galois correspondence of weak polymorphisms. That is, if Γ_{1} and Γ_{2} are finite families of promise relations such that $\operatorname{poly}\left(\Gamma_{1}\right) \subseteq \operatorname{poly}\left(\Gamma_{2}\right)$, then there is a log-space reduction from $\operatorname{PCSP}\left(\Gamma_{2}\right)$ to $\operatorname{PCSP}\left(\Gamma_{1}\right)$. Thus, in a strong sense, the family of weak polymorphisms exactly captures the computational complexity of our PCSP. In this section, we establish a necessary and sufficient set of conditions on a set \mathscr{F} of functions over domain D such that there exists some Γ such that $\mathscr{F}=\operatorname{poly}(\Gamma)$.

E. 1 Polymorphism-only Description of PCSPs

Recall the definition of a projection of a weak polymorphism.
Definition E.1. Let $f: D^{L} \rightarrow D$ be a function, and let $\pi:[L] \rightarrow[R]$ be any map which we call a projection. The projection of f with respect to π is the function $f^{\pi}: D^{R} \rightarrow D$ such that for all $y \in D^{R}, f^{\pi}(y)=f(x)$, where $x \in D^{L}$ is the unique L-tuple such that

$$
x_{i}=y_{\pi(i)}, \text { for all } i \in[L]
$$

Note that in a projection it might be the case that $R \geq L$. We say that a family \mathscr{F} of functions over domain D is projection-closed if for all $L, R \in \mathbb{N}$, all $f \in \mathscr{F}$ of arity L, and all projections $\pi:[L] \rightarrow[R]$, $f^{\pi} \in \mathscr{F}$.

Another technical property we require of \mathscr{F} is that it is finitizable. This means there exists some finite arity $R \in \mathbb{N}$, called the finitized arity such that $f: D^{L} \rightarrow D$ is an element of \mathscr{F} if and only if for all $\pi:[L] \rightarrow[R]$, the projection f^{π} is an element of \mathscr{F}. Intuitively, this finitization property says that some finite arity of \mathscr{F} captures all of the meaningful information about what is contained in \mathscr{F}. This is directly analogous to the property that our set Γ of promise relations is finite.

Surprisingly, these two properties-that \mathscr{F} is projection-closed and finitizable-perfectly capture the families of the form poly (Γ) for some Γ as long as we stipulate that \mathscr{F} contains the identity function: $\operatorname{id}_{D}: D \rightarrow D$ such that $i d_{D}(x)=x$ for all $\left.x \in D\right]^{6}$

Theorem E.1. Let \mathscr{F} be a family of functions over domain D. Then, there exists a finite family Γ of promise relations such that $\mathscr{F}=\operatorname{poly}(\Gamma)$ if and only if \mathscr{F} is both projection-closed and finitizable and $\mathrm{id}_{D} \in \mathscr{F}$.

We start by showing that these two properties are necessary.
Claim E.2. Let $\Gamma=\left\{\left(P_{i}, Q_{i}\right): P_{i} \subseteq Q_{i} \subseteq D^{k_{i}}\right\}$ be a finite family of promise relations with domain D. Then, poly (Γ) is both projection-closed and finitizable.

Proof. projection-closed: Let $f: D^{L} \rightarrow D$ be a weak polymorphism of Γ and let $\pi:[L] \rightarrow[R]$ be a projection. We claim that $f^{\pi}: D^{R} \rightarrow D$ is also a weak polymorphism of Γ. Consider all $\left(P_{i}, Q_{i}\right)$ and $y^{(1)}, \ldots, y^{(R)} \in P_{i}$. We need to show that $f^{\pi}\left(y^{(1)}, \ldots, y^{(R)}\right) \in Q_{i}$. Consider $x^{(1)}, \ldots, x^{(L)} \in P_{i}$ such that $x^{(j)}=y^{(\pi(j))}$ for all $j \in[L]$. From the definition of f^{π} it is then easy to see that

