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Abstract

We show that the total space in resolution, as well as in any other
reasonable proof system, is equal (up to a polynomial and (log n)O(1)

factors) to the minimum refutation depth. In particular, all these vari-
ants of total space are equivalent in this sense. The same conclusion
holds for variable space as long as we penalize for excessively (that is,
super-exponential) long proofs, which makes the question about equiv-
alence of variable space and depth about the same as the question of
(non)-existence of “supercritical” tradeoffs between the variable space
and the proof length. We provide a partial negative answer to this
question: for all s(n) ≤ n1/2 there exist CNF contradictions τn that
possess refutations with variable space s(n) but such that every refu-
tation of τn with variable space o(s2) must have double exponential

length 22Ω(s)
. We also include a much weaker tradeoff result between

variable space and depth in the opposite range s(n)� log n and show
that no supercritical tradeoff is possible in this range.

1. Introduction

The area of propositional proof complexity has seen a rapid development since
its inception in the seminal paper by Cook and Reckhow [CR79]. This success
is in part due to being well-connected to a number of other disciplines, and
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one of these connections that has seen a particularly steady growth in recent
years is the interplay between propositional proof complexity and practical
SAT solving. As a matter of fact, SAT solvers that seem to completely
dominate the landscape at the moment (like those employing conflict-driven
clause learning) are inherently based on the resolution proof system dating
back to the papers by Blake [Bla37] and Robinson [Rob65]. This somewhat
explains the fact that resolution is by far the most studied system in proof
complexity, even if recent developments (see e.g. the survey [BS14]) seem to
be bringing the system of sum-of-squares as a serious rival1.

Most of this study concentrated on natural complexity measures of reso-
lution proofs like size, width, depth or space and on their mutual relations; to
facilitate further discussion, let us fix some notation (the reader not familiar
with some or all of these is referred to Section 2 in which we give all nec-
essary definitions). Namely, we let S(τn ` 0), ST (τn ` 0), w(τn ` 0), D(τn `
0),CSpace(τn ` 0),TSpace(τn ` 0) and VSpace(τn ` 0) stand for the mini-
mum possible size [tree-like size, width, depth, clause space, total space2 and
variable space, respectively]. w(τn) is the width of the contradiction τn itself.

Let us review some prominent relations between these measures. The
simulations w(τn ` 0) ≤ D(τn ` 0) and logST (τn ` 0) ≤ D(τn ` 0) are
trivial. Ben-Sasson and Wigderson [BW01] conjoined them by proving that

w(τn ` 0) ≤ logST (τn ` 0) + w(τn). (1)

Even more importantly, in the same paper they established the celebrated
width-size relation

w(τn ` 0) ≤ O(n · logS(τn ` 0))1/2 + w(τn) (2)

that has steadily grown into a standard method of proving lower bounds on
the size of DAG resolution proofs.

In the space world, the obvious relations are CSpace(τn ` 0) ≤ TSpace(τn `
0) and VSpace(τn ` 0) ≤ TSpace(τn ` 0). Can CSpace(τn ` 0) and VSpace(τn `
0) be meaningfully related to each other?

1It should be remarked, however, that one of the most prominent SOS lower bound
technique dating back to Grigoriev’s paper [Gri01] is based on resolution width.

2 A word of warning about terminology: it is this measure that had been called “variable
space” in [ABRW02], and this usage of the term persisted in the literature for a while, see
e.g. [Ben09]. But then several good arguments were brought forward as to why it is more
natural to reserve the term “variable space” for its connotative meaning, and we follow
this revised terminology.
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In one direction this was ruled out by Ben-Sasson [Ben09, Theorem 3.9]:
there are 3-CNF contradictions τn with CSpace(τn ` 0) = 2 and3 VSpace(τn `
0) ≥ Ω(n/ log n).

Whether CSpace can be meaningfully bounded by VSpace is unknown.
As will become clear soon, this question is extremely tightly connected to
the content of our paper.

Let us mention several prominent and rather non-trivial results connect-
ing “sequential” measures (size, width, depth) and “configurational”, space-
oriented ones. Atserias and Dalmau [AD08] proved that

w(τn ` 0) ≤ CSpace(τn ` 0) + w(τn); (3)

a simplified version of their proof was presented by Filmus et al. [FLM+15]
and independently by Razborov (unpublished).

As we already observed, variable space can not be bounded in terms of
clause space, but Urquhart [Urq11] proved that it can be bounded by depth:

VSpace(τn ` 0) ≤ D(τn ` 0).

In a recent paper [Bon16], Bonacina established the following connection
between width and total space:

w(τn ` 0) ≤ O(TSpace(τn ` 0))1/2 + 2w(τn) (4)

that, similarly to (2), immediately opens up the possibility of proving super-
linear lower bounds on the total space in a systematic way.

Finally, it should be mentioned that besides simulations there have been
proven quite a great deal of separation and tradeoff results between these
measures. They are way too numerous to be meaningfully accounted for
here, we refer the interested readers e.g. to the survey [Nor13].

Our contributions. We continue this line of research and prove both
simulations and tradeoff results. In the former direction, perhaps the most
catchy statement we can make is that TSpace(τn ` 0) and D(τn ` 0) are
equivalent, up to a polynomial and log n factors (see Figure 1 below for
more refined statements). This is arguably the first example when two proof

3Ironically (cf. Footnote 2), although this result was stated in [Ben09] for variable space,
it was actually proved there only for what we call her TSpace. However, the extension to
VSpace is more or less straightforward, see e.g. [BNT13].
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complexity measures that are quite different in nature and have very different
history turn out not only to be tightly related to each other, but actually
practically equivalent.

Now, in order to discuss these simulations and their ramifications prop-
erly, we need to make up a few definitions.

For a configurational proof4 π, let VSpace∗(π)
def
= VSpace(π) · log2 |π|; a

similar definition can be made for the total space and for the clause space al-
though we do not need the latter in our paper. Thus, we penalize refutations
in a configurational form for being excessively long; let us note that a similar
logarithmic normalization naturally pops up in many tradeoff results, see e.g.
[Ben09]. Then what we “actually” do is to show that VSpace∗(τn ` 0) is poly-
nomially related to depth; in particular, any small variable space proof can
be unfolded into a shallow sequential proof unless it is prohibitively long.
Given this simulation, the equivalence for the total space is a simple arti-
fact of the observation that proofs with small total space can not be too
long just because there are not that many different configurations. More
specifically, we have the following picture, where, for better readability,

VSpace ≤ TSpace ≤ D2

≥ ≥ ≥
D ≤ VSpace∗ ≤ TSpace∗ ≤ D3

≥ ≥

VSpace(VSpace log n+ 2VSpace) TSpace2 log n

Figure 1: Simulations.

we have omitted big-O and τn ` 0 everywhere. An immediate corollary is
that TSpace, D,TSpace∗ and VSpace∗ are all equivalent up to a polynomial
and log n factors, and the same applies for semantic versions of TSpace and
TSpace∗.

The only difference between TSpace and VSpace is that in the first case
we have a decent (that is, singly exponential) bound on the overall number of
configurations of small total space. Due to the standard counting argument,
this remains true for an arbitrary reasonable circuit class, and hence our

4For definitions see Section 2 below.
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equivalence uniformly generalizes to the total space based on any one of
them: polynomial calculus with resolution, cutting planes etc. (Theorem
3.2). All these measures are essentially depth in disguise, and hence nΩ(1)

depth lower bounds automatically imply exp(nΩ(1)) lower bounds on the total
space in all those models.

In the rest of the paper, we study the relation of variable space itself
to these equivalent measures; this question was (apparently) first asked by
Urquhart [Urq11]. As follows from Figure 1, this is equivalent to the fol-
lowing question: can the term 2VSpace in the upper bound on VSpace∗ be
really dominating or, in other words, can it be the case that the length of
a configurational proof must necessarily be super-exponential, as long as its
variable space is relatively small? Note that this in particular would imply
that such a proof must mostly consist of totally non-constructive configu-
rations so this situation may look a bit counterintuitive on the first sight.
However, precisely this kind of a behavior dubbed “supercritical” tradeoffs
was recently exhibited by the author [Raz16a], and several other examples
have been found in [Raz16b, BN16a, BN16b].

Our most difficult result (Theorem 3.3) gives a moderate supercritical
tradeoff between variable space and proof length: for any s = s(n) ≤ n1/2,
there are O(1)-CNF contradictions τn with VSpace(τn ` 0) ≤ s but such that
every refutation π with sub-quadratic variable space o(s2) must have length

22Ω(s)
. Improving the space gap from sub-quadratic to super-polynomial

would establish a strong separation between the variable space and the depth,
but that would probably require new techniques or at least quite a significant
enhancement of ours. As a matter of fact, I am not ready even to conjec-
ture that a super-polynomial gap here exists, and perhaps VSpace after all is
equivalent to all other measures on Figure 1.

The proof of Theorem 3.3 is highly modular and consists of three indepen-
dent reductions; we review its overall structure at the beginning of Section
5 where the statement is proven. Among previously known ingredients we
can mention r-surjective functions [AR08], “hardness compression” [Raz16a]
and an extensive usage of the multi-valued logic in space-oriented models
[ABRW02]. One new idea that we would like to highlight is a “direct prod-
uct result” Lemma 5.4; results of this sort do not seem to be too frequent
in the proof complexity. We use it to amplify our length lower bound for
proofs of variable space 1 (that is, consisting of multi-valued literals) to the
same lower bound for proofs of larger variable space. This is precisely this
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step that exponentially blows up the number of multi-valued variables and
prevents us from extending this supercritical tradeoff into a super-quadratic
space range.