$$
f^{\pi}\left(y^{(1)}, \ldots, y^{(R)}\right)=f\left(x^{(1)}, \ldots, x^{(L)}\right) \in Q_{i}
$$

as desired.
finitizable: Let $R=\max _{\left(P_{i}, Q_{i}\right) \in \Gamma}\left|P_{i}\right|$. Crucially, this maximum exists since Γ is finite. Since $\operatorname{poly}(\Gamma)$ is projection-closed, for all $f \in \operatorname{poly}(\Gamma)$ of arity L and all $\pi:[L] \rightarrow[R]$, we have that $f^{\pi} \in \operatorname{poly}(\Gamma)$.

Now, consider any $f \notin \operatorname{poly}(\Gamma)$ of arity L, we would like to show that there exists $\pi:[L] \rightarrow[R]$ such that $f^{\pi} \notin \operatorname{poly}(\Gamma)$. Since $f \notin \operatorname{poly}(\Gamma)$, there exists $\left(P_{i}, Q_{i}\right) \in \Gamma$ and $x^{(1)}, \ldots, x^{(L)} \in P_{i}$ such that $f\left(x^{(1)}, \ldots, x^{(L)}\right) \notin$ Q_{i}. Since $R \geq\left|P_{i}\right|$, there exists an injective map $\sigma: P_{i} \rightarrow[R]$. Let $\pi:[L] \rightarrow[R]$ be $\pi(i)=\sigma\left(x^{(i)}\right)$. By nature of π, we can select $y^{(1)}, \ldots, y^{(R)} \in P_{i}$ such that $y^{(r)}=x^{\left(\pi^{-1}(r)\right)}$ for all $r \in \mathfrak{I}(\pi)$ and $y^{(r)}=1$ otherwise. (If $r \in R$ is not in the image of π, then we may make an arbitrary choice.) Note that if $\pi\left(j_{1}\right)=\pi\left(j_{2}\right)$ then $x^{\left(j_{1}\right)}=x^{\left(j_{2}\right)}$ so this choice of $y^{(j)}$'s is well-defined. From the definition of a projection,

$$
f^{\pi}\left(y^{(1)}, \ldots, y^{(R)}\right)=f\left(x^{(1)}, \ldots, x^{(L)}\right) \notin Q_{i},
$$

as desired. Therefore poly (Γ) is finitizable.
Note that since we stipulate that $P \subseteq Q$ for all $(P, Q) \in \Gamma$, we immediately have that id_{D} is a weak polymorphism of Γ. Much more difficultly, we show that these two properties are sufficient.

Lemma E.3. Let \mathscr{F} be a domain-D family of functions which is both projection-closed and finitizable as well as has id_{D} as an element. Then, there exists a family Γ of finitely many promise relations such that $\operatorname{poly}(\Gamma)=\mathscr{F}$.

[^5]Proof. Let $R \in \mathbb{N}$ be the finitized arity of \mathscr{F}. Identify the integers of $\left[|D|^{R}\right]$ with elements of D^{R}. Our choice of Γ will consist of a single promise relation $P \subseteq Q \subseteq D^{|D|^{R}}$, where each $f \in D^{\left[|D|^{R}\right]}$ will be identified with a function $f: D^{R} \rightarrow D$ in the canonical way. We let $f \in P$ if and only if there exists $j \in[R]$ such that $f(x)=x_{j}$ for all $x \in D^{R}$. We let $Q=\{f \in \mathscr{F} \mid f$ has arity $R\}$. Since \mathscr{F} has the identity function and is projection-closed, we have that $P \subseteq Q$. Thus, Γ is a finite promise relation.