Finally, we look into the opposite range when VSpace(τn ` 0) is very small
(say, a constant) and hence the term 2VSpace on Figure 1 becomes negligible.
In this regime, the syntactic measures CSpace,TSpace become constant and,
by (3), the same applies to width. The author [Raz16a] proved a supercritical
tradeoff between width and depth, and Berkholz and Nordtsröm [BN16b]
studied this question for width vs. space, so it seems very natural to ask
what kind of tradeoffs might exist between space and depth. We prove both
positive and negative results in this direction. First, we observe (Theorem
3.4) that the proof of the relation D ≤ VSpace∗ on Figure 1 can be generalized
to showing that every (semantical) refutation of constant variable space gives
rise, for an arbitrary parameter h, to a configurational refutation of variable
space O(h) and depth h2 ·nO(1/h); in particular, both space and depth can be
made poly-logarithmic, or depth can be brought down to n1/10 while space
still remains constant. This rules out supercritical tradeoffs in this context,
at least as strong as those in [Raz16a, BN16b]. But we also show that
this simulation is essentially the best possible: for the Induction Principle
τn = {x0, x0 → x1, . . . , xn−1 → xn, x̄n} we show that every refutation π
with variable space s must have depth nΩ(1/s) (Theorem 3.5).

The structure of the paper corresponds to the above overview. In Sec-
tion 2 we review all the necessary definitions, and in Section 3 we state our
main results. The next three sections are devoted to proofs: simulation re-
sults in Section 4, the supercritical tradeoff for large space in Section 5 and
small space results in Section 6. We conclude with a few remarks and open
problems in Section 7.

2. Notation and preliminaries

We let [n]
def
= {1, 2, . . . , n}

For a Boolean function f , V ars(f) is the set of variables f essentially
depends on. f |= g stands for semantical implication and means that every
assignment α satisfying f satisfies g as well. If τ and τ ′ are syntactic expres-
sions like CNFs, the semantical implication τ |= τ ′ is understood in terms of
the Boolean functions these expressions represent.
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A literal is either a Boolean variable x or its negation x̄; we will some-

times use the uniform notation xε
def
=

x if ε = 1

x̄ if ε = 0
. A clause is a disjunction

(possibly, empty) of literals in which no variable appears along with its nega-
tion. A generalized clause is either a clause or 1; the set of all generalized
clauses makes a lattice in which ∨ is the join operator. If C and D are
clauses then C ≤ D in this lattice if and only if C |= D if and only if every
literal appearing in C also appears in D. We will also sometimes say that
C is a sub-clause of D in this case. The empty clause will be denoted by 0,
and the set of variables occurring in a clause C, either positively or nega-

tively, will be denoted by V ars(C), let also V ars(1)
def
= ∅. This is consistent

with the general semantic definition. The width of a clause C is defined as

w(C)
def
= |V ars(C)|.

A CNF τ is a conjunction of clauses, often identified with the set of clauses
it is comprised of. A CNF is a k-CNF if all clauses in it have width at most
k. Unsatisfiable CNFs are traditionally called contradictions.

The resolution proof system operates with clauses, and it consists of the
only resolution rule:

C ∨ x D ∨ x̄
C ∨D

.

Two major topologies used for representing resolution proofs are sequential
(Hilbert-style) and configurational (or space-oriented). In order to distinguish
between them, we use upper-case letters Π for the former and lower-case π
for the latter.

A (sequential) resolution proof Π is a DAG with the only target node
in which all nodes are labeled by clauses, every non-source node v has fan-
in 2, and the clause assigned to v can be inferred from clauses sitting at its
predecessors via a single application of the resolution rule. A resolution proof
of a clause C from a CNF τ is a resolution proof Π in which all source nodes
are labeled by clauses from τ , and the target node is labeled by a sub-clause5

of C. A refutation of a contradiction τ is a proof of 0 from it. The size S(Π)
of a sequential proof is the number of nodes, its depth D(Π) is the length of
the longest path in the underlying DAG, and its width w(Π) is the minimal
possible width w(C) of a clause C appearing in it. For a contradiction τ , we
let S(τ ` 0), D(τ ` 0) and w(τ ` 0) denote the maximal possible value of

5This is a technicality that is necessary since we did not explicitly include the weakening
rule.

7



S(Π), D(Π) and w(Π), respectively, taken over all sequential refutations Π
of τ .

The configurational (or space-oriented) form of propositional proofs was
introduced in [ET01, ABRW02]. A configuration C is a set of generalized
clauses that can be viewed as a CNF. A configurational proof π from a CNF
formula τ is a sequence of configurations (C0, . . . ,CT ) in which C0 = ∅ and
every Ct (t ∈ [T ]) is obtained from Ct−1 by one of the following rules:

Axiom Download. Ct = Ct−1 ∪ {A}, where A ∈ τ ;

Inference. Ct = Ct−1 ∪ {C} for some C inferrable by a single application
of the resolution rule from the clauses in Ct−1.

Erasure. Ct ⊆ Ct−1.

π is a (configurational) refutation of τ if 0 ∈ CT . T is the length of π, denoted
by |π|.

The clause space of a configuration C is |C|, its total space TSpace(C) is∑
C∈Cw(C), and its variable space VSpace(C) is |⋃C∈C V ars(C)|. The clause

[total] space CSpace(π) [TSpace(π), respectively] of a configurational proof π
is the maximal clause [total, respectively] space of all its configurations, and
if τ is a contradiction, then CSpace(τ ` 0) [TSpace(τ ` 0)] is the minimum
value of CSpace(π) [TSpace(π), respectively], where the minimum is taken
over all configurational refutations π of τ .

Variable space VSpace(τn ` 0) can be of course defined analogously, but
since this measure is inherently semantical, we prefer to stress this fact by
giving a separate, and more robust, definition below.

Definition 2.1 Let τ be an arbitrary set of Boolean constraints. For a set
V of variables, we let

τ [V ]
def
=
∧
{C | C ∈ τ ∧ V ars(C) ⊆ V } .

A semantical proof π from τ is a sequence of Boolean functions (f0, . . . , f1, . . . , fT )
such that f0 ≡ 1 and for every t ∈ T ,

ft−1 ∧ τ [V ars(ft−1) ∪ V ars(ft)] |= ft. (5)

T is again the length of π, denoted by |π|, and π is a semantical refutation

if fT ≡ 0. VSpace(π)
def
= max0≤t≤T |V ars(ft)| and VSpace(τ ` 0) is the

minimum value of VSpace(π) taken over all semantical refutations π of τ .
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In this definition we have combined all three rules (Axiom Download,
Inference and Erasure) into one. Every configurational proof turns into a
semantical proof of (at most) the same variable space if we replace all config-
urations in it by the Boolean functions they represent. Hence VSpace(τ ` 0)
never exceeds its syntactical variant, and in the other direction (when τ is
actually a CNF), they may differ by at most a factor of 2 simply by expand-
ing all semantical refutations (5) into brute-force resolution derivations never
leaving the set of variables V ars(ft−1) ∪ V ars(ft).

This purely semantical model also provides a handy uniform way to talk
about semantical analogues of more sophisticated space complexity mea-
sures. Namely, let C be a circuit class equipped with a complexity measure
µ(C) (C ∈ C). Then µ gives rise to the complexity measure on Boolean
functions in a standard way: µC(f) is the minimum value of µC taken over
all circuits C ∈ C computing f . For a semantical refutation π, let us define

µC − Space(π)
def
= max0≤t≤T µC(ft) and then µC − Space as usual.

Examples. Semantical analogues of clause and total space studied in
the literature before correspond to the case when C consists of all CNFs,
and the measures µC are the number of clauses or overall size, respectively.
Semantical analogues of, say, cutting planes space or PCR space are also
straightforward in this language.

Finally, we need several mixed measures. We let

TSpace∗(π)
def
= TSpace(π) · log2 |π|,

VSpace∗(π)
def
= VSpace(π) · log2 |π|,

µC − Space∗(π)
def
= µC − Space(π) · log2 |π|, s(π) · log2 |π|,

and then we define TSpace∗(τ ` 0) VSpace∗(τ ` 0) and µC − Space∗(τ ` 0)
as usual (CSpace∗(τ ` 0) can be also defined likewise, but we do not need it
in this paper).

Definition 2.2 For a configurational proof π = (C0,C1, . . . ,CT ), define in-
teger valued depth functions Dt on Ct by induction on t. Since C0 is empty,
there is nothing to define. Let t > 0, assume that C ∈ Ct and that Dt−1

is already defined. If C ∈ Ct−1, we simply let Dt(C)
def
= Dt−1(C). If A ∈ τ

in the Axiom Download Rule then Dt(A)
def
= 0. If C is obtained from

C ′, C ′′ ∈ Ct−1 via the resolution rule, we let

Dt(C)
def
= max(Dt−1(C ′), Dt−1(C ′′)) + 1.
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Finally, the depth D(π) of a configurational refutation π is defined as DT (0).

3. Main results

As all our results were discussed at length in the introduction, here they are
listed more or less matter-of-factly.

In order to improve readability, in our first theorem 3.1 we omit the
argument τn ` 0 throughout (τn is an arbitrary contradiction in n variables),
and also we write f � g for f ≤ O(g).

Theorem 3.1 For the proof-complexity measures D,TSpace,VSpace,TSpace∗,VSpace∗

introduced in Section 2 we have the following simulations:

VSpace � TSpace � D2

≥ � ≥

D � VSpace∗ � TSpace∗ � D3

� �

VSpace(VSpace log n+ 2VSpace) TSpace2 log n.

Theorem 3.2 Let C be any circuit class that includes CNFs, and let µC
be any complexity measure on C that is intermediate between the number of
input variables and the circuit size of C ∈ C. Then µC − Space(τn ` 0) is
equivalent, up to a polynomial and log n factors to D(τn ` 0) (and hence to
all other measures in Theorem 3.1 except, possibly, VSpace).

Theorem 3.3 Let s = s(n) ≤ n1/2 be an arbitrary parameter. Then there
exists a CNF τn with VSpace(τn ` 0) ≤ s but such that for any semantical
refutation π of τn with VSpace(π) ≤ o(s2) we have |π| ≥ exp(exp(Ω(s))).

The next result is a variation on the simulation D � VSpace∗ in Theorem
3.1.