Now that we have constructed Γ, we need to show $\operatorname{poly}(\Gamma)=\mathscr{F}$. Enumerate the elements of P as $y^{(1)}, \ldots, y^{(R)}$, where $y^{(j)}(x)=x_{j}$ for all $j \in[R]$ and $x \in D^{R}$. With this enumeration, we have the property that for all $g \in \operatorname{poly}(P, Q)$ of arity $R, g\left(y^{(1)}, \ldots, y^{(R)}\right)=g$. This is because for all $x \in D^{R}$,

$$
g\left(y^{(1)}(x), \ldots, y^{(R)}(x)\right)=g\left(x_{1}, \ldots, x_{R}\right)=g(x) .
$$

(Thus the $y^{(i)}$'s are like a long code test.)
First, we show that poly $(P, Q) \subseteq \mathscr{F}$. Consider any $f \in \operatorname{poly}(P, Q)$ of arity L as well as any $\pi:[L] \rightarrow[R]$. Pick $x^{(1)}, \ldots, x^{(L)} \in P$ such that $x^{(j)}=y^{(\pi(j))}$ for all $j \in[L]$. Thus,

$$
Q \ni f\left(x^{(1)}, \ldots, x^{(L)}\right)=f^{\pi}\left(y^{(1)}, \ldots, y^{(R)}\right)=f^{\pi}
$$

Thus, $f^{\pi} \in Q \subseteq \mathscr{F}$ for all $\pi:[L] \rightarrow[R]$. Thus, $f \in \mathscr{F}$ since \mathscr{F} is finitizable, as desired.
Last, we show that $\mathscr{F} \subseteq \operatorname{poly}(P, Q)$. For every $f \in \mathscr{F}$, we need to show that for all $x^{(1)}, \ldots, x^{(L)} \in P$, we have that $f\left(x^{(1)}, \ldots, x^{(L)}\right) \in Q$. Since $y^{(1)}, \ldots, y^{(R)}$ is an enumeration of the elements of P, there is a unique $\pi:[L] \rightarrow[R]$ such that $x^{(j)}=y^{(\pi(j))}$ for all $j \in[L]$. Then, we have that

$$
f\left(x^{(1)}, \ldots, x^{(L)}\right)=f^{\pi}\left(y^{(1)}, \ldots, y^{(R)}\right)=f^{\pi} .
$$

Since \mathscr{F} is projection closed, $f^{\pi} \subseteq \mathscr{F}$. Therefore, $f^{\pi} \in Q$ because f^{π} has arity R. Thus, $f\left(x^{(1)}, \ldots, x^{(L)}\right) \in Q$, as desired.

Hence, $\mathscr{F}=\operatorname{poly}(P, Q)$.
Claim E. 2 and Lemma E. 3 together establish Theorem E. 1 .

E. 2 Analogous characterization for CSPs

We now extend Theorem E. 1 to show that the same characterization holds for CSPs as long as we add the condition that our set of functions form a clone (defined below). For our purposes, a CSP is a PCSP Γ in which $P=Q$ for all $(P, Q) \in \Gamma$.

As known in the CSP literature [e.g., [Che09]], the family of polymorphisms (which are the same as weak polymorphisms) of a $\operatorname{CSP} \Lambda$ have the additional property that Λ is a clone. That is, for all $f \in \operatorname{poly}(\Lambda)$ of arity L_{1}, and all $g_{1}, \ldots, g_{L_{1}} \in \operatorname{poly}(\Lambda)$ of arity L_{2}, we have that $\left.h\left(x^{(1)}, \ldots, x^{\left(L_{1}\right)}\right)=f\left(g_{1}\left(x^{(1)}\right), \ldots, g_{L_{1}}\left(x^{\left(L_{1}\right)}\right)\right)\right)$ is a polymorphism of Λ of arity $L_{1} L_{2}$. It turns out this property is necessary and sufficient for characterizing CSPs from their polymorphisms.

Lemma E.4. Let \mathscr{F} be a family of functions over the domain D. Then, there exists a CSP Λ such that $\mathscr{F}=\operatorname{poly}(\Lambda)$ if and only if \mathscr{F} is projection-closed, finitizable, a clone, and contains the identity.