Theorem 3.4 Assume that a contradiction τ possesses a semantical refuta-
tion π with VSpace(π) = s and |π| = S, and let h ≥ 1 be an arbitrary parame-
ter. Then τ also has a configurational refutation π′ with VSpace(π′) ≤ O(sh)

and D(π′) ≤ O
(
sh2 · S1/h

)
.
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Theorem 3.5 Let τn = {x0, x̄0 ∨ x̄1, x̄1 ∨ x2, . . . , x̄n−1 ∨ xn, x̄n}. Then for
every configurational refutation π from τn we have the bound

D(π) ≥ Ω
(
n1/VSpace(π)

)
.

4. Proofs of simulations

In this short section we prove Theorems 3.1, 3.2.

Proof of Theorem 3.1. The square

VSpace ≤ TSpace

≥
VSpace∗ ≤ TSpace∗

is obvious.

VSpace(τ ` 0) ≤ D(τ ` 0) is [Urq11, Theorem 6.1(1)].

TSpace(τ ` 0) ≤ D(τ ` 0)(D(τ ` 0) + 1) and TSpace∗(τ ` 0) ≤ D(τ `
0)(D(τ ` 0) + 1)2.

This is a minor variation on [ET01, Theorem 2.1]. Indeed, let Π be a
refutation of a contradiction τ with D(Π) = d, then w.l.o.g. we can assume
that Π is in a tree-like form. Also, w(Π) ≤ d since every variable in the clause
at a node v must be resolved on the path from v to the target (root) node.
We now consider the standard pebbling of the underlying tree with (d + 1)
pebbles and the resulting configuration refutation π = (C0,C1, . . . ,CT ), as
in [ET01]. |Ct| ≤ d + 1, every clause in π has width ≤ d (due to the above
remark) and T ≤ 2d+1. Both claims follow.

TSpace∗(τn ` 0) ≤ 2 log2(2n + 1)TSpace(τn ` 0)2 and VSpace∗(τn ` 0) ≤
VSpace(τn ` 0)

(
VSpace(τn ` 0) log2 n+ 2VSpace(τn`0)

)
.

Both bounds follow from the observation that a configurational refuta-
tion (be it syntactic or semantic) can w.l.o.g. be assumed not to contain
repeated configurations. Now, we estimate the overall number of configura-
tions C = (C1, . . . , Ck) with total space ≤ s by encoding them as a string
C1#C2# . . .#Ck# . . . of length 2s in which the clauses Ci are written down
simply as sequences of literals. We conclude that the overall number of dif-
ferent configurations C of total space ≤ s is bounded by (2n + 1)2s, which
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gives us the first statement. Likewise, the overall number of Boolean func-
tions f with |V ars(f)| ≤ s is bounded by

(
n
s

)
22s ≤ ns22s , and this gives us

the second statement.

D(τ ` 0) ≤ 2VSpace∗(τ ` 0).
This is by standard binary search. Let π = (f0, f1, . . . , fT ) be a semantical

refutation from τ minimizing VSpace∗(π), and let s
def
= VSpace(π). We prove

by induction on d that for every 0 ≤ a < b ≤ T with b− a ≤ 2d and for any
clause C in the straightforward CNF expansion of the implication fa → fb
(that is to say, for every clause C with V ars(C) = V ars(fa)∪ V ars(fb) and
(fa → fb) |= C) we have D(τ ` C) ≤ 2s(d+ 1).

Induction base d = 0, b = a+ 1.
We have fa ∧ τ [V ars(fa) ∪ V ars(fa+1)] |= fa+1, hence τ [V ars(fa) ∪

V ars(fa+1)] |= (fa → fa+1) |= C. Since |V ars(fa) ∪ V ars(fa+1)| ≤ 2s,
we can realize the latter semantical refutation by a resolution refutation of
depth ≤ 2s.

Inductive step: d ≥ 1, 2 ≤ b− a ≤ 2d.
Pick c with a < c < b such that c − a, b − c ≤ 2d−1. Then C has an

obvious resolution proof of depth |V ars(fc)\(V ars(fa)∪V ars(fb))| ≤ s from
clauses C̃ appearing in the CNF expansions of fa → fc and fc → fb. Since
D(τ ` C̃) ≤ (d − 1)s for any such clause by the inductive assumption, the
inductive step follows.

In particular, setting d = log2 T , a = 0, b = T, C = 0, we conclude that
D(τ ` 0) ≤ (2s) log2 T ≤ 2VSpace∗(π). Theorem 3.1

Proof of Theorem 3.2. It is now straightforward. Since C includes all
CNFs and µC does not exceed the circuit size that in the case of a CNF
is bounded by the total space, we have µC − Space(τ ` 0) ≤ O(TSpace(τ `
0) · log n). On the other hand, since µC is bounded from below by the number

of essential variables, for every semantical proof π we have VSpace(π) ≤ s
def
=

µC − Space(π). If π in addition is minimal, then the length is bounded by
the overall number of circuits C in C that satisfy µC(C) ≤ s and hence, using
again the condition on µC, have size ≤ s. Since the number of circuits of
size s is bounded (to be on the safe side) by nO(s), the bound VSpace∗(π) ≤
O(s2 log n) follows. As VSpace∗ and TSpace are equivalent up to a polynomial
and log n factors, the same holds for µC − Space. Theorem 3.2
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5. A supercritical tradeoff between variable

space and length

In this section we prove Theorem 3.3. While it is our most difficult result, its
proof naturally splits into three fairly independent parts, and we present it in
this modular way, interlaced with necessary definitions. Like in [ABRW02,
Section 4.3], it will be very convenient to work in the multi-valued setting.

Definition 5.1 (cf. [ABRW02, Definitions 4.5-4.7]). Let D be a finite do-
main. Instead of Boolean variables, we consider D-valued variables Xi rang-
ing over the domain D. A multi-valued function f(X1, . . . , Xn) is a mapping
from Dn to {0, 1}. Since the image here is still Boolean, the notions of a
(multi-valued) satisfying assignment α ∈ Dn and the semantical implication
f |= g are generalized to the multi-valued logic straightforwardly. So does
the definition of the set of essential variables V ars(f).

A (D-valued) literal is an expression of the form XP , where X is a (D-
valued) variable and P ⊆ D is such that P 6= ∅ and P 6= D. Allowing
here also D = 0 or D = P , we obtain the definition of a generalized (D-
valued) literal. A generalized literal XP is semantically interpreted by the
characteristic function of the set P . XQ is a weakening of XP if P ⊆ Q or,
equivalently, XP |= XQ.

A D-valued clause [term] is a conjunction of multi-valued literals corre-
sponding to pairwise distinct variables. A constraint satisfaction problem
(CSP) is simply a set of arbitrary multi-valued functions called in this con-
text “constraints”. The width of a constraint C is again |V ars(C)|, and
a CSP is an k-CSP if all constraints in it have width ≤ k. A semantical
D-valued refutation from a multi-valued CSP η and its variable space are
defined exactly as in the Boolean case.

Our starting point is the following weak supercritical tradeoff. Before
stating it, let us remind that according to our conventions, proofs of variable
space 1 make perfect sense and are precisely those in which all configurations
are representable by generalized literals.

Lemma 5.2 For any finite domain D, there exists a D-valued 2-CSP η in
four variables such that η is refutable in variable space 1, but any such refu-
tation π must have length ≥ exp

(
DΩ(1)

)
.
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The next (crucial, and most technical) step is to amplify the lower bound
of 2 on the variable space of moderately short refutations while still keeping
the condition VSpace(τ ` 0) = 1. For that we need a carefully designed
iterative construction. It is this step that blows up the number of variables
exponentially, and this is the primary reason why our gap in Theorem 3.3 is
only quadratic.

Let us begin with a few combinatorial definitions (they will not be needed
outside of the proof of Lemma 5.4). The concatenation of two words u and
v in the same alphabet will be denoted by uv, and |u| is the length of the
word u. u is a prefix of v, denoted by u ≤ v if v = uw for another (possibly,
empty) word w.

For integer parameters h, ` ≥ 0 that will be fixed throughout the proof,

we let V
def
= {(i1, . . . , ih) | iν ∈ [`]} be the set of all words of length h in the

alphabet [`]. The set V will be alternately viewed as the set of all leaves of
an `-ary tree of height h, and it is equipped with the natural ultrametric:
ρ(u, v) is equal to h minus the length of the longest common prefix of u and
v. This geometric view of V as an ultrametric space will be our preferred
interpretation in the proof of Lemma 5.4.

We let V + be the set of all words u in the same alphabet ` such that
1 ≤ |u| ≤ h. Its elements correspond to non-root vertices of the tree. Conve-
niently, elements of V + can be also naturally identified with non-trivial (that
is, non-empty and different from the whole space V ) balls in the ultrametric
ρ.

For notational simplicity we confine the following definition to CSPs in the
same number of variables `. Its generalization to arbitrary CSPs is straight-
forward.

Definition 5.3 Let D1, . . . , Dh be pairwise disjoint finite sets, D
def
= D1

.
∪

. . .
.
∪ Dh, and let η1(X1, . . . , X`), . . . , ηh(X1, . . . , X`) be CSPs, where ηd is

Dd-valued. We define their lexicographic product ηh · ηh−1 · . . . · η1 that will
be a D-valued CSP in the variables (Xv | v ∈ V ) as follows.

1. For 1 ≤ d ≤ h− 1, let Cond(X, Y ) be the conjunction of the formulas
X{a} ≡ Y {a}, where a ∈ Dd+1∪. . .∪Dh. We include into ηh ·ηh−1 ·. . .·η1

the constraints Cond(Xu, Xv) for all u, v ∈ V with ρ(u, v) = d.

Informally, if one of the variables Xu, Xv was assigned at a level6 where

6We enumerate levels in the tree from leaves to the root!
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u and v still agree, then the other variable must be also assigned to the
same value. Otherwise, the constraint is vacuous.

2. Let C(Xi1 , . . . , Xiw) be a (Dd-valued) constraint in ηd. We let the
formula Ĉ(Y1, . . . , Yw) of the D-valued logic be defined as

w∧
ν=1

Y Dd
ν =⇒ C(Y1, . . . , Yw) (6)

(the right-hand side here makes sense due to the premise
∧w
ν=1 Y

Dd
ν ).