Proof. As stated previously, $\operatorname{poly}(\Lambda)$ is projection-closed, finitizable, a clone, and contains the identity. Thus, it suffices to show the converse.

Assume that \mathscr{F} finitizes at arity R. As shown in LemmaE. 3 , $\mathscr{F}=\operatorname{poly}(P, Q)$, where $P \subseteq Q \subseteq D^{D^{R}}$. In this case, P are the R projection functions from D^{R} to D and Q is the set of arity- R functions of \mathscr{F}. Since, we now have that \mathscr{F} is a clone, we claim that $\mathscr{F}=\operatorname{poly}(Q, Q)$.

First, we have that poly $(Q, Q) \subseteq \operatorname{poly}(P, Q)=\mathscr{F}$ since $P \subseteq Q$, so membership in poly (Q, Q) is a more strict condition. To show the reverse inclusion $\mathscr{F} \subseteq \operatorname{poly}(Q, Q)$, consider any $f \in \mathscr{F}$ of arity L. We need to show for all $g_{1}, \ldots, g_{L} \in Q$, we have that $f\left(g_{1}, \ldots, g_{L}\right) \in Q$. Since \mathscr{F} is a clone, we immediately have that $f\left(g_{1}, \ldots, g_{L}\right) \in \mathscr{F}$. Furthermore, $f\left(g_{1}, \ldots, g_{L}\right)$ has arity R so $f\left(g_{1}, \ldots, g_{L}\right) \in Q$.

E. 3 Significance toward establishing complexity of PCSPs

Note that these results liberate us from ever thinking about Γ, and instead we can think entirely in terms of establishing the easiness/hardness of projection-closed, finitized families of functions. This liberation comes with a caveat: there is a huge amount of freedom in finitizable, projection-closed families of functions. Polymorphisms like Alternating-Threshold, which at first seems like a technicality, instead signifies the rich variety of PCSPs. Fix a domain D and a finitization arity L. For any subset $S \subseteq\left\{f: D^{L} \rightarrow D\right\}$ we can add all projections of S and all functions whose arity- L projections are elements of S to get a projection-closed, finitizable family \mathscr{F}_{s}. It is not hard to see that if there are $f \in S$ and $g \in T$ such that f is not a projection of g and g is not a projection of f then $\mathscr{F}_{S} \neq \mathscr{F}_{T}$. Thus, there is much granularity in the polymorphisms of PCSPs. On the other hand, CSPs have much less granularity since the property of being a clone acts like a "topological closure" condition which makes the space of functions much more discrete. [One could argue the finitization condition is also like a combinatorial closure condition, but its effects are far less drastic on the space of families.] Thus, from this perspective, it would be remarkable if there were a dichotomy of PCSPs like that of CSPs ${ }^{7}$

Another point of consideration is the case in which there are infinitely many relations in our (P)CSPs (although keeping a finite domain). As a computational problem, one can define the (non-uniform) computational complexity of a PCSP Γ, in the style of the compactness theorem, to be the supremum of the computational complexities of all finite subsets $\Gamma^{\prime} \subseteq \Gamma$. Another common (uniform) definition is that the relations used in any particular CSP are encoded as part of the input (using some canonical encoding). The local-global conjecture (e.g., [BG08]) states that these two notions of complexity should be identical for infinite case. Such a conjecture could also be made for PCSPs, although we doubt the veracity of such a claim for the following reason. Once we allow infinitely many relations into our PCSPs, the possible characterizations of polymorphisms expand to all projection-closed families (that is, the finitization condition can be dropped). As a result, it seems quite tempting that an NP-intermediate PCSP could be constructed by adapting the techniques used to prove Ladner's theorem [Lad75].