We add to ηh · ηh−1 . . . · η1 all axioms of the form Ĉ(Xu1 , . . . , Xuw) as
long as ρ(uν , uµ) = d for all ν 6= µ (in particular, u1, . . . , uw share a
common prefix of length h− d) and (uν)h−d+1 = iν (1 ≤ ν ≤ w).

Informally, if u1, . . . , uw are all children of the same node branching in
pairwise different directions and all variables Xu1 , . . . , Xuw are assigned
at exactly this branching level (i.e., in Dd), then their assignments must
satisfy all applicable constraints in ηd. If at least one of these variables
is assigned outside of Dd, the constraint is vacuous.

Note that if all η1, . . . , ηh are 2-CSP (which is the case we are mostly
interested in), then their lexicographic product is also a 2-CSP.

Remark 1 One good way to interpret Definition 5.3 is by introducing auxil-
iary (Dd∪{∗})-valued variables Yu (u ∈ V ∗, |u| = h−d+1) with the intended
meaning

Yu =

Xv if Xv ∈ Dd (v ∈ V, v ≥ u)

∗ if Xv 6∈ Dd.
(7)

Then the first group of axioms in Definition 5.3 simply asserts that the right-
hand side in (7) is well-defined, that is does not depend on the choice of v ≥ u.
The second group of axioms simplifies to

∧w
ν=1(Yν 6= ∗) =⇒ C(Yu1, . . . , Yuw)

for all u ∈ V ∗ with |u| = h− d.
While this approach is syntactically quite attractive, we do not see how

we can use it for a simple but powerful reason: we would also need to add
the totality axioms ∨

u≤v
(Yu 6= ∗) (v ∈ V ) (8)

asserting that all Xv are well-defined, and these are prohibitively wide for our
purposes. In a sense, our D-valued variables Xv can be viewed as extension
variables allowing us to reduce the width in the axioms (8).
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Lemma 5.4 Assume that η1(X1, . . . , X`), . . . , ηh(X1, . . . , X`) are multi-valued
2-CSPs such that VSpace(ηd ` 0) = 1 (d ∈ [h]) but any refutation π of ηd

with VSpace(π) = 1 must have length ≥ T , and let η
def
= ηh · . . . · η1 be their

lexicographic product. Then VSpace(η ` 0) = 1 (in particular, η is a contra-
diction), but any its refutation π with VSpace(π) ≤ h/2 − 1 must also have
length ≥ T .

Finally, we need to transfer the tradeoff resulting from Lemmas 5.2, 5.4
to the Boolean setting. This involves two different tasks: the conversion
per se and a variable compression in the style of [Raz16a] that is certainly
needed here since the number of variables in the lexicographic product is
huge (exponential in h). We will combine both tasks into a single statement,
but first we need a few definitions.

Definition 5.5 ([AR08]) A function g : {0, 1}s −→ D is r-surjective if for
any restriction ρ assigning at most r variables, the restricted function g|ρ is
surjective.

Definition 5.6 (cf. [Raz16a]) Let A be an m × n 0-1 matrix in which
every row has precisely s ones and g : {0, 1}s −→ D be a function. Let
g[A] : {0, 1}n −→ Dm be naturally defined as

g[A](x1, . . . , xn)(i)
def
= g(xj1 , . . . , xjs),

where j1 < j2 < . . . < js is the enumeration of ones in the ith row of A.
For a D-valued Boolean function f : Dm −→ {0, 1}, we let the Boolean
function f [g, A] : {0, 1}n −→ {0, 1} be the composition f ◦ g[A]. Finally, for

a D-valued CSP η(Y1, . . . , Ym), we let η[g, A]
def
= {C[g, A] | C ∈ η}.

Definition 5.7 Let A be a m× n 0-1 matrix. For i ∈ [m], let

Ji(A)
def
= {j ∈ [n] | aij = 1}

be the set of all ones in the ith row. For a set of rows I ⊆ [m], the boundary
∂A(I) of I is defined as

∂A(I)
def
= {j ∈ [n] | | {i ∈ I | j ∈ Ji(A)} | = 1} ,

i.e., it is the set of columns that have precisely one 1 in their intersections
with I. A is an (r, c)-boundary expander if |∂A(I)| ≥ c|I| for every set of rows
I ⊆ [m] with |I| ≤ r.
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Lemma 5.8 Let A be an m× n
(
2h, 3

4
s
)
-boundary expander in which every

row has precisely s elements. Let D be a finite domain, η(Y1, . . . , Ym) be
a D-valued h-CSP and g : {0, 1}s −→ D be an (3s/4)-surjective function.
Assume that there exists a semantic (Boolean) refutation π from η[g, A] with
VSpace(π) ≤ (hs)/16. Then there exists a D-valued refutation π̂ of η with
VSpace(π̂) ≤ h and |π̂| = |π|.

Before we embark on the proofs of Lemma 5.2, 5.4 and 5.8, let us do
something simpler, namely assemble from them the proof of the main result
of this section.

Proof of Theorem 3.3. We are given a function s = s(n) ≤ n1/2. We let

h
def
= bεsc ≤ εn/s, where ε is a sufficiently small constant. Then, by [Raz16a,

Lemma 2.2] there exists an (2h, 3
4
s)-boundary expander with m = 4h rows

each having exactly7 s ones. Next, a standard calculation shows that if s
is sufficiently large (that we can clearly assume w.l.o.g.) a random function
g : {0, 1}s −→ D is (3s/4) surjective for |D| = 2s/8, with probability 1−o(1).
Pick any such g arbitrarily, and split D into h nearly equal parts, D = D1

.
∪

. . .
.
∪ Dh. Let ηd be the Dd-valued 2-CSP in four variables guaranteed by

Lemma 5.2, that is such that VSpace(ηd ` 0) = 1 but any its refutation π with

VSpace(π) = 1 must have length ≥ exp
(
|Dd|Ω(1)

)
≥ exp(exp(Ω(s))). Let

η
def
= ηh · . . . ·η1. The D-valued 2-CSP η has m = 4h variables, say, Y1, . . . , Ym

and still satisfies VSpace(η ` 0) = 1 but now any its refutation π̂ with
VSpace(π̂) ≤ h/2 − 1 has length exp(exp(Ω(s))). The desired contradiction
τn will be η[g, A].

First of all, τn has a semantical refutation with variable space ≤ s. It is
obtained simply by taking a D-valued refutation of η with variable space 1
(that is, consisting of generalized literals) and applying the operator Y P

i 7→
Y P
i [g, A] to its configurations. On the other hand, applying Lemma 5.8 in the

contrapositive form, every Boolean refutation π from ηg[A] with VSpace(π) ≤
(h/2− 1)s/16 must have length ≥ exp(exp(Ω(s)))/ exp(O(h)). As h = Θ(s),
this is exp(exp(Ω(s))). Theorem 3.3

It remains to prove Lemma 5.2, 5.4 and 5.8.

7Literally, [Raz16a, Lemma 2.2] gives only ≤ s rows per row, but the condition s ≤ n1/2
allows us to lower bound as Ω(1) the probability that an individual row of the random
matrix A in [Raz16a, Appendix A] does not have collisions. Retaining only the rows
without collision gives the slight modification we need here.
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Proof of Lemma 5.2. We begin with the observation that was apparently
first made by Babai and Seress in [BS92]: the symmetric group Sym(D)
contains elements σ of exponential order. More specifically, let p1 + · · · +
pn ≤ |D| − 2 < p1 + · · · + pn + pn+1, where p1 < p2 < . . . < pn < . . . is
the list of all prime numbers, take pairwise disjoint Di ⊆ D with |Di| =
pi (1 ≤ i ≤ n), and let σ act cyclically on every Di and identically on
D \ (D1 ∪ . . . ∪Dn). Let P̃ be any transversal of the set {D1, . . . , Dn}, then
the orbit of P̃ in the induced action of σ on P(D) also has size ≥ exp(|D|Ω(1)),
denote it by r; all sets P̃ , σ(P̃ ), σ2(P̃ ) . . . , σr−1(P̃ ) are pairwise distinct and

σr(P̃ ) = P̃ . Since all these sets
{
σi(P̃ ) | 0 ≤ i ≤ r − 1

}
also have the same

size, they are moreover independent w.r.t. inclusion. Let now P
def
= P̃ ∪ {a},

where a ∈ D \ (D1 ∪ . . . ∪ Dn) is an arbitrary fixed element. Then (since
|D \ (D1 ∪ . . . ∪Dn)| ≥ 2) we additionally have that the (2r) sets{

σi(P ) | 0 ≤ i ≤ r − 1
}
,
{
D \ σi(P ) | 0 ≤ i ≤ r − 1

}
(9)

are pairwise independent w.r.t. inclusion.

Let now X0, X1, X2, X3 be D-valued variables. The required 2-CSP η has
the following constraints, where Q ⊆ D is an arbitrary subset different from
∅ and D:

XQ
0

XQ
0 → XP

1

X2 = X1

X3 = X2

X1 = σ(X3)

X
σr/2(P )
3 → X

D\Q
0 .

The refutation π from η with VSpace(π) = 1 is straightforward:

1, XQ
0 , X

P
1 , X

P
2 , X

P
3 , X

σ(P )
1 , . . . , X

σ2(P )
1 , . . . , X

σr/2(P )
1 , X

σr/2(P )
2 , X

σr/2(P )
3 , X

D\Q
0 , 0.

In order to prove the second statement in Lemma 5.2, we show that this
refutation, its inverse and its contrapositive are essentially the only non-
trivial inferences with variable space 1. More specifically, let

Lt def
= {XQ

0 } ∪
{
X
σh(P )
i | i ∈ [3], h ∈ Z, |h| ≤ t− 2

}
∪
{
X
D\σh(P )
i | i ∈ [3], h ∈ Z, |h− r/2| ≤ t− 2

}
,
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and let
π = 1, XA1

i1 , . . . , X
At
it , 0

be a semantical refutation of variable space 1. We claim that as long as
t ≤ r/2, XAt

it is a weakening of a literal in Lt.

Inductive base t = 1 is obvious since XQ
0 is the only constraint in η of

width 1.

Inductive step.
Let t ≤ r/2. We have to prove that if XA

i ∈ Lt, XB
j is a generalized

literal and
XA
i ∧ η[{Xi, Xj}] |= XB

j

then XB
j is a weakening of a literal in Lt+1. This is by a routine case analysis;

the only case worth mentioning here is i ∈ {1, 3} and j = 0, this is where
we need the assumption t ≤ r/2. By symmetry, assume that i = 1, then
η[{X0, X1}] ≡ XQ

0 ∧ XP
1 . But since XA

i ∈ Lt and t ≤ r/2, we conclude
that A ∩ P 6= ∅ since all sets in (9) are independent w.r.t. inclusion. Hence
XA

1 ∧ η[{X0, X1}] |= XB
0 actually implies that B ⊇ Q and thus XB

0 is a
weakening of XQ

0 . Lemma 5.2

Proof of Lemma 5.4. Fix η1, . . . , ηh as in the statement, and let η
def
=

ηh · . . . · η1 be their lexicographic product. Let us first verify that VSpace(η `
0) = 1.

For every d ∈ [h] fix a refutation

πd = 1, X
A(d,1)
i(d,1) , . . . , X

A(d,T−1)
i(d,T−1) , 0

of length T , where i(d, t) ∈ [`] and A(d, t) ⊆ Dd. For the uniformity of

notation, we also let i(d, 0)
def
= i(d, 1), A(d, 0)

def
= Dd and, likewise, i(d, Td)

def
=

i(d, Td − 1), A(d, Td)
def
= ∅. Denote by L(d, t)

def
= X

A(d,t)
i(d,t) (t = 0..T ) the

corresponding generalized literal.

For ~t = (th, . . . , th−1, . . . , t1) ∈ [0..T ]h, let v(~t)
def
= (i(h, th), i(h−1, th−1), . . . , i(1, t1)) ∈

V (this is a good place to recall that we enumerate everything from the leaves

to the root!) and L(~t)
def
= X

A(h,th)∪...∪A(1,t1)

v(~t)
be the corresponding generalized

D-valued literal. We claim that the sequence of generalized literals L(~t),
taken in the lexicographic order, makes a refutation of η.

Indeed, L(0, 0, . . . , 0) = XD
v(0,...,0) ≡ 1 and L(T, . . . , T ) = X∅v(T,...,T ) ≡ 0,

as required. Given ~t 6= (T, . . . , T ), let d ∈ [h] be the smallest index such
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that td 6= T , say td = s, so that the next term in the lexicographic order

is ~t′
def
= (th, . . . , td+1, s + 1, 0 . . . , 0). We have L(~t) = X

B∪A(d,s)

v(~t)
and L(~t′) =

X
B∪A(d,s+1)∪Dd−1∪...∪D1

v(t′) for the same B ⊆ Dh ∪ . . . ∪Dd+1.

From the refutation πd we know that X
A(d,s)
i(d,s) ∧ ηd[{Xi(d,s), Xi(d,s+1)}] |=

X
A(d,s+1)
i(d,s+1) in theDd-valued logic. Then η[{Xv(~t), Xv(~t′)}] entails, due to the sec-

ond group of axioms, that (XDd
v(~t)
∧XDd

v(~t)′
)→ ηd[X~t, X~t′ ]. Also, as long as v(~t) 6=

~(t′), η[{Xv(~t), Xv(~t′)}] also contains the first group of axioms Cond(Xv(~t), Xv(~t′)).
The required implication

X
B∪A(d,s)

v(~t)
∧ η[{Xv(~t), Xv(~t′)}] |= X

B∪Ad,s+1∪Dd−1∪...∪D1

v(t′)

follows straightforwardly. This completes the proof of VSpace(τ ` 0) ≤ 1.

Let us now turn to the lower bound. Our overall strategy is quite typical
for space complexity: we define a collection of “admissible” configurations A
that is simple enough to be controlled and, on the other hand, everything that
we can infer in small space can be majorated by an admissible configuration
from A. The only twist is that since we are proving a length lower bound, this
construction must necessarily be dynamic as well and consist of an increasing
sequence A0 ⊆ A1 ⊆ . . . ⊆ As ⊆ . . ., where configurations in As majorate
everything that can be inferred in small space and length ≤ s. We just saw
a relatively simple implementation of this idea in the proof of Lemma 5.2.

Starting the formal argument, recall that we have a natural ultrametric
ρ on the set of variables V , and that non-trivial balls in this metric are
naturally identified with the set of non-root vertices in the underlying tree.
Let r(B) denote the radius of a ball B.

Definition 5.9 (normal terms) Let B be a ball of radius r, 0 ≤ r ≤ h−1,
and let A ⊆ Dr+1 be such that A 6= ∅ and, moreover, A 6= D1 if r = 0. Then
we denote by tB,A the following term:

tB,A
def
=

∧
v∈B

XDh∪...∪Dr+2∪A
v . (10)

A term t is normal if it can be represented as

t = tB1,A1 ∧ . . . ∧ tBw,Aw , (11)

where all balls are pairwise disjoint.

20



We remark that for any D-valued literal XB
v , the set B uniquely deter-

mines the term tB,A in which it may possibly appear. Hence the representa-
tion (11) of a normal term is unique and it what follows we will not distinguish
between the two.

Definition 5.10 (sparse terms) Let us call two balls B,B′ adjacent if they
have the same radius r and ρ(B,B′) = r+ 1. A normal term (11) is sparse if
no two balls Bi,Bj in it are adjacent.

Definition 5.11 (complexity of normal terms) Let a ball B of radius
r corresponds to a prefix (ih, . . . , ir+1) ∈ V +, iν ∈ [`]. For A ⊆ Dr+1,
let L(tB,A) be the minimal length of a space 1 Dr+1-valued proof of the

generalized literal XA
ir+1

from τr+1. For a normal term (11), we let L(t)
def
=

max1≤i≤w L(tBi,Ai).

Now we are ready to define the sets of admissible configurations As.

Definition 5.12 (admissible configurations) For a term t, we let

t∗
def
= t ∧ η[V ars(t)].

We let As consist of all t∗, where t is a normal sparse term with L(t) ≤ s.

Clearly, t∗ is consistent for any normal t (assign all variables Xv, v ∈ Bi
to an arbitrary fixed value ai ∈ Ai). Hence Lemma 5.4 readily follows from
the following, which is the heart of our argument.

Lemma 5.13 Let 1 = f0, . . . , f1 . . . , fs be a D-valued semantical proof from
ηh ·ηh−1 · . . . ·η1 of variable space ≤ h/2−1 with s ≤ T −1. Then there exists
f ∈ As such that f |= fs.

Proof of Lemma 5.13. By induction on s. The base case s = 0 is obvious
(1 = 1∗ ∈ A0).

For the inductive step, let t = tB1,A1 ∧ . . . ∧ tBw,Aw be a normal sparse
term such that L(t) ≤ s, where s ≤ T − 2, with t∗ |= fs. Our goal is to
construct a normal sparse term t̂ such that L(t̂) ≤ s+ 1 and t̂∗ |= fs+1. This
will complete the proof of Lemma 5.13.
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Let8 V0
def
= V ars(fs) ∪ V ars(fs+1); note that |V0| ≤ 2(h/2 − 1) = h − 2.

We have fs ∧ η[V0] |= fs+1, and hence it is sufficient to construct a normal
sparse term t̂ with L(t̂) ≤ s+ 1 satisfying

t̂∗ |= fs ∧ η[V0]. (12)

Definition 5.14 For a ball B with r(B) ≤ h− 1, B+ is the uniquely defined
ball of radius r(B) + 1 such that B+ ⊃ B.

Claim 5.15 The set V0 can be covered by a collection of balls {B∗1, . . . ,B∗w∗}
of radii ≤ h − 1 each such that the balls (B∗1)+, . . . , (B∗w∗)

+ are pairwise
disjoint.

Remark 2 Note that this property of {B∗1, . . . ,B∗w∗} is much stronger than
the sparsity required in Definition 5.10. Unfortunately, we can not maintain
it inductively as it in general will be destroyed when merging the collection
coming from Claim 5.15 and the one underlying the old term t, see (13) below
for details.

Proof of Claim 5.15. Let us call a covering of the set V0 by pairwise disjoint
balls frugal if every ball B in this covering covers at least (r+ 1) elements of
V0. Frugal coverings do exist: take, for example, the trivial covering by balls
of radius 0. Now pick up a frugal covering with the smallest possible number
of balls. We claim that it has all the required properties.

Indeed, the bound r(B∗) ≤ h − 1 for a ball B∗ in our frugal covering
simply follows from the definition of frugality and the bound |V0| ≤ h − 2.
Next, if B,B′ are two different balls in this coloring such that B+∩ (B′)+ 6= ∅
then, by ultrametricity, one of these latter balls must contain another, say,
B+ ⊇ (B′)+ ⊃ B′. Replacing B with B+ and removing all balls contained in
B+ (including B′!), we will get a frugal covering with a smaller number of
balls, a contradiction. Thus, all the balls in the minimal frugal covering are
pairwise disjoint. Claim 5.15

The collection of disjoint balls from Claim 5.15 is not a priori anyhow
related to the collection {B1, . . . ,Bw} underlying the normal sparse term t,
and our next task is to relate the two. From now on, we fix a collection of
balls {B∗1, . . . ,B∗w∗} satisfying the conclusion of Claim 5.15.

8From this point on we freely identify sets of variables and their indices whenever it
does not create confusion.
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Let Γ0 ⊆ [w] consist of those γ for which Bγ is properly contained in
a ball B∗µ (µ ∈ [w∗]). Let M0 ⊆ [w∗] be the set of all those µ for which
B∗µ is contained (not necessarily properly) in one of the Bγ (γ ∈ [w]). By

ultrametricity, all balls {Bγ | γ 6∈ Γ0},
{
B∗µ | µ 6∈M0

}
are pairwise disjoint.