References

[Aar03] Scott Aaronson. Is P versus NP formally independent? Bulletin of the EATCS, 81:109-136, 2003.
[ABS10] Sanjeev Arora, Boaz Barak, and David Steurer. Subexponential Algorithms for Unique Games and Related Problems. In 2010 51st Annual IEEE Symposium on Foundations of Computer Science (FOCS), pages 563-572, October 2010.
[AGH14] Per Austrin, Venkatesan Guruswami, and Johan Håstad. $(2+\varepsilon)$-SAT is NP-hard. In Proceedings of the 55th Annual Symposium on Foundations of Computer Science (FOCS), pages 1-10, October 2014.

[^6][BD06] Andrei Bulatov and Víctor Dalmau. A simple algorithm for Mal'tsev constraints. SIAM J. Comput., 36(1):16-27, July 2006.
[BG08] Manuel Bodirsky and Martin Grohe. Non-dichotomies in Constraint Satisfaction Complexity, pages 184-196. Springer Berlin Heidelberg, Berlin, Heidelberg, 2008.
[BG16] Joshua Brakensiek and Venkatesan Guruswami. New Hardness Results for Graph and Hypergraph Colorings. In Ran Raz, editor, 31st Conference on Computational Complexity (CCC 2016), volume 50 of Leibniz International Proceedings in Informatics (LIPIcs), pages 14:114:27, Dagstuhl, Germany, 2016. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik.
[BJK05] Andrei A. Bulatov, Peter Jeavons, and Andrei A. Krokhin. Classifying the complexity of constraints using finite algebras. SIAM J. Comput., 34(3):720-742, 2005.
[BK09] Libor Barto and Marcin Kozik. Constraint satisfaction problems of bounded width. In Proceedings of the 50th IEEE Symposium on Foundations of Computer Science, pages 595-603, Oct 2009.
[BK14] Libor Barto and Marcin Kozik. Constraint satisfaction problems solvable by local consistency methods. J. ACM, 61(1):3:1-3:19, January 2014.
[BR15] Jonah Brown-Cohen and Prasad Raghavendra. Combinatorial optimization algorithms via polymorphisms. CoRR, abs/1501.01598, 2015.
[Bul06] Andrei A. Bulatov. A dichotomy theorem for constraint satisfaction problems on a 3-element set. J. ACM, 53(1):66-120, 2006.
[Bul11] Andrei A. Bulatov. Complexity of conservative constraint satisfaction problems. ACM Trans. Comput. Log., 12(4):24, 2011.
[Bul14] Andrei A. Bulatov. Conservative constraint satisfaction re-revisited. CoRR, abs/1408.3690, 2014.
[Che09] Hubie Chen. A rendezvous of logic, complexity, and algebra. ACM Comput. Surv., 42(1):2:12:32, December 2009.
[DRS05] Irit Dinur, Oded Regev, and Clifford D. Smyth. The hardness of 3-uniform hypergraph coloring. Combinatorica, 25(5):519-535, 2005.
[FV98] Tomás Feder and Moshe Y. Vardi. The computational structure of monotone monadic SNP and constraint satisfaction: A study through datalog and group theory. SIAM J. Comput., 28(1):57104, 1998.
[GK04] Venkatesan Guruswami and Sanjeev Khanna. On the hardness of 4-coloring a 3-colorable graph. SIAM J. Discrete Math., 18(1):30-40, 2004.
[Hua13] Sangxia Huang. Improved hardness of approximating chromatic number. In Prasad Raghavendra, Sofya Raskhodnikova, Klaus Jansen, and JoséD.P. Rolim, editors, Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques, volume 8096 of Lecture Notes in Computer Science, pages 233-243. Springer Berlin Heidelberg, 2013.
[Jea98] Peter Jeavons. On the algebraic structure of combinatorial problems. Theoretical Computer Science, 200(1-2):185-204, 1998.
[Kho02] Subhash Khot. On the power of unique 2-prover 1-round games. In Proceedings on 34th Annual ACM Symposium on Theory of Computing, pages 767-775, 2002.
[KKR15] Vladimir Kolmogorov, Andrei Krokhin, and Michal Rolínek. The complexity of general-valued CSPs. In Proceedings of the 56th IEEE Symposium on Foundations of Computer Science, pages 1246-1258, Oct 2015.
[KLS00] Sanjeev Khanna, Nathan Linial, and Shmuel Safra. On the hardness of approximating the chromatic number. Combinatorica, 20(3):393-415, 2000.
[Lad75] Richard E. Ladner. On the Structure of Polynomial Time Reducibility. J. ACM, 22(1):155-171, January 1975.
[Pos41] Emil L Post. The two-valued iterative systems of mathematical logic. Number 5 in Annals of Mathematics Studies. Princeton University Press, 1941.
[Rag08] Prasad Raghavendra. Optimal algorithms and inapproximability results for every CSP? In Proceedings of the 40th Annual ACM Symposium on Theory of Computing, pages 245-254, 2008.
[Sch78] Thomas J. Schaefer. The complexity of satisfiability problems. In Proceedings of the Tenth Annual ACM Symposium on Theory of Computing, STOC '78, pages 216-226, New York, NY, USA, 1978. ACM.
[TZ13] Johan Thapper and Stanislav Zivny. The complexity of finite-valued CSPs. In Proceedings of the ACM Symposium on Theory of Computing, pages 695-704, 2013.

[^0]: *Department of Mathematical Sciences, Carnegie Mellon University, Pittsburgh, PA 15213, USA. Email: jbrakens@andrew. cmu . edu. Research supported in part by an REU supplement to NSF CCF-1526092.
 ${ }^{\dagger}$ Computer Science Department, Carnegie Mellon University, Pittsburgh, PA 15213. Email: guruswami@cmu. edu. Research supported in part by NSF grant CCF-1526092.

[^1]: ${ }^{1}$ Throughout the paper, we will use $[n]=\{1, \ldots, n\},|x|$ to denote the Hamming weight (the number of 1 s) of a Boolean vector $x \in\{0,1\}$, and $e_{i} \in\{0,1\}^{n}$ to denote the unique vector such that $\left(e_{i}\right)_{j}=1$ if and only if $j=i$.
 ${ }^{2}$ Instead of having P ignore a portion of the domain, we could present these more naturally in the homomorphism framework mentioned previously.

[^2]: ${ }^{3}$ The first two cases are CSPs satisfied trivially by the all 0 s or all 1 s assignment; Majority corresponds to 2SAT; AND and OR to Horn SAT and dual Horn SAT; and Parity to linear equations mod 2.

[^3]: ${ }^{4}$ If we remove the symmetric condition on the relations, it turns our that non-symmetric polymorphisms are the norm, even in the Boolean case, see Appendix E

[^4]: ${ }^{5}$ For example, Algorithm 1 in http://www.math.rutgers.edu/~sk1233/courses/ANT-F14/lec4.pdf

[^5]: ${ }^{6}$ If we broaden our definition of PCSPs (as mentioned in the introduction) so that instead of $P \subseteq Q$, there is some unary map $\sigma: D_{1} \rightarrow D_{2}$ such that $\sigma(P) \subseteq Q$, then the condition $\operatorname{id}_{D} \in \mathscr{F}$ can be replaced with $\sigma \in \mathscr{F}$ for some unary function σ.

[^6]: ${ }^{7}$ For an analogy in set theory, consider the possible cardinalities of a subset $X \subseteq \mathbb{R}$. The famed Continuum Hypothesis (known to be independent of ZFC) asserts that either $|X| \leq|\mathbb{N}|$ or $|X|=|\mathbb{R}|$. On the other hand, by the Cantor-Bendixson theorem, if X is topologically closed (in the traditional topology of \mathbb{R}) then this dichotomy is indeed exhibited. This analogy is not to advocate that the PCSP dichotomy is independent of ZFC [c.f. [Aar03]], but that the structure of being a clone is crucial to the plausibility of the CSP dichotomy.