They still may contain adjacent balls, though.
Let Γ1 ⊆ [w] be the set of all balls Bγ such that Bγ ⊆ (B∗µ)+ \ B∗µ for at

least one µ ∈ [w∗]. Note that if Bγ is adjacent to a ball B∗µ then γ ∈ Γ1.
Also, since all (B∗µ)+ (µ ∈ [w∗]) are pairwise disjoint, it follows that for any
γ ∈ Γ1, Bγ is disjoint with all balls B∗µ (µ ∈ [w∗]), including µ ∈ M0. Hence,
in particular, Γ0 ∩ Γ1 = ∅. Moreover, the ball B∗µ with Bν ⊆ (B∗µ)+ \ B∗µ is
uniquely defined, and we let

Γµ1
def
=
{
γ
∣∣∣ Bγ ⊆ (B∗µ)+ \ B∗µ

}
;

thus, Γ1 =
.⋃
µ∈[w∗]Γ

µ
1 . A word of warning: Γµ1 may be non-empty even if

µ ∈ M0 (more precisely, when B∗µ = Bγ′ for some γ′ ∈ [w], see Claim 5.16
below).

Now, the balls {Bγ | γ 6∈ Γ0 ∪ Γ1} ,
{
B∗µ | µ 6∈M0

}
are not only pairwise

disjoint but also pairwise non-adjacent. They will make the support of the
sparse term t̂ we are constructing, that is

t̂ =
∧

γ 6∈Γ0∪Γ1

tBγ ,Aγ ∧
∧

µ6∈M0

tB∗µ,A∗µ , (13)

where for µ 6∈ M0 the sets A∗µ are defined as follows. Let µ 6∈ M0 and

r
def
= r(B∗µ).

Case 1. r(Bγ) < r for any γ ∈ Γµ1 (which in particular includes the
case Γµ1 = ∅).

We simply let A∗µ
def
= Dr+1 unless r = 0 in which case, due to our conven-

tion, we simply remove tB∗µ,A∗µ from (13).

Case 2. There exists γ ∈ Γµ1 with r(Bγ) = r.
First note that γ with this property is unique since t is sparse. Bγ

and B∗µ are defined by two prefixes of the form (ih, ih−1, . . . , ir+2, i) and
(ih, ih−1, . . . , ir+2, j) with i 6= j. We let A∗µ be the minimal subset of Dr+1 for
which

X
Aγ
i ∧ η[Xi, Xj] |= X

A∗µ
j (14)
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in the Dr+1-valued logic. We note that L(tBµ,A∗µ) ≤ s + 1 and hence (this is
quite essential for the upcoming argument!) A∗µ 6= ∅ due to the assumption
s ≤ T − 2.

This completes the construction of the sparse term t̂, and all that remains
is to prove (12).

Claim 5.16 If Γµ1 6= ∅ then t̂ contains a sub-term of the form tB∗µ,A for some
A.

Proof of Claim 5.16. If µ 6∈M0, this is obvious. If µ ∈M0 then B∗µ ⊆ Bγ
for some γ and there is another γ′ with Bγ′ ⊆ (B∗µ)+ \ B∗µ. We necessarily
must have B∗µ = Bγ (otherwise, Bγ′ ⊆ Bγ). Clearly, γ 6∈ Γ0 ∪ Γ1 and hence

tBγ ,Aγ = tB∗µ,Aγ appears in t̂. Claim 5.16

Claim 5.17 V0 ⊆ V arst(t̂).

Proof of Claim 5.17. Every v ∈ V0 is contained in one of the balls B∗µ.
If µ 6∈ M0, we are done, otherwise there exists γ ∈ [w] with B∗µ ⊆ Bγ. Like

in the proof of Claim 5.16, γ 6∈ Γ0 ∪ Γ1, hence tBγ ,Aγ appears in t̂ and thus
v ∈ V ars(t̂). Claim 5.17

As an immediate consequence, the second part of the implication in (12)
is automatic, and we only have to prove that t̂∗ |= fs.

Claim 5.18 Let α be an arbitrary assignment satisfying a term tB,A of the
form (10). Then α satisfies all axioms Conρ(u,v)(xu, xv) (u, v ∈ B) if and
only if α is constant on B.

Proof of Claim 5.18. By an easy inspection. Claim 5.18

Let now α ∈ V D be an assignment satisfying t̂∗. Comparing with the
inductive assumption t∗ |= fs and noticing that V ars(fs) ⊆ V0, in order to
prove that fs(α) = 1, we only have to show how to modify α to another
assignment β such that:

1. α and β agree on V0;

2. t∗(β) = 1.
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This β will be obtained from α by re-defining the latter on the balls

{Bγ | γ ∈ Γ1}. Consider an individual Bγ, γ ∈ Γµ1 and let r
def
= r(B∗µ). By

Claim 5.16, B∗µ ⊆ V ars(t̂), and then by Claim 5.18 (since α satisfies η[B∗µ]),
α|B∗µ is a constant a with a ∈ Dh ∪ . . . ∪Dr+2 ∪ A∗µ.

Case 1. a ∈ Dh ∪ . . . ∪Dr+2.
We simply let β|Bγ ≡ a.

Case 2.1. a ∈ A∗µ and r(Bγ) = r, i.e., Bγ and B∗µ are adjacent.
In the notation of (14), there exists b ∈ Aγ such that η[{Xi, Xj}](b, a) = 1;

otherwise a could have been removed from A∗µ in violation of the minimality
of (14). Pick arbitrarily any such b and define β|Bγ ≡ b.

Case 2.2. a ∈ A∗µ, r(Bγ) < r.
We let β|Bγ ≡ b, where b ∈ Dr(Bγ)+1 is chosen in such a way that

η[{Xi}](b) = 1. Here, as before, i is the last entry in the prefix describ-
ing the ball Bγ.

The construction of β is complete.

Claim 5.19 α and β agree on all balls B∗µ and on all balls Bγ (γ 6∈ Γ1).

Proof of Claim 5.19. Follows from the above remarks that the balls
Bγ (γ ∈ Γ1) are disjoint from anything else. Claim 5.19

In particular, α and β agree on V0, and it remains to show that t∗(β) = 1.
This requires a bit of case analysis.

First we check that t(β) = 1, that is tBγ ,Aγ (β) = 1 for any γ ∈ [w].

Case 1. γ ∈ Γ0.
We have Bγ ⊂ B∗µ for some µ 6∈M0, and by Claim 5.19, α and β coincide

on B∗µ. Since r(Bγ) ≤ r(B∗µ) − 1, we have tB∗µ,A∗µ |= tBγ ,Aγ regardless of the
particular value of A∗µ (over which we do not have any control). But tB∗µ,A∗µ
appears in t̂ and hence tB∗µ,A∗µ(α) = 1. tBγ ,Aγ (β) = 1 follows.

Case 2. γ ∈ Γ1.
In this case tBγ ,Aγ (β) = 1 directly follows from the way the assignment β

was constructed.

Case 3. γ 6∈ Γ0 ∪ Γ1.
Once again, α and β coincide on Bγ, and tBγ ,Aγ also appears in t̂. Hence

tBγ ,Aγ (β) = 1.
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So far we have proved t(β) = 1, and what still remains is to show that
η[V ars(t)](β) = 1. Let us fix C ∈ η with V ars(C) ⊆ V ars(t). We need to
prove that

C(β) = 1. (15)

Case 1. V ars(C) ⊆ Bγ for some γ.

Let r
def
= r(Bγ).

Case 1.1. C = Ĉ0(Xu, Xv) (u, v ∈ Bγ), where C0 ∈ ηd, d def
= ρ(u, v).

This case is immediate from the already established fact t(β) = 1 since
it implies βu, βv ∈ Dh ∪ . . . ∪Dr+1, while d ≤ r.

Case 1.2. C = Conρ(u,v)(Xu, Xv).
For every ball B occurring in the right-hand side of (13), α|B is constant

by Claim 5.18 since α satisfies all consistency axioms Conρ(u,v)(Xu, Xv) with
u, v ∈ B ⊆ V ars(t̂). Following the same reasoning as in the proof of t(β) = 1
above, β|Bγ is also a constant hence C(β) = 1 by Claim 5.18.

So far we have treated axioms C of width 2 with V ars(C) ⊆ Bγ. We
divide the analysis of the case when C is of width 1 into two subcases,
according to whether γ ∈ Γ1 or not.

Case 1.3. C = Ĉ0(Xu), where C0 ∈ τd for some d and γ 6∈ Γ1.
Since Xu ∈ V ars(t̂), C(αu) = 1, and since γ 6∈ Γ1, C(βu) = C(αu). This

gives (15).

Case 1.4. C = Ĉ0(Xu), where, as before, C0 ∈ τd for some d but
γ ∈ Γ1.

Let γ ∈ Γµ1 and R
def
= r(B∗µ) ≥ r. From our construction, either α|B∗µ ∈

Dh ∪ . . . ∪ DR+2 and β|Bγ ≡ α|B∗µ , or b ∈ Dr+1 and η[Xi](b) = 1, where i is
again the last entry in the prefix describing Bγ.

Case 1.4.1. β|Bγ ≡ α|B∗µ ∈ Dh ∪ . . . ∪DR+2 (= a).
We may assume d ≥ R + 2 as otherwise the statement is trivial. Pick

arbitrarily u∗ ∈ B∗µ, then ρ(u, u∗) = R + 1. Hence u and u∗ share the prefix

of length h − d ≤ h − R − 2, that is Ĉ0(Xu∗) is also in η. Now Ĉ0(a) = 1
follows from Xu∗ ∈ V ars(t̂).

Case 1.4.2. b ∈ Dr+1 and η[i](b) = 1.
Again, this is obvious if d 6= r+1 and follows from C0 ∈ ηd[{i}] otherwise.
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We have completed the analysis of the case V ars(C) ⊆ Bγ for a single
ball Bγ. In particular, we can and will now assume that the width of the
constraint C is exactly 2:

Case 2. V ars(C) = {u, v}, u ∈ Bγ and v ∈ Bγ′ with γ 6= γ′.

Let d
def
= ρ(u, v), r

def
= r(Bγ), r′ def

= r(Bγ′), so that r, r′ ≤ d − 1 and,
moreover, at least one of this inequalities is strict (since the balls Bγ, Bγ′ are
non-adjacent).

Case 2.1. γ 6∈ Γ1 and γ′ 6∈ Γ1.
This case is immediate: βu = αu, βv = αv and (15) simply follows from

the fact that α satisfies η[V ars(t̂)].

Case 2.2. γ ∈ Γ1.

Let γ ∈ Γµ1 and R
def
= (B∗γ) so that R ≥ r. Let also a

def
= α|B∗µ ; a ∈

Dh ∪ . . . ∪DR+1.
The rest of the analysis splits into two rather different cases according to

whether v ∈ (B∗µ)+ or not.

Case 2.2.1. v ∈ (B∗µ)+, that is d ≤ R + 1.

Case 2.2.1.1. a ∈ Dh ∪ . . . ∪DR+2.
According to the construction, βu = βv = a. Cond(βu, βv) = 1 follows

immediately, and for Ĉ0(βu, βv) (C0 ∈ τd) we only have to remark that a 6∈ Dd

since d ≤ R + 1.

Case 2.2.1.2. a ∈ DR+1.

Case 2.2.1.2.1. v ∈ B∗µ.
From our construction, d = R+1, βv = a, and βu ∈ Dr+1. Thus, βu, βv ∈

Dd ∪ . . . ∪ D1, and this proves Cond(βu, βv) = 1, as well as Ĉ0(βu, βv) = 1
unless r = R, that is the balls Bγ and B∗µ are adjacent. In this latter case

Ĉ0(βu, a) = 1 is guaranteed by our choice of βu.

Case 2.2.1.2.2. v ∈ (B∗µ)+\B∗µ. In this case γ′ ∈ Γµ1 as well, and, according
to our construction, βu ∈ Dr+1 and βv ∈ Dr′+1. Recalling that r+1, r′+1 ≤ d
and, moreover, at least one of the inequalities here is strict, both Cond(βu, βv)
and Ĉ0(βu, βv) (C0 ∈ τd) are satisfied for trivial reasons.

At this moment, we are done with the case v ∈ (B∗µ)+.

Case 2.2.2. v 6∈ (B∗µ)+ or, in other words, d ≥ R + 2.
Pick arbitrarily u∗ ∈ B∗µ. Since ρ(u, u∗) = R + 1, by the ultrametric

triangle inequality we get ρ(u∗, v) = d. In particular, C(Xu∗ , Xv) is also an
axiom of η.
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Claim 5.20 C(βu, βv) = C(αu∗ , βv).

Proof of Claim 5.20. Readily follows from the dichotomy βu = βu∗ = αu∗
or βu, αu∗ ∈ DR+1 ∪ . . . ∪D1 ⊆ Dd−1 ∪ . . . ∪D1. Claim 5.20

Thus, if γ′ 6∈ Γ1 then {u∗, v} ⊆ V ars(t̂), βv = αv and we are done since α

satisfies t̂∗. On the other hand, if γ′ ∈ Γµ
′

1 for some µ′ 6= µ then u∗ 6∈ (B∗µ′)+,
and we simply apply Claim 5.20 once more, this time with u = v, v =
u∗, u∗ = v∗, where v∗ ∈ B∗µ′ .

This finally completes our case analysis. To re-cap the overall argument,
we have proved (15) for any axiom C ∈ η with V ars(C) ⊆ V ars(t). That
is, for any assignment α ∈ DV with t̂∗(α) = 1 we were able to modify it to
some β ∈ V D so that α and β agree on V0 and t∗(β) = 1. This implies (12)
and completes the inductive step. Lemma 5.13

As we observed above, the lower bound in Lemma 5.4 follows immediately. Lemma 5.4

Proof of Lemma 5.8. In the notation of this lemma, fix a semantical
(Boolean) refutation π = (f0, . . . , fT ) from η[g, A] with VSpace(π) ≤ (hs)/16.
In order to convert π to a D-valued refutation, we need to recall a few
rudimentary facts about expanders.

Definition 5.21 For a set of columns J ⊆ [n], let

Ker(J)
def
= {i ∈ [m] | Ji(A) ⊆ J }

be the set of rows completely contained in J . Let A \ J be the sub-matrix of
A obtained by removing all columns in J and all rows in Ker(J).

The following is a part of [Raz16a, Lemma 4.4].

Proposition 5.22 Let A be an (m × n) (r, c)-boundary expander in which
every row has at most s ones, let c′ < c, and let J ⊆ [n] satisfy |J | ≤ r

2
(c−c′).

Then there exists Ĵ ⊇ J such that A \ Ĵ is an (r/2, c′)-boundary expander

and |Ĵ | ≤ |J |
(
1 + s

c−c′
)
.

We now return to the proof of Lemma 5.8. Let9 Jt
def
= V ars(ft); |Jt| ≤

(hs)/16. Apply to this set Proposition 5.22 with r = 2h, c = 3s/4 and

9Recall that we often identify sets of variables with sets of their indices.
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c′ = 5s/8. We will get Ĵt ⊇ Jt such that A \ Ĵt is an (h, 5s/8)-boundary

expander and |Ĵt| ≤ 9|Jt| ≤ 9hs/16. Let It
def
= Ker(Ĵt); we claim that

|It| ≤ h. Indeed, assuming the contrary, pick a set I ′t ⊆ It with |I ′t| = h.
Then |∂A(I ′t)| ≤ |Ĵt| ≤ 9hs/16, contrary to the fact that A is an (h, 3s/4)-
boundary expander.

We now let f̂t be the minimalD-valued function in the variables {yi | i ∈ It}
such that

ft |= f̂t[g, A] (16)

in the Boolean logic. Then
∣∣∣V ars(f̂t)∣∣∣ ≤ s and all that remains to show is

that (f̂0, f̂1, . . . , f̂T ) is indeed a D-valued semantic refutation, that is

f̂t ∧ η[It ∪ It+1] |= f̂t+1, (17)

for all t.
Let α ∈ Dm be any assignment satisfying the left-hand side in (17). Due

to the minimality of f̂t, if we re-define it to 0 on the input α|It , this will
violate (16). In other words, there exists a Boolean assignment a ∈ {0, 1}n
such that ft(a) = 1 and

g
(
a|Ji(A)

)
= αi, (18)

for any i ∈ It. We note that these two properties of a depend only on those

values aj for which j ∈ Ĵt; thus, we can view a as an assignment in {0, 1}Ĵt ,
discarding all other values. Our goal is to extend a to an assignment in

{0, 1}Ĵt∪Ĵt+1 in such a way that (18) will be satisfied for all i ∈ It+1 as well.

This is done by a fairly standard argument. Let I
def
= It+1 \ It. Since

A \ Ĵt is an (h, 5s/8)-boundary expander and |I| ≤ |It+1| ≤ h, we have∣∣∣∂A(I) \ Ĵt
∣∣∣ ≥ 5s

8
|I|. Hence for at least one i ∈ I,∣∣∣∣∣∣Ji(A) \

Ĵt ∪ ⋃
i′∈I\{i}

Ji′(A)

∣∣∣∣∣∣ ≥ 5s

8
≥ s

4
.

Removing this i from I and arguing by reverse induction, we can order all
rows in I in such a way I = {i1, i2 . . . , ir} that∣∣∣Jiν (A) \

(
Ĵt ∪ Ji1(A) ∪ . . . ∪ Jiν−1(A)

)∣∣∣ ≥ s

4
(19)

for all ν = 1..r. Using now (3s/4)-surjectivity of g, we consecutively extend
a to Ĵt ∪ Ji1(A) ∪ . . . ∪ Jiν (A) enforcing all conditions (18).

29



The partial assignment a ∈ {0, 1}Ĵt∪Ĵt+1 we have constructed still satisfies

ft; we claim that it also satisfies η[g, A]
[
Ĵt ∪ Ĵt+1

]
⊇ η[g, A][Jt ∪ Jt+1].

Indeed, for any C ∈ η[It ∪ It+1] this simply follows from the fact that
C(α) = 1 and the consistency conditions (18). One thing we still have to

make sure is that η[g, A]
[
Ĵt ∪ Ĵt+1

]
does not contain any other, “accidental”

constraints.

Claim 5.23 If C is any constraint of width ≤ h and V ars(C[g, A]) ⊆ Ĵt ∪
Ĵt+1 then V ars(C) ⊆ It ∪ It+1.

Proof of Claim 5.23. By a relatively simple modification of the argument

above. Let I
def
= V ars(C); |I| ≤ h, and assume the contrary, that is that

there exists i ∈ I \ (It ∪ It+1). Fix two assignments α, β ∈ DI differing only
in the ith coordinate but such that C(α) 6= C(β). We claim that there exist
a, b ∈ {0, 1}n such that (cf. (18))

g
(
a|Ji(A)

)
= αi, g

(
b|Ji(A)

)
= βi, (20)

for all i ∈ I while a|
Ĵt∪Ĵt+1

= b|
Ĵt∪Ĵt+1

: the first property will imply C[g, A](a) 6=
C[g, A](b), and that will contradict V ars(C[g, A]) ⊆ Ĵt ∪ Ĵt+1 by the second
property.

We construct the promised a, b in two stages. Let I ′
def
= I ∩ (It ∪ It+1);

thus, α and β agree on I ′. As before, order the rows in I ′ in such a way
I ′ = {I1, . . . , Ir} that∣∣∣Jiν (A) \ (Ji1(A) ∪ . . . ∪ Jiν−1(A))

∣∣∣ ≥ s/4

holds for all ν (cf. (19)), and then satisfy (20) with the same assignment to

Ji1(A) ∪ . . . ∪ Jir(A). Extend it to Ĵt ∪ Ĵt+1 arbitrarily; let c ∈ {0, 1}Ĵt∪Ĵt+1

be the resulting assignment.

Now, let I ′′
def
= I \ (It ∪ It+1), and let A∗ be the matrix obtained from

A by removing all columns Jt, Jt+1 and all rows It, It+1. Since both A \ Jt
and A\Jt+1 are (h/2, 5s/8)-expanders, clearly A∗ is still an (h, s/4)-expander

( s
4

= 2·
(

5
8
s
)
−s). This expansion property allows us to extend c, by the same

argument as above, to a, b ∈ {0, 1}n that will satisfy (20) for i ∈ I ′′ as well.
But, as we remarked above, (20) is in contradiction with V ars(C[g, A]) ⊆
Ĵt ∪ Ĵt+1. Claim 5.23
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Since η is an h-CSP by the assumption of Lemma 5.8, we can apply Claim
5.23 to any C ∈ η. This gives us that all constraints in η[g, A]

[
Ĵt ∪ Ĵt+1

]
are

indeed coming from η[It ∪ It+1]. As we already remarked above, this implies
that all of them are satisfied by the assignment a, and since (f0, f1, . . . , fT )
is a semantical refutation from τ [g, A], we conclude that ft+1(a) = 1. By
(16), f̂t+1[g, A] = 1, and since a satisfies (18) for all i ∈ It+1, this means
f̂t+1(α) = 1.

We have established (17) by showing that any D-valued assignment α sat-
isfying its left-hand side also satisfies the right-hand side. Thus, (f̂0, f̂1, . . . , f̂T )
is indeed a semantical refutation. Lemma 5.8

6. Very small space

In this section we prove Theorems 3.4 and 3.5.

Proof of Theorem 3.4. As we already remarked, this is a variation on the
proof of Theorem 3.1 (the D(τ ` 0) ≤ 2VSpace∗(τ ` 0) part), except that
instead of binary search we now do T -ary search for a suitable T . But this
time our goal is to come up with a configurational refutation rather than a
tree-like one. Hence, an inductive description would be somewhat awkward,
and we frame the argument as a direct construction instead.

Let π = (f0, f1, . . . , fS) be a semantical refutation from τ that has variable
space ≤ s. Assume w.l.o.g. that S is of the form (T + 1)h − 1 for an integer
T , and for t ∈ [0..S], let (th−1, . . . , t0) be its (T + 1)-adic representation, that
is t =

∑h−1
d=0 td(T +1)d. For t > 0, let ord(t) be the minimal d for which td 6= 0

(that is, the maximal d for which (T + 1)d|t). Let t(k) be the truncation of

t by taking k most significant bits: t(k) def
=
∑h−1
d=h−k td(T + 1)d. In particular,

t(0) = 0 and t(h) = t. Let

f̂t
def
= (f0 → ft(1)) ∧ (ft(1) → ft(2)) ∧ . . . ∧ (ft(h−1) → ft).

Clearly, |V ars(f̂t)| ≤ O(hs).

Let us now take a look at f̂t+1. Denoting k
def
= h − ord(t + 1), we can

remove from f̂t+1 all trivial terms f(t+1)(k) → f(t+1)(k+1) , . . . , f(t+1)(h−1) → ft+1

and write it down simply as

f̂t+1 ≡ (f0 → ft(1))∧ (ft(1) → ft(2))∧ . . .∧ (ft(k−2) → ft(k−1))∧ (ft(k−1) → ft+1).
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Hence f̂t ∧ (ft → ft+1) |= f̂t+1 and (f̂0, f̂1, . . . , f̂s) is also a semantical refuta-
tion from τ of the desired variable space O(hs).

We convert it to a configurational resolution refutation as follows. First,
for t ≤ t′ denote by C(t, t′) the straightforward CNF-expansion of ft → ft′ .

Next, let Ct def
= C(0, t(1))∪C(t(1), t(2))∪ . . .∪C(t(h−1), t); this is our chosen CNF

representation of the Boolean function f̂t. Now the conversion is natural: to
get from Ct to Ct+1, we first download all axioms in τ [V ars(ft)∪V ars(ft+1)],
then write down the brute-force inference

C(ft(k−1) , ft(k)), . . . , C(ft(h−1) , ft), τ [V ars(ft) ∪ V ars(ft+1)] ` C(ft(k−1) , ft+1),
(21)

and, finally, erase all clauses in the left-hand side. It remains to bound the
depth of this refutation (recall Definition 2.2).

Every individual step (21) has depth O(hs) as this is how many variables
it involves. To get a bound on the depth of the tree formed by the inferences
(21), we not that for every C(fa, fb) in the left-hand side either ord(b) <
ord(t + 1)(= h − k): this happens for all configurations but C(ft(k−1) , ft(k)),
or ord(b) = ord(t + 1) and b < t + 1 (a = t(k−1), b = t(k), th−k 6= 0), or it is
trivial and can be removed (a = t(k−1), b = t(k), th−k = 0). Hence the depth
of the proof tree defined by the inferences (21) is O(hT ), and the required
overall bound O(h2sT ) on depth follows. Theorem 3.4

Proof of Theorem 3.5. Fix a configurational refutation π = (C0, C1, . . . , CT )
from the Induction Principle τn that has variable space s. Let us begin with
a few generic remarks.

First, we can assume w.l.o.g. that for every 0 ≤ t ≤ T − 1, Ct does not
contain the empty clause 0.

Next, let us call a clause Bi-Horn if it contains at most one occurrence
of a positive literal and at most one occurrence of a negative literal. Since
the set of bi-Horn clauses is closed under the Resolution rule, and all axioms
in τn are bi-Horn, all clauses appearing in our refutation must be also bi-
Horn. In other words, for every t < T , Ct must entirely consist of literals and
implications of the form xi → xj (i 6= j).

Next, for t ≤ T − 1 we can remove from Ct all clauses C with Dt(C) ≥
D(π) and still get a configurational refutation (this reduction corresponds to
removing non-essential clauses in [Ben09]). Hence, we can assume that

Dt(C) ≤ D(π)− 1, t ≤ T − 1, C ∈ Ct. (22)
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Finally, we remark that Boolean restrictions naturally act on configura-
tional refutations, and that under this action neither space nor depth may
increase.

Let us now return to the proof of Theorem 3.5. The configuration CT−1

must contain both literals xi, x̄i of some variable i. Let r be the maximal
index for which xr appears in one of the clauses C0, C1, . . . , CT−1, and let `
be the minimal index for which x̄` appears there. Note that ` ≤ i ≤ r, and
hence V ars(CT−1) has a non-empty intersection with both {x0, . . . , xr} and
{x`, x`+1, . . . , xn}.

Choose a such that

V ars(Ca) ∩ {x0, x1, . . . , xr} 6= ∅ ∧ V ars(Ca) ∩ {x`, x`+1, . . . , xn} 6= ∅

while for Ca−1 one of these properties is violated. By symmetry, we can
assume w.lo.g. that V ars(Ca−1) ∩ {x0, . . . , xr} = ∅.

Let us now apply to π the restriction ρ+ : x0 → 1, x1 → 1, . . . , x` → 1.
It transforms τn to τn−`−1, and since x̄` appears somewhere in the refutation
(and is killed by ρ+), (22) implies that D(π|ρ+) ≤ D(π)− 1.

Let us also apply to π the dual restriction ρ− : x` → 0, x`+1 → 0, . . . , xn →
0. Then τn|ρ− = τ`−1. Next, every clause C in Ca−1 is a bi-Horn clause
in the variables {xr+1, . . . , xn}, and, by the definition of r, it may not be
a positive literal. Hence C must contain a negative literal which, since
r ≥ `, implies C|ρ− ≡ 1. Thus, ρ− sets to 1 all clauses in Ca−1, and since
V ars(Cb) ∩ {x`, x`+1, . . . , xn} 6= ∅ for all b ≥ a, ρ− reduces the space by at
least one: VSpace(π|ρ−) ≤ VSpace(π)− 1.

For the purpose of recursion, let D(n, s) be the minimum depth of a
configurational refutation of τbnc that has variable space ≤ s. We have proved
that

D(n, s) ≥ min
0≤`≤n

{max(D(n− `− 1, s) + 1, D(`− 1, s− 1))}

which is bounded from below as min
{
D(n− n1−1/s − 1, s) + 1, D(n1−1/s, s− 1)

}
.

This recurrence clearly resolves to D(n, s) ≥ Ω(n1/s). Theorem 3.5

7. Conclusion

In this paper we have studied two complexity measures of propositional
proofs, variables space and depth, that in our view have been somewhat
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neglected in the past. We hope that perhaps the nature of the results proved
in this paper would help them to find the place in the overall hierarchy that,
in our opinion, they fully deserve by the token of being very clean, robust
and natural.

That said, the most interesting question about them remains open: whether
variable space and depth are polynomially related or, equivalently, whether
there exists a supercritical tradeoff between them. In a slightly less precise
form this was asked by Urquhart [Urq11, Problem 7.2]; we have proved a
quadratic gap, but the general problem looks quite challenging.

A positive answer to this question would immediately imply that clause
space is polynomially bounded by variable space. Even if these two problems
seem to be extremely tightly related, we still would like to ask this separately:
is it correct that

CSpace(τn ` 0) ≤ (VSpace(τn ` 0) log n)O(1)?

In the opposite range, of (barely) constant variable space, all refutations
a priori have small length, and we have shown that the depth can be reduced
to, say, n while keeping the variable space constant and length polynomial.
We would like to take this opportunity and re-iterate an interesting question
of (somewhat) similar flavor asked by Nordström [Nor13, Open Problem
16]. Assume that we have a configurational refutation of constant clause
space. Is it always possible to reduce length to polynomial while keeping the
clause space constant? As with our first question, this one also looks quite
challenging.

Finally, there still remains a considerable amount of work to be done on
refining simulations in Theorem 3.1. For example, it only implies that

Ω̃(D1/2) ≤ TSpace ≤ O(D2), (23)

and by Bonacina’s result (4), every O(1)-CNF τn with w(τn ` 0) = Θ(n)
automatically provides an example with TSpace(τn ` 0) = Θ(D2) (= Θ(n2)).
But what about the lower bound in (23)? Can, say, TSpace be sub-linear in
depth or the bound can be improved to Ω̃(D)? This does not seem to easily
follow from any known results.
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